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Abstract

J. Propp and T. Roby isolated a phenomenon in which a statistic on a set has
the same average value over any orbit as its global average, naming it homomesy.
They proved that the cardinality statistic on order ideals of the product of two
chains poset under rowmotion exhibits homomesy. In this paper, we prove an anal-
ogous result in the case of the product of three chains where one chain has two
elements. In order to prove this result, we generalize from two to n dimensions the
recombination technique that D. Einstein and Propp developed to study homomesy.
We see that our main homomesy result does not fully generalize to an arbitrary
product of three chains, nor to larger products of chains; however, we have a par-
tial generalization to an arbitrary product of three chains. Additional corollaries
include refined homomesy results in the product of three chains and a new result
on increasing tableaux. We conclude with a generalization of recombination to any
ranked poset and a homomesy result for the Type B minuscule poset cross a two
element chain.

Mathematics Subject Classifications: 05E18

1 Introduction

Homomesy is a surprisingly ubiquitous phenomenon, isolated by J. Propp and T. Roby
[10], that occurs when a statistic on a combinatorial set has the same average value
over orbits of that action as its global average. Homomesy has been found in actions
on tableaux [1, 10], actions on binary strings [11], rotations on permutation matrices
[11], certain products of toggles on noncrossing partitions [5], Suter’s action on Young
diagrams [10] (with proof due to D. Einstein), linear maps acting on vector spaces [10],
a phase-shift action on simple harmonic motion [10], and others. A motivating instance
of this phenomenon is the action of rowmotion on order ideals of a poset. Rowmotion
on an order ideal is defined as the order ideal generated by the minimal poset elements
that are not in the order ideal; this action has generated significant interest in recent
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algebraic combinatorics, giving rise to many beautiful results [2, 4, 7, 10, 17]. For a
survey of recent homomesy results, see [11]; for an introduction to dynamical algebraic
combinatorics, including rowmotion, see [16]. Our initial motivation for this paper was
Propp and Roby’s result that the cardinality statistic on order ideals of the product
of two chains poset [a] × [b] under rowmotion exhibits homomesy [10]. D. Rush and
K. Wang generalized this result by showing all minuscule posets exhibit homomesy under
rowmotion using the cardinality statistic [12]; the product of chains is the Type A case
of this result.

In this paper, we investigate homomesy in the product of three chains, or equivalently,
a type A minuscule poset cross a chain. More specifically, we show order ideals of [2]×[b]×
[c] exhibit homomesy under promotion with cardinality statistic. However, we observe
such a homomesy result does not hold for a general product of three chains. We also obtain
a homomesy result on order ideals of a type B minuscule poset cross a chain of size two.
To prove these results, we generalize the recombination technique of Einstein and Propp
[7] from two to n dimensions. Recombination is a tool that Einstein and Propp developed
to translate homomesy results between rowmotion and a related action called promotion
by J. Striker and N. Williams in [17]. Einstein and Propp showed recombination gives an
equivariant bijection between order ideals of [a] × [b] under rowmotion and order ideals
of [a]×[b] under promotion. Using a different method, Striker and Williams showed that
there is an equivariant bijection between order ideals of any ranked poset under promotion
and under rowmotion. This means that the orbit structure is the same under rowmotion
and promotion, so if we want to study the orbits of rowmotion, we could instead study
the orbits of promotion, or vice versa. K. Dilks, O. Pechenik, and Striker [4] generalized
promotion to higher dimensions. Furthermore, they showed that for a given poset, there
is an equivariant bijection between any of the multidimensional promotions they defined.
Underlying all these results is the toggle group of P. Cameron and D. Fon-der-Flaass [2],
who provided access to the tools of group theory by exhibiting rowmotion as a toggle
group action.

Our first main theorem, Theorem 21, says that the order ideals of [2] × [b] × [c]
exhibit homomesy with average value bc under promotion when using the cardinality
statistic. To prove this theorem, we generalize the recombination result of Einstein and
Propp from a product of chains [a]×[b] to a product of chains [a1]×⋅ ⋅ ⋅×[an] in our second
main theorem, Theorem 25. As part of proving our first main theorem, we also translate
a homomesy result on increasing tableaux of shape 2×b under K-promotion with statistic
box entry summation to order ideals of [2] × [b] × [c] under a specific promotion with
cardinality statistic. We also prove the following additional results. In Propositions 38
and 39, we show that our homomesy result does not generalize to order ideals of [a]×[b]×
[c] or order ideals of [2]×⋅ ⋅ ⋅×[2] under promotion with cardinality statistic. Although our
result does not generalize fully to products of three chains, using Pechenik’s homomesy
result on the frame of an increasing tableaux of shape a × b with statistic box entry
summation [9], in Corollary 46, we establish homomesy on [a]× [b]× [c] under promotion
with cardinality statistic on the “outside” of the poset. Additionally, Corollaries 42
and 46 include refinements of our main homomesy result and this partial generalization,
respectively, where we consider the cardinality statistic on certain symmetric subposets
of a product of chains. In Corollary 40 we also use our main result to show a new
homomesy result on increasing tableaux of shape a×b with entries at most a+b+1 under
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K-promotion with statistic box entry summation. In Theorem 56, we generalize the
recombination result of Theorem 25 from a product of chains to any ranked poset. We
use this for Corollary 57, a homomesy result on order ideals of a type B minuscule poset
cross a chain of size two under promotion with cardinality statistic. Lastly, Theorem
52 explicitly states a bijection between order ideals of a ranked poset under different
n-dimensional promotions by presenting a conjugating toggle group element.

In Section 2, we begin with introductory definitions and results, much of which is
from Striker and Williams [17] and Dilks, Pechenik, and Striker [4]. In Section 3, we
state relevant material from Propp and Roby [10] and Einstein and Propp [7] and work
to generalize some of these concepts. In Section 4, we present our two main results, the
homomesy result of Theorem 21 and the generalization of recombination in Theorem 25.
In Section 5, we present several corollaries, summarized above. In Section 6, we generalize
recombination to any ranked poset, obtaining a corollary involving the type B minuscule
poset, and, finally, give a theorem presenting a toggle group element to conjugate between
different n-dimensional promotions.

2 Rowmotion and promotion background

We begin by recalling definitions regarding posets, rowmotion, and promotion.

Definition 1. A poset P is a set with a binary relation, denoted ≤, that is reflexive,
weakly antisymmetric, and transitive. Given e, f ∈ P , f covers e if e < f and there is no
element x ∈ P such that e < x < f . A subset I of P is called an order ideal if for any t ∈ I
and s ≤ t in P , s ∈ I. Let J(P ) denote the set of order ideals of P . A subset F of P is
called an order filter if for any t ∈ F and s ≥ t in P , s ∈ F .

Definition 2. Let n ∈ N and let [n] denote the poset {1,2, . . . , n} with the usual less
than or equal to ≤. This is the chain with n elements.

Some definitions that follow are valid for infinite posets; however, for the rest of this
paper, we only consider finite posets. We continue by defining a toggle action on an order
ideal of poset.

Definition 3. Let P be a poset. For any e ∈ P , the toggle te ∶ J(P )→ J(P ) is defined as
follows:

te(I) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

I ⋃{e} if e ∉ I and I ⋃{e} ∈ J(P )
I ∖ {e} if e ∈ I and I ∖ {e} ∈ J(P )
I otherwise.

Remark 4. The toggles te and tf commute whenever neither e nor f covers the other.

Rowmotion, denoted Row, is defined as follows.

Definition 5. Let P be a poset and I ∈ J(P ). Row(I) is the order ideal generated by
the minimal elements of P not in I. In other words, if t is a minimal element of P ∖ I
and s ≤ t, then s ∈ Row(I).

