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Abstract

d-descents are permutation statistics that generalize the notions of descents and

inversions. It is known that the distribution of d-descents of permutations of length

n satisfies a central limit theorem as n goes to infinity. We provide an explicit

formula for the mean and variance of these statistics and obtain bounds on the rate

of convergence using Stein’s method.

1 Introduction

For π ∈ Sn, the symmetric group on [n] = {1, 2, . . . , n}, and 1 ≤ d < n, we say that a
pair (i, j) with i < j ≤ i + d and π(i) > π(j) is a d-descent of π and write Desd(π) =
|{(i, j) ∈ [n]2 : i < j ≤ i + d, π(i) > π(j)}| , the number of d-descents of π. (Note that
Des1(π) = Des(π) is the number of descents in π and Desn−1(π) = Inv(π) is the number
of inversions.) These permutation statistics first appeared in [2] where they were related to
the Betti numbers of Hessenberg varieties. In 2008, Miklós Bóna used Janson’s criterion
to show that the distribution of the number of d-descents of permutations of length n

converges to a normal distribution as n goes to infinity [1]. In 2004, Jason Fulman was
able to provide convergence rates for the cases d = 1 and d = n− 1 using Stein’s method
techniques [6, 10]. In this paper, we carry out analogous computations to get convergence
rates for general d-descents both for arbitrary fixed values of d and when d grows with n

(excluding a certain exceptional regime). Because of a recent theorem due to Adrian Rllin
regarding the necessity of exchangeability conditions in Stein’s method [9], we are able
to avoid some of the technical arguments used in Fulman’s proof. We also improve upon
Bóna’s formula for the variance of d-descents. Essentially, this paper serves to compile
and generalize the results of [1] and [6] and to clarify the underlying arguments for future
reference. It also illustrates the utility and applications of Rllin’s theorem.
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2 Mean and Variance of d-descents

To begin, we define Yn,d to be the random variable on Sn (equipped with uniform prob-
ability measure P ) given by Yn,d(π) = Desd(π). Observe that for n ≥ 2, 1 ≤ d < n, the
number of (i, j) ∈ [n]2 with i < j ≤ i + d is

Nn,d = d(n − d) + (d − 1) + (d − 2) + · · ·+ 2 + 1 =
2nd − d2 + d

2
.

Ordering such pairs lexicographically - that is, (i, j) ≺ (r, s) if i < r or i = r and

j < s - and indexing them by {(ik, jk)}Nn,d

k=1 , we can write Desd(π) =
∑Nn,d

k=1 1(π(ik) >

π(jk)) where 1(π(i) > π(j)) =

{

1, π(i) > π(j)

0, π(i) < π(j)
is the indicator of the event {π(i) >

π(j)}. Letting Xk
n,d be the random variable defined by Xk

n,d(π) = 1(π(ik) > π(jk)) gives

Yn,d =
∑Nn,d

k=1 Xk
n,d. Since P (π(ik) > π(jk)) = 1

2
for all (i, j) ∈ {(ik, jk)}Nn,d

k=1 , the Xk
n,d’s are

Bernoulli(1
2
), thus E[Xk

n,d] = 1
2

and Var(Xk
n,d) = 1

4
. Accordingly,

E[Yn,d] =

Nn,d
∑

k=1

E[Xk
n,d] =

Nn,d

2
=

2nd − d2 + d

4

and

Var(Yn,d) =

Nn,d
∑

k=1

Var(Xk
n,d) + 2

∑

1≤k<l≤Nn,d

Cov(Xk
n,d, X

l
n,d)

=
Nn,d

4
+ 2

∑

1≤k<l≤Nn,d

Cov(Xk
n,d, X

l
n,d).

Now when {ik, jk}∩{il, jl} = ∅, Xk
n,d and X l

n,d are independent, so Cov(Xk
n,d, X

l
n,d) =

0. As such, our assumptions on the ordering of the indices imply that the only nonzero
summands correspond to the cases ik = il, jk = jl, and jk = il. Because Cov(Xk

n,d, X
l
n,d) =

E[Xk
n,dX

l
n,d]−E[Xk

n,d]E[X l
n,d] = E[Xk

n,dX
l
n,d]− 1

4
, we just have to compute E[Xk

n,dX
l
n,d] for

each of these cases and count the number of ways each case can occur.
For the case ik = i = il, we have that E[Xk

n,dX
l
n,d] = P (π(i) > π(jk), π(jl)) = 1

3
and

the number of triplets (i, jk, jl) ∈ [n]3 with i < jk < jl ≤ i + d is

(n − d)

(

d

2

)

+

d−1
∑

t=2

(

t

2

)

=
(d2 − d)(3n − 2d − 2)

6
.

