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Abstract

Proctor’s work on staircase plane partitions yields an exact enumeration of
lozenge tilings of a halved hexagon on the triangular lattice. Rohatgi later ex-
tended this tiling enumeration to a halved hexagon with a triangle cut off from the
boundary. In his previous paper, the author proved a common generalization of
Proctor’s and Rohatgi’s results by enumerating lozenge tilings of a halved hexagon
in the case an array of an arbitrary number of triangles has been removed from a
non-staircase side. In this paper we consider the other case when the array of tri-
angles has been removed from the staircase side of the halved hexagon. Our result
also implies an explicit formula for the number of tilings of a hexagon with an array
of triangles removed perpendicularly to the symmetry axis.

Mathematics Subject Classifications: 05A15, 05B45, 05C30

1 Introduction

A plane partition is an array of positive integers pi,j (called “parts”) so that pi,j >
max(pi+1,j, pi,j+1). R. Proctor [12] proved a simple product formula for the number of
a class of staircase plane partitions. The plane partitions in Proctor’s result are in bijec-
tion with lozenge tilings of a hexagon of side-lengths a, b, c, a, b, c (in the counter clockwise
order, starting from the northwestern side) on the triangular lattice with a ‘maximal stair-
case’ cut off, denoted by Pa,b,c (see Figure 1(a)). Here a lozenge (or unit rhombus) is the
union of any two unit equilateral triangles sharing an edge, and a lozenge tiling of a region
is a covering of the region by lozenges so that there are no gaps or overlaps. This way
Proctor’s result yields the following tiling enumeration.
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Figure 1: (a) The halved hexagon (with defects) P4,7,3. (b) The weighted halved hexagon
P ′4,7,3. (c) and (d) The regions in Rohatgi’s paper [13].

Theorem 1 (Proctor [12]). For any non-negative integers a, b, and c with a 6 b, we have

M(Pa,b,c) =
a∏
i=1

[
b−a+1∏
j=1

c+ i+ j − 1

i+ j − 1

b−a+i∏
j=b−a+2

2c+ i+ j − 1

i+ j − 1

]
, (1)

where M(R) denotes the number of lozenge tilings of a region R, and where empty products
are taken to be 1.

When a = b, the region Pa,b,c above can be viewed as a half of a symmetry hexagon
with a zigzag cut along the symmetry axis. In this point of view, we usually call the
region Pa,b,c a halved hexagon (with defects). We also note that when a = b, Proctor’s
Theorem 1 implies an exact enumeration for one of the ten symmetry classes of plane
partitions, the transposed-complementary plane partitions (see e.g. [14]).

Lozenges in a region can carry weights. In the weighted case, we use the notation
M(R) for the sum of weights of all lozenge tilings of R, where the weight of a lozenge
tiling is the weight product of its constituent lozenges. We still call M(R) the (weighted)
tiling number of R. We also consider the weighted counterpart P ′a,b,c of Pa,b,c, where all
the lozenges along the staircase cut are weighted by 1/2 (see the lozenges with shaded
cores in Figure 1(b)). M. Ciucu [2] proved the following weighted version of Theorem 1.
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Theorem 2 (Ciucu [2]). For any non-negative integers a, b, and c with a 6 b

M(P ′a,b,c) = 2−a
∏
i=1

2c+ b− a+ i

c+ b− a+ i

a∏
i=1

[
b−a+1∏
j=1

c+ i+ j − 1

i+ j − 1

b−a+i∏
j=b−a+2

2c+ i+ j − 1

i+ j − 1

]
. (2)

From now on, we use the notations Pa,b,c and P′a,b,c for the numbers of tilings of the
regions Pa,b,c and P ′a,b,c, respectively.

Tiling enumerations of halved hexagons with certain defects have been investigated
by a number of authors (see e.g. [2], [4], [13], [7], [8] and the lists of references therein).
It is worth noticing that R. Rohatgi [13] generalizes the regions Pa,a,c and P′a,a,c to halved
hexagons with a triangle removed on the northeastern side (see Figures 1(c) and (d)). In
his previous paper [9], the author generalized the tiling enumerations of halved hexagons
by Proctor and Rohatgi to halved hexagons in which an array of an arbitrary number of
adjacent triangles has been removed from the northeastern side (see Figure 2 for examples
of the regions). In this paper, we investigate the other case when the array of triangles has
been removed from the western side of the halved hexagon as shown in Figures 4, 5, and
6. Based on the positions of the array of removed triangles and the weight assignments of
the lozenges along the staircase side, we have eight families of defected halved hexagons
that will be described in detail in Section 2. We will show that the numbers of tilings of
these regions are all given by simple product formulas.

Our explicit enumerations for these halved hexagons also imply an exact tiling formula
for a symmetric hexagon with an array of triangular holes placed perpendicularly to the
symmetry axis (see Theorem 12).

It is worth noticing that Ciucu [3], in his effort on finding duals of the MacMahon
classical theorem on plane partitions [11], gave a closed form product formula for the
tiling number of a hexagon (not necessarily symmetric) with an array of triangular holes
in the center. In Ciucu’s result, if the array of triangular holes moves far away from
the center, the tiling number is not a simple product anymore. In contrast, our result
(Theorem 12 in Section 2) shows that we have a nice tiling formula for any array of
triangular holes placed perpendicularly to the symmetric axis of the hexagon.

The rest of the paper is organized as follows. Due to the large number of new regions
needed to define, we leave the precise statement of our main results (Theorems 4–12) to
Section 2. In Section 3, we quote several fundamental results in the enumeration of tilings
and introduce the particular version of Kuo condensation [6] that we will employ in our
proofs. Section 4 are devoted to the proofs of our main theorems.

2 Precise statement of the main results

We define the Pochhammer symbol (x)n by

(x)n =


x(x+ 1) . . . (x+ n− 1) if n > 0;

1 if n = 0;
1

(x−1)(x−2)...(x+n) if n < 0.

(3)
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Figure 2: Halved hexagons with an array of triangles removed from the non-staircase
boundary in [9].

We also use the ‘skipping’ version of the Pochhammer symbol:

[x]n =


x(x+ 2) . . . (x+ 2(n− 1)) if n > 0;

1 if n = 0;
1

(x−2)(x−4)...(x+2n)
if n < 0.

(4)

We also define the following two products:

T(x, n,m) =
m−1∏
i=0

(x+ i)n−2i (5)

and

V(x, n,m) =
m−1∏
i=0

[x+ 2i]n−2i. (6)

Let a = (a1, a2, . . . , an) be a sequence. We will use several operations on sequences as
follows:

O(a) =
∑
i odd

ai, E(a) =
∑
i even

ai, (7)

sk(a) =
k∑
i=1

ai, ok(a) =
∑
i>k

a2i−1, ek(a) =
∑
i>k

a2i. (8)
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Before going to the statement of our main results, we quote here the tiling formulas
of halved hexagons with triangles removed on the base (see Lemma 1.4 in [9]).
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Figure 3: (a) The region Q(2, 1, 2, 2). (b) The region Q(0, 1, 1, 1, 2, 2). (c) The region
Q′(2, 1, 2, 2). (d) The region K(3, 1, 2, 2). (e) The region K(0, 2, 1, 1, 2, 2). (f) The region
K′(3, 1, 2, 2). The lozenges with shaded cores are weighted by 1

2
. This figure first appeared

in [9].

Assume that t = (t1, t2, . . . , t2l) is a sequence of non-negative integers. Consider a
trapezoidal region whose northern, northeastern, and southern sides have lengths O(t),
2 E(t), and E(t) + O(t), respectively, and whose western side follows a vertical zigzag
lattice paths with E(t) steps. We remove the triangles of sides t2i’s from the base of the
latter region so that the distances between two consecutive triangles are t2i−1’s. Denote
the resulting region by Q(t) = Q(t1, t2, . . . , t2l) (see the regions in Figure 3(a) for the case
when t1 > 0 and Figure 3(b) for the case when t1 = 0). Inspired by the weighted region
P ′a,b,c, we consider the weighted counterpart Q′(t) of the newly defined region, where

the vertical lozenges on the western side are weighted by 1
2

(see Figure 3(c); the vertical
lozenges with shaded cores are weighted by 1

2
).

We are also interested in a variation of the above Q-type regions as follows. Consider
the trapezoidal region whose northern, northeastern, and southern sides have lengths
O(t), 2 E(t) − 1,E(t) + O(t), respectively, and whose western side follows the vertical
zigzag lattice path with E(t) − 1

2
steps (i.e. the western side has E(t) − 1 and a half

‘bumps’). Next, we also remove the triangles of sides t2i’s from the base so that the
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distances between two consecutive ones are t2i−1’s. Denote by K(t) = K(t1, t2, . . . , t2l)
the resulting regions (see the regions in Figure 3(d) for the case when t1 > 0 and Figure
3(e) for the case when t1 = 0). Similar to the case of Q′-type regions, we also define a
weighted version K′(t) of the K(t) by assigning to each vertical lozenge on its western
side a weight 1

2
(see Figure 3(f)).

