Permutations of type B with fixed number of descents and minus signs

Katarzyna Kril Wojciech Młotkowski *

Instytut Matematyczny, Uniwersytet Wrocławski, Plac Grunwaldzki 2/4 50-384 Wrocław, Poland

katarzyna.kril03@gmail.com mlotkow@math.uni.wroc.pl

Submitted: Sep 11, 2017; Accepted: Jan 30, 2019; Published: Feb 22, 2019 © The authors. Released under the CC BY-ND license (International 4.0).

Abstract

We study three dimensional array of numbers B(n,k,j), $0 \leq j,k \leq n$, where B(n,k,j) is the number of type B permutations of order n with k descents and j minus signs. We prove in particular, that $b(n,k,j) := B(n,k,j)/{n \choose j}$ is an integer and provide two combinatorial interpretations for these numbers.

Mathematics Subject Classifications: 05A05, 20B35

Introduction

Let B(n, k, j) denote the number of type B permutations $(0, \sigma_1, \ldots, \sigma_n)$ which have k descents and j minus signs. We study properties of the three-dimensional array B(n, k, j), $0 \leq j, k \leq n$. Some of these properties appear in the work of Brenti [4]. In particular he computed the three-variable generating function and proved real rootedness of some linear combinations of the polynomials $P_{n,j}(x) := \sum_{k=0}^{n} B(n, k, j) x^k$ (Corollary 3.7 in [4], see also Corollary 6.9 in [2]). Here we will prove that the numbers $b(n, k, j) := B(n, k, j) / {n \choose j}$ are also integers. We provide two combinatorial interpretations of them.

For a subset $U \subseteq \{1, \ldots, n\}$ and $0 \leq k \leq n$ let $\mathcal{B}_{n,k,U}$ denote the family of all type B permutations $\sigma = (0, \sigma_1, \ldots, \sigma_n)$ that σ has k descents and satisfy: $\sigma_i < 0$ iff $|\sigma_i| \in U$. We will show (Theorem 9) that the cardinality of $\mathcal{B}_{n,k,U}$ is b(n, k, |U|).

Conger [5, 6] defined the refined Eulerian number $\langle {n \atop k} \rangle_j$ as the cardinality of the set $\mathcal{A}_{n,k,j}$ of all type A permutations $\tau = (\tau_1, \ldots, \tau_n)$ such that $\tau_1 = j$ and τ has k descents. He proved many interesting properties of these numbers, like direct formula, asymptotic

^{*}W. M. is supported by the Polish National Science Center grant No. 2016/21/B/ST1/00628.

behavior, lexicographic unimodality, formula for the generating function and real rootedness of the corresponding polynomials. It turns out that for $0 \leq j, k \leq n$ we have $b(n,k,j) = \langle {n+1 \atop k} \rangle_{j+1}$. We will prove this equality providing a bijection $\mathcal{A}_{n+1,k,j+1} \rightarrow \mathcal{B}_{n,k,U}$, where $U = \{1, \ldots, j\}$ (Theorem 11). The array $b(n,k,1), 1 \leq k \leq n$, appears in OEIS [8] as A120434. It also counts permutations $\sigma \in \mathcal{A}_n$ which have k-1 big descents, i.e. such descents $\sigma_i > \sigma_{i+1}$ that $\sigma_i - \sigma_{i+1} \geq 2$.

Conger proved that the polynomials $p_{n,j}(x) := \sum_{k=0}^{n} b(n,k,j)x^k$ have only real roots (Theorem 5 in [5]). Brändén [3] showed something stronger: for every $n \ge 1$ the sequence of polynomials $\{p_{n,j}(x)\}_{j=0}^{n}$ is interlacing, in particular for every $c_0, c_1, \ldots, c_n \ge 0$ the polynomial $c_0 p_{n,0}(x) + c_1 p_{n,1}(x) + \ldots + c_n p_{n,n}(x)$ has only real roots. Here we remark, that $P_{n,j}(x) = {n \choose j} p_{n,j}(x)$, so the polynomials $P_{n,j}(x)$ admit the same property, which is a generalization of Corollary 3.7 in [4] and of Corollary 6.9 in [2].

1 Preliminaries

For a sequence (a_0, \ldots, a_s) , $a_i \in \mathbb{R}$, the number of descents, denoted des (a_0, \ldots, a_s) , is defined as the cardinality of the set $\{i \in \{1, \ldots, s\} : a_{i-1} > a_i\}$. We will use the *Iverson bracket:* [p] := 1 if the statement p is true and [p] := 0 otherwise, see [7].

Denote by \mathcal{A}_n the group of permutations of the set $\{1, \ldots, n\}$. We will identify $\sigma \in \mathcal{A}_n$ with the sequence $(\sigma_1, \ldots, \sigma_n)$ (we will usually write σ_k instead of $\sigma(k)$). For $0 \leq k \leq n$ we define $\mathcal{A}_{n,k}$ as the set of those $\sigma \in \mathcal{A}_n$ such that the sequence $(\sigma_1 \ldots, \sigma_n)$ has k descents. Then the classical type A Eulerian number A(n, k) (see entry A123125 in OEIS) is defined as the cardinality of $\mathcal{A}_{n,k}$. We have the following recurrence relation:

$$A(n,k) = (n-k)A(n-1,k-1) + (k+1)A(n-1,k)$$
(1)

for 0 < k < n, with the boundary conditions: A(n, 0) = 1 for $n \ge 0$ and A(n, n) = 0 for $n \ge 1$. These numbers can be expressed as:

$$A(n,k) = \sum_{i=0}^{k} (-1)^{k-i} \binom{n+1}{k-i} (i+1)^n.$$
 (2)