However, this is not the only way to view rowmotion. Cameron and Fon-der-Flaass
proved that we may instead toggle elements from top to bottom.
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Definition 6. A linear extension of a poset P is a bijective function L ∶ P → [n] where
∣P ∣ = n such that if p1 < p2 in P then L(p1) < L(p2). Let L(P ) denote the set of linear
extensions of P .

Theorem 7 ([2, Lemma 1]). Let L ∶ P → [n] be in L(P ). Then tL−1(1)tL−1(2)⋯tL−1(n) acts
as rowmotion.

The benefit of the toggle perspective is that we can study other actions that are closely
related to rowmotion. In [17], Striker and Williams defined another action, which they
called promotion, on order ideals of ranked posets using a projection to a two-dimensional
lattice. By defining columns on ranked posets, promotion is the action that toggles
columns from left to right. A precise definition of this is stated using Definition 9 and
Proposition 11. Note that this promotion action is distinct but related to Schützenberger’s
promotion action on linear extensions of posets, defined in [13]. If we denote promotion
on order ideals as Pro, we may see that Row and Pro are linked in the following way.

Theorem 8 ([17, Theorem 5.2]). For any ranked, finite poset P , there is an equivariant
bijection between J(P ) under Pro and J(P ) under Row.

Additionally, in Theorem 5.4 of [17], Striker and Williams explicitly gave a conjugating
toggle element for this bijection. We will generalize this conjugating toggle element result
in Theorem 52.

Striker and Williams found that in many cases, it was easier to determine the orbit
sizes of Pro compared to Row. More specifically, for some classes of posets, the action of
Pro on J(P ) is in equivariant bijection with a more easily understood rotation on another
object. As a result, in order to study the orbits of Row, it is often useful to study Pro
and apply Theorem 8.

Dilks, Pechenik, and Striker further generalized the notion of promotion to higher
dimensions. Rather than restricting to a two-dimensional lattice projection, they defined
promotion for ranked posets with respect to an n-dimensional lattice projection as tog-
gling by sweeping through the poset with an affine hyperplane in a particular direction
[4]. We postpone the use of lattice projections until Section 6, choosing to present our
main results using the natural embedding of the product of n chains into Nn. More
specifically, we use the following definition.

Definition 9 ([4, Definition 3.14]). Let P = [a1] × ⋅ ⋅ ⋅ × [an] be the product of n chains
poset where we consider the elements in the standard n-dimensional embedding as vectors
in Zn

>0, and let v ∈ {±1}n. Let T iv be the product of toggles tx for all elements x of P
that lie on the affine hyperplane ⟨x, v⟩ = i. If there is no such x, then this is the empty
product, considered to be the identity. Define promotion with respect to v as the toggle
product Prov = . . . T −2

v T −1
v T 0

v T
1
v T

2
v . . .

By Remark 4, toggles commute if there is no covering relation between their corre-
sponding poset elements. This guarantees that Prov is well-defined.

Remark 10 ([4, Lemma 3.16]). Two elements of the poset that lie on the same affine
hyperplane ⟨x, v⟩ = i cannot be part of a covering relation.

Now that we established Prov and verified it is well-defined, we can relate it to the
previously established Row.
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Proposition 11 ([4, Remark 3.17, Proposition 3.18]). For a finite ranked poset P ,
Pro(1,1,...,1) = Row. Additionally, Pro(−1,1) is the two-dimensional promotion action Pro.

The orbit structure of order ideals of certain posets under rowmotion and promo-
tion has been well-studied. Another phenomenon, isolated by Propp and Roby, appears
frequently among many of these posets and will be the subject of the next section.

3 The homomesy phenomenon and recombination

In this section, we define homomesy and state known results in two dimensions. We will
generalize these results to higher dimensions in Section 4 and to more general posets in
Section 6.

Definition 12. Given a finite set S, an action τ ∶ S → S, and a statistic f ∶ S → k where
k is a field of characteristic zero, we say that (S, τ, f) exhibits homomesy if there exists
c ∈ k such that for every τ -orbit O

1

#O ∑x∈O
f(x) = c

where #O denotes the number of elements in O. If such a c exists, we will say the triple
is c-mesic.

Homomesy results have been observed in many well-known combinatorial objects. To
expound on one of these examples, Propp and Roby proved the following results on a
product of chains.

Theorem 13 ([10, Theorem 19]). Let f be the cardinality statistic. Then (J([a] ×
[b]),Pro, f) is ab/2-mesic.

Theorem 14 ([10, Theorem 23]). Let f be the cardinality statistic. Then (J([a] ×
[b]),Row, f) is ab/2-mesic.

It is beneficial to study J([a]× [b]) under Pro rather than Row, as J([a]× [b]) under
Pro is in equivariant bijection with an object that rotates. This fact makes the proof of
Theorem 13 fairly straightfoward. Propp and Roby also have a direct proof of Theorem
14 in [10]; however, it is much more technical than in the promotion case. Einstein and
Propp found a more elegant way to prove Theorem 14 in [7], with further details in [6],
by using a technique they called recombination. Their recombination technique gives an
equivariant bijection between J([a] × [b]) under Row and Pro. From this, we may start
with an orbit from J([a] × [b]) under Row and take sequential layers from order ideals
to form a new orbit under Pro. We first introduce some useful notation.

Definition 15. Suppose v = (v1, v2, . . . , vn) ∈ Zn. Given γ ∈ [n], let
vγ̂ = (v1, v2, . . . , vγ−1, vγ+1, . . . , vn).

We define our layers in the following way.
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Definition 16. Fix γ ∈ [n] and let P = [a1]×⋅ ⋅ ⋅×[an]. Define the jth γ-layer of I ∈ J(P )
as

Ljγ(I) = {(i1, i2, . . . , in) ∈ I ∣ iγ = j}.
We will denote

Ljγ ∶= Ljγ(P ).

Additionally, given Ljγ and Ljγ(I), define

Ljγ(I)γ̂ = {(i1, i2, . . . , in)γ̂ ∣ (i1, i2, . . . , in) ∈ Ljγ(I)}

and
(Ljγ)γ̂ ∶= Ljγ(P )γ̂

γ tells us the direction of our layers while j signifies which of the layers we are taking
in that direction.

When n = 2, Einstein and Propp referred to each Lj1 as a negative fiber of P ; we use
the notation Ljγ and Ljγ(I) as it more naturally describes our layers when we generalize
to higher dimensions. Furthermore, we define (Ljγ)γ̂ and Ljγ(I)γ̂, which removes the jth
coordinate, as it will be useful to view our layers in the (n − 1)-dimensional setting.

Using the idea of layers, Einstein and Propp defined the concept of recombination and
proved the following proposition, which we restate in the above notation. See Figure 1
for an example.

Definition 17. Let I ∈ J([a] × [b]). Define the recombination of I as

∆I =⊍
j

Lj1(
j−1

Row(I)).

Proposition 18 ([6, Theorem 12]). Let I ∈ J([a] × [b]). Then

Pro(∆I) =⊍
j

Lj1(
j

Row(I)) = ∆(Row(I)).

Row Row Row

Pro

(a) From an orbit of Row, we use
L1
1(I), L2

1(Row(I)), and L3
1(Row2(I)) to

form a new order ideal, denoted here in red.

Row Row Row

Pro

(b) From the same orbit of Row,
we use L1

1(Row(I)), L2
1(Row2(I)), and

L3
1(Row3(I)) to form a new order ideal, de-

noted here in blue.

Figure 1: Performing Pro on the red order ideal results in the blue order ideal.

The idea behind recombination is the following: we take a single layer from each
order ideal in a sequence of order ideals from a rowmotion orbit to form the layers of a
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new order ideal. Proposition 18 tells us that if we apply promotion to this new order
ideal, the result is the same as if we move one step forward in the rowmotion orbit and
apply recombination again. In other words, recombination gives an equivariant bijection
between J([a] × [b]) under Pro and J([a] × [b]) under Row.