We adopt here the notations Q(t), Q′(t), K(t), and K′(t) from [9] for the numbers of
tilings of the regions Q(t), Q′(t), K(t), and K′(t), respectively.

We define the hyperfactorial H(n) by

H(n) := 0! · 1! · 2! . . . (n− 1)!,

and the ‘skipping’ hyperfactorial H2(n) by

H2(n) =

{
0! · 2! · 4! . . . (n− 2)! if n is even;

1! · 2! · 3! . . . (n− 2)! if n is odd.

Lemma 3. [9, Lemma 1.4] For any sequence of non-negative integers t = (t1, t2, . . . , t2l)

Q(t) =

∏l
i=1

(s2i(t))!
(s2i−1(t))!

H2(2 E(t) + 1)

l∏
i=1

H2(2 s2i(t) + 1) H2(2 s2i−1(t) + 2)

×
∏

16i<j62l
j − i odd

H(sj(t)− si(t))

H(sj(t) + si(t) + 1)

∏
16i<j62l
j − i even

H(sj(t) + si(t) + 1)

H(sj(t)− si(t))
, (9)

Q′(t) =
2−E(t)

H2(2 E(t) + 1)

l∏
i=1

H2(2 s2i(t) + 1) H2(2 s2i−1(t))

×
∏

16i<j62l
j − i odd

H(sj(t)− si(t))

H(sj(t) + si(t))

∏
16i<j62l
j − i even

H(sj(t) + si(t))

H(sj(t)− si(t))
, (10)

K(t) =
1

H2(2 E(t))

l∏
i=1

H2(2 s2i(t)) H2(2 s2i−1(t) + 1)

×
∏

16i<j62l
j − i odd

H(sj(t)− si(t))

H(sj(t) + si(t))

∏
16i<j62l
j − i even

H(sj(t) + si(t))

H(sj(t)− si(t))
, (11)

and

K′(t) =
1

H2(2 E(t))

l∏
i=1

H2(2 s2i(t)− 1) H2(2 s2i−1(t))

×
∏

16i<j62l
j − i odd

H(sj(t)− si(t))

H(sj(t) + si(t)− 1)

∏
16i<j62l
j − i even

H(sj(t) + si(t)− 1)

H(sj(t)− si(t))
. (12)
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Figure 4: The halved hexagons with an array of holes on the staircase boundary: (a)

H
(1)
3,3,2(2, 2, 2, 3, 2, 2) and (b) H

(2)
3,3,3(2, 3, 2, 2, 2, 2).

We now go to the definitions of our 8 halved hexagons.

Assume that x, y, z are non-negative integers and that a = (a1, a2, . . . , ak) is a sequence
of k non-negative integers (a may be an empty sequence). We consider a pentagonal region
whose northern, northeastern, southeastern, and south sides have respectively lengths
x+E(a), y+z+2 O(a), y+z+2 E(a), x+O(a), and the western side follows a vertical zigzag
lattice path with y + z + E(a) + O(a) steps. Next, we remove an array of alternating up-
pointing and down-pointing triangles at level 2z+ 2 E(a) from the bottom. In particular,
the array of triangles starts with an up-pointing half triangle of side 2a1, then the next
triangles have sides a2, a3, . . . , ak, ordered from left to right (see Figure 4(a) for the case
x = 3, y = 3, z = 2, k = 6, a1 = 2, a2 = 2, a3 = 2, a4 = 3, a5 = 2, a6 = 2). Denote by

H
(1)
x,y,z(a) = H

(1)
x,y,z(a1, a2, . . . , ak) the resulting region.

Next, we investigate a variation H
(2)
x,y,z(a) of H

(1)
x,y,z(a) as follows. We start with a

pentagonal region of side-lengths x+E(a), y+z−1+2 O(a), y+z−1+2 E(a), x+O(a), y+
z−1 E(a)+O(a) in the same order as in the definition of the H(1)-type region. The array
of triangles is now removed at an odd level, 2z + 2 E(a) − 1, from the bottom (instead
of the level 2z + 2 E(a) in the case of the H(1)-type regions). Figure 4(b) illustrates the
region for the case x = 3, y = 3, z = 3, k = 6, a1 = 2, a2 = 3, a3 = 2, a4 = 2, a5 = 2, a6 = 2.
Lozenge tilings of the two ‘defected’ halved hexagons H

(1)
x,y,z(a) and H

(2)
x,y,z(a) are always

enumerated by simple product formulas.
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Theorem 4. Assume that x, y, z, k are non-negative integers and a = (a1, a2, . . . , ak) is a
sequence of k non-negative integers. The number of tilings of the defected halved hexagon
H

(1)
x,y,z(a1, a2, . . . , ak) is given by

M(H(1)
x,y,z(a, b)) =

Py,y+2a,b Pz+b,z+b,a Q(a, b, x, y + z)

Py+z+b,y+z+b,a

T(x+ b+ 1, y + a− 1, a)

T(b+ 1, y + a− 1, a)

× T(x+ z + a+ b+ 2, y + a− 1, a) T(2a+ b+ 2, y + b− 1, b) T(z + 1, y + b− 1, b)

T(z + a+ b+ 2, y + a− 1, a) T(x+ 2a+ b+ 2, y + b− 1, b) T(x+ z + 1, y + b− 1, b)
(13)

for k > 2

M(H(1)
x,y,z(a1, a2, . . . , a2k)) = M(H(1)

x,y,z(O(a),E(a)))
Q(0, a1, . . . , a2k, y) Q(a1, . . . , a2k + z)

Py,y+2O(a),E(a) Pz+E(a),z+E(a),O(a)

×
k∏
i=2

T(x+ z + ei(a) + 1, a2i−2 + oi(a)− 1,oi(a))

T(x+ y + ei(a) + 1, a2i−2 + oi(a)− 1,oi(a))

×
k∏
i=2

T(y + ei(a) + 1, a2i−2 + oi(a)− 1,oi(a))

T(z + ei(a) + 1, a2i−2 + oi(a)− 1,oi(a))

×
k∏
i=2

T(x+ y + s2i−1(a) + s2k(a) + 2, a2i−2 + oi(a)− 1,oi(a))

T(x+ z + s2i−1(a) + s2k(a) + 2, a2i−2 + oi(a)− 1,oi(a))

×
k∏
i=2

T(z + s2i−1(a) + s2k(a) + 2, a2i−2 + oi(a)− 1,oi(a))

T(y + s2i−1(a) + s2k(a) + 2, a2i−2 + oi(a)− 1,oi(a))
, (14)

and
M(H(1)

x,y,z(a1, a2, . . . , a2k−1)) = M(H(1)
x,y,z(a1, a2, . . . , a2k−1, 0)). (15)

We can view a halved hexagon with an odd number of triangular holes as a special case
of the one with an even number of holes, when the rightmost hole has size 0, as illustrated
in the equation (15). For the sake of simplicity, in our next theorems (Theorems 5–11),
we only show the tiling formulas of halved hexagons with an even number of holes.

Theorem 5. Assume that x, y, z, k are non-negative integers and a = (a1, a2, . . . , ak) is a
sequence of k non-negative integers. The number of tilings of the defected halved hexagon
H

(2)
x,y,z(a1, a2, . . . , ak) is given by

M(H(2)
x,y,z(a, b)) =

Py,y+2a,b Pz+b−1,z+b−1,a K(a, b, x, y + z)

Py+z+b−1,y+z+b−1,a

T(x+ b+ 1, y + a− 1, a)

T(b+ 1, y + a− 1, a)

× T(x+ z + a+ b+ 1, y + a− 1, a) T(2a+ b+ 1, y + b− 1, b) T(z + 1, y + b− 1, b)

T(z + a+ b+ 1, y + a− 1, a) T(x+ 2a+ b+ 1, y + b− 1, b) T(x+ z + 1, y + b− 1, b)
,

(16)
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and for k > 2

M(H(2)
x,y,z(a1, a2, . . . , a2k)) = M(H(2)

x,y,z(O(a),E(a)))
K(0, a1, . . . , a2k, y) K(a1, . . . , a2k + z)

Py,y+2O(a),E(a) Pz+E(a)−1,z+E(a)−1,O(a)

×
k∏
i=2

T(x+ z + ei(a) + 1, a2i−2 + oi(a)− 1,oi(a))

T(x+ y + ei(a) + 1, a2i−2 + oi(a)− 1,oi(a))

×
k∏
i=2

T(y + ei(a) + 1, a2i−2 + oi(a)− 1,oi(a))

T(z + ei(a) + 1, a2i−2 + oi(a)− 1,oi(a))

×
k∏
i=2

T(x+ y + s2i−1(a) + s2k(a) + 1, a2i−2 + oi(a)− 1,oi(a))

T(x+ z + s2i−1(a) + s2k(a) + 1, a2i−2 + oi(a)− 1,oi(a))

×
k∏
i=2

T(z + s2i−1(a) + s2k(a) + 1, a2i−2 + oi(a)− 1,oi(a))

T(y + s2i−1(a) + s2k(a) + 1, a2i−2 + oi(a)− 1,oi(a))
. (17)
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Figure 5: The weighted halved hexagons with an array of holes on the staircase boundary:
(a) H

(3)
3,3,2(2, 2, 2, 3, 2, 2) and (b) H

(4)
3,3,3(2, 3, 2, 2, 2, 2). The lozenges with shaded cores are

weighted by 1/2.