For the Eulerian polynomials

$$P_n^{\mathcal{A}}(t) := \sum_{k=0}^n A(n,k) t^k$$

the exponential generating function is equal to

$$f^{\mathcal{A}}(t,z) := \sum_{n=0}^{\infty} \frac{P_n^{\mathcal{A}}(t)}{n!} z^n = \frac{(1-t)e^{(1-t)z}}{1-te^{(1-t)z}}.$$
(3)

By \mathcal{B}_n we will denote the group of such permutations σ of the set

$$\{-n,\ldots,-1,0,1,\ldots,n\}$$

The electronic journal of combinatorics 26(1) (2019), #P1.27

such that σ is odd, i.e. $\sigma(-k) = -\sigma(k)$ for every $-n \leq k \leq n$. Then $|\mathcal{B}_n| = 2^n n!$. We will identify $\sigma \in \mathcal{B}_n$ with the sequence $(0, \sigma_1, \ldots, \sigma_n)$. For $\sigma \in \mathcal{B}_n$ we define des (σ) (resp. $\operatorname{neg}(\sigma)$) as the number of descents (resp. of negative numbers) in the sequence $(0, \sigma_1, \ldots, \sigma_n)$. For $0 \leq k, j \leq n$ we define sets

$$\mathcal{B}_{n,k} := \{ \sigma \in \mathcal{B}_n : \operatorname{des}(\sigma) = k \}, \\ \mathcal{B}_{n,k,j} := \{ \sigma \in \mathcal{B}_n : \operatorname{des}(\sigma) = k, \operatorname{neg}(\sigma) = j \},$$

and the numbers $B(n,k) := |\mathcal{B}_{n,k}|$ (type B Eulerian numbers, see entry A060187 in OEIS), $B(n,k,j) := |\mathcal{B}_{n,k,j}|$. The numbers B(n,k) satisfy the following recurrence relation:

$$B(n,k) = (2n - 2k + 1)B(n - 1, k - 1) + (2k + 1)B(n - 1, k),$$
(4)

0 < k < n, with the boundary conditions B(n, 0) = B(n, n) = 1, and can be expressed as

$$B(n,k) = \sum_{i=0}^{k} (-1)^{k-i} \binom{n+1}{k-i} (2i+1)^n.$$
 (5)

The type B Eulerian polynomials are defined by

$$P_n^{\mathrm{B}}(t) := \sum_{k=0}^n B(n,k)t^k,$$

and the corresponding exponential generating function is equal to

$$f^{\rm B}(t,z) := \sum_{n=0}^{\infty} \frac{P_n^{\rm B}(t)}{n!} z^n = \frac{(1-t)e^{(1-t)z}}{1-te^{2(1-t)z}}.$$
(6)

2 Descents and signs in type B permutations

This section is devoted to the numbers $B(n, k, j) := |\mathcal{B}_{n,k,j}|$. First we observe the following symmetry.

Proposition 1. For $0 \leq j, k \leq n$ we have

$$B(n,k,j) = B(n,n-k,n-j).$$
(7)

Proof. It is sufficient to note that the map

$$(0, \sigma_1, \ldots, \sigma_n) \mapsto (0, -\sigma_1, \ldots, -\sigma_n)$$

is a bijection of $\mathcal{B}_{n,k,j}$ onto $\mathcal{B}_{n,n-k,n-j}$.

Now we provide two summation formulas.

THE ELECTRONIC JOURNAL OF COMBINATORICS 26(1) (2019), #P1.27

Proposition 2.

$$\sum_{j=0}^{n} B(n,k,j) = B(n,k),$$
(8)

$$\sum_{k=0}^{n} B(n,k,j) = \binom{n}{j} n!.$$
(9)

Proof. The former sum counts all $\sigma \in \mathcal{B}_n$ which have k descents, while the latter counts all $\sigma \in \mathcal{B}_n$ which have j minus signs in the sequence $(\sigma_1, \ldots, \sigma_n)$.

From Corollary 4.4 in [1] we have also

$$\sum_{\substack{j=0\\j \text{ even}}}^{n} B(n,k,j) = \frac{1}{2} B(n,k) + \frac{(-1)^k}{2} \binom{n}{k},\tag{10}$$

$$\sum_{\substack{j=0\\j \text{ odd}}}^{n} B(n,k,j) = \frac{1}{2} B(n,k) - \frac{(-1)^k}{2} \binom{n}{k},\tag{11}$$

see A262226 and A262227 in OEIS.

Now we present the basic recurrence relations for the numbers B(n, k, j).

Theorem 3. The numbers B(n, k, j) admit the following recurrence:

$$B(n,k,j) = (k+1)B(n-1,k,j) + (n-k)B(n-1,k-1,j) +kB(n-1,k,j-1) + (n-k+1)B(n-1,k-1,j-1)$$
(12)

for 0 < k, j < n, with boundary conditions:

$$B(n, 0, j) = [j = 0], B(n, n, j) = [j = n], (13)$$

$$B(n, k, 0) = A(n, k), B(n, k, n) = A(n, n - k) (14)$$

$$(n, k, 0) = A(n, k),$$
 $B(n, k, n) = A(n, n - k)$ (14)

for $0 \leq k, j \leq n$.

Equality (12) remains true for $0 \leq j, k \leq n$ under convention that B(n, k, j) = 0whenever $j \in \{-1, n+1\}$ or $k \in \{-1, n+1\}$.