In Theorem 25, we generalize this notion to higher dimensional products of chains.
Before doing so, however, we observe an important property of Row and Pro and how
their toggles commute in the [a] × [b] case. To state this we introduce an additional
definition, which will also prove useful for discussing commuting toggles in n-dimensions.

Definition 19. Let P = [a1] × ⋅ ⋅ ⋅ × [an], v ∈ {±1}n, and γ ∈ [n]. Define T jPro
vγ̂

as the

toggle product of Provγ̂ on (Ljγ)γ̂.

With this notation, given an n-dimensional vector v, we define a product of toggles
on an (n−1)-dimensional product of chains with the order of toggles given by Provγ̂ . The
following proposition shows that for [a] × [b], we can express Row and Pro using these
toggle products. In Theorem 23, we will show this holds more generally for [a1]×⋅ ⋅ ⋅×[an]
and Prov.

Proposition 20 ([6, Section 8] [17, Theorem 5.4]). Let P = [a] × [b]. Row = Pro(1,1) =
∏a
j=1 T

j
Pro(1,1)1̂

and Pro =∏a
j=1 T

a+1−j
Pro(−1,1)1̂

.

In other words, we can commute the toggles of Row so we toggle La1, followed by
La−11 , and so on, toggling each layer from top to bottom. For example, in Figure 2a, we
can commute the red toggle with both blue toggles, as the red element does not have
a covering relation with either blue element. Therefore, when performing Row we can
toggle both blue elements before the red element, and hence all of L3

1 before the red
element. Similar reasoning applies for each Lj1, and as a result we can perform Row by
toggling in the order denoted in Figure 2b, where layer 3 is first, layer 2 is second, and
layer 1 third. Additionally, the toggle order in each layer is denoted with an arrow. In
other words, Row = T 1

Pro(1,1)1̂
T 2
Pro(1,1)1̂

T 3
Pro(1,1)1̂

. Note that Pro is similar, except we would

toggle layer 1 first, then layer 2: Pro = T 3
Pro(−1,1)1̂

T 2
Pro(−1,1)1̂

T 1
Pro(−1,1)1̂

. The toggle order of

each layer is identical for both as Pro
(1,1)1̂ = Pro

(−1,1)1̂ = Pro(1).

(a) We can commute the toggle of either
blue element with the red element, as there
is no covering relation between them.

3

2

1

(b) We toggle layer 3, then layer 2, then
layer 1, with arrows denoting toggle order
in each layer. This toggle order is equiva-
lent to Row by commuting toggles.

Figure 2
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4 Homomesy on J([2]× [b]× [c]) and higher dimensional recom-
bination

Having explored known homomesy results in Section 3, we state our first main result, a
homomesy result on order ideals of [2]×[b]×[c] under promotion with cardinality statistic
(Theorem 21). This is a generalization of two results of Propp and Roby: order ideals
of [a] × [b] under promotion and rowmotion with cardinality statistic exhibit homomesy
(Theorems 13 and 14). Additionally, we use symmetry to show homomesy results on
order ideals of [a]× [2]× [c] and [a]× [b]× [2] under promotion with cardinality statistic
(Corollary 37). We also generalize the definition of recombination on a product of two
chains (Definition 17) to a product of n chains (Definition 22). Our second main result
generalizes the connection between rowmotion and promotion under recombination from
a product of two chains (Proposition 18) to a product of n chains (Theorem 25). We
conclude this section showing that order ideals of arbitrary products of three chains under
promotion with cardinality statistic do not exhibit homomesy (Proposition 38), nor do
order ideals of an arbitrary product of n two element chains (39). These results show
that our main homomesy result (Theorem 21) does not generalize further. In the next
section, we discuss a partial generalization.

Theorem 21. Let f be the cardinality statistic and v ∈ {±1}n. The triple (J([2] × [b] ×
[c]),Prov, f) is bc-mesic.

In order to prove Theorem 21, we will define the notion of recombination for a product
of chains in full generality.

Definition 22. Let P = [a1] × ⋅ ⋅ ⋅ × [an], v ∈ {±1}n, and I ∈ J(P ). Define ∆γ
vI =

⊍j Ljγ(Proj−1v (I)) where γ ∈ [n]. We will call ∆γ
vI the (v, γ)−recombination of I. When

context is clear, we will suppress the (v, γ).

The idea behind recombination is the same as in the two-dimensional case: we take
sequentially one layer from each order ideal from a promotion orbit to form the layers of a
new order ideal. See Figure 3 for an example. In addition to generalizing recombination
to n dimensions, we also generalize Proposition 20 to n dimensions.

Theorem 23. Let P = [a1] × ⋅ ⋅ ⋅ × [an], v ∈ {±1}n, and γ ∈ [n]. Then Prov = ∏aγ
j=1 T

α
Pro

vγ̂

where

α =
⎧⎪⎪⎨⎪⎪⎩

j if vγ = 1

aγ + 1 − j if vγ = −1.

Proof. Suppose x ∶= (x1, . . . , xn), y ∶= (y1, . . . , yn) ∈ P with x ∈ Ljγ and y ∈ Lkγ for some
j and k. We want to show that x and y are toggled in the same order in Prov and

∏aγ
j=1 T

α
Pro

vγ̂
.

Case j ≠ k: Without loss of generality, j > k. Furthermore, we can assume xγ = yγ +1
and xi = yi for i ≠ γ. If this were not the case, x and y could not have a covering relation
and we could commute the toggles.

If vγ = 1 ∶ In ∏aγ
j=1 T

α
Pro

vγ̂
, x is toggled before y by definition. Additionally,

⟨x, v⟩ = v1x1 + ⋅ ⋅ ⋅ + vγxγ + ⋅ ⋅ ⋅ + vnxn > v1y1 + ⋅ ⋅ ⋅ + vγyγ + ⋅ ⋅ ⋅ + vnyn = ⟨y, v⟩
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and so x is toggled before y in Prov.
If vγ = −1 ∶ In ∏aγ

j=1 T
α
Pro

vγ̂
, y is toggled before x by definition. Additionally,

⟨x, v⟩ = v1x1 + ⋅ ⋅ ⋅ + vγxγ + ⋅ ⋅ ⋅ + vnxn < v1y1 + ⋅ ⋅ ⋅ + vγyγ + ⋅ ⋅ ⋅ + vnyn = ⟨y, v⟩

and so y is toggled before x in Prov.
Case j = k: In other words, xγ = yγ. Therefore,

⟨x, v⟩ > ⟨y, v⟩ ⇐⇒ v1x1 + ⋅ ⋅ ⋅ + vγxγ + ⋅ ⋅ ⋅ + vnxn > v1y1 + ⋅ ⋅ ⋅ + vγyγ + ⋅ ⋅ ⋅ + vnyn
⇐⇒ v1x1 + ⋅ ⋅ ⋅ + vγ−1xγ−1 + vγ+1xγ+1 + ⋅ ⋅ ⋅ + vnxn >

v1y1 + ⋅ ⋅ ⋅ + vγ−1yγ−1 + vγ+1yγ+1 + ⋅ ⋅ ⋅ + vnyn
⇐⇒ ⟨xγ̂, vγ̂⟩ > ⟨yγ̂, vγ̂⟩

Therefore, x can be toggled before y in Prov if and only if x can be toggled before y in

∏aγ
j=1 T

α
Pro

vγ̂
.

In other words, if we want to apply Prov, we can commute our toggles to toggle
by layers of the form Ljγ instead of using the toggle order given in Definition 9. More
specifically, if vγ = 1, we toggle in the order of L

aγ
γ , L

aγ−1
γ , . . . , L1

γ. If vγ = −1, we toggle in
the order of L1

γ, L
2
γ, . . . , L

aγ
γ .

Now that we have established n-dimensional recombination and toggle commutation,
we determine conditions under which recombination results in an order ideal.

