Permutations of type B with fixed number of descents and minus signs

Katarzyna Kril Wojciech Młotkowski *
Instytut Matematyczny, Uniwersytet Wrocławski, Plac Grunwaldzki 2/4
50-384 Wrocław, Poland
katarzyna.kril03@gmail.com mlotkow@math.uni.wroc.pl

Submitted: Sep 11, 2017; Accepted: Jan 30, 2019; Published: Feb 22, 2019
(c) The authors. Released under the CC BY-ND license (International 4.0).

Abstract

We study three dimensional array of numbers $B(n, k, j), 0 \leqslant j, k \leqslant n$, where $B(n, k, j)$ is the number of type B permutations of order n with k descents and j minus signs. We prove in particular, that $b(n, k, j):=B(n, k, j) /\binom{n}{j}$ is an integer and provide two combinatorial interpretations for these numbers.

Mathematics Subject Classifications: 05A05, 20B35

Introduction

Let $B(n, k, j)$ denote the number of type B permutations $\left(0, \sigma_{1}, \ldots, \sigma_{n}\right)$ which have k descents and j minus signs. We study properties of the three-dimensional array $B(n, k, j)$, $0 \leqslant j, k \leqslant n$. Some of these properties appear in the work of Brenti [4]. In particular he computed the three-variable generating function and proved real rootedness of some linear combinations of the polynomials $P_{n, j}(x):=\sum_{k=0}^{n} B(n, k, j) x^{k}$ (Corollary 3.7 in [4], see also Corollary 6.9 in [2]). Here we will prove that the numbers $b(n, k, j):=B(n, k, j) /\binom{n}{j}$ are also integers. We provide two combinatorial interpretations of them.

For a subset $U \subseteq\{1, \ldots, n\}$ and $0 \leqslant k \leqslant n$ let $\mathcal{B}_{n, k, U}$ denote the family of all type B permutations $\sigma=\left(0, \sigma_{1}, \ldots, \sigma_{n}\right)$ that σ has k descents and satisfy: $\sigma_{i}<0$ iff $\left|\sigma_{i}\right| \in U$. We will show (Theorem 9) that the cardinality of $\mathcal{B}_{n, k, U}$ is $b(n, k,|U|)$.

Conger [5, 6] defined the refined Eulerian number $\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle_{j}$ as the cardinality of the set $\mathcal{A}_{n, k, j}$ of all type A permutations $\tau=\left(\tau_{1}, \ldots, \tau_{n}\right)$ such that $\tau_{1}=j$ and τ has k descents. He proved many interesting properties of these numbers, like direct formula, asymptotic

[^0]behavior, lexicographic unimodality, formula for the generating function and real rootedness of the corresponding polynomials. It turns out that for $0 \leqslant j, k \leqslant n$ we have $b(n, k, j)=\left\langle\begin{array}{c}n+1 \\ k\end{array}\right\rangle_{j+1}$. We will prove this equality providing a bijection $\mathcal{A}_{n+1, k, j+1} \rightarrow$ $\mathcal{B}_{n, k, U}$, where $U=\{1, \ldots, j\}$ (Theorem 11). The array $b(n, k, 1), 1 \leqslant k \leqslant n$, appears in OEIS [8] as A120434. It also counts permutations $\sigma \in \mathcal{A}_{n}$ which have $k-1$ big descents, i.e. such descents $\sigma_{i}>\sigma_{i+1}$ that $\sigma_{i}-\sigma_{i+1} \geqslant 2$.

Conger proved that the polynomials $p_{n, j}(x):=\sum_{k=0}^{n} b(n, k, j) x^{k}$ have only real roots (Theorem 5 in [5]). Brändén [3] showed something stronger: for every $n \geqslant 1$ the sequence of polynomials $\left\{p_{n, j}(x)\right\}_{j=0}^{n}$ is interlacing, in particular for every $c_{0}, c_{1}, \ldots, c_{n} \geqslant 0$ the polynomial $c_{0} p_{n, 0}(x)+c_{1} p_{n, 1}(x)+\ldots+c_{n} p_{n, n}(x)$ has only real roots. Here we remark, that $P_{n, j}(x)=\binom{n}{j} p_{n, j}(x)$, so the polynomials $P_{n, j}(x)$ admit the same property, which is a generalization of Corollary 3.7 in [4] and of Corollary 6.9 in [2].

1 Preliminaries

For a sequence $\left(a_{0}, \ldots, a_{s}\right), a_{i} \in \mathbb{R}$, the number of descents, denoted $\operatorname{des}\left(a_{0}, \ldots, a_{s}\right)$, is defined as the cardinality of the set $\left\{i \in\{1, \ldots, s\}: a_{i-1}>a_{i}\right\}$. We will use the Iverson bracket: $[p]:=1$ if the statement p is true and $[p]:=0$ otherwise, see [7].