Proof. For $(\sigma_0, \ldots, \sigma_n) \in \mathcal{B}_n$, $n \ge 1$, we define

$$\Lambda \sigma := (\sigma_0, \ldots, \widehat{\sigma}_i, \ldots, \sigma_n) \in \mathcal{B}_{n-1},$$

where i is such that $\sigma_i = \pm n$, and the symbol " $\hat{\sigma}_i$ " means, that the element σ_i has been removed from the sequence.

For given $\sigma \in \mathcal{B}_{n,k,j}$, 0 < k, j < n, we have four possibilities:

• $\sigma_i = n$ and either i = n or $\sigma_{i-1} > \sigma_{i+1}, 1 \leq i < n$. Then $\Lambda \sigma \in \mathcal{B}_{n-1,k,j}$.

THE ELECTRONIC JOURNAL OF COMBINATORICS 26(1) (2019), #P1.27

- $\sigma_i = n$ and $\sigma_{i-1} < \sigma_{i+1}, 1 \leq i < n$. Then $\Lambda \sigma \in \mathcal{B}_{n-1,k-1,j}$.
- $\sigma_i = -n$ and $\sigma_{i-1} > \sigma_{i+1}$, $1 \leq i < n$. Then $\Lambda \sigma \in \mathcal{B}_{n-1,k,j-1}$.
- $\sigma_i = -n$ and either i = n or $\sigma_{i-1} < \sigma_{i+1}, 1 \leq i < n$. Then $\Lambda \sigma \in \mathcal{B}_{n-1,k-1,j-1}$.

Now, suppose we are given a fixed $\tau = (\tau_0, \ldots, \tau_{n-1})$ which belongs to one of the sets $\mathcal{B}_{n-1,k,j}$, $\mathcal{B}_{n-1,k-1,j}$, $\mathcal{B}_{n-1,k,j-1}$ or $\mathcal{B}_{n-1,k-1,j-1}$. We are going to count all $\sigma \in \mathcal{B}_{n,k,j}$ such that $\Lambda \sigma = \tau$.

If $\tau \in \mathcal{B}_{n-1,k,j}$ then we should either put n at the end of τ , or insert into a descent of τ , i.e. between τ_{i-1} and τ_i , where $1 \leq i \leq n-1$, $\tau_{i-1} > \tau_i$, therefore we have k+1 possibilities.

Similarly, if $\tau \in \mathcal{B}_{n-1,k-1,j}$ then we construct σ by inserting n between τ_{i-1} and τ_i , $1 \leq i \leq n-1$, where $\tau_{i-1} < \tau_i$. For this we have n-k possibilities.

Now assume that $\tau \in \mathcal{B}_{n-1,k,j-1}$. Then we should insert -n between τ_{i-1} and τ_i , $1 \leq i \leq n-1$, where $\tau_{i-1} > \tau_i$, for which we have k possibilities.

Finally, if $\tau \in \mathcal{B}_{n-1,k-1,j-1}$ then we put -n either at the end of τ or between τ_{i-1} and τ_i , $1 \leq i \leq n-1$, where $\tau_{i-1} < \tau_i$, for which we have n-k+1 possibilities.

Therefore the number of $\sigma \in \mathcal{B}_{n,k,j}$ such that $\Lambda \sigma$ belongs to the set $\mathcal{B}_{n-1,k,j}$, $\mathcal{B}_{n-1,k-1,j}$, $\mathcal{B}_{n-1,k,j-1}$ or $\mathcal{B}_{n-1,k-1,j-1}$ is equal to (k+1)B(n-1,k,j), (n-k)B(n-1,k-1,j), kB(n-1,k,j-1) or (n-k+1)B(n-1,k-1,j-1) respectively. This proves (12).

For the boundary conditions it is clear that if $\operatorname{neg}(\sigma) > 0$ then $\operatorname{des}(\sigma) > 0$, which yields B(n, 0, j) = [j = 0]. We note that the map $(\sigma_0, \sigma_1, \ldots, \sigma_n) \mapsto (\sigma_1, \ldots, \sigma_n)$ is a bijection of $\mathcal{B}_{n,k,0}$ onto $\mathcal{A}_{n,k}$, consequently B(n, k, 0) = A(n, k). For the two others we refer to (7).

Below we present tables for the numbers B(n, k, j) for n = 0, 1, 2, 3, 4, 5:

$\frac{k \setminus j}{0}$	$\begin{vmatrix} 0\\ 1 \end{vmatrix}$,	_	$\frac{k \setminus j}{0}$ 1	0 1 0	$\frac{1}{0},$	$\begin{array}{c c} j & 0 \\ & 1 \\ & 1 \\ & 0 \end{array}$	1 2 0 0 4 1 0 1	2) 1_', 1	$ \begin{array}{c} k \setminus j \\ \hline 0 \\ 1 \\ 2 \\ 3 \end{array} $	$ \begin{array}{c} 0 \\ 1 \\ 4 \\ 1 \\ 0 \end{array} $	$ \begin{array}{c} 1 \\ 0 \\ 12 \\ 6 \\ 0 \end{array} $	$ \begin{array}{c} 2 \\ 0 \\ 6 \\ 12 \\ 0 \end{array} $,
-)						$k \setminus i$	0	1	2	3	2	4	5	
$k \setminus j$	0	1	2	3	4	$\frac{1}{0}$	1	0	0	0	(- 1	0	-
0	1	0	0	0	0	1		0	0	10	1) 0	1	
1	11	32	24	8	1	1	26	80	80	40	1	0	1	
า ก	11	52	06	56	11 ,	2	66	330	600	480) 18	80	26	
2	11	90	90	90	11	3	26	180	480	600) 3:	30	66	
3	1	8	24	32	11	4	1	10	40	80		0	26	
4	0	0	0	0	1	4		10	40	00	C	U	20	
-	5	5	<i>.</i>	5	-	5	0	0	0	0	()	1	

For example we have $B(n, 1, 0) = 2^n - n - 1$ and $B(n, 1, j) = {n \choose j} 2^{n-j}$ for $1 \le j \le n$ (cf. A038207 in OEIS). We will see that $B(n, k, j) / {n \choose j}$ is always an integer.