If jk = j = jl, then E[Xk
n,dX

l
n,d] = P (π(j) < π(ik), π(il)) = 1

3
and the number of triplets

(ik, il, j) ∈ [n]3 with ik < il < j ≤ ik + d is also the same as in the ik = i = il case.
If ik < jk = m = il < jl, then E[Xk

n,dX
l
n,d] = P (π(i) > π(m) > π(jl)) = 1

6
. Let M

denote the number of triplets (ik, m, jl) ∈ [n]3 with ik < m ≤ ik + d and m < jl ≤ m + d.
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If 2d ≤ n, then there are d2 choices for (ik, jl) when d < m ≤ n − d, there are (m − 1)d
choices for (ik, jl) when m ≤ d, and there are d(n−m) choices for (ik, jl) when m > n−d.

Thus if 2d ≤ n, then

M = d2(n − 2d) + 2d
d−1
∑

t=1

t = nd2 − d3 − d2.

For 2d > n, there are (m − 1)d choices for (ik, jl) when m ≤ n − d, there are d(n − m)
choices for (ik, jl) when m > d, and there are (m − 1)(n − m) choices for (ik, jl) when
n − d < m ≤ d. Thus if 2d > n, then

M =
d
∑

m=n−d+1

(m − 1)(n − m) + 2d
n−d−1
∑

t=1

t

=
6n2d − 6nd2 − 12nd − n3 + 3n2 − 2n + 2d3 + 6d2 + 4d

6
.

The variance is thus

Var(Yn,d) =
Nn,d

4
+ 2

∑

1≤k<l≤Nn,d

Cov(Xk
n,d, X

l
n,d)

=
Nn,d

4
+ 2[2(

1

3
− 1

4
)
(d2 − d)(3n − 2d − 2)

6
+ (

1

6
− 1

4
)M ]

=
1

72
(12nd2 + 6nd − 8d3 − 9d2 − d − 12M).

Substituting the values of M established in the preceding paragraph gives an explicit
formula for Var(Yn,d).

To summarize, we have:

Theorem 1. If Yn,d is the number of d-descents in a random permutation of length n,

then

E[Yn,d] =
2nd − d2 − d

4

and

Var(Yn,d) =

{

6nd+4d3+3d3−d
72

, 2d ≤ n
2n3−12n2d−6n2+24nd2+30nd+4n−12d3−21d2−9d

72
, 2d > n

.
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• Observe that d = 1 yields Var(Des) = n+1
12

and d = n − 1 gives Var(Inv) =
n(n−1)(2n+5)

72
.

• The value of the variance in the 2d ≤ n case is slightly different than that reported
in [1] because a 2 was omitted when recording the number of pairs in 2.2.3. This
minor error does not affect the validity of the subsequent results.

• The author has been unable to find another instance of a general formula for the
variance of d-descents in the literature, though as mentioned above, Miklós Bóna
worked out the 2d ≤ n case completely and the preceding calculations follow the
same basic reasoning. The general idea for calculating the variance can also be
found in Lemma 4.3.1 in [6], but the calculations are only carried out for d = 1 and
d = n − 1.

3 Convergence Rates

This section is basically a generalization of Fulman’s derivation of the rate of convergence
for descents and inversions [6]. The crux of his proof relies upon the following theorem
due to Rinott and Rotar [8].

Theorem 2 (Rinott and Rotar). Let W, W ′ be an exchangeable pair of real-valued random

variables such that E[W ′|W ] = (1− λ)W for some λ ∈ (0, 1). If there exists a constant A

such that |W ′ − W | ≤ A almost surely, then for all x ∈ R,

|P (W ≤ x) − Φ(x)| ≤ 12

λ

√

Var(E[(W ′ − W )2|W ] + 48
A3

λ
+ 8

A2

√
λ

where Φ(x) = 1√
2π

� x

−∞ e−
t2

2 dt is the standard normal c.d.f.

A substantial portion of Fulman’s argument involves proving that the pair (W, W ′)
he constructed is indeed exchangeable. The derivation in this paper uses essentially the
same pair of random variables, but we are spared the onus of establishing exchangeability
thanks to the following adaptation of Rinott and Rotar’s result discovered by Adrian Rllin
[9].