Denote by \mathcal{A}_{n} the group of permutations of the set $\{1, \ldots, n\}$. We will identify $\sigma \in \mathcal{A}_{n}$ with the sequence $\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ (we will usually write σ_{k} instead of $\sigma(k)$). For $0 \leqslant k \leqslant n$ we define $\mathcal{A}_{n, k}$ as the set of those $\sigma \in \mathcal{A}_{n}$ such that the sequence ($\sigma_{1} \ldots, \sigma_{n}$) has k descents. Then the classical type A Eulerian number $A(n, k)$ (see entry A123125 in OEIS) is defined as the cardinality of $\mathcal{A}_{n, k}$. We have the following recurrence relation:

$$
\begin{equation*}
A(n, k)=(n-k) A(n-1, k-1)+(k+1) A(n-1, k) \tag{1}
\end{equation*}
$$

for $0<k<n$, with the boundary conditions: $A(n, 0)=1$ for $n \geqslant 0$ and $A(n, n)=0$ for $n \geqslant 1$. These numbers can be expressed as:

$$
\begin{equation*}
A(n, k)=\sum_{i=0}^{k}(-1)^{k-i}\binom{n+1}{k-i}(i+1)^{n} \tag{2}
\end{equation*}
$$

For the Eulerian polynomials

$$
P_{n}^{\mathrm{A}}(t):=\sum_{k=0}^{n} A(n, k) t^{k}
$$

the exponential generating function is equal to

$$
\begin{equation*}
f^{\mathrm{A}}(t, z):=\sum_{n=0}^{\infty} \frac{P_{n}^{\mathrm{A}}(t)}{n!} z^{n}=\frac{(1-t) e^{(1-t) z}}{1-t e^{(1-t) z}} \tag{3}
\end{equation*}
$$

By \mathcal{B}_{n} we will denote the group of such permutations σ of the set

$$
\{-n, \ldots,-1,0,1, \ldots, n\}
$$

such that σ is odd, i.e. $\sigma(-k)=-\sigma(k)$ for every $-n \leqslant k \leqslant n$. Then $\left|\mathcal{B}_{n}\right|=2^{n} n$!. We will identify $\sigma \in \mathcal{B}_{n}$ with the sequence $\left(0, \sigma_{1}, \ldots, \sigma_{n}\right)$. For $\sigma \in \mathcal{B}_{n}$ we define $\operatorname{des}(\sigma)$ (resp. $\operatorname{neg}(\sigma)$) as the number of descents (resp. of negative numbers) in the sequence $\left(0, \sigma_{1}, \ldots, \sigma_{n}\right)$. For $0 \leqslant k, j \leqslant n$ we define sets

$$
\begin{aligned}
\mathcal{B}_{n, k} & :=\left\{\sigma \in \mathcal{B}_{n}: \operatorname{des}(\sigma)=k\right\}, \\
\mathcal{B}_{n, k, j} & :=\left\{\sigma \in \mathcal{B}_{n}: \operatorname{des}(\sigma)=k, \operatorname{neg}(\sigma)=j\right\},
\end{aligned}
$$

and the numbers $B(n, k):=\left|\mathcal{B}_{n, k}\right|$ (type B Eulerian numbers, see entry A060187 in OEIS), $B(n, k, j):=\left|\mathcal{B}_{n, k, j}\right|$. The numbers $B(n, k)$ satisfy the following recurrence relation:

$$
\begin{equation*}
B(n, k)=(2 n-2 k+1) B(n-1, k-1)+(2 k+1) B(n-1, k), \tag{4}
\end{equation*}
$$

$0<k<n$, with the boundary conditions $B(n, 0)=B(n, n)=1$, and can be expressed as

$$
\begin{equation*}
B(n, k)=\sum_{i=0}^{k}(-1)^{k-i}\binom{n+1}{k-i}(2 i+1)^{n} . \tag{5}
\end{equation*}
$$

The type B Eulerian polynomials are defined by

$$
P_{n}^{\mathrm{B}}(t):=\sum_{k=0}^{n} B(n, k) t^{k},
$$

and the corresponding exponential generating function is equal to

$$
\begin{equation*}
f^{\mathrm{B}}(t, z):=\sum_{n=0}^{\infty} \frac{P_{n}^{\mathrm{B}}(t)}{n!} z^{n}=\frac{(1-t) e^{(1-t) z}}{1-t e^{2(1-t) z}} . \tag{6}
\end{equation*}
$$

2 Descents and signs in type B permutations

This section is devoted to the numbers $B(n, k, j):=\left|\mathcal{B}_{n, k, j}\right|$. First we observe the following symmetry.

Proposition 1. For $0 \leqslant j, k \leqslant n$ we have

$$
\begin{equation*}
B(n, k, j)=B(n, n-k, n-j) . \tag{7}
\end{equation*}
$$

Proof. It is sufficient to note that the map

$$
\left(0, \sigma_{1}, \ldots, \sigma_{n}\right) \mapsto\left(0,-\sigma_{1}, \ldots,-\sigma_{n}\right)
$$

is a bijection of $\mathcal{B}_{n, k, j}$ onto $\mathcal{B}_{n, n-k, n-j}$.
Now we provide two summation formulas.

Proposition 2.

$$
\begin{align*}
& \sum_{j=0}^{n} B(n, k, j)=B(n, k), \tag{8}\\
& \sum_{k=0}^{n} B(n, k, j)=\binom{n}{j} n! \tag{9}
\end{align*}
$$

Proof. The former sum counts all $\sigma \in \mathcal{B}_{n}$ which have k descents, while the latter counts all $\sigma \in \mathcal{B}_{n}$ which have j minus signs in the sequence ($\sigma_{1}, \ldots, \sigma_{n}$).