Similar to the case of original halved hexagons Pa,b,c, we are interested in the weighted

versions H
(3)
x,y,z(a) and H

(4)
x,y,z(a) of the above regions H

(1)
x,y,z(a) and H

(2)
x,y,z(a), respectively,
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where the vertical lozenges along the western side are weighted by 1/2 (see Figures 5(a)
and (b), respectively; the lozenges with shaded cores are weighted by 1/2). The tiling
numbers of these weighted regions are also given by simple product formulas.

Theorem 6. Assume that x, y, z, k are non-negative integers and a = (a1, a2, . . . , ak) is a
sequence of k non-negative integers. The number of tilings of the defected halved hexagon
H

(3)
x,y,z(a1, a2, . . . , ak) is given by

M(H(3)
x,y,z(a, b)) =

P′y,y+2a,b P′z+b,z+b,a Q′(0, a, b, x, y + z)

P′y+z+b,y+z+b,a

T(x+ b+ 1, y + a− 1, a)

T(b+ 1, y + a− 1, a)

× T(x+ z + a+ b+ 1, y + a− 1, a) T(2a+ b+ 1, y + b− 1, b) T(z + 1, y + b− 1, b)

T(z + a+ b+ 1, y + a− 1, a) T(x+ 2a+ b+ 1, y + b− 1, b) T(x+ z + 1, y + b− 1, b)
,

(18)

and for k > 2

M(H(3)
x,y,z(a1, a2, . . . , a2k)) = 2a1 M(H(3)

x,y,z(O(a),E(a)))

× Q′(a1, a2, . . . , a2k, z) Q′(0, a1, . . . , a2k + z)

P′y,y+2O(a),E(a) P′z+E(a),z+E(a),O(a)

×
k∏
i=2

T(x+ z + ei(a) + 1, a2i−2 + oi(a)− 1,oi(a))

T(x+ y + ei(a) + 1, a2i−2 + oi(a)− 1,oi(a))

×
k∏
i=2

T(y + ei(a) + 1, a2i−2 + oi(a)− 1,oi(a))

T(z + ei(a) + 1, a2i−2 + oi(a)− 1,oi(a))

×
k∏
i=2

T(x+ y + s2i−1(a) + s2k(a) + 1, a2i−2 + oi(a)− 1,oi(a))

T(x+ z + s2i−1(a) + s2k(a) + 1, a2i−2 + oi(a)− 1,oi(a))

×
k∏
i=2

T(z + s2i−1(a) + s2k(a) + 1, a2i−2 + oi(a)− 1,oi(a))

T(y + s2i−1(a) + s2k(a) + 1, a2i−2 + oi(a)− 1,oi(a))
. (19)

Theorem 7. Assume that x, y, z, k are non-negative integers and a = (a1, a2, . . . , ak) is a
sequence of k non-negative integers. The number of tilings of the defected halved hexagon
H

(4)
x,y,z(a1, a2, . . . , ak) is given by

M(H(4)
x,y,z(a, b)) =

P′y,y+2a,b P′z+b−1,z+b−1,a K′(a, b, x, y + z)

P′y+z+b−1,y+z+b−1,a

T(x+ b+ 1, y + a− 1, a)

T(b+ 1, y + a− 1, a)

× T(x+ z + a+ b, y + a− 1, a) T(2a+ b, y + b− 1, b) T(z + 1, y + b− 1, b)

T(z + a+ b, y + a− 1, a) T(x+ 2a+ b, y + b− 1, b) T(x+ z + 1, y + b− 1, b)
, (20)
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and for k > 2

M(H(4)
x,y,z(a1, a2, . . . , a2k)) = 2a1−1 M(H(4)

x,y,z(O(a),E(a)))

× K′(0, a1, . . . , a2k, y) K′(a1, . . . , a2k + z)

P′y,y+2O(a),E(a) P′z+E(a)−1,z+E(a)−1,O(a)

×
k∏
i=2

T(x+ z + ei(a) + 1, a2i−2 + oi(a)− 1,oi(a))

T(x+ y + ei(a) + 1, a2i−2 + oi(a)− 1,oi(a))

×
k∏
i=2

T(y + ei(a) + 1, a2i−2 + oi(a)− 1,oi(a))

T(z + ei(a) + 1, a2i−2 + oi(a)− 1,oi(a))

×
k∏
i=2

T(x+ y + s2i−1(a) + s2k(a), a2i−2 + oi(a)− 1,oi(a))

T(x+ z + s2i−1(a) + s2k(a), a2i−2 + oi(a)− 1,oi(a))

×
k∏
i=2

T(z + s2i−1(a) + s2k(a), a2i−2 + oi(a)− 1,oi(a))

T(y + s2i−1(a) + s2k(a), a2i−2 + oi(a)− 1,oi(a))
. (21)

Finally, we focus on four new families of defected halved hexagons with ‘mixed’ western
boundary. In these families, only a half of the lozenges along the western boundary (the
ones above the array of holes or the ones below the array of holes) are weighted by 1/2.

The first ‘mixed boundary’ region H
(5)
x,y,z(a1, a2, . . . , ak) is obtained from the weighted

region H
(4)
x,y,z+1(a1+1, a2, . . . , ak) by removing all unit triangles running along the southern

and the southeastern sides, as well as the ones running along the portion of the western
boundary below the array of holes (see Figure 6(a) for the case x = 3, y = 3, z = 2, k =
6, a1 = 2, a2 = 2, a3 = 2, a4 = 3, a5 = 2, a6 = 2; the dotted triangles indicate the
triangles removed; the lozenges with shaded cores are weighted by 1/2 as usual). We
can see that only the lozenges staying above the array of holes and running along the
western boundary side are weighted in the region H

(5)
x,y,z(a1, . . . , ak). The second mixed

boundary region H
(6)
x,y,z(a1, a2, . . . , ak) is created from H

(3)
x,y,z(a1, a2, . . . , ak) by removing all

unit triangles running along the southern side and the portion of the western side below
the array of holes (see Figure 6(b) for x = 3, y = 3, z = 3, k = 6, a1 = 2, a2 = 3, a3 =
2, a4 = 2, a5 = 2, a6 = 2).

Similarly, the region H
(7)
x,y,z(a1, a2, . . . , ak) is obtained from the region

H
(3)
x,y,z(a1, a2, . . . , ak) by removing all unit triangles running along the northern side and

the western side above the holes (shown in Figure 6(c) when x = 3, y = 3, z = 2, k =

6, a1 = 2, a2 = 2, a3 = 2, a4 = 3, a5 = 2, a6 = 2). Finally, the region H
(8)
x,y,z(a1, a2, . . . , ak) is

obtained by removing the unit triangles running along the northern side and the western
side above the holes in H

(4)
x,y,z(a1, a2, . . . , ak) (illustrated in Figure 6(d) for x = 3, y =

3, z = 3, k = 6, a1 = 2, a2 = 3, a3 = 2, a4 = 2, a5 = 2, a6 = 2).
The tiling numbers of the above four regions with mixed boundary are all given by

simple product formulas. These formulas are similar to that in Theorems 4–7 above,
except for the appearances of the product V.
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Figure 6: The four mixed boundary halved hexagons: (a) H
(5)
3,3,2(2, 2, 2, 3, 2, 2), (b)

H
(6)
3,3,3(2, 3, 2, 2, 2, 2), (c) H

(7)
3,3,2(2, 2, 2, 3, 2, 2), and (d) H

(8)
3,3,3(2, 3, 2, 2, 2, 2).
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Theorem 8. Assume that x, y, z, k are non-negative integers and a = (a1, a2, . . . , ak) is a
sequence of k non-negative integers. The number of tilings of the defected halved hexagon
H