The electronic journal of combinatorics 26(1) (2019), #P1.27

3 Generating functions

Now we define three families of polynomials corresponding to the numbers B(n, k, j):

$$P_{n,j}(x) := \sum_{k=0}^{n} B(n,k,j) x^{k},$$
(15)

$$Q_{n,k}(y) := \sum_{j=0}^{n} B(n,k,j) y^{j},$$
(16)

$$R_n(x,y) := \sum_{j,k=0}^n B(n,k,j) x^k y^j.$$
 (17)

The polynomials $R_n(x, y)$ were studied by Brenti [4], who called them "q-Eulerian polynomials of type B".

The symmetry (7) implies:

$$P_{n,j}(x) = x^n P_{n,n-j}(1/x),$$
(18)

$$Q_{n,k}(y) = y^n Q_{n,n-k}(1/y),$$
(19)

$$R_n(x,y) = x^n y^n R_n(1/x, 1/y).$$
(20)

Proposition 4. The polynomials $P_{n,j}(x)$ satisfy the following recurrence:

$$P_{n,j}(x) = (1 + nx - x)P_{n-1,j}(x) + (x - x^2)P'_{n-1,j}(x) + nxP_{n-1,j-1}(x) + (x - x^2)P'_{n-1,j-1}(x),$$
(21)

with the initial conditions: $P_{n,0}(x) = P_n^{A}(x)$ for $n \ge 0$ and $P_{n,n}(x) = x P_n^{A}(x)$ for $n \ge 1$.

Proof. It is easy to verify that

$$\sum_{k=0}^{n} (k+1)B(n-1,k,j)x^{k} = P_{n-1,j}(x) + xP'_{n-1,j}(x),$$
$$\sum_{k=0}^{n} (n-k)B(n-1,k-1,j)x^{k} = nxP_{n-1,j}(x) - xP_{n-1,j}(x) - x^{2}P'_{n-1,j}(x),$$
$$\sum_{k=0}^{n} kB(n-1,k,j-1)x^{k} = xP'_{n-1,j-1}(x),$$

and

$$\sum_{k=0}^{n} (n-k+1)B(n-1,k-1,j-1)x^{k} = nxP_{n-1,j-1}(x) - x^{2}P_{n-1,j-1}'(x).$$

Summing up and applying (12) we obtain (21).

The electronic journal of combinatorics $\mathbf{26(1)}$ (2019), #P1.27

 $\mathbf{6}$

Brändén [2], Corollary 6.9, proved that for every nonempty subset $S \subseteq \{1, \ldots, n\}$ the polynomial $\sum_{j \in S} P_{n,j}(x)$ has only real and simple roots. Combining (47) with Example 7.8.8 in [3] we will note (Theorem 20) that in fact every linear combination $c_0P_{n,0}(x) + c_1P_{n,1}(x) + \ldots + c_nP_{n,n}(x)$, with $c_0, c_1, \ldots, c_n \ge 0$, has only real roots. The cases when S is the set of even or odd numbers in $\{1, \ldots, n\}$ were studied in [1]. The Newton's inequality implies that if $0 \le j \le n$ then the sequence $\{B(n, k, j)\}_{k=0}^n$ satisfies a stronger version of log-concavity, namely

$$B(n,k,j)^2 \ge B(n,k-1,j)B(n,k+1,j)\frac{(k+1)(n-k+1)}{k(n-k)}$$
(22)

for 0 < k < n, in particular this sequence is unimodal.

For the polynomials $Q_{n,k}(y)$ we have the following, see (18) in [4]:

Proposition 5. The polynomials $Q_{n,k}(y)$ satisfy the following recurrence:

$$Q_{n,k}(y) = (k+1+ky)Q_{n-1,k}(y) + (n-k+(n-k+1)y)Q_{n-1,k-1}(y)$$

with the initial conditions: $Q_{n,0}(y) = 1$, $Q_{n,n}(y) = y^n$ for $n \ge 0$.

The polynomials $Q_{n,k}$ however do not have all roots real. They satisfy the following versions of Worpitzky identity:

$$\sum_{k=0}^{n} \binom{u+n-k}{n} Q_{n,k}(y) = (u+1+uy)^{n},$$
(23)

$$\sum_{k=0}^{n} \binom{u+k}{n} Q_{n,k}(y) = (u+y+uy)^{n}.$$
(24)

The former is proved in [4], Theorem 3.4, the latter follows from the former and the symmetry (19).

Now we recall the recurrence relation for $R_n(x, y)$ (see Theorem 3.4 in [4]):

Proposition 6. The polynomials $R_n(x, y)$ admit the following recurrence:

$$R_n(x,y) = (1 + nxy + nx - x)R_{n-1}(x,y) + (x - x^2)(1 + y)\frac{\partial}{\partial x}R_{n-1}(x,y),$$

 $n \ge 1$, with initial condition $R_0(x, y) = 1$.