Theorem 3 (Rllin). Suppose that W and W ′are a pair of real-valued random variables

having common law such that E[W ] = 0, Var(W ) = 1, and E[W ′|W ] = (1 − λ)W for

some λ ∈ (0, 1). Suppose moreover that there is a constant A such that |W ′ − W | ≤ A

almost surely. Then for all x ∈ R,

|P (W ≤ x) − Φ(x)| ≤ 12

λ

√

Var(E[(W ′ − W )2|W ] + 32
A3

λ
+ 6

A2

√
λ

where Φ is the standard normal c.d.f.
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• The original version of Rllin’s theorem is a little more general. The above is an
immediate corollary which is sufficient for our purposes.

To facilitate the ensuing arguments, we define a modified version of Yn,d as follows:
For each n ≥ 2, 1 ≤ d < n, consider the real, skew-symmetric n × n matrix M(n, d) =
[Mi,j(n, d)]ni,j=1 given by

Mi,j(n, d) =











−1, i < j ≤ i + d

1, j < i ≤ i + d

0, otherwise

and define the random variable Zn,d by Zn,d(π) =
∑

i<j Mπ(i),π(j)(n, d). (For notational
convenience, we will often abbreviate Mi,j(n, d) = Mi,j when there is no danger of confu-
sion.) Also, define Ascd(π) = |{(i, j) ∈ [n]2 : i < j ≤ i + d, π(i) < π(j)}| to be the number
of d-ascents of π so that Nn,d = Desd(π) + Ascd(π).

Then

Zn,d(π
−1) =

∑

i<j

Mπ−1(i),π−1(j)(n, d)

=
∣

∣{(i, j) : i < j, π−1(j) < π−1(i) ≤ π−1(j) + d}
∣

∣

−
∣

∣{(i, j) : i < j, π−1(i) < π−1(j) ≤ π−1(i) + d}
∣

∣ .

Taking r = π−1(i), s = π−1(j) in the first term and s = π−1(i), r = π−1(j) in the second
term, we see that

Zn,d(π
−1) = |{(r, s) : π(r) < π(s), s < r ≤ s + d}|

− |{(r, s) : π(s) < π(r), s < r ≤ s + d}|
= Desd(π) − Ascd(π) = 2Desd(π) − Nn,d,

hence Zn,d(π) = 2Desd(π
−1) − 2nd−d2−d

2
.

Writing Ỹn,d(π) = Yn,d(π
−1), we have Zn,d = 2Ỹn,d − 2nd−d2−d

2
. Now Ỹn,d and Yn,d have

the same distribution because replacing π with π−1 merely amounts to relabeling the
sample space. As such, E[Ỹn,d] = E[Yn,d], so it follows from Theorem 1 and the linearity

of expectation that E[Zn,d] = 2E[Yn,d] − 2nd−d2−d
2

= 0. Thus if we let

Wn,d =
Zn,d

√

Var(Zn,d)
=

2Ỹn,d − 2nd−d2−d
2

√

4Var(Ỹn,d)
=

Ỹn,d − 2nd−d2−d
4

√

Var(Ỹn,d)
,

then Wn,d has mean zero and variance one. Moreover, since Ỹn,d and Yn,d have the same

distribution, Wn,d is distributed as
Yn,d− 2nd−d2

−d
4√

Var(Yn,d)
.
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At this point, we need to construct a complementary random variable W ′ in order to
apply Theorem 3. To this end, let σI ∈ Sn be the cycle σI = (I, I + 1, . . . , n) and define
W ′

n,d by choosing I uniformly from [n] = {1, 2, . . . , n} and setting W ′
n,d(π) = Wn,d(πσI)

where permutation multiplication is performed from right to left. For example, taking
n = 6, I = 4, if π is given in two-line notation by

π =

(

1 2 3 4 5 6
6 1 4 2 5 3

)

, then πσI =

(

1 2 3 4 5 6
6 1 4 5 3 2

)

.

Notice that Wn,d and W ′
n,d have the same distribution since right multiplication by

σI with I chosen uniformly from [n] corresponds to a “random-to-end” shuffle of π, and
successive shuffles define a Markov chain with uniform stationary distribution [3]. Thus
choosing π uniformly from Sn, choosing I uniformly from [n], and taking the composition
π′ = πσI is equivalent to choosing π′ uniformly from Sn. In addition, we have the following
lemma.

Lemma 1. E[W ′
n,d|Wn,d] = (1 − 2

n
)Wn,d

Proof.