(5)
x,y,z(a1, a2, . . . , ak) is given by

M(H(5)
x,y,z(a, b)) =

P′y,y+2a+1,b Pz+b,z+b,a Q(a, b, x, y + z)

Py+z+b,y+z+b,a

V(2a+ 2b+ 3, y + z − 1, y)

V(2x+ 2a+ 2b+ 3, y + z − 1, y)

× T(x+ b+ 1, y + z + 2a, y) T(2a+ b+ 2, y + b− 1, b) T(z + 1, y + b− 1, b)

T(b+ 1, y + z + 2a, y) T(x+ 2a+ b+ 2, y + b− 1, b) T(x+ z + 1, y + b− 1, b)
,

(22)

and for k > 2

M(H(5)
x,y,z(a1, a2, . . . , a2k)) = 2a1 M(H(5)

x,y,z(O(a),E(a)))

× K′(0, a1 + 1, a2, . . . , a2k, y) Q(a1, . . . , a2k + z)

P′y,y+2O(a)+1,E(a) Pz+E(a),z+E(a),O(a)

×
k∏
i=2

T(x+ z + ei(a) + 1, a2i−2 + oi(a)− 1,oi(a))

T(x+ y + ei(a) + 1, a2i−2 + oi(a)− 1,oi(a))

×
k∏
i=2

T(y + ei(a) + 1, a2i−2 + oi(a)− 1,oi(a))

T(z + ei(a) + 1, a2i−2 + oi(a)− 1,oi(a))

×
k∏
i=2

T(x+ y + s2i−1(a) + s2k(a) + 2, a2i−2 + oi(a)− 1,oi(a))

T(x+ z + s2i−1(a) + s2k(a) + 2, a2i−2 + oi(a)− 1,oi(a))

×
k∏
i=2

T(z + s2i−1(a) + s2k(a) + 2, a2i−2 + oi(a)− 1,oi(a))

T(y + s2i−1(a) + s2k(a) + 2, a2i−2 + oi(a)− 1,oi(a))
. (23)

Theorem 9. Assume that x, y, z, k are non-negative integers and a = (a1, a2, . . . , ak) is a
sequence of k non-negative integers. The number of tilings of the defected halved hexagon
H

(6)
x,y,z(a1, a2, . . . , ak) is given by

M(H(6)
x,y,z(a, b)) =

P′y,y+2a,b Pz+b−1,z+b−1,a K(a, b, x, y + z)

Py+z+b−1,y+z+b−1,a

V(2a+ 2b+ 3, y + z − 2, y)

V(2x+ 2a+ 2b+ 3, y + z − 2, y)

× T(x+ b+ 1, y + z + 2a− 1, y) T(2a+ b+ 1, y + b− 1, b) T(z + 1, y + b− 1, b)

T(b+ 1, y + z + 2a− 1, y) T(x+ 2a+ b+ 1, y + b− 1, b) T(x+ z + 1, y + b− 1, b)
,

(24)
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and for k > 2

M(H(6)
x,y,z(a1, a2, . . . , a2k)) = 2a1 M(H(6)

x,y,z(O(a),E(a)))

× Q′(0, a1, a2, . . . , a2k, y) K(a1, . . . , a2k + z)

P′y,y+2O(a),E(a) Pz+E(a)−1,z+E(a)−1,O(a)

×
k∏
i=2

T(x+ z + ei(a) + 1, a2i−2 + oi(a)− 1,oi(a))

T(x+ y + ei(a) + 1, a2i−2 + oi(a)− 1,oi(a))

×
k∏
i=2

T(y + ei(a) + 1, a2i−2 + oi(a)− 1,oi(a))

T(z + ei(a) + 1, a2i−2 + oi(a)− 1,oi(a))

×
k∏
i=2

T(x+ y + s2i−1(a) + s2k(a) + 1, a2i−2 + oi(a)− 1,oi(a))

T(x+ z + s2i−1(a) + s2k(a) + 1, a2i−2 + oi(a)− 1,oi(a))

×
k∏
i=2

T(z + s2i−1(a) + s2k(a) + 1, a2i−2 + oi(a)− 1,oi(a))

T(y + s2i−1(a) + s2k(a) + 1, a2i−2 + oi(a)− 1,oi(a))
. (25)

Theorem 10. Assume that x, y, z, k are non-negative integers and a = (a1, a2, . . . , ak)
is a sequence of k non-negative integers. The number of tilings of the defected halved
hexagon H

(7)
x,y,z(a1, a2, . . . , ak) is given by

M(H(7)
x,y,z(a, b)) =

Py,y+2a−1,b P′z+b,z+b,a Q′(a, b, x, y + z)

P′y+z+b,y+z+b,a

V(2a+ 2b+ 1, y + z, y)

V(2x+ 2a+ 2b+ 1, y + z, y)

× T(x+ b+ 1, y + z + 2a− 1, y) T(2a+ b+ 1, y + b− 1, b) T(z + 1, y + b− 1, b)

T(b+ 1, y + z + 2a− 1, y) T(x+ 2a+ b+ 1, y + b− 1, b) T(x+ z + 1, y + b− 1, b)
,

(26)

and for k > 2

M(H(7)
x,y,z(a1, a2, . . . , a2k)) = M(H(7)

x,y,z(O(a),E(a)))

× K(0, a1, a2, . . . , a2k, y) Q′(a1, . . . , a2k + z)

Py,y+2O(a)−1,E(a) P′z+E(a),z+E(a),O(a)

×
k∏
i=2

T(x+ z + ei(a) + 1, a2i−2 + oi(a)− 1,oi(a))

T(x+ y + ei(a) + 1, a2i−2 + oi(a)− 1,oi(a))

×
k∏
i=2

T(y + ei(a) + 1, a2i−2 + oi(a)− 1,oi(a))

T(z + ei(a) + 1, a2i−2 + oi(a)− 1,oi(a))

×
k∏
i=2

T(x+ y + s2i−1(a) + s2k(a) + 1, a2i−2 + oi(a)− 1,oi(a))

T(x+ z + s2i−1(a) + s2k(a) + 1, a2i−2 + oi(a)− 1,oi(a))

×
k∏
i=2

T(z + s2i−1(a) + s2k(a) + 1, a2i−2 + oi(a)− 1,oi(a))

T(y + s2i−1(a) + s2k(a) + 1, a2i−2 + oi(a)− 1,oi(a))
. (27)
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Theorem 11. Assume that x, y, z, k are non-negative integers and a = (a1, a2, . . . , ak)
is a sequence of k non-negative integers. The number of tilings of the defected halved
hexagon H

(8)
x,y,z(a1, a2, . . . , ak) is given by

M(H(8)
x,y,z(a, b)) =

Py,y+2a−2,b P′z+b−1,y+b−1,a K′(a, b, x, y + z)

P′y+z+b−1,y+z+b−1,a

× V(2a+ 2b+ 1, y + z − 1, y) T(x+ b+ 1, y + z + 2a− 2, y)

V(2x+ 2a+ 2b+ 1, y + z − 1, y) T(b+ 1, y + z + 2a− 2, y)

× T(2a+ b, y + b− 1, b) T(z + 1, y + b− 1, b)

T(x+ 2a+ b, y + b− 1, b) T(x+ z + 1, y + b− 1, b)
, (28)

and for k > 2

M(H(8)
x,y,z(a1, a2, . . . , a2k)) = M(H(8)

x,y,z(O(a),E(a)))

× Q(0, a1 − 1, a2, . . . , a2k, y) K′(a1, . . . , a2k + z)

Py,y+2O(a)−2,E(a) P′z+E(a)−1,y+E(a)−1,O(a)

×
k∏
i=2

T(x+ z + ei(a) + 1, a2i−2 + oi(a)− 1,oi(a))

T(x+ y + ei(a) + 1, a2i−2 + oi(a)− 1,oi(a))

×
k∏
i=2

T(y + ei(a) + 1, a2i−2 + oi(a)− 1,oi(a))

T(z + ei(a) + 1, a2i−2 + oi(a)− 1,oi(a))

×
k∏
i=2

T(x+ y + s2i−1(a) + s2k(a), a2i−2 + oi(a)− 1,oi(a))

T(x+ z + s2i−1(a) + s2k(a), a2i−2 + oi(a)− 1,oi(a))

×
k∏
i=2

T(z + s2i−1(a) + s2k(a), a2i−2 + oi(a)− 1,oi(a))

T(y + s2i−1(a) + s2k(a), a2i−2 + oi(a)− 1,oi(a))
. (29)

Assume that x, y, z are non-negative integers and that a = (a1, a2, . . . , an) is a sequence
of nonnegative integers as usual. Consider a symmetric hexagon of side-lengths y+2 O(a)−
a1, x+2 E(b), y+2 O(a)−a1, y+2 E(a), x+2 E(a), y+2 E(a). We remove at level z (from the
bottom) a symmetric array of triangles of sides an, an−1, . . . , a2, a1, a2, . . . , an−1, an ordered
from left to right, so that the middle triangle is an up-pointing triangle of side a1. Denote
by Sx,y,z(a) = Sx,y,z(a1, a2, . . . , an) the resulting region (see Figure 17 for examples).