Brenti [4] also found the generating function for the numbers B(n, k, j):

$$f(x, y, z) := \sum_{n=0}^{\infty} \frac{R_n(x, y)}{n!} z^n = \frac{(1-x)e^{(1-x)z}}{1 - xe^{(1-x)(1+y)z}}.$$
(25)

Note that

$$f(x, y, z) = f^{\mathcal{A}}(x, (1+y)z)e^{(x-1)yz}.$$
(26)

THE ELECTRONIC JOURNAL OF COMBINATORICS 26(1) (2019), #P1.27

7

4 Refined numbers

For $0 \leq k \leq n$ and a subset $U \subseteq \{1, 2, ..., n\}$ we define $\mathcal{B}_{n,k,U}$ as the set of those $\sigma \in \mathcal{B}_{n,k}$ which have minus sign at σ_i , $1 \leq i \leq n$, if and only if $|\sigma_i| \in U$. Therefore we have

$$\bigcup_{\substack{U \subseteq \{1,\dots,n\}\\|U|=j}} \mathcal{B}_{n,k,U} = \mathcal{B}_{n,k,j}.$$
(27)

The cardinality of $\mathcal{B}_{n,k,U}$ will be denoted b(n,k,U). By convention we put b(n,-1,U) = b(n,n+1,U) := 0. It is quite easy to observe boundary conditions.

Proposition 7. For $n \ge 1$, $0 \le k \le n$, $U \subseteq \{1, \ldots, n\}$ we have

$$b(n, 0, U) = [U = \emptyset], \qquad b(n, n, U) = [U = \{1, \dots, n\}],$$

$$b(n, k, \emptyset) = A(n, k), \qquad b(n, k, \{1, \dots, n\}) = A(n, n - k).$$

Now we provide a recurrence relation.

Proposition 8. For $0 \leq k \leq n$, $U \subseteq \{1, 2, \dots, n\}$ we have

$$b(n,k,U) = (k+1) \cdot b(n-1,k,U) + (n-k) \cdot b(n-1,k-1,U)$$
(28)

if $n \notin U$ and

$$b(n,k,U) = k \cdot b(n-1,k,U') + (n-k+1) \cdot b(n-1,k-1,U')$$
(29)

if $n \in U$, where $U' := U \setminus \{n\}$.

Proof. Both formulas are true when k = 0 or k = n. Assume that 0 < k < n. We will apply the same map $\Lambda : \mathcal{B}_n \to \mathcal{B}_{n-1}$ as in the proof of Theorem 2.1. Fix $\sigma \in \mathcal{B}_{n,k,U}$ and assume that i is such that $\sigma_i = n$ (when $n \notin U$) or $\sigma_i = -n$ (when $n \in U$), $1 \leq i \leq n$. We have now four possibilities:

- $n \notin U$ and either i = n or $\sigma_{i-1} > \sigma_{i+1}$, $1 \leq i < n$. Then $\Lambda \sigma \in \mathcal{B}_{n-1,k,U}$.
- $n \notin U$ and $\sigma_{i-1} < \sigma_{i+1}, 1 \leq i < n$. Then $\Lambda \sigma \in \mathcal{B}_{n-1,k-1,U}$.
- $n \in U$ and $\sigma_{i-1} > \sigma_{i+1}$, $1 \leq i < n$. Then $\Lambda \sigma \in \mathcal{B}_{n-1,k,U \setminus \{n\}}$.
- $n \in U$ and either i = n or $\sigma_{i-1} < \sigma_{i+1}, 1 \leq i < n$. Then $\Lambda \sigma \in \mathcal{B}_{n-1,k-1,U \setminus \{n\}}$.

On the other hand, as in the proof of Theorem 3, we see that for a given τ in $\mathcal{B}_{n-1,k,U}$ (resp. in $\mathcal{B}_{n-1,k-1,U}$) there are k + 1 (resp. n - k) such σ 's in $\mathcal{B}_{n,k,U}$ that $\Lambda \sigma = \tau$. We simply insert n into a descent or at the end of τ (resp. into an ascent). Similarly, for a given τ in $\mathcal{B}_{n-1,k,V}$ (resp. in $\mathcal{B}_{n-1,k-1,V}$) there are k (resp. n - k + 1) such σ 's in $\mathcal{B}_{n,k,V\cup\{n\}}$ that $\Lambda \sigma = \tau$. Now we will see that b(n, k, U) depends only on n, k and the cardinality of U.

Theorem 9. If $0 \leq k \leq n$, $U, V \subseteq \{1, \ldots, n\}$ and |U| = |V| then

$$b(n,k,U) = b(n,k,V).$$

Proof. Fix $U, V \subseteq \{1, \ldots, n\}$, with |U| = |V| and define $\tau \in \mathcal{A}_n$ as the unique permutation of $\{1, \ldots, n\}$ such that: $\tau(U) = V, \tau|_U$ preserves the order and $\tau|_{\{1,\ldots,n\}\setminus U}$ preserves the order. We extend τ to an element of \mathcal{B}_n by putting $\tau(-i) = -\tau(i)$. Now let $\sigma \in \mathcal{B}_{n,k,U}$. Then, by definition, $\tau(\sigma(i)) < 0$ if and only if $\sigma(i) < 0, -n \leq i \leq n$. Moreover, if $1 \leq i \leq n$ then $\tau(\sigma(i-1)) < \tau(\sigma(i))$ if and only if $\sigma(i-1) < \sigma(i)$. This is clear when $\sigma(i-1)$ and $\sigma(i)$ have different signs. If they have the same sign then this is a consequence of the order preserving property of τ on U and on $\{1,\ldots,n\}\setminus U$. Consequently, the map $\sigma \mapsto \tau \circ \sigma$ is a bijection of $\mathcal{B}_{n,k,U}$ onto $\mathcal{B}_{n,k,V}$.