From Corollary 4.4 in [1] we have also

$$
\begin{align*}
& \sum_{\substack{j=0 \\
j \text { even }}}^{n} B(n, k, j)=\frac{1}{2} B(n, k)+\frac{(-1)^{k}}{2}\binom{n}{k}, \tag{10}\\
& \sum_{\substack{j=0 \\
j \text { odd }}}^{n} B(n, k, j)=\frac{1}{2} B(n, k)-\frac{(-1)^{k}}{2}\binom{n}{k}, \tag{11}
\end{align*}
$$

see A262226 and A262227 in OEIS.
Now we present the basic recurrence relations for the numbers $B(n, k, j)$.
Theorem 3. The numbers $B(n, k, j)$ admit the following recurrence:

$$
\begin{align*}
& B(n, k, j)=(k+1) B(n-1, k, j)+(n-k) B(n-1, k-1, j) \\
& \quad+k B(n-1, k, j-1)+(n-k+1) B(n-1, k-1, j-1) \tag{12}
\end{align*}
$$

for $0<k, j<n$, with boundary conditions:

$$
\begin{array}{ll}
B(n, 0, j)=[j=0], & B(n, n, j)=[j=n], \\
B(n, k, 0)=A(n, k), & B(n, k, n)=A(n, n-k)
\end{array}
$$

for $0 \leqslant k, j \leqslant n$.
Equality (12) remains true for $0 \leqslant j, k \leqslant n$ under convention that $B(n, k, j)=0$ whenever $j \in\{-1, n+1\}$ or $k \in\{-1, n+1\}$.

Proof. For $\left(\sigma_{0}, \ldots, \sigma_{n}\right) \in \mathcal{B}_{n}, n \geqslant 1$, we define

$$
\Lambda \sigma:=\left(\sigma_{0}, \ldots, \widehat{\sigma}_{i}, \ldots, \sigma_{n}\right) \in \mathcal{B}_{n-1}
$$

where i is such that $\sigma_{i}= \pm n$, and the symbol " $\widehat{\sigma}_{i}$ " means, that the element σ_{i} has been removed from the sequence.

For given $\sigma \in \mathcal{B}_{n, k, j}, 0<k, j<n$, we have four possibilities:

- $\sigma_{i}=n$ and either $i=n$ or $\sigma_{i-1}>\sigma_{i+1}, 1 \leqslant i<n$. Then $\Lambda \sigma \in \mathcal{B}_{n-1, k, j}$.
- $\sigma_{i}=n$ and $\sigma_{i-1}<\sigma_{i+1}, 1 \leqslant i<n$. Then $\Lambda \sigma \in \mathcal{B}_{n-1, k-1, j}$.
- $\sigma_{i}=-n$ and $\sigma_{i-1}>\sigma_{i+1}, 1 \leqslant i<n$. Then $\Lambda \sigma \in \mathcal{B}_{n-1, k, j-1}$.
- $\sigma_{i}=-n$ and either $i=n$ or $\sigma_{i-1}<\sigma_{i+1}, 1 \leqslant i<n$. Then $\Lambda \sigma \in \mathcal{B}_{n-1, k-1, j-1}$.

Now, suppose we are given a fixed $\tau=\left(\tau_{0}, \ldots, \tau_{n-1}\right)$ which belongs to one of the sets $\mathcal{B}_{n-1, k, j}, \mathcal{B}_{n-1, k-1, j}, \mathcal{B}_{n-1, k, j-1}$ or $\mathcal{B}_{n-1, k-1, j-1}$. We are going to count all $\sigma \in \mathcal{B}_{n, k, j}$ such that $\Lambda \sigma=\tau$.

If $\tau \in \mathcal{B}_{n-1, k, j}$ then we should either put n at the end of τ, or insert into a descent of τ, i.e. between τ_{i-1} and τ_{i}, where $1 \leqslant i \leqslant n-1, \tau_{i-1}>\tau_{i}$, therefore we have $k+1$ possibilities.

Similarly, if $\tau \in \mathcal{B}_{n-1, k-1, j}$ then we construct σ by inserting n between τ_{i-1} and τ_{i}, $1 \leqslant i \leqslant n-1$, where $\tau_{i-1}<\tau_{i}$. For this we have $n-k$ possibilities.

Now assume that $\tau \in \mathcal{B}_{n-1, k, j-1}$. Then we should insert $-n$ between τ_{i-1} and τ_{i}, $1 \leqslant i \leqslant n-1$, where $\tau_{i-1}>\tau_{i}$, for which we have k possibilities.

Finally, if $\tau \in \mathcal{B}_{n-1, k-1, j-1}$ then we put $-n$ either at the end of τ or between τ_{i-1} and $\tau_{i}, 1 \leqslant i \leqslant n-1$, where $\tau_{i-1}<\tau_{i}$, for which we have $n-k+1$ possibilities.

Therefore the number of $\sigma \in \mathcal{B}_{n, k, j}$ such that $\Lambda \sigma$ belongs to the set $\mathcal{B}_{n-1, k, j}, \mathcal{B}_{n-1, k-1, j}$, $\mathcal{B}_{n-1, k, j-1}$ or $\mathcal{B}_{n-1, k-1, j-1}$ is equal to $(k+1) B(n-1, k, j),(n-k) B(n-1, k-1, j)$, $k B(n-1, k, j-1)$ or $(n-k+1) B(n-1, k-1, j-1)$ respectively. This proves (12).

For the boundary conditions it is clear that if $\operatorname{neg}(\sigma)>0$ then $\operatorname{des}(\sigma)>0$, which yields $B(n, 0, j)=[j=0]$. We note that the $\operatorname{map}\left(\sigma_{0}, \sigma_{1}, \ldots, \sigma_{n}\right) \mapsto\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ is a bijection of $\mathcal{B}_{n, k, 0}$ onto $\mathcal{A}_{n, k}$, consequently $B(n, k, 0)=A(n, k)$. For the two others we refer to (7).