We note that, by the symmetry, if the total length of the array, 2(E(a) + O(a))− a1,
and the length of the base of the hexagon, x+ 2 O(a)− a1, have the same parity, then z
must be even. Thus, z and x always have the same parity.

Theorem 12. Assume that x, y, z are non-negative integers and a = (a1, a2, . . . , an) is a
sequence of positive integers. If 2 E(a) − 1 6 z 6 2y + 2 E(a) + 1, then the number of
tilings of Sx,y,z(a) is always given by a simple product formula as follows.
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(1) If x is even (so z is even) and a1 is even, then

M(Sx,y,z(a)) = 2y+a2+a3+...+an M
(
H

(2)
x
2
+E(a),y− z

2
+E(a), z

2
−E(a)

(a1
2
, a2, . . . , an

))
×M

(
H

(3)
x
2
+E(a),y− z

2
+E(a), z

2
−E(a)

(a1
2
, a2, . . . , an

))
. (30)

(2) If x is odd (so z is odd) and a1 is even, then

M(Sx,y,z(a)) = 2y+a2+a3+...+an M
(
H

(2)
x−1
2

+E(a),y− z
2
+E(a), z

2
−E(a)+1

(a1
2
, a2, . . . , an

))
×M

(
H

(3)
x+1
2

+E(a),y− z−1
2

+E(a)−1, z−1
2
−E(a)

(a1
2
, a2, . . . , an

))
. (31)

(3) If x is even (so z is even) and a1 is odd, then

M(Sx,y,z(a)) = 2y+a2+a3+...+an M

(
H

(5)
x
2
+E(a),y− z

2
+E(a), z

2
−E(a)

(
a1 − 1

2
, a2, . . . , an

))
×M

(
H

(8)
x
2
+E(a),y− z

2
+E(a), z

2
−E(a)

(
a1 + 1

2
, a2, . . . , an

))
. (32)

(4) If x is odd (so z is odd) and a1 is odd, then

M(Sx,y,z(a)) = 2y+a2+a3+...+an

×M

(
H

(5)
x+1
2

+E(a),y− z−1
2

+E(a)−1, z−1
2
−E(a)

(
a1 − 1

2
, a2, . . . , an

))
×M

(
H

(8)
x−1
2

+E(a),y− z−1
2

+E(a), z−1
2
−E(a)+1

(
a1 + 1

2
, a2, . . . , an

))
. (33)

Finally, we note that when z < 2 E(a)−1 or z > 2y+2 E(a)+1, then M(Sx,y,z(a)) = 0.
This will be explained later in Remark 23 of Section 4.

3 Preliminaries

Let G be a simple graph without loops. A perfect matching (or simple matching in this
paper) of G is a collection of vertex-disjoint edges that cover all vertices of G. We use
the notation M(G) for the number of matchings of G. The tilings of a region R can
be identified with the matchings of its dual graph G (the graph whose vertices are unit
triangles in R and whose edges connect precisely two unit triangles sharing an edge). In
the weighted case, each edge of the dual graph G has the same weight as the corresponding
lozenge in the region R. In this case, M(G) denotes the weighted number of matchings
of G, i.e. the sum of weights of all matchings in G, where the weight of a matching is the
product of all weight of its constituent edges.

If a region admits a tiling, then it has the same number of up- and down-pointing unit
triangles. We call the regions satisfying the latter balancing condition balanced regions.
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Lemma 13 (Region-splitting Lemma). Let R be a balanced region. Assume that a sub-
region S of R satisfies the following two conditions:

(i) (Separating Condition) All unit triangles in S that are adjacent to R−S are of the
same type (up-pointing or down-pointing).

(ii) (Balancing Condition) S is balanced.

Then
M(R) = M(S) M(R− S). (34)

Proof. 1 Assume there is a tiling of R which contains boundary-crossing lozenges between
S and R−S (i.e., lozenges which consist of a unit triangle from the boundary of S and a
unit triangle from the boundary of R − S). Since there is only one type of unit triangle
on each side of the boundary between S and R−S, and since S and R−S are balanced,
the regions obtained by removing such boundary-crossing lozenges would no longer be
balanced, and hence would have no tilings. Therefore, there can not be any boundary-
crossing lozenges, and S and R− S must be tiled independently, giving the factorization
(34).

One of the main ingredients of our proofs is the following powerful theorem by Eric
H. Kuo [6] that is usually mentioned as Kuo condensation.

Theorem 14 (Theorem 5.1 in [6]). Assume that G = (V1, V2, E) is a weighted bipartite
planar graph with two vertex classes V1 and V2 of the same cardinality. Assume in addition
that u, v, w, s are four vertices appearing on a cyclic order on a face of G, such that
u,w ∈ V1 and v, s ∈ V2. Then

M(G) M(G− {u, v, w, s}) = M(G− {u, v}) M(G− {w, s})
+ M(G− {u, s}) M(G− {v, w}). (35)

The next lemma is often called Ciucu’s factorization theorem (Theorem 1.2 in [1]),
that allows us write the number of matchings of a symmetric graph as the product of the
matching numbers of two disjoint subgraphs.

Lemma 15 (Ciucu’s Factorization Theorem). Let G = (V1, V2, E) be a weighted bipartite
planar graph with a vertical symmetry axis `. Assume that a1, b1, a2, b2, . . . , ak, bk are all
the vertices of G on ` appearing in this order from top to bottom2. Assume in addition
that the vertices of G on ` form a cut set of G (i.e. the removal of those vertices separates
G into two vertex-disjoint graphs). We reduce the weights of all edges of G lying on `
by half and keep the other edge-weights unchanged. Next, we color the two vertex-classes
V1 and V2 of G by black and white, without loss of generality, assume that a1 is black.
Finally, we remove all edges on the left of ` which are adjacent to a black ai or a white
bj; we also remove the edges on the right of ` which are adjacent to a white ai or a black

1This proof was provided by an anonymous referee for the paper [10].
2It is easy to see that if G admits a perfect matching, then G has an even number of vertices on `.
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Figure 7: Ciucu’s Factorization Theorem. The edges cut off are illustrated by dotted
edges.

bj. This way, G is divided into two disjoint weighted graphs G+ and G− (on the left and
on the right of `, respectively). See Figure 7 for an example. Then

M(G) = 2k M(G+) M(G−). (36)

4 Proof of the main theorems

We first prove Theorem 4.

Proof of Theorem 4. We first prove (13) by induction on x + y + z. The base cases are
the situations when at least one of the parameters x, y, z is equal to 0.

If x = 0, then we split the region H
(1)
0,y,z(a, b) into two (balanced) subregions along

the right side of the a-hole: the lower subregion is the halved hexagon Pb+z,b+z,a, and the
upper subregion is a union of the halved hexagon Py,y+a1,a2 and several forced vertical
lozenges (see Figure 8(a)). By Region-splitting Lemma 13, we get

M(H
(1)
0,y,z(a, b)) = M(Pb+z,b+z,a) M(Py,y+a,b), (37)

and (13) follows from Proctor’s Theorem 1.
If y = 0, then our region has several forced lozenges on the top as in Figure 9(a). By

removing these forced lozenges, we obtained an upside-down region Q(a, b, x, z). Then
(13) follows from Lemma 3 in this case.

If z = 0, similar to the case when x = 0, we also split the region into two halved
hexagons and several forced lozenges as in Figure 10(a). Thus, our formula is also implied
by Proctor’s Theorem 1.
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Figure 8: Splitting up a H(1)-type region into two Q-type regions in the case of x = 0.
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Figure 9: Partitioning a H(1)-type region into two Q-type regions in the case of y = 0.
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Figure 11: How to apply Kuo condensation to a H(1)-region.
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Figure 12: Obtaining a recurrence for the number of tilings of H(1)-type region.

For the induction step, we assume x, y, z are all positive and that (13) holds for any
H(1)-type region with two holes whose sum of the x-, y- and z-parameters is strictly less
than x+ y + z. We need to verify (13) for the region H

(1)
x,y,z(a, b).

We apply Kuo condensation to the dual graph G of the region H
(1)
x,y,z(a), for a general

sequence of nonnegative integers a = (a1, a2, . . . , an) with the four vertices u, v, w, s chosen
as in Figure 11, each of the four vertices u, v, w, s corresponds to the black unit triangle of
the same label. In particular, the u- and v-triangles are respectively the up-pointing and
down-pointing black unit triangles at the upper-right corner of the region, and the w- and
s-triangles are the up-pointing and down-pointing black unit triangles at the lower-right
corner of the region.