The theorem justifies the following definition: for $0 \leq j, k \leq n$ we put

$$b(n,k,j) := b(n,k,U),$$

where U is an arbitrary subset of $\{1, ..., n\}$ with |U| = j. In addition, if j < 0 or k < 0 or n < j or n < k then we put b(n, k, j) = 0. From (27) we obtain

Corollary 10. For $0 \leq j, k \leq n$ we have

$$\binom{n}{j}b(n,k,j) = B(n,k,j).$$
(30)

5 Connections with permutations of type A

For given $n \ge 0$ we define a map $F_n : \mathcal{A}_{n+1} \to \mathcal{B}_n$ in the following way: $F_n(\sigma) = \tilde{\sigma}$, where for $1 \le i \le n$ we put

$$\widetilde{\sigma}_i := \begin{cases} \sigma_{i+1} - \sigma_1 & \text{if } \sigma_{i+1} < \sigma_1, \\ \sigma_{i+1} - 1 & \text{if } \sigma_{i+1} > \sigma_1, \end{cases}$$
(31)

 $\widetilde{\sigma}_{-i} := -\widetilde{\sigma}_i$ and $\widetilde{\sigma}_0 := 0$. Note that $\widetilde{\sigma}_{i-1} > \widetilde{\sigma}_i$ if and only if $\sigma_i > \sigma_{i+1}$ for $1 \leq i \leq n$, so the number of descents in $(0, \widetilde{\sigma}_1, \ldots, \widetilde{\sigma}_n)$ is the same as in $(\sigma_1, \ldots, \sigma_{n+1})$. It is easy to see that F_n is one-to-one. Its image is the set of such $\tau \in \mathcal{B}_n$ which satisfy the following property: if $1 \leq i_1, i_2 \leq n$, $|\tau_{i_1}| < |\tau_{i_2}|$, $\tau_{i_2} < 0$ then $\tau_{i_1} < 0$. Denote

$$\mathcal{A}_{n,k,j} := \{ \sigma \in \mathcal{A}_{n,k} : \sigma_1 = j \}.$$

The cardinalities of these sets were studied by Conger [5], who denoted $\langle {n \atop k} \rangle_j := |\mathcal{A}_{n,k,j}|$.

From our remarks we have

Theorem 11. For $0 \leq j, k \leq n$ the function F_n maps $\mathcal{A}_{n+1,k}$ into $\mathcal{B}_{n,k}$ and is a bijection from $\mathcal{A}_{n+1,k,j+1}$ onto $\mathcal{B}_{n,k,\{1,\ldots,j\}}$. Consequently,

$$b(n,k,j) = |\mathcal{A}_{n+1,k,j+1}|.$$
(32)

THE ELECTRONIC JOURNAL OF COMBINATORICS 26(1) (2019), #P1.27

In the rest of this section we briefly collect some properties of the numbers $b(n, k, j) = {\binom{n+1}{k}}_{j+1}$, most of them are immediate consequences of the results of Conger [5, 6].

Proposition 12. If $0 \leq k, j \leq n$ then

$$b(n,0,j) = [j=0], (33)$$

$$b(n, n, j) = [j = n],$$
(34)

$$b(n,k,0) = A(n,k), \tag{35}$$

$$b(n,k,n) = A(n,n-k),$$
 (36)

$$b(n,k,j) = (k+1)b(n-1,k,j) + (n-k)b(n-1,k-1,j), \quad j < n,$$
(37)

$$b(n,k,j) = kb(n-1,k,j-1) + (n-k+1)b(n-1,k-1,j-1), \quad j > 0,$$
(38)

$$b(n,k,j) = b(n,n-k,n-j).$$
(39)

Proof. These formulas are consequences of Proposition 7, Proposition 8, (7) and (30) (see formulas (3) and (8) in [5]). Note that (38) is absent in [5]. \Box

Applying (37), with j - 1 instead of j, and (38) we obtain (see (10) in [5])

Corollary 13. For $1 \leq j, k \leq n$

$$b(n,k,j-1) - b(n,k,j) = b(n-1,k,j-1) - b(n-1,k-1,j-1).$$
(40)

Below we present tables for the numbers b(n, k, j) for n = 0, 1, 2, 3, 4, 5, 6 (they also appear in Appendix A of [6]):