Below we present tables for the numbers $B(n, k, j)$ for $n=0,1,2,3,4,5$:

For example we have $B(n, 1,0)=2^{n}-n-1$ and $B(n, 1, j)=\binom{n}{j} 2^{n-j}$ for $1 \leqslant j \leqslant n$ (cf. A038207 in OEIS). We will see that $B(n, k, j) /\binom{n}{j}$ is always an integer.

3 Generating functions

Now we define three families of polynomials corresponding to the numbers $B(n, k, j)$:

$$
\begin{align*}
P_{n, j}(x) & :=\sum_{k=0}^{n} B(n, k, j) x^{k}, \tag{15}\\
Q_{n, k}(y) & :=\sum_{j=0}^{n} B(n, k, j) y^{j}, \tag{16}\\
R_{n}(x, y) & :=\sum_{j, k=0}^{n} B(n, k, j) x^{k} y^{j} . \tag{17}
\end{align*}
$$

The polynomials $R_{n}(x, y)$ were studied by Brenti [4], who called them " q-Eulerian polynomials of type B ".

The symmetry (7) implies:

$$
\begin{align*}
P_{n, j}(x) & =x^{n} P_{n, n-j}(1 / x), \tag{18}\\
Q_{n, k}(y) & =y^{n} Q_{n, n-k}(1 / y), \tag{19}\\
R_{n}(x, y) & =x^{n} y^{n} R_{n}(1 / x, 1 / y) . \tag{20}
\end{align*}
$$

Proposition 4. The polynomials $P_{n, j}(x)$ satisfy the following recurrence:

$$
\begin{align*}
P_{n, j}(x) & =(1+n x-x) P_{n-1, j}(x)+\left(x-x^{2}\right) P_{n-1, j}^{\prime}(x) \tag{21}\\
& +n x P_{n-1, j-1}(x)+\left(x-x^{2}\right) P_{n-1, j-1}^{\prime}(x),
\end{align*}
$$

with the initial conditions: $P_{n, 0}(x)=P_{n}^{\mathrm{A}}(x)$ for $n \geqslant 0$ and $P_{n, n}(x)=x P_{n}^{\mathrm{A}}(x)$ for $n \geqslant 1$. Proof. It is easy to verify that

$$
\begin{gathered}
\sum_{k=0}^{n}(k+1) B(n-1, k, j) x^{k}=P_{n-1, j}(x)+x P_{n-1, j}^{\prime}(x), \\
\sum_{k=0}^{n}(n-k) B(n-1, k-1, j) x^{k}=n x P_{n-1, j}(x)-x P_{n-1, j}(x)-x^{2} P_{n-1, j}^{\prime}(x), \\
\sum_{k=0}^{n} k B(n-1, k, j-1) x^{k}=x P_{n-1, j-1}^{\prime}(x),
\end{gathered}
$$

and

$$
\sum_{k=0}^{n}(n-k+1) B(n-1, k-1, j-1) x^{k}=n x P_{n-1, j-1}(x)-x^{2} P_{n-1, j-1}^{\prime}(x) .
$$

Summing up and applying (12) we obtain (21).

Brändén [2], Corollary 6.9, proved that for every nonempty subset $S \subseteq\{1, \ldots, n\}$ the polynomial $\sum_{j \in S} P_{n, j}(x)$ has only real and simple roots. Combining (47) with Example 7.8 .8 in [3] we will note (Theorem 20) that in fact every linear combination $c_{0} P_{n, 0}(x)+c_{1} P_{n, 1}(x)+\ldots+c_{n} P_{n, n}(x)$, with $c_{0}, c_{1}, \ldots, c_{n} \geqslant 0$, has only real roots. The cases when S is the set of even or odd numbers in $\{1, \ldots, n\}$ were studied in [1]. The Newton's inequality implies that if $0 \leqslant j \leqslant n$ then the sequence $\{B(n, k, j)\}_{k=0}^{n}$ satisfies a stronger version of log-concavity, namely

$$
\begin{equation*}
B(n, k, j)^{2} \geqslant B(n, k-1, j) B(n, k+1, j) \frac{(k+1)(n-k+1)}{k(n-k)} \tag{22}
\end{equation*}
$$

for $0<k<n$, in particular this sequence is unimodal.
For the polynomials $Q_{n, k}(y)$ we have the following, see (18) in [4]:
Proposition 5. The polynomials $Q_{n, k}(y)$ satisfy the following recurrence:

$$
Q_{n, k}(y)=(k+1+k y) Q_{n-1, k}(y)+(n-k+(n-k+1) y) Q_{n-1, k-1}(y)
$$

with the initial conditions: $Q_{n, 0}(y)=1, Q_{n, n}(y)=y^{n}$ for $n \geqslant 0$.
The polynomials $Q_{n, k}$ however do not have all roots real. They satisfy the following versions of Worpitzky identity:

$$
\begin{align*}
\sum_{k=0}^{n}\binom{u+n-k}{n} Q_{n, k}(y) & =(u+1+u y)^{n} \tag{23}\\
\sum_{k=0}^{n}\binom{u+k}{n} Q_{n, k}(y) & =(u+y+u y)^{n} \tag{24}
\end{align*}
$$

The former is proved in [4], Theorem 3.4, the latter follows from the former and the symmetry (19).