Consider the region corresponding to the graph G − {u, v, w, s}. The removal of the
black unit triangles yields several forced lozenges. By removing these forced lozenges, we
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get the region H
(1)
x,y−1,z−1(a) (see the region restricted by the bold contour in Figure 12(a))

and obtain
M(G− {u, v, w, s}) = M(H

(1)
x,y−1,z−1(a)). (38)

Similarly, we have
M(G− {u, v}) = M(H

(1)
x,y−1,z(a)), (39)

M(G− {w, s}) = M(H
(1)
x,y,z−1(a)), (40)

M(G− {u, s}) = M(H
(1)
x+1,y−1,z−1(a)), (41)

and
M(G− {v, w}) = M(H

(1)
x−1,y,z(a)) (42)

(see Figures 12(b)–(e), respectively). Plugging the above five identities into the equation
(35) in Kuo’s Theorem 14, we get the following recurrence:

M(H(1)
x,y,z(a)) M(H

(1)
x,y−1,z−1(a)) = M(H

(1)
x,y−1,z(a)) M(H

(1)
x,y,z−1(a))

+ M(H
(1)
x+1,y−1,z−1(a)) M(H

(1)
x−1,y,z(a)), (43)

for any sequence of positive integers a = (a1, a2, . . . , an). In particular, the number tilings

of the region H
(1)
x,y,z(a, b) satisfies this recurrence (by setting n = 2, a1 = a, a2 = b). To

finish the proof of (13) we only need to verify that the expression on the right-hand side
of (13) satisfies the same recurrence (43). Indeed, denote by φx,y,z(a, b) this expression.
We need to verify that

φx,y,z(a, b)φx,y−1,z−1(a, b) = φx,y−1,z(a, b)φx,y,z−1(a, b) + φx+1,y−1,z−1(a, b)φx−1,y,z(a, b).
(44)

It is equivalent to show that

φx,y−1,z(a, b)

φx,y−1,z−1(a, b)

φx,y,z−1(a, b)

φx,y,z(a, b)
+
φx+1,y−1,z−1(a, b)

φx,y−1,z−1(a, b)

φx−1,y,z(a, b)

φx,y,z(a, b)
= 1. (45)

We have several claims that are direct consequence of Theorem 1, the definition of the
product T, and Lemma 3:

Claim 16.

Px,x,a

Px−1,x−1,a
=
a+ x

x

(2a+ 2x− 1)!

(2a+ x)!

x!

(2x− 1)!
. (46)

Claim 17.

T(x, n,m)

T(x− 1, n,m)
=

(x+ n−m)m
(x− 1)m

. (47)
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Claim 18. For any sequence t = (t1, t2, . . . , t2l)

Q(t1, . . . , t2l + 1)

Q(t1, . . . , t2l)
=

(s2l(t) + 1)(2 s2l(t) + 1)!

(2 E(t) + 1)!

×
l∏

i=1

(s2l(t)− s2i−1(t))!

(s2l(t) + s2i−1(t) + 1)!

l−1∏
i=1

(s2l(t) + s2i(t) + 1)!

(s2l(t)− s2i(t))!
. (48)

Claim 19. For any sequence t = (t1, t2, t3, t4)

Q(t1, t2, t3, t4)

Q(t1, t2, t3 − 1, t4)
=

s4(t)

s3(t)
(2 s4(t)− 1)!(2 s3(t))!

(s4(t)− s1(t)− 1)!

(s3(t)− s1(t)− 1)!

× (s3(t)− s2(t)− 1)!(s4(t) + s2(t))!(s3(t) + s1(t))!

(s4(t) + s1(t))!(s3(t) + s2(t))!(s4(t) + s3(t)− 1)!(s4(t) + s3(t))!
. (49)

We now simplify the first fraction of the first term on the left-hand side of (45) by
using the above claim as

φ(x, y − 1, z)

φ(x, y − 1, z − 1)
=

T(x+ z + a+ b+ 2, y + a− 2, a)

T(x+ z + a+ b+ 1, y + a− 2, a)

T(z + 1, y + b− 2, b)

T(z, y + b− 2, b)

× T(z + a+ b+ 1, y + a− 2, a)

T(z + a+ b+ 2, y + a− 2, a)

T(x+ z, y + b− 2, b)

T(x+ z + 1, y + b− 2, b)

× Q(a, b, x, y + z − 1)

Q(a, b, x, y + z − 2)

Pz+b,z+b,a

Pz+b−1,z+b−1,a

Py+z+b−2,y+z+b−2,a

Py+z+b−1,y+z+b−1,a
(50)

=
(x+ y + z + a+ b)a
(x+ z + a+ b+ 1)a

(y + z − 1)b
(z)b

(z + a+ b+ 1)a
(y + z + a+ b)a

(x+ z)b
(x+ y + z − 1)b

× (x+ y + z + a+ b− 1)(2x+ 2y + 2z + 2a+ 2b− 3)!

(2y + 2z + 2b− 3)!

× (y + z − 2)!(x+ y + z + b− 2)!(x+ y + z + 2a+ 2b− 1)!

(x+ y + z − 2)!(x+ y + z + 2a+ b− 1)!(2x+ y + z + 2a+ 2b− 1)!

× a+ b+ z

b+ z

(2z + 2a+ 2b− 1)!

(z + b+ 2a)!

(b+ z)!

(2z + 2b− 1)!

× y + z + b− 1

y + z + a+ b− 1

(y + z + 2a+ b− 1)!

(2y + 2z + 2a+ 2b− 3)!

(2y + 2z + 2b− 3)!

(y + z + b− 1)!
. (51)

Working similarly for the second fraction, φx,y,z−1(a,b)

φx,y,z(a,b)
, of the first term and multiplying

the result by the above simplified form of the first fraction, we obtain

φx,y−1,z(a, b)

φx,y−1,z−1(a, b)

φx,y,z−1(a, b)

φx,y,z(a, b)
=

(2x+ y + z + 2a+ 2b)(2y + 2z + 2a+ 2b− 1)

(2x+ 2y + 2z + 2a+ 2b− 1)(x+ y + z + 2a+ 2b)
.

(52)
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Next, we work on the second term on the left-hand side of (45). The first fraction can
be written as

φx−1,y,z(a, b)

φx,y,z(a, b)
=

T(x+ b, y + a− 1, a)

T(x+ b+ 1, y + a− 1, a)

T(x+ z + a+ b+ 1, y + a− 1, a)

T(x+ z + a+ b+ 2, y + a− 1, a)

× T(x+ 2a+ b+ 2, y + b− 1, b)

T(x+ 2a+ b+ 1, y + b− 1, b)

T(x+ z + 1, y + b− 1, b)

T(x+ z, y + b− 1, b)

Q(a, b, x− 1, y + z)

Q(a, b, x, y + z)
(53)

=
(x+ b)a

(x+ y + b)a

(x+ z + a+ b+ 1)a
(x+ y + z + a+ b+ 1)a

(x+ y + 2a+ b+ 1)b
(x+ 2a+ b+ 1)b

(x+ y + z)b
(x+ z)b

× (x+ a+ b)

(x+ y + z + a+ b)(2x+ 2y + 2z + 2a+ 2b− 1)!(2x+ 2a+ 2b)!

× (x+ y + z − 1)!(x+ b− 1)!

(x+ y + z + b− 1)!(x− 1)!

× (x+ y + z + 2a+ b)!(x+ 2a+ 2b)!(2a+ 2b+ 2x+ y + z − 1)!(2a+ 2b+ 2x+ y + z)!

(x+ y + z + 2a+ 2b)!(x+ 2a+ b)!
.

(54)

Working similarly for the second fraction φx−1,y,z(a,b)

φx,y,z(a,b)
and multiplying by the above simpli-

fication of the first one, we get

φx+1,y−1,z−1(a, b)

φx,y−1,z−1(a, b)

φx−1,y,z(a, b)

φx,y,z(a, b)
=

x(2x+ 2a+ 2b+ 1)

(2x+ 2y + 2z + 2a+ 2b− 1)(x+ y + z + 2a+ 2b)
.

(55)

We have now

φx,y−1,z(a, b)

φx,y−1,z−1(a, b)

φx,y,z−1(a, b)

φx,y,z(a, b)
+
φx+1,y−1,z−1(a, b)

φx,y−1,z−1(a, b)

φx−1,y,z(a, b)

φx,y,z(a, b)

=
(2x+ y + z + 2a+ 2b)(2y + 2z + 2a+ 2b− 1)

(2x+ 2y + 2z + 2a+ 2b− 1)(x+ y + z + 2a+ 2b)

+
x(2x+ 2a+ 2b+ 1)

(2x+ 2y + 2z + 2a+ 2b− 1)(x+ y + z + 2a+ 2b)
= 1.