Row

Pro(1,1,−1)

Row

(a) From an orbit of Row, we use L1
3(I)

and L2
3(Row(I)) to form a new order ideal,

denoted here in red.

Row

Pro(1,1,−1)

Row

(b) From the same orbit of Row, we use
L1
3(Row(I)) and L2

3(Row2(I)) to form a
new order ideal, denoted here in blue.

Figure 3: Performing Pro(1,1,−1) on the red order ideal results in the blue order ideal.

Lemma 24. Let I ∈ J([a1] × ⋅ ⋅ ⋅ × [an]). Suppose we have v ∈ {±1}n and γ such that
vγ = 1. Then ∆γ

vI is an order ideal of P.
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Proof. Suppose (i1, . . . , in) ∈ ∆γ
vI. By definition, (i1, . . . , ij − 1, . . . , in) ∈ ∆γ

vI for j ≠ γ.
To show that ∆γ

vI is an order ideal, it suffices to show (i1, . . . , iγ − 1, . . . , in) ∈ ∆γ
vI for

iγ ≥ 2; if iγ = 1 there is nothing to show. Because (i1, . . . , in) ∈ ∆γ
vI, we have (i1, . . . , in) ∈

L
iγ
γ (Proiγ−1v (I)). By Theorem 23, Prov = ∏aγ

j=1 T
aγ+1−j
Pro

vγ̂
, which implies we can commute

the toggle relations in Prov so that L
iγ
γ is toggled before L

iγ−1
γ . As a result, we must have

(i1, . . . , iγ − 1, . . . , in) ∈ Liγ−1γ (Proiγ−2v (I)). Therefore, (i1, . . . , iγ − 1, . . . , in) ∈ ∆γ
vI.

We can now state our second main result, which shows when recombination gives us
an equivariant bijection from J([a1] × ⋅ ⋅ ⋅ × [an]) under Prou to J([a1] × ⋅ ⋅ ⋅ × [an]) under
Prov. This result will allow us to prove Theorem 21.

Theorem 25. Let I ∈ J([a1] × ⋅ ⋅ ⋅ × [an]). Suppose we have u, v ∈ {±1}n and γ such that
vγ = 1, uγ = −1, and vγ̂ = uγ̂. Then Prou(∆γ

vI) = ∆γ
v(Prov(I)).

Proof. First, note that ∆γ
vI is an order ideal by Lemma 24. Also note that, by Theorem

23, Prov = ∏aγ
j=1 T

j
Pro

vγ̂
and Prou = ∏aγ

j=1 T
aγ+1−j
Pro

uγ̂
. We will show Prou(∆γ

vI)=∆γ
v(Prov(I))

by showing Lkγ(Prou(∆γ
vI)) = Lkγ(∆

γ
v(Prov(I))) for each k ∈ {1,2, . . . , aγ}. There are

three cases.
Case 1 < k < aγ: Let J = Prok−1v (I). We can commute the toggles of Prov so that

Lk+1γ of J is toggled before Lkγ of J , which is toggled before Lk−1γ of J . Thus, when
applying the toggles of Prov to Lkγ of J , the layer above is Lk+1γ (Prov(J)) whereas the
layer below is Lk−1γ (J). Additionally, we can also commute the toggles of Prou so Lk−1γ of
∆γ
vI is toggled before Lkγ of ∆γ

vI, which is toggled before Lk+1γ of ∆γ
vI. Therefore, when

applying the toggles of Prou to Lkγ of ∆γ
vI, the layer below is Lk−1γ (Prou(∆γ

vI)), whereas
the layer above is Lk+1γ (∆γ

vI). However, Lk−1γ (Prou(∆γ
vI)) = Lk−1γ (J), Lkγ(∆

γ
vI) = Lkγ(J),

and Lk+1γ (∆γ
vI) = Lk+1γ (Prov(J)). Therefore, when applying Prov to Lkγ of J and Prou

to Lkγ of ∆γ
vI, both layers are the same and have the same layers above and below

them. Because uγ̂ = vγ̂, we have Prouγ̂ = Provγ̂ and so the result of toggling this layer is
Lkγ(Prou(∆γ

vI)), which is the same as Lkγ(Prov(J)) = Lkγ(Prokv(I)) = Lkγ(∆
γ
v(Prov(I))).

Case k = 1: As above, when applying Prov to L1
γ of I and Prou to L1

γ of ∆γ
vI, both

of these layers are the same, along with the layers above them. Because k = 1, there is
not a layer below. As above, Prouγ̂ = Provγ̂ and so we again obtain L1

γ(Prou(∆γ
vI)) =

L1
γ(∆

γ
v(Prov(I))).

Case k = aγ: Again, as above, when applying Prov to L
aγ
γ of J and Prou to L

aγ
γ of ∆γ

vI,
both of these layers are the same along with the layers below them. Because k = aγ there is
not a layer above. Again, Prouγ̂ = Provγ̂ and so L

aγ
γ (Prou(∆γ

vI)) = Laγγ (∆γ
v(Prov(I))).

Example 26. To see an example of the proof technique, we will refer to Figures 4, 5, and
6. We begin in Figure 4 with the same orbit under Row as in Figure 1. Let I denote the
first order ideal in this orbit; using recombination we form the order ideal ∆1

(1,1)
I. We

want to verify that by forming sequential recombination order ideals, we obtain an orbit
under Pro. We will do so by showing that corresponding layers in the Row orbit and the
sequence of recombination order ideals result in the same layer after performing Row and
Pro, respectively. The boxed purple layers L2

1(I) in both orbits of Figure 4 correspond
under recombination. We can commute the toggles of Row as we did in Figure 2b. We
can also commute the toggles of Pro so we toggle layer 3, then layer 2, then layer 1 in
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Row Row Row

Pro

Figure 4: We refer to the same example as in Figure 1. The boxed purple layers correspond
under recombination. In Example 26, we demonstrate the idea of the proof using the order
ideals in the large blue and red boxes.

Figure 5: When performing Row to the left figure, L3
1(I) is toggled first in the direction

indicated. When performing Pro to the right figure, L1
1(I) is toggled first in the direction

indicated.

the electronic journal of combinatorics 26(4) (2019), #P4.30 11



Figure 6: After performing the toggles from Figure 5, the order ideal in the left figure
now has L3

1(I) from the order ideal that follows it in the orbit of Row. Similarly, the
order ideal in the left figure has L1

1(I) from the order ideal that follows it in the orbit of
Pro. When performing toggles on the purple layer, the three layers are the same.

Figure 2b. This means when performing Row, we first toggle the layer indicated by the
green arrow in the left figure in Figure 5; similarly for Pro and the right figure in Figure 5.
Then, the next step of both Row and Pro is to toggle the boxed purple layer, as seen
in Figure 6. We see that when we perform this step of Row and Pro, the boxed purple
layer, the layer above, and the layer below are the same. Because we are toggling the
same direction along the boxed purple layer, we are guaranteed the same result in both
cases.

We have three immediate corollaries that will be useful in the proof of Theorem 21.

Corollary 27. Pro(1,1,−1)(∆3
(1,1,1)

I) = ∆3
(1,1,1)

(Pro(1,1,1)(I)).

Proof. v = (1,1,1), u = (1,1,−1), and γ = 3 satisfy the assumptions of Theorem 25.

Corollary 28. Pro(−1,1,−1)(∆1
(1,1,−1)

I) = ∆1
(1,1,−1)

(Pro(1,1,−1)(I)).

Proof. v = (1,1,−1), u = (−1,1,−1), and γ = 1 satisfy the assumptions of Theorem 25.

Corollary 29. Pro(1,−1,−1)(∆2
(1,1,−1)

I) = ∆2
(1,1,−1)

(Pro(1,1,−1)(I)).

Proof. v = (1,1,−1), u = (1,−1,−1), and γ = 2 satisfy the assumptions of Theorem 25.