Now we recall the recurrence relation for $R_{n}(x, y)$ (see Theorem 3.4 in [4]):
Proposition 6. The polynomials $R_{n}(x, y)$ admit the following recurrence:

$$
R_{n}(x, y)=(1+n x y+n x-x) R_{n-1}(x, y)+\left(x-x^{2}\right)(1+y) \frac{\partial}{\partial x} R_{n-1}(x, y)
$$

$n \geqslant 1$, with initial condition $R_{0}(x, y)=1$.
Brenti [4] also found the generating function for the numbers $B(n, k, j)$:

$$
\begin{equation*}
f(x, y, z):=\sum_{n=0}^{\infty} \frac{R_{n}(x, y)}{n!} z^{n}=\frac{(1-x) e^{(1-x) z}}{1-x e^{(1-x)(1+y) z}} \tag{25}
\end{equation*}
$$

Note that

$$
\begin{equation*}
f(x, y, z)=f^{\mathrm{A}}(x,(1+y) z) e^{(x-1) y z} \tag{26}
\end{equation*}
$$

4 Refined numbers

For $0 \leqslant k \leqslant n$ and a subset $U \subseteq\{1,2, \ldots, n\}$ we define $\mathcal{B}_{n, k, U}$ as the set of those $\sigma \in \mathcal{B}_{n, k}$ which have minus sign at $\sigma_{i}, 1 \leqslant i \leqslant n$, if and only if $\left|\sigma_{i}\right| \in U$. Therefore we have

$$
\begin{equation*}
\bigcup_{\substack{U \subseteq\{1, \ldots, n\} \\|U|=j}} \mathcal{B}_{n, k, U}=\mathcal{B}_{n, k, j} \tag{27}
\end{equation*}
$$

The cardinality of $\mathcal{B}_{n, k, U}$ will be denoted $b(n, k, U)$. By convention we put $b(n,-1, U)=$ $b(n, n+1, U):=0$. It is quite easy to observe boundary conditions.

Proposition 7. For $n \geqslant 1,0 \leqslant k \leqslant n, U \subseteq\{1, \ldots, n\}$ we have

$$
\begin{aligned}
b(n, 0, U) & =[U=\emptyset], & b(n, n, U) & =[U=\{1, \ldots, n\}], \\
b(n, k, \emptyset) & =A(n, k), & b(n, k,\{1, \ldots, n\}) & =A(n, n-k) .
\end{aligned}
$$

Now we provide a recurrence relation.
Proposition 8. For $0 \leqslant k \leqslant n, U \subseteq\{1,2, \ldots, n\}$ we have

$$
\begin{equation*}
b(n, k, U)=(k+1) \cdot b(n-1, k, U)+(n-k) \cdot b(n-1, k-1, U) \tag{28}
\end{equation*}
$$

if $n \notin U$ and

$$
\begin{equation*}
b(n, k, U)=k \cdot b\left(n-1, k, U^{\prime}\right)+(n-k+1) \cdot b\left(n-1, k-1, U^{\prime}\right) \tag{29}
\end{equation*}
$$

if $n \in U$, where $U^{\prime}:=U \backslash\{n\}$.
Proof. Both formulas are true when $k=0$ or $k=n$. Assume that $0<k<n$. We will apply the same map $\Lambda: \mathcal{B}_{n} \rightarrow \mathcal{B}_{n-1}$ as in the proof of Theorem 2.1. Fix $\sigma \in \mathcal{B}_{n, k, U}$ and assume that i is such that $\sigma_{i}=n$ (when $n \notin U$) or $\sigma_{i}=-n$ (when $n \in U$), $1 \leqslant i \leqslant n$. We have now four possibilities:

- $n \notin U$ and either $i=n$ or $\sigma_{i-1}>\sigma_{i+1}, 1 \leqslant i<n$. Then $\Lambda \sigma \in \mathcal{B}_{n-1, k, U}$.
- $n \notin U$ and $\sigma_{i-1}<\sigma_{i+1}, 1 \leqslant i<n$. Then $\Lambda \sigma \in \mathcal{B}_{n-1, k-1, U}$.
- $n \in U$ and $\sigma_{i-1}>\sigma_{i+1}, 1 \leqslant i<n$. Then $\Lambda \sigma \in \mathcal{B}_{n-1, k, U \backslash\{n\}}$.
- $n \in U$ and either $i=n$ or $\sigma_{i-1}<\sigma_{i+1}, 1 \leqslant i<n$. Then $\Lambda \sigma \in \mathcal{B}_{n-1, k-1, U \backslash\{n\}}$.

On the other hand, as in the proof of Theorem 3, we see that for a given τ in $\mathcal{B}_{n-1, k, U}$ (resp. in $\mathcal{B}_{n-1, k-1, U}$) there are $k+1$ (resp. $n-k$) such σ 's in $\mathcal{B}_{n, k, U}$ that $\Lambda \sigma=\tau$. We simply insert n into a descent or at the end of τ (resp. into an ascent). Similarly, for a given τ in $\mathcal{B}_{n-1, k, V}$ (resp. in $\mathcal{B}_{n-1, k-1, V}$) there are k (resp. $n-k+1$) such σ 's in $\mathcal{B}_{n, k, V \cup\{n\}}$ that $\Lambda \sigma=\tau$.