(56)

This finishes the proof of (13).

We now prove (14) by induction on x+ y + z. The three base cases here are still the
cases of x = 0, y = 0, and z = 0.

Similar to the case when k = 1 above, when x = 0, we can partition our region into two
Q-type regions and several forced lozenges (shown in Figure 8(b)). By Region-splitting
Lemma 13, we have

M(H
(1)
0,y,z(a1, . . . , a2k)) = M(Q(0, a1, a2, . . . , a2k, y)) M(Q(a1, a2, . . . , a2k + z)). (57)
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Our tiling formula (14) follows from (13) and Lemma 3.
If y = 0, we partition our regions into two Q-type regions (and several forced lozenges)

along the line containing the bases of the triangular holes (see Figure 9(b)). By Region-
splitting Lemma, we can also write the number of tilings of our region here as the product
of these Q-type regions as follows:

M(H
(1)
x,0,z(a1, . . . , a2k)) = M(Q(0, a1, a2, . . . , a2k−1)) M(Q(a1, a2, . . . , a2k, x, z)). (58)

Then (14) follows again from (13) and Lemma 3.
The last base case is the case when z = 0. Similar to the cases of x = 0 and y = 0, we

can break our region into two Q-type regions as in Figure 10(b). Region-splitting Lemma
gives us the following formula:

M(H
(1)
x,0,z(a1, . . . , a2k)) = M(Q(0, a1, a2, . . . , a2k−1, a2k +x, y)) M(Q(a1, a2, . . . , a2k)). (59)

Then (14) is implied by (13) and Lemma 3.
For the induction step, we assume that x, y, z are all positive and that (14) holes for

any H(1)-type region with 2k holes (k > 2) whose sum of the x-, y- and z-parameters
is strictly less than x + y + z. We need to show that (14) holds for the general region

H
(1)
x,y,z(a), where a = (a1, a2, . . . , a2k) is a sequence of positive integers with k > 2.

As proved by using Kuo condensation above, the tiling number of the region H
(1)
x,y,z(a)

satisfies the recurrence (43). Therefore, our work is now verifying that the formula in (14)
satisfies the same recurrence.

Denote by Φx,y,z(a) the formula on the right-hand side of (14). We now need to verify
that

Φx,y−1,z(a)

Φx,y−1,z−1(a)

Φx,y,z−1(a)

Φx,y,z(a)
+

Φx+1,y−1,z−1(a)

Φx,y−1,z−1(a)

Φx−1,y,z(a)

Φx,y,z(a)
= 1. (60)

We write Φx,y,z(a) = φx,y,z(O(a),E(a)) · fx,y,z(a), where φx,y,z(a, b) was defined as in the
verification of (13). We need to show that:

fx,y−1,z(a)fx,y,z−1(a)

fx,y−1,z−1(a)fx,y,z(a)

φx,y−1,z(O(a),E(a))

φx,y−1,z−1(O(a),E(a))

φx,y,z−1(O(a),E(a))

φx,y,z(O(a),E(a))

+
fx+1,y−1,z−1(a)fx−1,y,z(a)

fx,y−1,z−1(a)fx,y,z(a)

φx+1,y−1,z−1(O(a),E(a))

φx,y−1,z−1(O(a),E(a))

φx−1,y,z(O(a),E(a))

φx,y,z(O(a),E(a))
= 1. (61)

For given sequence a = (a1, a2, . . . , an), the function fx,y,z(a) only depends on the
parameters y and z and the sums x+ y and x+ z. The values of these quadruples for the
four occurrences of f in the first fraction in the first terms are:

(y − 1, z, x+ y − 1, x+ z), (y, z − 1, z + y, x+ z − 1)

(y − 1, z − 1, x+ y − 1, x+ z − 1), (y, z, x+ y, x+ z), (62)

where the two quadruples on the top row correspond to the two f -functions on the nu-
merator, and the two quadruples on the bottom row correspond to the two f -functions
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on the denominator of our fraction. In particular, the values of these parameters in each
row form the same set. This means that the product of two f -functions on the numerator
is equal to the product of the ones on the denominator. It means that

fx,y−1,z(a)fx,y,z−1(a)

fx,y−1,z−1(a)fx,y,z(a)
= 1. (63)

Similarly, we have
fx+1,y−1,z−1(a)fx−1,y,z(a)

fx,y−1,z−1(a)fx,y,z(a)
= 1, (64)

and (61) becomes

φx,y−1,z(O(a),E(a))

φx,y−1,z−1(O(a),E(a))

φx,y,z−1(O(a),E(a))

φx,y,z(O(a),E(a))

+
φx+1,y−1,z−1(O(a),E(a))

φx,y−1,z−1(O(a),E(a))

φx−1,y,z(O(a),E(a))

φx,y,z(O(a),E(a))
= 1. (65)

However, this is exactly a consequence of (13), then (14) follows.
Finally, as mentioned before, any H(1)-type region with an odd number of holes can

be viewed as a region with an even number of holes, when the rightmost hole has size 0.
This means (15) follows.

The proofs of Theorems 5–7 are essentially the same as that of Theorem 4, and will
be omitted.

We devote the next part of this section to the proof of Theorem 8.

Proof of Theorem 8. This proof follows the lines in the proof of Theorem 4.
We first prove (22) by induction on x+ y + z. The base cases are still: x = 0, y = 0,

and z = 0.
Similar to the case of H(1)-type regions, if x = 0, we can split our regions into two

disjoint subregions (and several forced lozenges as in Figure 13). By Region-splitting
Lemma 13, we get

M(H
(5)
0,y,z(a1, . . . , a2k)) = 2a1 M(K′(0, a1+1, a2, . . . , a2k, y)) M(Q(a1, a2, . . . , a2k+z)). (66)

Then (22) follows from the above identity (when specializing k = 1) and Lemma 3.
If y = 0, Figure 14 and Region-splitting Lemma 13 tell us

M(H
(5)
x,0,z(a1, . . . , a2k)) = 2a1 M(K′(0, a1 + 1, a2, . . . , a2k−1)) M(Q(a1, a2, . . . , a2k, x, z)).

(67)
Finally, when z = 0, we have as in Figure 15

M(H
(5)
x,y,0(a1, . . . , a2k)) = 2a1 M(K′(0, a1+1, a2, . . . , a2k−1, a2k+x, y)) M(Q(a1, a2, . . . , a2k)).

(68)
Then (22) follows again from Lemma 3 in the cases y = 0 and z = 0.
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Figure 14: The base case y = 0 for the H(5)-type regions.
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For the induction step, we assume that x, y, z > 1 and that (22) holds for any H(5)-
type region with two holes whose sum of the x-, y-, and z-parameters is strictly less than
x+ y + z. We need to show (22) for any region H

(5)
x,y,z(a, b).

We apply Kuo condensation to the dual graph G of the region H
(5)
x,y,z(a) for a general

sequence of nonnegative integers a = (a1, a2, . . . , an), based on Figure 16. The figure tells
us that the product of the tiling numbers of the two regions in the top row equals the
product of the tiling numbers of the two regions in the middle row plus the product of
the tiling numbers of the two regions in the bottom row. In particular, we have

M(H(5)
x,y,z(a)) M(H

(5)
x,y−1,z−1(a)) = M(H

(5)
x,y−1,z(a)) M(H

(5)
x,y,z−1(a))

+ M(H
(5)
x+1,y−1,z−1(a)) M(H

(5)
x−1,y,z(a)), (69)

for any sequence a = (a1, a2, . . . , ak). To verify (22) we only need to show that the
expression on the right-hand side of its satisfies the same recurrence.