$\begin{array}{c c} k \setminus j & 0 \\ \hline 0 & 1 \end{array},$	$\frac{k\setminus j}{0}$	$\begin{array}{c c} j & 0 \\ \hline 1 \\ 0 \end{array}$	$\frac{1}{0},$	$\frac{k \setminus j}{0}$ 1 2	$egin{array}{c c} j & 0 \\ \hline 1 \\ 1 \\ 0 \\ \end{array}$	$ \begin{array}{cccc} 1 & 2 \\ 0 & 0 \\ 2 & 1 \\ 0 & 1 \end{array} $,	$\frac{k \setminus j}{0}$ 1 2 3	$egin{array}{c c} 0 \\ 1 \\ 4 \\ 1 \\ 0 \end{array}$	$ \begin{array}{c} 1 \\ 0 \\ 4 \\ 2 \\ 0 \end{array} $	$\begin{array}{ccc} 2 & 3 \\ \hline 0 & 0 \\ 2 & 1 \\ 4 & 4 \\ 0 & 1 \end{array}$
$\begin{array}{c ccc} k \setminus j & 0 \\ \hline 0 & 1 \\ 1 & 11 \\ 2 & 11 \\ 3 & 1 \\ 4 & 0 \\ \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} 2 & 3 \\ 0 & 0 \\ 4 & 2 \\ 6 & 14 \\ 4 & 8 \\ 0 & 0 \end{array}$	4 0 1 11 11 1 1	,	$ \begin{array}{r} k \setminus j \\ \hline 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{array} $	$ \begin{array}{c c} 0 \\ 1 \\ $	$ \begin{array}{c} 1 \\ 0 \\ 16 \\ 66 \\ 36 \\ 2 \\ 0 \end{array} $	$\begin{array}{c} 2 \\ 0 \\ 8 \\ 60 \\ 48 \\ 4 \\ 0 \end{array}$	$ \begin{array}{c} 3 \\ 0 \\ 4 \\ 48 \\ 60 \\ 8 \\ 0 \\ \end{array} $	$\begin{array}{c} 4 \\ 0 \\ 2 \\ 36 \\ 66 \\ 16 \\ 0 \end{array}$	
· · · · · ·	$\begin{array}{c} k \setminus j \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{array}$	$\begin{array}{c c} 0 \\ 1 \\ 57 \\ 302 \\ 302 \\ 57 \\ 1 \\ 0 \end{array}$	$\begin{array}{c} 1 \\ 0 \\ 32 \\ 262 \\ 342 \\ 82 \\ 2 \\ 0 \end{array}$	$\begin{array}{c} 2 \\ 0 \\ 16 \\ 212 \\ 372 \\ 116 \\ 4 \\ 0 \end{array}$	$\begin{array}{c} 3\\ 0\\ 8\\ 160\\ 384\\ 160\\ 8\\ 0\end{array}$	$\begin{array}{c} 4 \\ 0 \\ 4 \\ 116 \\ 372 \\ 212 \\ 16 \\ 0 \end{array}$	$ \begin{array}{r} 5 \\ 0 \\ 2 \\ 82 \\ 342 \\ 262 \\ 32 \\ 0 \end{array} $	$\begin{array}{r} 6\\ 0\\ 1\\ 57\\ 30\\ 30\\ 57\\ 1\end{array}$	72. 22. 7		

From (30), (37) and (38) we can provide new recurrence formulas for the numbers B(n, k, j):

Corollary 14. For $0 \leq j, k \leq n$ we have

$$B(n,k,j) = \frac{(k+1)n}{n-j}B(n-1,k,j) + \frac{(n-k)n}{n-j}B(n-1,k-1,j),$$

if $0 \leq j < n$ and

$$B(n,k,j) = \frac{kn}{j}B(n-1,k,j-1) + \frac{(n-k+1)n}{j}B(n-1,k-1,j-1),$$

if $0 < j \leq n$.

Now we introduce the following lexicographic order on the set $\{0, 1, \ldots, n\}^2$: $(k_1, j_1) \leq (k_2, j_2)$ if and only if either $k_1 < k_2$ or $k_1 = k_2, j_1 \geq j_2$. This is a linear order, in which the successor of (k, 0), with $0 \leq k < n$, is (k+1, n), and for $1 \leq j \leq n$ the successor of (k, j) is (k, j-1). It turns out that for every $n \geq 1$ the array $(b(n, k, j))_{k,j=0}^n$ is lexicographically unimodal, cf. Theorem 7 in [5].

Proposition 15. For every $n \ge 1$ we have the following:

a) If either $0 \leq k < n/2$, $1 \leq j \leq n$ or k = n/2, $n/2 < j \leq n$ then

$$b(n,k,j-1) \ge b(n,k,j).$$

This inequality is sharp unless either $k = 0, 2 \leq j \leq n$ or n is odd, k = (n-1)/2, j = 1.

b) If either $1 \leq k \leq n/2$, $0 \leq j \leq n$ or n is odd, k = (n+1)/2, $(n+1)/2 \leq j \leq n$ then

$$b(n, k-1, j) \leqslant b(n, k, j)$$

and this inequality is sharp unless n is even, k = n/2, j = 0.

c) The array of numbers b(n, k, j), $0 \leq j, k \leq n$, is unimodal with respect to the order " \leq ", with the maximal value b(n, n/2, n/2) if n is even and

$$b(n, (n-1)/2, n) = b(n, (n+1)/2, 0)$$

if n is odd.

Proof. First we note that (a) implies (c) as a consequence of the symmetry (39) and the equality

$$b(n, k - 1, 0) = A(n, k - 1) = A(n, n - k) = b(n, k, n).$$

Similarly we get (b).

Now assume that the statement holds for n-1. If either k < n/2 or k = n/2, n/2 < j then, due to (3), the right hand side of (40) is nonnegative which proves (a), (b) and consequently (c) for n. Moreover, it is positive unless j = 1, n-1 = 2k, as A(2k, k-1) = A(2k, k).

The electronic journal of combinatorics 26(1) (2019), #P1.27

Now we note two summation formulas (see (4) and (5) in [5]).

Proposition 16. For $0 \leq j, k \leq n$ we have

$$\sum_{j=0}^{n} b(n,k,j) = A(n+1,k),$$
(41)

$$\sum_{k=0}^{n} b(n,k,j) = n!.$$
(42)

Proof. For (41) we apply (32) to the following decomposition:

$$\mathcal{A}_{n+1,k,1} \dot{\cup} \mathcal{A}_{n+1,k,2} \dot{\cup} \dots \dot{\cup} \mathcal{A}_{n+1,k,n+1} = \mathcal{A}_{n+1,k}.$$

a consequence of (9) and (30).

The latter identity is a consequence of (9) and (30).

It turns out that (2) can be generalized to a formula which expresses the numbers b(n, k, j), see Theorem 1 in [5].

Theorem 17. For any $0 \leq j, k \leq n$ we have

$$b(n,k,j) = \sum_{i=0}^{k} (-1)^{k-i} \binom{n+1}{k-i} i^{j} (i+1)^{n-j},$$
(43)

under convention that $0^0 = 1$.

Proof. It can be proved by induction by applying (2), (36) and (38).