Now we will see that $b(n, k, U)$ depends only on n, k and the cardinality of U.
Theorem 9. If $0 \leqslant k \leqslant n, U, V \subseteq\{1, \ldots, n\}$ and $|U|=|V|$ then

$$
b(n, k, U)=b(n, k, V) .
$$

Proof. Fix $U, V \subseteq\{1, \ldots, n\}$, with $|U|=|V|$ and define $\tau \in \mathcal{A}_{n}$ as the unique permutation of $\{1, \ldots, n\}$ such that: $\tau(U)=V,\left.\tau\right|_{U}$ preserves the order and $\left.\tau\right|_{\{1, \ldots, n\} \backslash U}$ preserves the order. We extend τ to an element of \mathcal{B}_{n} by putting $\tau(-i)=-\tau(i)$. Now let $\sigma \in \mathcal{B}_{n, k, U}$. Then, by definition, $\tau(\sigma(i))<0$ if and only if $\sigma(i)<0,-n \leqslant i \leqslant n$. Moreover, if $1 \leqslant i \leqslant n$ then $\tau(\sigma(i-1))<\tau(\sigma(i))$ if and only if $\sigma(i-1)<\sigma(i)$. This is clear when $\sigma(i-1)$ and $\sigma(i)$ have different signs. If they have the same sign then this is a consequence of the order preserving property of τ on U and on $\{1, \ldots, n\} \backslash U$. Consequently, the map $\sigma \mapsto \tau \circ \sigma$ is a bijection of $\mathcal{B}_{n, k, U}$ onto $\mathcal{B}_{n, k, V}$.

The theorem justifies the following definition: for $0 \leqslant j, k \leqslant n$ we put

$$
b(n, k, j):=b(n, k, U),
$$

where U is an arbitrary subset of $\{1, \ldots, n\}$ with $|U|=j$. In addition, if $j<0$ or $k<0$ or $n<j$ or $n<k$ then we put $b(n, k, j)=0$. From (27) we obtain

Corollary 10. For $0 \leqslant j, k \leqslant n$ we have

$$
\begin{equation*}
\binom{n}{j} b(n, k, j)=B(n, k, j) . \tag{30}
\end{equation*}
$$

5 Connections with permutations of type A

For given $n \geqslant 0$ we define a map $F_{n}: \mathcal{A}_{n+1} \rightarrow \mathcal{B}_{n}$ in the following way: $F_{n}(\sigma)=\widetilde{\sigma}$, where for $1 \leqslant i \leqslant n$ we put

$$
\widetilde{\sigma}_{i}:= \begin{cases}\sigma_{i+1}-\sigma_{1} & \text { if } \sigma_{i+1}<\sigma_{1}, \tag{31}\\ \sigma_{i+1}-1 & \text { if } \sigma_{i+1}>\sigma_{1},\end{cases}
$$

$\widetilde{\sigma}_{-i}:=-\widetilde{\sigma}_{i}$ and $\widetilde{\sigma}_{0}:=0$. Note that $\widetilde{\sigma}_{i-1}>\widetilde{\sigma}_{i}$ if and only if $\sigma_{i}>\sigma_{i+1}$ for $1 \leqslant i \leqslant n$, so the number of descents in $\left(0, \widetilde{\sigma}_{1}, \ldots, \widetilde{\sigma}_{n}\right)$ is the same as in $\left(\sigma_{1}, \ldots, \sigma_{n+1}\right)$. It is easy to see that F_{n} is one-to-one. Its image is the set of such $\tau \in \mathcal{B}_{n}$ which satisfy the following property: if $1 \leqslant i_{1}, i_{2} \leqslant n,\left|\tau_{i_{1}}\right|<\left|\tau_{i_{2}}\right|, \tau_{i_{2}}<0$ then $\tau_{i_{1}}<0$. Denote

$$
\mathcal{A}_{n, k, j}:=\left\{\sigma \in \mathcal{A}_{n, k}: \sigma_{1}=j\right\} .
$$

The cardinalities of these sets were studied by Conger [5], who denoted $\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle_{j}:=\left|\mathcal{A}_{n, k, j}\right|$.
From our remarks we have
Theorem 11. For $0 \leqslant j, k \leqslant n$ the function F_{n} maps $\mathcal{A}_{n+1, k}$ into $\mathcal{B}_{n, k}$ and is a bijection from $\mathcal{A}_{n+1, k, j+1}$ onto $\mathcal{B}_{n, k,\{1, \ldots, j\}}$. Consequently,

$$
\begin{equation*}
b(n, k, j)=\left|\mathcal{A}_{n+1, k, j+1}\right| . \tag{32}
\end{equation*}
$$

In the rest of this section we briefly collect some properties of the numbers $b(n, k, j)=$ $\left\langle{ }_{k}^{n+1}\right\rangle_{j+1}$, most of them are immediate consequences of the results of Conger [5, 6].

Proposition 12. If $0 \leqslant k, j \leqslant n$ then

$$
\begin{align*}
& b(n, 0, j)=[j=0], \tag{33}\\
& b(n, n, j)=[j=n], \tag{34}\\
& b(n, k, 0)=A(n, k), \tag{35}\\
& b(n, k, n)=A(n, n-k), \tag{36}\\
& b(n, k, j)=(k+1) b(n-1, k, j)+(n-k) b(n-1, k-1, j), \quad j<n, \tag{37}\\
& b(n, k, j)=k b(n-1, k, j-1)+(n-k+1) b(n-1, k-1, j-1), \quad j>0, \tag{38}\\
& b(n, k, j)=b(n, n-k, n-j) . \tag{39}
\end{align*}
$$

Proof. These formulas are consequences of Proposition 7, Proposition 8, (7) and (30) (see formulas (3) and (8) in [5]). Note that (38) is absent in [5].