E[W ′
n,d − Wn,d|π] =

1

n

n
∑

i=1

[Wn,d(πσi) − Wn,d(π)]

=
1

n
√

Var(Zn,d)

n−1
∑

i=1

∑

j<k

[Mπ(σi(j)),π(σi(k)) − Mπ(j),π(k)]

(because σn = id). Now (σi(j), σi(k)) = (j, k) when j, k < i, (σi(j), σi(k)) = (j, k + 1)
when j < i ≤ k < n, (σi(j), σi(k)) = (j, i) when j < i, k = n, (σi(j), σi(k)) = (j +1, k+1)
when i ≤ j < k < n, and (σi(j), σi(k)) = (j + 1, i) when i ≤ j < n, k = n. Thus, after
some careful bookkeeping, we see that for each 1 ≤ i < n,

{(π(σi(j)), π(σi(k))) : j < k} \ {(π(j), π(k)) : j < k}
= {(π(j + 1), π(i)) : j ≥ i} = {(π(j), π(i)) : j > i}

and

{(π(j), π(k)) : j < k} \ {(π(σi(j)), π(σi(k))) : j < k} = {(π(i), π(k)) : k > i} ,

hence

E[W ′
n,d − Wn,d|π] =

1

n
√

Var(Zn,d)

n−1
∑

i=1

∑

j<k

[Mπ(σi(j)),π(σi(k)) − Mπ(j),π(k)]

=
1

n
√

Var(Zn,d)

n−1
∑

i=1

(

∑

i<j

−Mπ(i),π(j) −
∑

i<k

Mπ(i),π(k)

)
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=
1

n
√

Var(Zn,d)

n−1
∑

i=1

∑

i<j

−2Mπ(i),π(j)

= −2

n

(

1
√

Var(Zn,d)

∑

i<j

Mπ(i),π(j)

)

= −2

n
Wn,d.

As Wn,d is a function of π and thus is σ(π)-measurable, we have E[W ′
n,d−Wn,d|Wn,d] =

E[E[W ′
n,d − Wn,d|π]|Wn,d] = E[− 2

n
Wn,d|Wn,d] = − 2

n
Wn,d, hence E[W ′

n,d|Wn,d] = E[W ′
n,d −

Wn,d|Wn,d] + Wn,d = (1 − 2
n
)Wn,d.

It is worth remarking that this construction of a complementary random variable by
applying some shuffling scheme to the input might be useful in analyzing other permu-
tation statistics. Indeed, the preceding arguments show that for any random variable
X = X(g) defined on a finite group G with uniform probability measure, if µ is a prob-
ability measure on G that is not concentrated on a coset of a subgroup of G (see [4]),

W = X−E[X]√
Var(X)

, and W ′ is defined by W ′(g) = W (hg) where h is drawn from µ, then the

assumptions of Theorem 3 are satisfied whenever

E[W − W ′|g] =
∑

h∈G

[W (g) − W (hg)]µ(h) = λW

for some λ ∈ (0, 1).
More generally, since every Markov chain with finite state space Ω and transition

kernel K(x, y) = P (Xn+1 = y|Xn = x) has a random mapping representation - that is, a
Λ-valued random variable Z (with distribution µ) and a mapping f : Ω × Λ → Ω such
that K(x, y) = P (f(x, Z) = y) - this procedure for finding a complementary random
variable applies to all temporally homogeneous, finite state space, ergodic Markov chains
by setting W ′(ω) = W (f(Z, ω)) where Z is drawn from µ. (See [7] for a discussion of
random mapping representations.)

If W and W ′ are distributed as consecutive steps in a reversible Markov chain in equi-
librium, then, in obvious notation, P (W = x, W ′ = y) = π(x)K(x, y) = π(y)K(y, x) =
P (W = y, W ′ = x), hence (W, W ′) is an exchangeable pair. The point here is that Rollin’s
observations allow one to apply the machinery of Stein’s method using a pair of similarly
constructed random variables without requiring that the underlying chain is reversible
provided that the above conditions are satisfied.

Of course, one still needs to verify that E[W ′|ω] = (1 − λ)W , in order to conclude
that E[W ′|W ] = E[E[W ′|ω]|W ] = E[(1 − λ)W |W ] = (1 − λ)W . Because

E[W ′|ω] = E[W (f(ω, Z))] =
∑

y∈Ω

W (y)P (f(ω, Z) = y) =
∑

y∈Ω

K(ω, y)W (y),

the condition E[W ′|ω] = (1 − λ)W implies that W is a (right) eigenfunction of K cor-
responding to the eigenvalue 1 − λ. Thus this method is applicable precisely when the
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statistics in question are eigenfunctions of a Markov chain for which the underlying dis-
tribution is stationary.

Lemma 1 and the above observation immediately yield the following corollary

Corollary 1. For n > 1, d = 1, . . . , n − 1, the functions Wn,d(π) are eigenfunctions for

the “random-to-end” shuffle corresponding to the eigenvalue 1 − 2
n
.