Recombination gives us an equivariant bijection between order ideals under different
promotion actions. From this, we have a connection between orbits of different promotion
actions. Suppose v and u are as in Theorem 25. If we find the recombination of each
order ideal in an orbit of Prov, we obtain a sequence of order ideals that form an orbit
under Prou.

Remark 30. Let u, v be as in Theorem 25 and let O be an orbit of order ideals in J([a1]×
⋅ ⋅ ⋅ × [an]) under Prou. There is a unique orbit O′ under Prov where the recombination of
O′ is O. In other words, if we start with an orbit under Prou, we can invert recombination
to get an orbit under Prov. More specifically, if we start with an orbit of J([2]× [b]× [c])
under Pro(−1,1,−1), we can acquire an orbit of J([2] × [b] × [c]) under Pro(1,1,−1).
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This observation will be used to show J([2] × [b] × [c]) exhibits homomesy under
Pro(−1,1,−1) and Pro(1,−1,−1).

To prove Theorem 21, we relate the order ideals of our posets to increasing tableaux.
To do so, we first need a map from J([a] × [b] × [c]) to increasing tableaux defined by
Dilks, Pechenik, and Striker.

Definition 31. An increasing tableau of shape λ is a filling of boxes of partition shape λ
with positive integers such that the entries strictly increase from left to right across rows
and strictly increase from top to bottom along columns. We will use Incq(λ) to indicate
the set of increasing tableaux of shape λ with entries at most q.

Figure 7 shows an increasing tableaux in Incq(3,3,1) where q can be any integer
greater than or equal to 6.

1 2 4

2 4 5

6

Figure 7: An increasing tableaux of shape λ = (3,3,1).

Definition 32. [4, Section 4.1] Define a map Ψ ∶ J([a] × [b] × [c]) → Inca+b+c−1(a × b) in
the following way. Let I ∈ J([a]×[b]×[c]). We can view I as a pile of cubes in an a×b×c
box; we then project onto a Young diagram of shape a × b. More specifically, record in
position (i, j) the number of boxes of I with coordinate (i, j, k) for some k ∈ [c]. This
results in a filling of a Young diagram of shape a×b with nonnegative entries that weakly
decrease from left to right and top to bottom. By rotating the diagram 180°, our Young
diagram is now weakly increasing in rows and columns. Now for the label in position
(i, j), increase the label by i+j−1. This results in an increasing tableau, which we denote
Ψ(I).

In Figure 8, we see an example of Ψ ∶ J([2] × [3] × [2]) → Inc6(2 × 3), as defined in
Definition 32. We also give a definition for K-promotion, an action defined on increasing
tableaux by Pechenik in [8].

(1, 1, 1)
xy

z

2
012

22

(1, 1)
y

x 0
222

21

(1, 1)
y

x 1
654

53

(1, 1)
y

x

Figure 8: An example of the map Ψ described in Definition 32.
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Definition 33. [8, Section 1] Let T ∈ Incq(λ). Delete all labels 1 from T . Consider the
set of boxes that are either empty or contain 2. We simultaneously delete each label 2
that is adjacent to an empty box and place a 2 in each empty box that is adjacent to a 2.
Now consider the set of boxes that are either empty or contain 3, and repeat the above
process. Continue until all empty boxes are located at outer corners of λ. Finally, label
those boxes q + 1 and then subtract 1 from each entry. The result is the K-promotion of
T , which we denote K -Pro(T ). Note that K -Pro(T ) ∈ Incq(λ).

Along with defining Ψ, Dilks, Pechenik, and Striker also showed that Ψ intertwines
Pro(1,1,−1) and K -Pro.

Theorem 34. [4, Theorem 4.1, Lemma 4.2] Ψ is an equivariant bijection between J([a]×
[b] × [c]) under Pro(1,1,−1) and Inca+b+c−1(a × b) under K -Pro.

Furthermore, we can relate the cardinality of I to the sum of the entries in Ψ(I).

Lemma 35. If I ∈ J([2]×[b]×[c]), the sum of the boxes in Ψ(I) is equal to f(I)+b(b+2)
where f is the cardinality statistic.

Proof. This follows from the definition of Ψ and the shape of Ψ(I).

As a result of this lemma, if we can find an appropriate homomesy result on increasing
tableaux, we can transfer the result over to J([2] × [b] × [c]) under Pro(1,1,−1) using Ψ,
then to J([2]× [b]× [c]) under Row using Corollary 27. As it turns out, the appropriate
homomesy result has already been discovered by J. Bloom, Pechenik, and D. Saracino.

Theorem 36. [1, Theorem 6.5] Consider an increasing tableau of shape 2×n and let S be
a subset of boxes fixed under 180° rotation. Additionally, let σS be the statistic of summing
the entries in the boxes of S. Then for any q, (Incq(λ), K-Pro, σS) is homomesic.

Note that if S consists of all boxes in a 2×n increasing tableau, then S is fixed under
180° rotation. Moreover, for I ∈ J([2] × [b] × [c]), Ψ(I) is an increasing tableau of shape
2 × b. With this theorem, we now have sufficient machinery to prove Theorem 21.

Proof of Theorem 21. Each orbit of J([2] × [b] × [c]) under Pro(1,1,−1) corresponds to an

orbit of Incb+c+1(λ) under K-Pro. Therefore, by using Theorem 36, Lemma 35, Theorem
34 and the map Ψ, we may already conclude J([2] × [b] × [c]) exhibits homomesy un-
der Pro(1,1,−1). Moreover, Pro(−1,−1,1) reverses the direction that our hyperplanes sweep
through our poset, which merely reverses our orbits of order ideals. Thus, J([2]×[b]×[c])
also exhibits homomesy under Pro(−1,−1,1). To prove Theorem 21 for the remaining v, we
begin with v = (1,1,1), which is Row.

Let O1,O2 be orbits of J([2] × [b] × [c]) under Row. Additionally, let R1 and R2 be
the orbits formed by applying recombination ∆3

(1,1,1)
I to each order ideal I in O1 and

O2, respectively. By Corollary 27, we have that R1 and R2 are orbits under Pro(1,1,−1).
Therefore, we know that the average of the cardinality over R1 and R2 must be equal. As a
result, the average of the cardinality overO1 andO2 must be equal. Hence, J([2]×[b]×[c])
is homomesic under Row. Again, because Pro(−1,−1,−1) merely reverses the direction of
hyperplane toggles, we conclude that J([2] × [b] × [c]) is homomesic under Pro(−1,−1,−1).

We now turn our attention to Pro(−1,1,−1) and Pro(1,−1,−1). Using Corollaries 28 and 29,
Remark 30, and similar arguments as above, we see J([2]× [b]× [c]) is homomesic under
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both Pro(−1,1,−1) and Pro(1,−1,−1). Pro(1,−1,1) and Pro(−1,1,1) reverse the orbits of Pro(−1,1,−1)
and Pro(1,−1,−1), respectively, so J([2]× [b]× [c]) is homomesic under both Pro(1,−1,1) and
Pro(−1,1,1) as well.

We have shown the desired triples are homomesic, but we still must show the orbit
average is bc. Due to rotational symmetry, the order filters of J([2] × [b] × [c]) are in
bijection with the order ideals of J([2]×[b]×[c]). More specifically, let I ∈ J([2]×[b]×[c]).
Let H ∈ J([2]× [b]× [c]) be the order ideal isomorphic to P ∖I. Therefore, f(I)+f(H) =
2bc. As a result, we can say the global average of f is bc, and hence the triple must be
bc-mesic.

We immediately obtain the following corollaries by symmetry.

Corollary 37. Let f be the cardinality statistic and v ∈ {±1}n. The triple (J([a] × [2] ×
[c]),Prov, f) is ac-mesic and the triple (J([a] × [b] × [2]),Prov, f) is ab-mesic.