Applying (37), with $j-1$ instead of j, and (38) we obtain (see (10) in [5])
Corollary 13. For $1 \leqslant j, k \leqslant n$

$$
\begin{equation*}
b(n, k, j-1)-b(n, k, j)=b(n-1, k, j-1)-b(n-1, k-1, j-1) \tag{40}
\end{equation*}
$$

Below we present tables for the numbers $b(n, k, j)$ for $n=0,1,2,3,4,5,6$ (they also appear in Appendix A of [6]):

From (30), (37) and (38) we can provide new recurrence formulas for the numbers $B(n, k, j)$:

Corollary 14. For $0 \leqslant j, k \leqslant n$ we have

$$
B(n, k, j)=\frac{(k+1) n}{n-j} B(n-1, k, j)+\frac{(n-k) n}{n-j} B(n-1, k-1, j),
$$

if $0 \leqslant j<n$ and

$$
B(n, k, j)=\frac{k n}{j} B(n-1, k, j-1)+\frac{(n-k+1) n}{j} B(n-1, k-1, j-1),
$$

if $0<j \leqslant n$.
Now we introduce the following lexicographic order on the set $\{0,1, \ldots, n\}^{2}:\left(k_{1}, j_{1}\right) \preceq$ $\left(k_{2}, j_{2}\right)$ if and only if either $k_{1}<k_{2}$ or $k_{1}=k_{2}, j_{1} \geqslant j_{2}$. This is a linear order, in which the successor of $(k, 0)$, with $0 \leqslant k<n$, is $(k+1, n)$, and for $1 \leqslant j \leqslant n$ the successor of (k, j) is $(k, j-1)$. It turns out that for every $n \geqslant 1$ the array $(b(n, k, j))_{k, j=0}^{n}$ is lexicographically unimodal, cf. Theorem 7 in [5].

Proposition 15. For every $n \geqslant 1$ we have the following:
a) If either $0 \leqslant k<n / 2,1 \leqslant j \leqslant n$ or $k=n / 2, n / 2<j \leqslant n$ then

$$
b(n, k, j-1) \geqslant b(n, k, j) .
$$

This inequality is sharp unless either $k=0,2 \leqslant j \leqslant n$ or n is odd, $k=(n-1) / 2, j=1$.
b) If either $1 \leqslant k \leqslant n / 2,0 \leqslant j \leqslant n$ or n is odd, $k=(n+1) / 2$, $(n+1) / 2 \leqslant j \leqslant n$ then

$$
b(n, k-1, j) \leqslant b(n, k, j)
$$

and this inequality is sharp unless n is even, $k=n / 2, j=0$.
c) The array of numbers $b(n, k, j), 0 \leqslant j, k \leqslant n$, is unimodal with respect to the order " \preceq ", with the maximal value $b(n, n / 2, n / 2)$ if n is even and

$$
b(n,(n-1) / 2, n)=b(n,(n+1) / 2,0)
$$

if n is odd.
Proof. First we note that (a) implies (c) as a consequence of the symmetry (39) and the equality

$$
b(n, k-1,0)=A(n, k-1)=A(n, n-k)=b(n, k, n) .
$$

Similarly we get (b).
Now assume that the statement holds for $n-1$. If either $k<n / 2$ or $k=n / 2$, $n / 2<j$ then, due to (3), the right hand side of (40) is nonnegative which proves (a), (b) and consequently (c) for n. Moreover, it is positive unless $j=1, n-1=2 k$, as $A(2 k, k-1)=A(2 k, k)$.

Now we note two summation formulas (see (4) and (5) in [5]).
Proposition 16. For $0 \leqslant j, k \leqslant n$ we have

$$
\begin{align*}
& \sum_{j=0}^{n} b(n, k, j)=A(n+1, k), \tag{41}\\
& \sum_{k=0}^{n} b(n, k, j)=n! \tag{42}
\end{align*}
$$

Proof. For (41) we apply (32) to the following decomposition:

$$
\mathcal{A}_{n+1, k, 1} \dot{\cup} \mathcal{A}_{n+1, k, 2} \cup \dot{\cup} \ldots \dot{\cup} \mathcal{A}_{n+1, k, n+1}=\mathcal{A}_{n+1, k} .
$$

The latter identity is a consequence of (9) and (30).
It turns out that (2) can be generalized to a formula which expresses the numbers $b(n, k, j)$, see Theorem 1 in [5].
Theorem 17. For any $0 \leqslant j, k \leqslant n$ we have

$$
\begin{equation*}
b(n, k, j)=\sum_{i=0}^{k}(-1)^{k-i}\binom{n+1}{k-i} i^{j}(i+1)^{n-j}, \tag{43}
\end{equation*}
$$

under convention that $0^{0}=1$.
Proof. It can be proved by induction by applying (2), (36) and (38).
From (43) and (30) we can derive a formula for the numbers $B(n, k, j)$.
Corollary 18. For any $0 \leqslant j, k \leqslant n$ we have

$$
\begin{equation*}
B(n, k, j)=\binom{n}{j} \sum_{i=0}^{k}(-1)^{k-i}\binom{n+1}{k-i} i^{j}(i+1)^{n-j}, \tag{44}
\end{equation*}
$$

under convention that $0^{0}=1$.
Now we can prove Worpitzky type formula:
Proposition 19. For $0 \leqslant j \leqslant n$ we have

$$
\begin{equation*}
\sum_{k=0}^{n} b(n, k, j)\binom{x+n-k}{n}=x^{j}(1+x)^{n-j} \tag{45}
\end{equation*}
$$

Proof. If $x \in\{0,1, \ldots, n\}$ then

$$
\sum_{k=0}^{n}(-1)^{k-i}\binom{n+1}{k-i}\binom{x+n-k}{n}=[x=i]
$$

(see (5.25) in [7]). Applying (43) we see that (45) holds for $x \in\{0,1, \ldots, n\}$ (see formula (4.18) in [6]). Since the left hand side is a polynomial of degree at most n, this implies that (45) is true for all $x \in \mathbb{R}$.

