Chromatic-Choosability of Hypergraphs with High Chromatic Number*

Wei Wang ${ }^{1,2}$ Jianguo Qian ${ }^{1 \dagger}$
${ }^{1}$ School of Mathematical Sciences
Xiamen University
Xiamen, P. R. China
${ }^{2}$ College of Information Engineering
Tarim University
Alar, P. R. China
wangwei.math@gmail.com, jgqian@xmu.edu.cn

Submitted: Aug 7, 2018; Accepted: Dec 5, 2018; Published: Jan 11, 2019
(c) The authors. Released under the CC BY-ND license (International 4.0).

Abstract

It was conjectured by Ohba and confirmed by Noel, Reed and Wu that, for any graph G, if $|V(G)| \leqslant 2 \chi(G)+1$ then G is chromatic-choosable; i.e., it satisfies $\chi_{l}(G)=\chi(G)$. This indicates that the graphs with high chromatic number are chromatic-choosable. We observe that this is also the case for uniform hypergraphs and further propose a generalized version of Ohba's conjecture: for any r-uniform hypergraph H with $r \geqslant 2$, if $|V(H)| \leqslant r \chi(H)+r-1$ then $\chi_{l}(H)=\chi(H)$. We show that the condition of the proposed conjecture is sharp by giving two classes of r-uniform hypergraphs H with $|V(H)|=r \chi(H)+r$ and $\chi_{l}(H)>\chi(H)$. To support the conjecture, we prove that $\chi_{l}(H)=\chi(H)$ for two classes of r-uniform hypergraphs H with $|V(H)|=r \chi(H)+r-1$.

Mathematics Subject Classifications: 05C15

1 Introduction

For a graph or a hypergraph G, a vertex coloring of G is proper if every edge contains a pair of vertices with different colors. For a positive integer k, a k-list assignment of G is a mapping L which assigns to each vertex v a set $L(v)$ of k permissible colors. Given a k-list assignment L, an L-coloring of G is a proper vertex coloring in which the color of

[^0]every vertex v is chosen from its list $L(v)$. We say that G is L-colorable if G has an L coloring. A graph G is called k-choosable if for any k-list assignment L, G is L-colorable. The list chromatic number (or choice number) $\chi_{l}(G)$ is the minimum k for which G is k-choosable. It is obvious that $\chi_{l}(G) \geqslant \chi(G)$, where $\chi(G)$ is the chromatic number of G. A graph G is chromatic-choosable if $\chi_{l}(G)=\chi(G)$. The notion of list coloring was introduced independently by Vizing [25] and by Erdős, Rubin and Taylor [8] initially for ordinary graphs and then was extended to hypergraphs $[2,3,13,20,22,23]$.

List coloring for graphs has been extensively studied, much of the earlier fundamental work on which was surveyed in Alon [1], Tuza [24] and Kratochvíl-Tuza-Voigt [14]. One direction of interests on list coloring focused on the estimation or asymptotic behaviour of the list chromatic number $\chi_{l}(G)$ compared to the degrees of its vertices. In [8], Erdős, Rubin and Taylor proved that the list chromatic number of the complete bipartite graph $K_{d, d}$ grows roughly like the binary logarithm of d (the degree of $K_{d, d}$). More generally, Alon [1] showed that the list chromatic number of any graph grows with the average degree. However, this is not the case for hypergraphs. It was shown that, when $r \geqslant 3$, it is not true in general that the list chromatic number of r-uniform hypergraphs grows with its average degree [2]. Even so, it was also shown that similar property holds for many classes of hypergraphs [2, 12, 23], including all the simple uniform hypergraphs (here, a hypergraph is simple if different edges have at most one vertex in common) [22].

Another direction of interests on list coloring focused on the difference between the chromatic number $\chi(G)$ and list chromatic number $\chi_{l}(G)$. It was shown that $\chi_{l}(G)$ can be much larger than $\chi(G)$ for both the ordinary graphs [8] and hypergraphs [12]. This yields a natural question: which graphs are chromatic-choosable? A well known example concerning this question is the List Coloring Conjecture (attributed in particular to Vizing, see [11]), which says that every line-graph is chromatic-choosable. This conjecture was later extended to claw-free graphs [9].