Lemma 1 says we can take λ = 2
n

in the statement of Theorem 3. A sharp value for the
A term in Theorem 3 is given by the following lemma and a corollary gives a simplified
version that suffices for the purposes of this paper.

Lemma 2.

∣

∣W ′
n,d − Wn,d

∣

∣ ≤







6
√

2√
(6n−1)d−1+3+4d

, 2d ≤ n

6
√

2√
(2n3+4n−6n2)d−2+(30n−12n2−9)d−1+24n−21−12d

, 2d > n

and this is the best bound possible.

Proof. For any permutation π = π1, π2, . . . , πn and any I ∈ [n],

|Wn,d(πσI) − Wn,d(π)| =

∣

∣

∣

∣

∣

Desd(σ
−1
I π−1) − 2nd−d2−d

4
√

Var(Yn,d)
− Desd(π

−1) − 2nd−d2−d
4

√

Var(Yn,d)

∣

∣

∣

∣

∣

=
1

√

Var(Yn,d)

∣

∣Desd(σ
−1
I π−1) − Desd(π

−1)
∣

∣ .

Now the number of d-descents in π−1 is equal to the number of pairs (j, k) ∈ [n]2 with
j < k ≤ j + d such that π−1(j) > π−1(k). Reindexing [n] by m 7→ π(m), we see that this
is equal to the number of pairs (j, k) with πj < πk ≤ πj + d such that j > k - that is,

Desd(π
−1) =

n−1
∑

j=1

|{k : πj < πk ≤ πj + d, k < j}| .

Similarly, the number of d-descents in the inverse of π′ = πσI =
π1, . . . , πI−1, πI+1, . . . , πn, πI is

Desd((π
′)−1) =

n−1
∑

j=1

∣

∣{k : π′
j < π′

k ≤ π′
j + d, k < j}

∣

∣ .

Since the relative ordering of the terms in the sequence π′ is the same as in π except
that the I th term in π is the nth term in π′, we have

∣

∣{k : π′
j < π′

k ≤ π′
j + d, k < j}

∣

∣ =

|{k : πj < πk ≤ πj + d, k < j}| whenever |πj − πI | > d,
∣

∣{k : π′
j < π′

k ≤ π′
j + d, k < j}

∣

∣ =
|{k : πj < πk ≤ πj + d, k < j}| − 1 for j such that πj < πI ≤ πj + d (of which there
are at most d), and

∣

∣{k : π′
j < π′

k ≤ π′
j + d, k < I}

∣

∣ ≤ |{k : πj < πk ≤ πj + d, k < I}| +
d. Thus it follows from the above representations of Desd(π

−1) and Desd((π
′)−1) that
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|Desd((π
′)−1) − Desd(π

−1)| ≤ d. Moreover, the exact same reasoning shows that when
π = id, I = 1, we get |Desd((π

′)−1) − Desd(π
−1)| = d, so this is the best bound possible.

Therefore, we have the tight bound

|Wn,d(πσI) − Wn,d(π)| =
1

√

Var(Yn,d)

∣

∣Desd(σ
−1
I π−1) − Desd(π

−1)
∣

∣ ≤ d

Var(Yn,d)

and the result follows from Theorem 1.

As the bound in Lemma 2 is pretty unwieldy, we record the following corollary.

Corollary 2.

∣

∣W ′
n,d − Wn,d

∣

∣ ≤



















C1d
1

2 n− 1

2 , d(n) ≤ √
n

C2d
1

2 ,
√

n < d(n) ≤ n
2

C3n
− 1

2 , d(n) > n
2

C(d)n− 1

2 , d fixed

where C1, C2, C3, and C(d) are universal constants independent of n. Moreover, these

bounds are of the best possible order.

Proof. When d ≤ n
2
, noting that 6

√
2√

6nd−1+7d
≤ 6

√
2√

(6n−1)d−1+3+4d
≤ 3

√
2√

nd−1+d
, we see that if

d = d(n) ≤ n
2
, we can take A = C

√

d
n+d2 with C ≥ 3

√
2. When d ≤ √

n, d
n+d2 = Θ(dn−1),

so
∣

∣W ′
n,d − Wn,d

∣

∣ ≤ C1d
1

2 n− 1

2 for some constant C1 and this is the best possible order.

When
√

n < d ≤ n
2
, d

n+d2 = Θ(d−1), so
∣

∣W ′
n,d − Wn,d

∣

∣ ≤ C2d
− 1

2 for some constant C2 and

this is the best possible order. (Note that A = C
√

d
n+d2 is maximized when d =

√
n, in

which case A = Θ(n− 1

4 ).)
Now a little calculus shows that Var(Yn,d) increases monotonically with d for n

2
≤ d <

n, so n3

144
< 2n3+15n2−2n

288
= Var(Yn,d)|d= n

2
< d

Var(Yn,d)
≤ Var(Yn,d)|d=n−1 = 2n3+3n2−5n

72
< n3

12
.