6 Real rootedness

For $0 \leqslant j \leqslant n$ denote

$$
\begin{equation*}
p_{n, j}(x):=\sum_{k=0}^{n} b(n, k, j) x^{k} \tag{46}
\end{equation*}
$$

so that

$$
\begin{equation*}
P_{n, j}(x)=\binom{n}{j} p_{n, j}(x) . \tag{47}
\end{equation*}
$$

By Proposition 4 we have the following recurrence:

$$
\begin{align*}
p_{n, j}(x) & =\frac{n-j}{n}(1+x n-x) p_{n-1, j}(x)+\frac{n-j}{n}\left(x-x^{2}\right) p_{n-1, j}^{\prime}(x) \tag{48}\\
& +j x p_{n-1, j-1}(x)+\frac{j}{n}\left(x-x^{2}\right) p_{n-1, j-1}^{\prime}(x),
\end{align*}
$$

with the initial conditions: $p_{n, 0}(x)=P_{n}^{\mathrm{A}}(x)$ for $n \geqslant 0$ and $p_{n, n}(x)=x P_{n}^{\mathrm{A}}(x)$ for $n \geqslant 1$. By (32) the polynomial $p_{n, j}(x)$ coincides with $A_{n+1, j+1}(x)$ considered by Brändén [3], Example 7.8.8. He noted that

$$
\begin{equation*}
p_{n, j}(x)=\sum_{i=0}^{j-1} x p_{n-1, i}(x)+\sum_{i=j}^{n-1} p_{n-1, i}(x), \tag{49}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
b(n, k, j)=\sum_{i=0}^{j-1} b(n-1, k-1, i)+\sum_{i=j}^{n-1} b(n-1, k, i) \tag{50}
\end{equation*}
$$

(see (9) in [5]). Note that if $0 \leqslant j<n$ then $\operatorname{deg} p_{n, j}(x)=n-1$ and $\operatorname{deg} p_{n, n}(x)=n$. In fact, $p_{n, n}(x)=x p_{n, 0}(x)$. Conger [5], Theorem 5, proved that all $p_{n, j}(x)$ have only real roots. It turns out that they admit a much stronger property.

Let $f, g \in \mathbb{R}[x]$ be real-rooted polynomials with positive leading coefficients. We say that f is an interleaver of g, which we denote $f \ll g$, if

$$
\ldots \leqslant \alpha_{2} \leqslant \beta_{2} \leqslant \alpha_{1} \leqslant \beta_{1},
$$

where $\left\{\alpha_{i}\right\}_{i=1}^{m},\left\{\beta_{i}\right\}_{i=1}^{n}$ are the roots of f and g respectively. A sequence $\left\{f_{i}\right\}_{i=0}^{n}$ of realrooted polynomials is called interlacing if $f_{i} \ll f_{j}$ whenever $0 \leqslant i<j \leqslant n$.

From [3], Example 7.8.8 and (47) we have the following property of the polynomials $p_{n, j}(x)$ and $P_{n, j}(x)$:
Theorem 20. For every $n \geqslant 1$ the sequence $\left\{p_{n, j}(x)\right\}_{j=0}^{n}$ is interlacing. Consequently, for any $c_{0}, c_{1}, \ldots, c_{n} \geqslant 0$ the polynomial

$$
c_{0} p_{n, 0}(x)+c_{1} p_{n, 1}(x)+\ldots+c_{n} p_{n, n}(x)
$$

has only real roots.
The same statement holds for the polynomials $P_{n, j}(x)$.
Note that Theorem 20 generalizes Corollary 3.7 in [4] and Corollary 6.9 in [2].

References

[1] A. Borowiec, W. Młotkowski, New Eulerian numbers of type D, Electron. J. Combin. 23 (2016), \#P1.38.
[2] P. Brändén, On linear transformations preserving the Pólya frequency property, Trans. Amer. Math. Soc. 358 no. 8 (2006), 3697-3716.
[3] P. Brändén, Unimodality, log-concavity, real-rootedness and beyond, Handbook of Enumerative Combinatorics, CRC Press, Boca Raton, FL, 2015.
[4] F. Brenti, q-Eulerian polynomials arising from Coxeter groups, European J. Combin. 15 no. 5 (1994), 417-441.
[5] M. Conger, A Refinement of the Eulerian numbers, and the Joint Distribution of $\pi(1)$ and $\operatorname{Des}(\pi)$ in S_{n}, Ars Combin. 95 (2010), 445-472.
[6] M. Conger, Shuffing Decks With Repeated Card Values, Thesis (Ph.D.), The University of Michigan, 2007, 213 pp , available at http://www-personal.umich.edu/ ~mconger
[7] R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. A Foundation for Computer Science, Addison-Wesley, New York, 1994.
[8] N. J. A. Sloane, The On-line Encyclopedia of Integer Sequences, http://oeis.org.

[^0]: *W. M. is supported by the Polish National Science Center grant No. 2016/21/B/ST1/00628.