From (43) and (30) we can derive a formula for the numbers B(n, k, j).

Corollary 18. For any $0 \leq j, k \leq n$ we have

$$B(n,k,j) = \binom{n}{j} \sum_{i=0}^{k} (-1)^{k-i} \binom{n+1}{k-i} i^{j} (i+1)^{n-j},$$
(44)

under convention that $0^0 = 1$.

Now we can prove Worpitzky type formula:

Proposition 19. For $0 \leq j \leq n$ we have

$$\sum_{k=0}^{n} b(n,k,j) \binom{x+n-k}{n} = x^{j} (1+x)^{n-j}.$$
(45)

Proof. If $x \in \{0, 1, \ldots, n\}$ then

$$\sum_{k=0}^{n} (-1)^{k-i} \binom{n+1}{k-i} \binom{x+n-k}{n} = [x=i]$$

(see (5.25) in [7]). Applying (43) we see that (45) holds for $x \in \{0, 1, ..., n\}$ (see formula (4.18) in [6]). Since the left hand side is a polynomial of degree at most n, this implies that (45) is true for all $x \in \mathbb{R}$.

THE ELECTRONIC JOURNAL OF COMBINATORICS 26(1) (2019), #P1.27

6 Real rootedness

For $0 \leq j \leq n$ denote

$$p_{n,j}(x) := \sum_{k=0}^{n} b(n,k,j) x^k$$
(46)

so that

$$P_{n,j}(x) = \binom{n}{j} p_{n,j}(x).$$
(47)

By Proposition 4 we have the following recurrence:

$$p_{n,j}(x) = \frac{n-j}{n} (1+xn-x)p_{n-1,j}(x) + \frac{n-j}{n} (x-x^2)p'_{n-1,j}(x)$$

$$+ jxp_{n-1,j-1}(x) + \frac{j}{n} (x-x^2)p'_{n-1,j-1}(x),$$
(48)

with the initial conditions: $p_{n,0}(x) = P_n^A(x)$ for $n \ge 0$ and $p_{n,n}(x) = xP_n^A(x)$ for $n \ge 1$. By (32) the polynomial $p_{n,j}(x)$ coincides with $A_{n+1,j+1}(x)$ considered by Brändén [3], Example 7.8.8. He noted that

$$p_{n,j}(x) = \sum_{i=0}^{j-1} x p_{n-1,i}(x) + \sum_{i=j}^{n-1} p_{n-1,i}(x),$$
(49)

which is equivalent to

$$b(n,k,j) = \sum_{i=0}^{j-1} b(n-1,k-1,i) + \sum_{i=j}^{n-1} b(n-1,k,i)$$
(50)

(see (9) in [5]). Note that if $0 \leq j < n$ then deg $p_{n,j}(x) = n - 1$ and deg $p_{n,n}(x) = n$. In fact, $p_{n,n}(x) = xp_{n,0}(x)$. Conger [5], Theorem 5, proved that all $p_{n,j}(x)$ have only real roots. It turns out that they admit a much stronger property.

Let $f, g \in \mathbb{R}[x]$ be real-rooted polynomials with positive leading coefficients. We say that f is an *interleaver* of g, which we denote $f \ll g$, if

$$\ldots \leqslant \alpha_2 \leqslant \beta_2 \leqslant \alpha_1 \leqslant \beta_1,$$

where $\{\alpha_i\}_{i=1}^m$, $\{\beta_i\}_{i=1}^n$ are the roots of f and g respectively. A sequence $\{f_i\}_{i=0}^n$ of realrooted polynomials is called *interlacing* if $f_i \ll f_j$ whenever $0 \le i < j \le n$.

From [3], Example 7.8.8 and (47) we have the following property of the polynomials $p_{n,j}(x)$ and $P_{n,j}(x)$:

Theorem 20. For every $n \ge 1$ the sequence $\{p_{n,j}(x)\}_{j=0}^n$ is interlacing. Consequently, for any $c_0, c_1, \ldots, c_n \ge 0$ the polynomial

$$c_0 p_{n,0}(x) + c_1 p_{n,1}(x) + \ldots + c_n p_{n,n}(x)$$

has only real roots.

The same statement holds for the polynomials $P_{n,j}(x)$.

Note that Theorem 20 generalizes Corollary 3.7 in [4] and Corollary 6.9 in [2].

THE ELECTRONIC JOURNAL OF COMBINATORICS 26(1) (2019), #P1.27

References

- A. Borowiec, W. Młotkowski, New Eulerian numbers of type D, Electron. J. Combin. 23 (2016), #P1.38.
- [2] P. Brändén, On linear transformations preserving the Pólya frequency property, Trans. Amer. Math. Soc. 358 no. 8 (2006), 3697–3716.
- [3] P. Brändén, Unimodality, log-concavity, real-rootedness and beyond, Handbook of Enumerative Combinatorics, CRC Press, Boca Raton, FL, 2015.
- [4] F. Brenti, q-Eulerian polynomials arising from Coxeter groups, European J. Combin. 15 no. 5 (1994), 417–441.
- [5] M. Conger, A Refinement of the Eulerian numbers, and the Joint Distribution of $\pi(1)$ and $\text{Des}(\pi)$ in S_n , Ars Combin. **95** (2010), 445–472.
- [6] M. Conger, Shuffling Decks With Repeated Card Values, Thesis (Ph.D.), The University of Michigan, 2007, 213 pp, available at http://www-personal.umich.edu/~mconger
- [7] R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. A Foundation for Computer Science, Addison-Wesley, New York, 1994.
- [8] N. J. A. Sloane, The On-line Encyclopedia of Integer Sequences, http://oeis.org.