We denote by ψx,y,z(a, b) the product on the right-hand side of (22), we would like to
show that

ψx,y,z(a, b)ψx,y−1,z−1(a, b) = ψx,y−1,z(a, b)ψx,y,z−1(a, b) + ψx+1,y−1,z−1(a, b)ψx−1,y,z(a, b),
(70)

or

ψx,y−1,z(a, b)

ψx,y−1,z−1(a, b)

ψx,y,z−1(a, b)

ψx,y,z(a, b)
+
ψx+1,y−1,z−1(a, b)

ψx,y−1,z−1(a, b)

ψx−1,y,z(a, b)

ψx,y,z(a, b)
= 1. (71)
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We have several additional claims (that follow directly from the definition of the products
T and V) as follows:

Claim 20.
V(x, n,m)

V(x, n− 1,m)
= [x+ 2n− 2m]m. (72)

Claim 21.
V(x, n,m)

V(x− 2, n,m))
=

[x+ 2n− 2m]m
[x− 2]m

. (73)

Claim 22.
T(x, n,m)

T(x, n− 1,m)
= (x+ n−m)m. (74)

Using the above claims, we now have the first fraction in the first term on the left-hand
side of (71) simplified as

ψx,y−1,z(a, b)

ψx,y−1,z−1(a, b)
=

Pz+b,z+b,a

Pz+b−1,z+b−1,a

Py+z+b−2,y+z+b−2,a

Py+z+b−1,y+z+b−1,a

× V(2a+ 2b+ 3, y + z − 2, y − 1)

V(2a+ 2b+ 3, y + z − 3, y − 1)

V(2x+ 2a+ 2b+ 3, y + z − 3, y − 1)

V(2x+ 2a+ 2b+ 3, y + z − 2, y − 1)

× T(x+ b+ 1, y + z + 2a− 1, y − 1)

T(x+ b+ 1, y + z + 2a− 2, y − 1)

T(b+ 1, y + z + 2a− 2, y − 1)

T(b+ 1, y + z + 2a− 1, y − 1)

× T(z + 1, y + b− 2, b)

T(z, y + b− 2, b)

T(x+ z, y + b− 2, b)

T(x+ z + 1, y + b− 2, b)

Q(a, b, x, y + z − 1)

Q(a, b, x, y + z − 2)
(75)

=
Pz+b,z+b,a

Pz+b−1,z+b−1,a

× y + z + b− 1

y + z + a+ b− 1

(y + z + 2a+ b− 1)!

(2y + 2z + 2a+ 2b− 3)!

(2y + 2z + 2b− 3)!

(y + z + b− 1)!

× [2z + 2a+ 2b+ 1]y−1
[2x+ 2z + 2a+ 2b+ 1]y−1

(x+ z + 2a+ b+ 1)y−1
(z + 2a+ b+ 1)y−1

(y + z − 1)b
(z)b

(x+ z)b
(x+ y + z − 1)b

× (x+ y + z + a+ b− 1)(2x+ 2y + 2z + 2a+ 2b− 3)!

(2y + 2z + 2b− 3)!

× (y + z − 2)!(x+ y + z + b− 2)!(x+ y + z + 2a+ 2b− 1)!

(x+ y + z − 2)!(x+ y + z + 2a+ b− 1)!(2x+ y + z + 2a+ 2b− 1)!
(76)

Working the same for the fraction ψx,y,z−1(a,b)

ψx,y,z(a,b)
and multiplying up the two simplifications,

we get

ψx,y−1,z(a, b)

ψx,y−1,z−1(a, b)

ψx,y,z−1(a, b)

ψx,y,z(a, b)

(y + z + a+ b)(2x+ y + z + 2a+ 2b)

(x+ y + z + a+ b)(x+ y + z + 2a+ 2b)
. (77)
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Next, we work on the second term in (71). We get the following simplifications:

ψx−1,y,z(a, b)

ψx,y,z(a, b)
=

V(2x+ 2a+ 2b+ 3, y + z − 1, y)

V(2x+ 2a+ 2b+ 1, y + z − 1, y)

× T(x+ b, y + z + 2a, y)

T(x+ b+ 1, y + z + 2a, y)

T(x+ 2a+ b+ 2, y + b− 1, b)

T(x+ 2a+ b+ 1, y + b− 1, b)

T(x+ z + 1, y + b− 1, b)

T(x+ z, y + b− 1, b)

× Q(a, b, x− 1, y + z)

Q(a, b, x, y + z)
(78)

=
[2x+ 2z + 2a+ 2b+ 1]y

[2x+ 2a+ 2b+ 1]y

(x+ b)y
(x+ z + 2a+ b+ 1)y

(x+ y + 2a+ b+ 1)b
(x+ 2a+ b+ 1)b

(x+ y + z)b
(x+ z)b

× (x+ a+ b)

(x+ y + z + a+ b)

1

(2x+ 2y + 2z + 2a+ 2b− 1)!(2x+ 2a+ 2b)!

× (x+ y + z − 1)!(x+ b− 1)!

(x+ y + z + b− 1)!(x− 1)!

× (x+ y + z + 2a+ b)!(x+ 2a+ 2b)!(2x+ y + z + 2a+ 2b− 1)!(2x+ y + z + 2a+ 2b)!

(x+ y + z + 2a+ 2b)!(x+ 2a+ b)!
,

(79)

and then

ψx+1,y−1,z−1(a, b)

ψx,y−1,z−1(a, b)

ψx−1,y,z(a, b)

ψx,y,z(a, b)

x(x+ a+ b)

(x+ y + z + a+ b)(x+ y + z + 2a+ 2b)
. (80)

It is easy to see that

ψx,y−1,z(a, b)

ψx,y−1,z−1(a, b)

ψx,y,z−1(a, b)

ψx,y,z(a, b)
+
ψx+1,y−1,z−1(a, b)

ψx,y−1,z−1(a, b)

ψx−1,y,z(a, b)

ψx,y,z(a, b)
=

(y + z + a+ b)(2x+ y + z + 2a+ 2b)

(x+ y + z + a+ b)(x+ y + z + 2a+ 2b)
+

x(x+ a+ b)

(x+ y + z + a+ b)(x+ y + z + 2a+ 2b)

= 1, (81)

and (71) follows.
We also prove (23) by induction on x + y + z. The base cases are also the situations

when at least one of the three parameters x, y, z is equal to 0. This cases follows from the
equations when proving the base cases for (22).

The induction step here is exactly the same as that in the proof of (22). We only need
to show that the formula on the right-hand side of (23) also satisfies the recurrence (69).
Similar to the proof of Theorem 4, this verification follows from (71).

Theorems 9–11 can be treated similarly to Theorem 8 in a completely analogous
manner, and we also omit the proofs of these theorems here.

We finally prove Theorem 12.
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Figure 16: Applying Kuo condensation to a H(5)-type region.
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Figure 17: Apply Ciucu’s factorization theorem to a symmetric hexagon with an array of
holes on the symmetric axis.

Proof of Theorem 12. Apply Ciucu’s Factorization Theorem 15 to the dual graph G of
S = Sx,y,z(a), we obtain

M(S) = M(G) = 2y+a2+...+an M(G+) M(G−). (82)

We consider first the case when x and a1 are both even. Note that we also have z even in
this case (z and x always have the same parity). It turns out that the component graph
G− (defined by the cutting procedure in Theorem 15) is the dual graph of the region

H
(3)
x
2
+E(a),y− z

2
+E(a), z

2
−E(a)

(a1
2
, a2, . . . , an

)
(see Figure 17(a)). Thus,

M(G−) = H
(3)
x
2
+E(a),y− z

2
+E(a), z

2
−E(a)

(a1
2
, a2, . . . , an

)
. (83)

the electronic journal of combinatorics 25(4) (2018), #P4.58 32



The graph G+ after removed several forced edges (the edges corresponding to the forced
lozenges in Figure 17(a)) is the dual graph of the region

H
(2)
x
2
+E(a),y− z

2
+E(a), z

2
−E(a)

(a1
2
, a2, . . . , an

)
.

Since the removal of these forced edges does not affect to the number of matchings, we
have

M(G+) = H
(2)
x
2
+E(a),y− z

2
+E(a), z

2
−E(a)

(a1
2
, a2, . . . , an

)
. (84)

Then part (1) of the theorem follows from (82)–(84).
Parts (2), (3), and (4) can be similarly treated by using Ciucu’s Factorization Theorem,

based on Figures 17(b), (c), and (d), respectively.

Remark 23. If the parameter z in the region S = Sx,y,z(a) is too small or too large, then
the region does not have a tiling. We can still apply Ciucu’s Factorization Theorem to
the dual graph G of the region S for any z, and still get the equality (82). However, if
z < 2 E(a)− 1 or z > 2y+ 2 E(a) + 1, then at least one of the component graphs G+ and
G− has no matching. To see this, we consider the regions corresponding to them. Let us
work in detail here for the case of even x and a1 (the other cases can be treated in the
same manner). If z < 2 E(a)−1, then the region corresponding to G− is still an H(3)-type
region, denoted by R, however, it has a negative y-parameter. In this case, divide the
region into two subregions, denoted R1 and R2 for the upper and lower ones, along the
line containing the bases of the triangular holes. By the same arguments in the proof of
the Region-Splitting Lemma 13, we can show that a tiling of R (if exists) can be written
as union of two independent tilings of R1 and R2. However, it is easy to see that R2 has
no tiling (since it is not balanced). Similar in the case of z > 2y + 2 E(a) + 1, the upper
subregion R1 has no tiling. In summary, R has no tiling, so does S.
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