Proof of Corollary 37. Given an orbit O of J([a] × [2] × [c]) under Prov, we can use
a cyclic rotation of coordinates and appropriate choice of v′ to obtain an orbit O′ of
J([2] × [b] × [c]) under Prov′ such that O and O′ are in bijection. A similar argument
applies to J([a] × [b] × [2]).

We conclude the section by determining that Theorem 21 does not generalize to an
arbitrary product of three chains, a product of four chains, or a product of arbitrarily
many two-element chains. Homomesy holds on the poset [3] × [3] × [3]; however, it does
not on [3] × [3] × [4].
Proposition 38. Let f be the cardinality statistic and v ∈ {±1}n. The triple (J([3] ×
[3] × [3]),Prov, f) is 27/2-mesic. However, the triple (J([3] × [3] × [4]),Prov, f) is not
homomesic.

Proof. A calculation using SageMath [14] shows that J([3] × [3] × [3]) under Row with
statistic f has 124 orbits, all with average 27/2. However, J([3] × [3] × [4]) under Row
with statistic f has 456 orbits with average 18, 2 orbits with average 161/9 ≈ 17.89, and
2 orbits with average 163/9 ≈ 18.11. Using recombination, we obtain the same result for
any Prov.

We can further inquire about homomesy in higher dimensions. We find homomesy in
the poset [2]× [2]× [2]× [2], but a negative result if any of the chains have size three. If
we use only chains of size two, homomesy fails in dimension five.

Proposition 39. Let f be the cardinality statistic and v ∈ {±1}n. The triple J([2] ×
[2] × [2] × [2]),Prov, f) is 8-mesic. However, the triple (J([2] × [2] × [2] × [3]),Prov, f)
is not homomesic. Additionally, the triple (J([2] × [2] × [2] × [2] × [2]),Prov, f) is not
homomesic.

Proof. A calculation using SageMath [14] shows that J([2] × [2] × [2] × [2]) under Row
with statistic f has 36 orbits, all with average 8. However, J([2] × [2] × [2] × [3]) has
109 orbits with average 12, 6 orbits with average 82/7 ≈ 11.71, and 6 orbits with average
86/7 ≈ 12.29. Additionally, J([2] × [2] × [2] × [2] × [2]) has 771 orbits with average 16,
60 orbits with average 115/7 ≈ 16.43, 60 orbits with average 109/7 ≈ 15.57, 30 orbits with
average 61/4 = 15.25, 30 orbits with average 67/4 = 16.75, 6 orbits with average 11, and 6
orbits with average 21. Using recombination, we once again obtain the same results for
any Prov.
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5 Tableaux and Refined Results

In this section, we prove several related results and corollaries. Although Proposition
38 shows the cardinality statistic fails to be homomesic for an arbitrary product of three
chains, Corollary 46 gives us a subset within the product of three chains that does exhibit
homomesy. Additionally, we use our main homomesy result to obtain a new homomesy
result on increasing tableaux in Corollary 40. In Corollary 42, we use refined homomesy
results on increasing tableaux to state more refined homomesy results on order ideals.

For our main homomesy result, we used the bijection Ψ−1 to translate a homomesy
result on increasing tableaux to order ideals of a product of chains poset. After rotation
on our product of chains to obtain Corollary 37, we can translate back to increasing
tableaux using Ψ to obtain an additional homomesy result on increasing tableaux. This
is in the same spirit as the tri-fold symmetry used by Dilks, Pechenik, and Striker [4,
Corollary 4.7].

Corollary 40. Let λ be an a × b rectangle and let σλ be the statistic of summing the
entries in the boxes of λ. Then (Inca+b+1(λ), K-Pro, σλ) is ab + ab(a+b)

2 -mesic.

Proof. Each orbit of Inca+b+1(λ) under K-Pro corresponds to an orbit of J([a]× [b]× [2])
under Pro(1,1,−1). For each I ∈ J([a] × [b] × [2]), σλ(Ψ(I)) = f(I) + ab(a+b)

2 where f is the
cardinality statistic. Applying Corollary 37, the result follows.

Additionally, we have a more refined homomesy result of Theorem 21. We obtain
this using the rotational symmetry condition of Theorem 36. Define the columns Lj,k1,2 =
{(i1, i2, i3) ∈ [2] × [b] × [c] ∣ i1 = j, i2 = k}. This notation is similar to the layer notation
of Definition 16 with the exception that we fix two coordinates instead of one. We also
define antipodal elements in a poset [a]× [b] to better describe the rotational symmetry.

Definition 41. Let P = [a]× [b]. If x = (x1, x2) and y = (a+1−x1, b+1−x2), then x and
y are antipodal in P .

Corollary 42. Let Lj1,k11,2 and Lj2,k21,2 be such that the coordinates (j1, k1) and (j2, k2) are

antipodal in [2] × [a]. If fL(I) denotes the cardinality of I on Lj1,k11,2 and Lj2,k21,2 , then for
v ∈ {±1}n, (J([2] × [b] × [c]),Prov, fL) is c-mesic.

Proof. The antipodal coordinates (j1, k1) and (j2, k2) are chosen so that the columns
Lj1,k11,2 and Lj2,k21,2 correspond to a set of boxes in an increasing tableau fixed under 180○

rotation. In other words, we can use the refined homomesy result on increasing tableaux
from Theorem 36 and translate to J([2]×[b]×[c]) using the bijection Ψ−1. As a result, we
know (J([2]× [b]× [c]),Prov, fL) exhibits homomesy. What remains to be shown is that
the triple is c-mesic. Due to rotational symmetry, the order filters of [2]× [b]× [c] are in
bijection with the order ideals of [2]× [b]× [c]. More specifically, let I ∈ J([2]× [b]× [c]).
Let H ∈ J([2] × [b] × [c]) be the order ideal isomorphic under rotation to the order filter
P ∖ I. Therefore, fL(I) + fL(H) = 2c. As a result, we can say the global average of fL is
c. This gives us that (J([2]× [b]× [c]),Pro(1,1,−1), fL) is c-mesic; using recombination we
obtain that (J([2] × [b] × [c]),Prov, fL) is c-mesic.

Example 43. We demonstrate Corollary 42 using the poset [2] × [2] × [2]. Figure 9
highlights in red two columns in our poset, L1,2

1,2 and L2,1
1,2. Because (1,2) and (2,1) are
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antipodal elements in the poset [2]×[2], we can apply Corollary 42 to these two columns.
Note that the corollary is valid for any Prov. We show an example orbit of Row in Figure
10. The orbit we chose has size five. Additionally, if we sum the cardinality of the order
ideals in the columns L1,2

1,2 and L2,1
1,2 over the entire orbits, we obtain ten. Therefore, the

average over the entire orbit is 10/5 = 2, which is the value c when expressing the poset
in the form [2]× [b]× [c]. Additionally, if we select any other orbit, the corollary tells us
we will obtain an average of 2.

L2,1
1,2L1,2

1,2

Figure 9: Because (1,2) and (2,1) are antipodal in the poset [2] × [2], we can apply
Corollary 42 to the columns L1,2

1,2 and L2,1
1,2, shown here in red.

L2,1
1,2L1,2

1,2 L2,1
1,2L1,2

1,2 L2,1
1,2L1,2

1,2

L2,1
1,2L1,2

1,2 L2,1
1,2L1,2

1,2

Figure 10: These five order ideals form an orbit under rowmotion. By summing the
cardinality of the order ideal in just columns L1,2

1,2 and L2,1
1,2 and dividing by the size of the

orbit, we obtain 10/5 = 2, which corresponds to c in [2] × [b] × [c].

Pechenik further generalized the results of [1] and the result stated in Theorem 36.
From this, we obtain a more general analogue of Corollary 42. We summarize the relevant
definition and theorem below.

Definition 44. [9, Section 1] The frame of a partition λ is the set Frame(λ) of all boxes
in the first or last row, or in the first or last column.