Accordingly, for n
2

< d < n, we have
√

3n− 1

2 = n
√

12

2
√

n3
< d√

V ar(Yn,d)
< n

√
144√
n3

= 12n− 1

2 .

Therefore, when n
2

< d < n,
∣

∣W ′
n,d − Wn,d

∣

∣ ≤ C3n
− 1

2 for some constant C3 and this is the
best possible order.

Finally, for fixed d, the preceding analysis shows that d√
Var(Yn,d)

= Θ(n− 1

2 ), so the best

possible bound is
∣

∣W ′
n,d − Wn,d

∣

∣ ≤ C(d)n− 1

2 for some constant C(d) that does not depend
on n.

In order to apply Theorem 3, it remains only to bound Var(E[(W ′
n,d − Wn,d)

2|Wn,d]).
To accomplish this task, we first establish a simplifying lemma which can be found in [6],
but whose proof is included for the sake of completeness.

Lemma 3.

Var(E[(W ′
n,d − Wn,d)

2|Wn,d]) ≤ Var(E[(W ′
n,d − Wn,d)

2|π])
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Proof. The conditional version of Jensen’s inequality states that if ϕ is convex and
E[|X|], E[|ϕ(X)|] are finite, then ϕ(E[X|F ]) ≤ E[ϕ(X)|F ] (see section 4.1 in [5]). Taking
expectations gives

E[ϕ(E[X|F ])] ≤ E[E[ϕ(X)|F ]] = E[ϕ(X)].

Letting X = E[(W ′
n,d − Wn,d)

2|π], ϕ(x) = x2, and F = σ(Wn,d) ⊆ σ(π), we see that

E[E[(W ′
n,d−Wn,d)

2|Wn,d]
2] = E[E[E[(W ′

n,d−Wn,d)
2|π]|Wn,d]

2] ≤ E[E[(W ′
n,d−Wn,d)

2|π]2].

It follows that

Var(E[(W ′
n,d − Wn,d)

2|Wn,d]) = E[E[(W ′
n,d − Wn,d)

2|Wn,d]
2] − E[(W ′

n,d − Wn,d)
2]2

≤ E[E[(W ′
n,d − Wn,d)

2|π]2] − E[(W ′
n,d − Wn,d)

2]2 = Var(E[(W ′
n,d − Wn,d)

2|π]).

The above lemma and some simplifying observations imply:

Lemma 4.

Var(E[(W ′
n,d − Wn,d)

2|Wn,d]) ≤



















K1d
2n−3, d(n) ≤ √

n

K2d
−2n−1,

√
n < d(n) ≤ n

2

K3n
−3, d(n) > n

2

K(d)n−3, d fixed

where K1, K2, K3, and K(d) are universal constants which do not depend on n.

Proof. We see from the proof of Lemma 1 that

E[(W ′
n,d − Wn,d)

2|π] =
1

n

n
∑

i=1

[Wn,d(πσi) − Wn,d(π)]2

=
1

Var(Zn,d)

1

n

n−1
∑

i=1

(

∑

i<j

−2Mπ(i),π(j)

)2

=
1

Var(Yn,d)

1

n

n−1
∑

i=1

(

∑

i<j

Mπ(i),π(j)

)2

=
1

nVar(Yn,d)

(

n−1
∑

i=1

∑

i<j

M2
π(i),π(j) + 2

n−1
∑

i=1

∑

i<j<k

Mπ(i),π(j)Mπ(i),π(k)

)

=
1

nVar(Yn,d)

(

∑

i<j

M2
π(i),π(j) + 2

∑

i<j<k

Mπ(i),π(j)Mπ(i),π(k)

)

.
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The reasoning used in establishing the distribution of Zn,d shows that

∑

i<j

M2
π(i),π(j) =

∣

∣{(i, j) ∈ [n]2 : i < j, |π(i) − π(j)| ≤ d
∣

∣ = Nn,d

for all π ∈ Sn, so, writing σn,d =
√

Var(Yn,d), it follows from Lemma 3 that

Var(E[(W ′
n,d − Wn,d)

2|Wn,d]) ≤ Var(E[(W ′
n,d − Wn,d)

2|π])

= Var

(

1

nσ2
n,d

(

∑

i<j

M2
π(i),π(j) + 2

∑

i<j<k

Mπ(i),π(j)Mπ(i),π(k)

))

=
4

n2σ4
n,d

Var

(

∑

i<j<k

Mπ(i),π(j)Mπ(i),π(k)

)

=
4

n2σ4
n,d

∑

i<j1<k1

i2<j2<k2

Cov(Mπ(i1),π(j1)Mπ(i1),π(k1), Mπ(i2),π(j2)Mπ(i2),π(k2)).