Theorem 45. [9, Theorem 1.6] Let S be a subset of Frame(m × n) that is fixed under

180° rotation. Then (Incq(m × n), K-Pro, σS) is (q+1)∣S∣2 -mesic.

The following is a new corollary of Theorem 45. It uses the bijection Ψ−1 and tech-
niques similar to those of Corollary 42 to prove a more general analogue of Corollary 42
in the product of three chains.
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Figure 11: This is the partition of shape 3 × 4. The frame of the partition is the set of
boxes highlighted in gray.

Corollary 46. Let P = [a] × [b] × [c]. Additionally, let Lj1,k11,2 and Lj2,k21,2 be such that the
coordinates (j1, k1) and (j2, k2) are antipodal in [a] × [b], each ji is 1 or a, and each ki
is 1 or b. If fL(I) denotes the cardinality of I on Lj1,k11,2 and Lj2,k21,2 , then for v ∈ {±1}n,
(J([a] × [b] × [c]),Prov, fL) is c-mesic.

Proof. Similarly to the proof of Corollary 42, the antipodal coordinates (j1, k1) and
(j2, k2) are chosen so that the columns Lj1,k11,2 and Lj2,k21,2 correspond to a set of boxes
in an increasing tableau fixed under 180○ rotation. Additionally, the columns correspond
to boxes in the frame of the tableau. As a result, we know (J([a] × [b] × [c]),Prov, fL)
exhibits homomesy by translating the refined homomesy result on increasing tableaux
from Theorem 45 to J([a] × [b] × [c]) using the bijection Ψ−1. We must now show that
the triple is c-mesic. Due to rotational symmetry, the order filters of P are in bijection
with the order ideals of P . Let I ∈ J(P ) and let H ∈ J(P ) be the order ideal isomorphic
under rotation to the order filter P ∖ I. Because the two columns Lj1,k11,2 and Lj2,k21,2 each
contain c elements, fL(I) + fL(H) = 2c. Therefore, the global average of fL is c and as a
result, the triple is c-mesic. This gives the result for v = (1,1,−1); using recombination
we obtain the result for all v.

Most of our results have required a chain of size two. However, Corollary 46 applies
to an arbitrary product of three chains, but to antipodal columns on the “outside” of the
poset.

Example 47. Consider the product of chains [3] × [4] × [2] in Figure 12. Note that
(2,1) and (2,4) are antipodal in the poset [3]× [4]. Also note that the red columns L2,1

1,2

and L2,4
1,2 correspond to boxes in the frame of the partition of shape 3 × 4. As a result,

Corollary 46 can be applied, which says if we take any orbit of J([3] × [4] × [2]) under
Prov, the average of the cardinality of columns L2,1

1,2 and L2,4
1,2 over the orbit will be 2.

6 Beyond the product of chains

We opted to state our recombination results in Section 4 for the product of chains rather
than in full generality in order to emphasize the important aspects of the proofs without
further complicating the notation. We now generalize the recombination technique from a
product of chains to any ranked poset. We begin by presenting several previous definitions
in greater generality.
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L2,1
1,2

L2,4
1,2

Figure 12: The poset elements (2,1) and (2,4) are antipodal in [3] × [4]. Additionally,
the columns L2,1

1,2 and L2,4
1,2 correspond to boxes in the frame of the partition of shape 3×4,

as shown by the figure on the right.

Definition 48. [4, Definition 3.13] We say that an n-dimensional lattice projection of a
ranked poset P is an order and rank preserving map π ∶ P → Zn, where the rank function
on Zn is the sum of the coordinates and x ≤ y in Zn if and only if the componentwise
difference y − x is in (Z≥0)n.

Definition 49. [4, Definition 3.14] Let P be a poset with an n-dimensional lattice pro-
jection π and let v ∈ {±1}n. Let T iπ,v be the product of toggles tx for all elements x of
P that lie on the affine hyperplane ⟨π(x), v⟩ = i. If there is no such x, then this is the
empty product, considered to be the identity. Define promotion with respect to π and v
as the (finite) toggle product Proπ,v = . . . T −2

π,vT
−1
π,vT

0
π,vT

1
π,vT

2
π,v . . .

For P with n-dimensional lattice projection, we generalize the definition of a layer from
Definition 16 using the lattice projection π(P ). More specifically, because π(P ) ∈ Zn, we
use our notion of layers on a product of chains and the preimage of π to define layers on
P .

Definition 50. Let P be a poset with n-dimensional lattice projection π. Define the jth
γ-layer of P as

Ljγ = {π−1(i1, i2, . . . , in) ∣ iγ = j and (i1, i2, . . . , in) ∈ Zn}

and the jth γ-layer of I ∈ J(P ) as

Ljγ(I) = Ljγ ∩ I.

Additionally, given Ljγ and Ljγ(I), we abuse notation to define

(Ljγ)γ̂ = {π−1((i1, i2, . . . , in)γ̂) ∣ iγ = j and (i1, i2, . . . , in) ∈ Zn},

Ljγ(I)γ̂ = (Ljγ)γ̂ ∩ I,
where π−1((i1, i2, . . . , in)γ̂) denotes forming the poset given by the preimage of the (n−1)-
dimensional poset obtained from deleting the coordinate γ and (Ljγ)γ̂ ∩ I denotes using
elements in the order ideal I to form an order ideal with the corresponding elements in
(Ljγ)γ̂.
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In order to prove results regarding recombination in Section 4, we relied heavily on
the ability to commute the toggles of promotion. More specifically, we showed that any
promotion could be thought of as sequence of (n − 1)-dimensional promotions on the
layers of our product of chains. We introduce the notation for an analogous result.

Definition 51. Let P be a poset with n-dimensional lattice projection π, v ∈ {±1}n, and
γ ∈ [n]. We define T jPro

π,vγ̂
as the toggle product of Proπ,vγ̂ on (Ljγ)γ̂.

This definition allows us to perform an (n − 1)-dimensional promotion on a single
layer of P . Before we give a general definition of recombination, we present a higher
dimensional analogue of a result of Striker and Williams. In [17, Theorem 5.4], they
found a conjugating toggle element; in other words, the toggles necessary to state a
explicit bijection from J(P ) under Row−1 to J(P ) under Pro using conjugation. We
determine conditions on v and w such that we can find a conjugating toggle element to
conjugate from J(P ) under Proπ,v to J(P ) under Proπ,w.

Theorem 52. Let P be a poset with n-dimensional lattice projection π with v,w ∈ {±1}n
such that vγ = 1,wγ = −1, and vγ̂ = wγ̂. There exists an equivariant bijection between J(P )
under Proπ,v and Proπ,w given by acting on an order ideal by Dγ =∏aγ−1

i=1 ∏i
j=1(T

i+1−j
Pro

π,vγ̂
)−1

where L
aγ
γ is the maximum non-empty layer in P .

Proof. Without loss of generality, vγ = 1 and wγ = −1. As a result, Proπ,w = ∏aγ
i=1 T

aγ+1−i
Pro

π,wγ̂

and Proπ,v = ∏aγ
i=1 T

i
Pro

π,vγ̂
. Note that wγ̂ = vγ̂. We will commute toggles to show

Proπ,wDγ =DγProπ,v. When we expand, we obtain

Proπ,wDγ =T aγPro
π,wγ̂

T
aγ−1
Pro

π,wγ̂
. . . T 1

Pro
π,wγ̂

(T 1
Pro

π,wγ̂
)−1(T 2

Pro
π,wγ̂

)−1(T 1
Pro

π,wγ̂
)−1 . . . (T aγ−1Pro

π,wγ̂
)−1

(T aγ−2Pro
π,wγ̂

)−1 . . . (T 1
Pro

π,wγ̂
)−1

and

DγProπ,v =(T 1
Pro

π,wγ̂
)−1(T 2

Pro
π,wγ̂

)−1(T 1
Pro

π,wγ̂
)−1 . . . (T aγ−1Pro

π,wγ̂
)−1(T aγ−2Pro

π,wγ̂
)−1 . . . (T 1

Pro
π,wγ̂

)−1

T 1
Pro

π,wγ̂
T 2
Pro

π,wγ̂
. . . T

aγ
Pro

π,wγ̂

=(T 1
Pro

π,wγ̂
)−1(T 2

Pro
π,wγ̂

)−1(T 1
Pro

π,wγ̂
)−1 . . . (T 1

Pro
π,wγ̂

)−1T aαPro
π,wγ̂

.

However, we can commute T kPro
π,wγ̂

and T jPro
π,wγ̂

or (T jPro
π,wγ̂

)−1 if ∣j−k∣ > 1 because the

elements in these toggles could not share a covering relation. Therefore, we can commute
toggles of Proπ,wDγ to obtain

Proπ,wDγ =(T 1
Pro

π,wγ̂
)−1(T 2

Pro
π,wγ̂

)−1(T 1
Pro

π,wγ̂
)−1 . . . (T 1

Pro
π,wγ̂

)−1T aαPro
π,wγ̂

.

Therefore, Proπ,wDγ =DγProπ,v and so Proπ,v = (Dγ)−1Proπ,wDγ.

We now present our generalized definition of recombination with respect to an n-
dimensional lattice projection.
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Definition 53. Let P be a poset with n-dimensional lattice projection π, v ∈ {±1}n,
and I ∈ J(P ). Define ∆γ

π,vI = ⊍j Ljγ(Proj−1π,v (I)) where γ ∈ [n]. We will call ∆γ
π,vI the

(π, v, γ)−recombination of I. When context is clear, we will suppress the (π, v, γ).

The idea is the same as before; we take certain layers from an orbit of promotion
to create a new order ideal. We can now state the analogue of Theorem 23, our result
regarding toggling commutation, whose proof is similar to the proof of Theorem 23.

Theorem 54. Let P be a poset with lattice projection π, v ∈ {±1}n, and γ ∈ [n]. Then
Proπ,v =∏aγ

j=1 T
α
Pro

π,vγ̂
where

α =
⎧⎪⎪⎨⎪⎪⎩

j if vγ = 1

aγ + 1 − j if vγ = −1.

As in the product of chains setting, we have conditions to determine when generalized
recombination gives us an order ideal. The proof is similar to the proof of Lemma 24
with the inclusion of the lattice projection π.

Lemma 55. Let I ∈ J(P ). Suppose we have v ∈ {±1}n and γ such that vγ = 1. Then
∆γ
π,vI is an order ideal of P .

We can now state our general recombination result, which shows when recombination
gives us an equivariant bijection from J(P ) under Prou to J(P ) under Prov for any poset
P with n-dimensional lattice projection. Again, we omit the proof as it is similar to the
proof of Theorem 25 with the inclusion of the lattice projection π.

Theorem 56. Let I ∈ J(P ). Suppose we have u, v ∈ {±1}n and γ such that vγ = 1,
uγ = −1, and vγ̂ = uγ̂. Then Proπ,u(∆γ

π,vI) = ∆γ
π,v(Proπ,v(I)).

In [12], Rush and Wang showed that order ideals of minuscule posets under rowmotion
exhibit homomesy. Using this generalized recombination result and our homomesy result
on J([2]× [b]× [c]), we can obtain an additional homomesy result on order ideals of the
type B minuscule poset cross a chain of size two. Let Pn = ([n] × [n])/S2 denote a type
B minuscule poset; this can be viewed as the left half of [n] × [n]. Additionally, Pn is
isomorphic to J([2] × [n − 1]). See Figure 13 for an example.

Figure 13: P4, the type B minuscule poset ([4] × [4])/S2
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Corollary 57. Let f be the cardinality statistic, π be the natural embedding of Pn × [2]
into Z3, and v ∈ {±1}n. The triple (J(Pn × [2]),Proπ,v, f) is n2

+n
2 -mesic.

Proof. Orbits of J(Pn × [2]) under Row are in bijection with orbits of J([n] × [n] × [2])
under Row where the order ideals are symmetric about the plane x − y = 0. Let O be an
orbit of J(Pn × [2]) under Row and O′ be the orbit of J([n]× [n]× [2]) in bijection with
O. We note #O = #O′. Let f(O) denote the sum of the cardinality of order ideals in O.
By Corollary 37, f(O) = (#O′)n2. Alternatively, we can enumerate this sum in O′ by
doubling the cardinality in O and removing what is double counted, namely, elements that
appear on the plane x − y = 0. The cardinality of these elements is (#O′)n by Corollary
42. As a result, we have the following equality: (#O)n2 = 2f(O)− (#O)n. Rearranging,

we get f(O)
#O = n2

+n
2 . Therefore, (J(Pn × [2]),Row, f) is n2

+n
2 -mesic. Using the generalized

recombination result of Theorem 56, (J(Pn × [2]),Prov, f) must be n2
+n
2 -mesic.

Example 58. We demonstrate the proof of Corollary 57 with an example, referring to
Figure 14. The top left order ideal is symmetric about the plane x − y = 0. When we
apply rowmotion, we obtain the top right order ideal, which is still symmetric about the
plane x − y = 0. Because both order ideals are symmetric about x − y = 0, they are in
bijection with the bottom order ideals in Figure 14. Extending this further, every orbit
of J(P3 × [2]) under rowmotion is in bijection with an orbit of symmetric order ideals of
[3] × [3] × [2]. As a result, we can translate our homomesy result on J([3] × [3] × [2])
under rowmotion to J(P3 × [2]) under rowmotion. Recombination gives the homomesy
result for all Proπ,v.

Example 59. We now give an example of generalized recombination where we cannot
use a simple embedding as our three-dimensional lattice projection. Let our poset be the
tetrahedral poset on the left in Figure 15; for more on tetrahedral posets, see [15]. By
Proposition 8.5 of [17], we see the significance of this poset is that its order ideals are
in bijection with alternating sign matrices of size 4 × 4. We note that this poset cannot
be embedded in Z3 since the element b is covered by four elements. We instead use the
lattice projection π in Figure 15, projecting into Z2. We note that this lattice projection
is not new, as it is used in Figure 18 in [17]. Figure 17 shows how we will orient this in
Z2.

Figure 16 shows a partial orbit under rowmotion. We see from Figure 17 what our
layers are: the first layer consists of a, the second layer consists of b, d, g, and the third
layer consists of c, e, f, h, i, j.

From the partial orbit, we take the first layer from the first order ideal, the second
layer from the second order ideal, and the third layer from the third order ideal to form a
new order ideal. These are indicated with red in Figures 18 and 19. We also take the first
layer in the second order ideal, the second layer in the third order ideal, and the third
layer from the fourth order ideal to form another new order ideal. These are indicated
with blue in Figures 18 and 19. Generalized recombination tells us if we apply promotion
to the red order ideal, we should obtain the blue order ideal, which we can see is the case.
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Row

Row

Figure 14: Applying rowmotion to the symmetric order ideal in the top left gives the
symmetric order ideal in the top right. These order ideals are in bijection with the
bottom order ideals, which are in P3 × [2]. See Example 58.

π

a b c

dg eh

fij

a b c

d e

f

g
h

i j

Figure 15: The poset on the left is a tetrahedral poset. For Example 59, we will use the
lattice projection π to the poset on the right.
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Figure 16: A partial orbit of order ideals under rowmotion. We use this example to
demonstrate generalized recombination.
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xy

a b c

dg eh

fij

Figure 17: We orient this poset in Z2 in the following way. Our three layers are the
diagonals from x = 1,2, and 3.
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Row
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Figure 18: We use the red layers and blue layers from the partial orbit to form two new
order ideals.
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Figure 19: Applying promotion to the red order ideal gives us the blue order ideal.
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