Now for all (i1, j1), (i2, j2), Mπ(i1),π(j1)Mπ(i1),π(k1) and Mπ(i2),π(j2)Mπ(i2),π(k2) have com-
mon law, so E[Mπ(i1),π(j1)Mπ(i1),π(k1)]E[Mπ(i2),π(j2)Mπ(i2),π(k2)] > 0, hence

Cov(Mπ(i1),π(j1)Mπ(i1),π(k1), Mπ(i2),π(j2)Mπ(i2),π(k2)

≤ E[Mπ(i1),π(j1)Mπ(i1),π(k1)Mπ(i2),π(j2)Mπ(i2),π(k2)]

≤ P (Mπ(i1),π(j1)Mπ(i1),π(k1)Mπ(i2),π(j2)Mπ(i2),π(k2) 6= 0).

Since Mπ(i1),π(j1)Mπ(i1),π(k1) and Mπ(i2),π(j2)Mπ(i2),π(k2) are independent when {i1, j1, k1} ∩
{i2, j2, k2} = ∅, it follows that Var(E[(W ′

n,d − Wn,d)
2|Wn,d]) is bounded above by

4

n2σ4
n,d

∑

i1<j1<k1

i2<j2<k2

{i1,j1,k1}∩{i2,j2,k2}6=∅

P (Mπ(i1),π(j1)Mπ(i1),π(k1)Mπ(i2),π(j2)Mπ(i2),π(k2) 6= 0).

We first observe that when 2d > n, the proof of Corollary 1 shows that n3

144
< σ2

n,d,

so, since the above sum contains O(n5) terms, all of which are at most 1, Var(E[(W ′
n,d −

Wn,d)
2|Wn,d]) ≤ K3

n3 for some constant K3.

As such, we need only worry about the summands for the 2d ≤ n case. Here we note
that the sum can be broken up according to the nature of the intersection {i1, j1, k1} ∩
{i2, j2, k2} so that P (Mπ(i1),π(j1)Mπ(i1),π(k1)Mπ(i2),π(j2)Mπ(i2),π(k2) 6= 0) is constant on each of
these sets. For example, there are

(

n

5

)

terms with i1 = i2 and {j1, k1}∩{j2, k2} = ∅, and for
each such term, the event that the product of the corresponding matrix entries is nonzero
is equal to the event that within a random row of M = M(n, d), four off-diagonal entries
are chosen uniformly without replacement and are all nonzero. Letting Ai be the number
of nonzero off-diagonal entries in row i of M, we have Ai = min{i− 1, d}+ min{d, n− i},
so
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P (Mπ(i1),π(j1)Mπ(i1),π(k1)Mπ(i2),π(j2)Mπ(i2),π(k2) 6= 0)

=
1

n

n
∑

i=1

(

Ai

4

)(

n − 1

4

)−1

=
(n − 5)!

n!

n
∑

i=1

Ai!

(Ai − 4)!

=
(n − 5)!

n!

[

d
∑

i=1

(i + d − 1)!

(i + d − 4)!
+ (n − 2d)

(2d)!

(2d − 4)!
+

n
∑

i=n−d+1

(n + d − i)!

(n + d − i − 4)!

]

=
90nd4 − 240nd3 + 220nd2 − 60nd − 98d5 + 180d4 + 50d3 − 180d2 + 48d

5n(n − 1)(n − 2)(n − 3)(n − 4)

= O(n−4d4).

The total contribution of such terms is thus O(nd4). The other cases may be handled
similarly and the summands are still seen to contribute no more than O(nd4).

Now for d ≤ √
n, σ2

n,d = O(nd), so Var(E[(W ′
n,d − Wn,d)

2|Wn,d]) ≤ 4
n2σ4

n,d

O(nd4) ≤
K1d

2n−3 for some constant K1. When
√

(n) < d ≤ n
2
, σ2

n,d = O(d3), so that Var(E[(W ′
n,d−

Wn,d)
2|Wn,d]) ≤ K2d

−2n−1 for some constant K2.

Finally, since σ2
n,d ≥ nd

12
, thus Var(E[(W ′

n,d −Wn,d)
2|Wn,d]) ≤ 4

n2σ4

n,d

O(nd4) = O(d2n−3)

when 2d ≤ n, and Var(E[(W ′
n,d −Wn,d)

2|Wn,d]) ≤ K3n
−3 when 2d > n, for all fixed values

of d, we have Var(E[(W ′
n,d − Wn,d)

2|Wn,d]) ≤ K(d)n−3 for some constant K(d) that does
not depend on n.

We are now in a position to bound the rate of convergence of d-descents.

Theorem 4. The number of d-descents in a random permutation of length n satisfies

∣

∣

∣

∣

P

(

Desd − µn,d

σn,d

≤ x

)

− Φ(x)

∣

∣

∣

∣

≤



















M1d
3

2 n− 1

2 , d(n) ≤
√

(n)

M2nd− 3

2 ,
√

(n) < d(n) ≤ n
2

M3n
− 1

2 , 2d(n) > n

M(d)n− 1

2 , d fixed

where Φ is the standard normal c.d.f., M1, M2, M3, and M(d) are constants which do not

depend on n, µn,d = 2nd−d2−d
4

, and σn,d =
√

Var(Yn,d) is given by Theorem 1.

Proof. Apply Theorem 3 to the pair (Wn,d, W
′
n,d) - recalling that Wn,d is distributed as

Yn,d− 2nd−d2
−d

4√
Var(Yn,d)

=
Desd−µn,d

σn,d
- where λ, A, and Var(E[(W ′

n,d − Wn,d)
2|Wn,d]) are given by

Lemma 1, Corollary 1, and Lemma 4, respectively.

• Examination of the d(n) ≤ n
2

cases shows that this method does not yield useful

rates when d(n) ∈ Ω(n
1

3 )
⋂

O(n
2

3 ) : In order that the statement is not completely
vacuous, the rates must be o(1). Bóna’s paper shows that a central limit theorem
holds in these cases, but the rates remain unknown.
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• In each case, the 1
λ

√

Var(E[(W ′
n,d − Wn,d)2|Wn,d]) term and the A2

√
λ

term are of the

same order, so, since the bounds on A were tight, the bounds from Lemma 4 are
sufficient for getting the best possible order using the pair (Wn,d, W

′
n,d). The largest

term in each case comes from A3

λ
.

4 Conclusion

For the most part, we were able to successfully extend the work of Fulman in [6] to the
more general setting of d-descents. In particular, Theorem 4 shows that the distribution of
d-descents in a random permutation converges to the normal distribution on the order of
1√
n

when d is fixed or d(n) = Θ(n). When d(n) = o(n), we still get a central limit theorem

with an error term unless d(n) ∈ Ω(n
1

3 )
⋂

O(n
2

3 ). In this case, we need to appeal to Bóna’s
work using Janson’s criterion to get asymptotic normality and the rate is unknown. The
problem in this regime is that d(n)√

Var(Yn,d)
has a spike around d(n) =

√
n. The only way

around this obstacle using the methods of this paper would be to find another pair of
random variables related to Desd that satisfy the assumptions of Theorem 3 and yield a
larger value of λ and/or a smaller value of A. The author has been unable to find such a
pair and at present it is not clear whether the rates for the 2d(n) ≤ n cases derived in this
paper are artifacts of the methodology or a true reflection of the actual dependence of the
rates on the growth of d(n). The bounds in the d(n) ∈ Ω(n

1

3 )
⋂

O(n
2

3 ) cases are certainly

not optimal and it would not be surprising to learn that an order O(n− 1

2 ) convergence
rate holds for all choices of d(n), though it seems that another approach is needed to
determine whether this is the case.

Beyond broadening the known results on the distribution of d-descents of a ran-
dom permutation and establishing a relationship between these statistics and certain
eigenfunctions of the random-to-end shuffle, this paper has demonstrated a method that
may be useful for getting rates in other cases involving real-valued statistics defined on
groups. For example, the construction of the pair (W, W ′) outlined in the remark fol-
lowing Lemma 1 may be relevant to some statistics involving metrics on groups. Indeed,
Desn−1(π) = Inv(π) = τ(π) is the Kendall tau metric (see [3], Ch. 6). It might also
yield central limit theorems for statistics concerning group representations. In fact, as
mentioned in the discussion following Lemma 1, the method applies more generally to the
study of eigenfunctions (corresponding to real eigenvalues) of ergodic Markov chains in
general so there are many potential applications of the technique. Finally, the preceding
analysis shows that Rllin’s theorem can greatly simplify many arguments using Stein’s
method by removing the condition of exchangeability and thus extends the reach of this
powerful tool.
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