In addition to particular classes of the graphs that might be chromatic-choosable, the graphs with 'high chromatic number' (compared to the number of the vertices in the graph) also received much attention. A trivial fact is that every complete graph is chromatic-choosable. In [18], Ohba showed that, for any graph G, if $|V(G)| \leqslant \chi(G)+$ $\sqrt{2 \chi(G)}$ then $\chi_{l}(G)=\chi(G)$. Further, in the same paper, Ohba conjectured that if $|V(G)| \leqslant 2 \chi(G)+1$ then $\chi_{l}(G)=\chi(G)$. This conjecture was confirmed by Noel, Reed and $\mathrm{Wu}[17]$.

In this paper we focus on the chromatic-choosability of the uniform hypergraphs with high chromatic number, where a hypergraph H is r-uniform if every edge of H has cardinality r. In particular, we propose the following generalized version of Ohba's conjecture, which is inspired by a recent Ohba-like conjecture for d-improper colorings given by Yan et al. [27] (See Conjecture 2 below).

Conjecture 1. Let $r \geqslant 2$ and H be an r-uniform hypergraph. If

$$
|V(H)| \leqslant r \chi(H)+r-1
$$

then $\chi_{l}(H)=\chi(H)$.

The rest of the paper is organized as follows. In Section 2, we revisit both the conjecture of Yan et al. [27] and some recent supporting results [26] on this conjecture from the point view of hypergraph coloring. We show that Conjecture 1 implies the conjecture of Yan et al. Moreover, we observe that arguments from a proof of Wang et al. [26] on d-improper colorings can be modified only slightly to obtain a weak form of Conjecture 1 : if $|V(H)| \leqslant\left(r-\frac{1}{2}\right) \chi(H)+\frac{r}{2}-1$ then $\chi_{l}(H)=\chi(H)$. Therefore, r-uniform hypergraphs with high chromatic number are chromatic-choosable. We also give a simplified but equivalent form of Conjecture 1 using the notion of r-complete multipartite hypergraph defined in [6]. In Section 3, we show that the condition of Conjecture 1 is sharp by giving two classes of r-uniform hypergraphs H with $|V(H)|=r \chi(H)+r$ and $\chi_{l}(H)>\chi(H)$. Finally, to support our conjecture, in Section 4 we prove that $\chi_{l}(H)=\chi(H)$ for two classes of r-uniform hypergraphs H with $|V(H)|=r \chi(H)+r-1$.

2 Preliminaries

2.1 Improper colorings and hypergraphs

For a graph G and a set C of colors, a coloring $f: V(G) \rightarrow C$ is a d-improper coloring if each color class induces a subgraph with maximum degree at most d. Let $\chi^{d}(G)$ and $\chi_{l}^{d}(G)$ denote the d-improper chromatic number and d-improper list chromatic number of G, respectively. Yan et al. [27] proposed an Ohba-like conjecture for d-improper colorings.

Conjecture 2. [27] For any graph G, if

$$
|V(G)| \leqslant(d+2) \chi^{d}(G)+(d+1)
$$

then $\chi_{l}^{d}(G)=\chi^{d}(G)$.
For a graph G and an integer $r \geqslant 2$, we construct an r-uniform hypergraph $G^{(r)}$ as follows:
1). $V\left(G^{(r)}\right)=V(G)$, and
2). $E\left(G^{(r)}\right)=\{S \subseteq V(G):|S|=r$ and $\Delta(G[S])=r-1\}$, where $\Delta(G[S])$ is the maximum degree of $G[S]$, i.e., the subgraph of G induced by S.

Proposition 3. For any graph G and nonnegative integer d, we have $\chi\left(G^{(d+2)}\right)=\chi^{d}(G)$ and $\chi_{l}\left(G^{(d+2)}\right)=\chi_{l}^{d}(G)$.

Proof. It is easy to see that a coloring f of G is d-improper if and only if f is proper when regarded as a coloring of $G^{(d+2)}$. Thus, the assertion holds.

Theorem 4. Conjecture 1 implies Conjecture 2.
Proof. Let G be a graph with at most $(d+2) \chi^{d}(G)+(d+1)$ vertices. Let $r=d+2$ and $H=G^{(r)}$. By Proposition 3, $\chi(H)=\chi^{d}(G)$. Note that H and G have the same vertex set. Thus, $|V(H)| \leqslant(d+2) \chi^{d}(G)+(d+1)=r \chi(H)+r-1$. If Conjecture 1 is true, then $\chi_{l}(H)=\chi(H)$. This implies $\chi_{l}^{d}(G)=\chi^{d}(G)$ by Proposition 3. The proof is completed.

To support Conjecture 2, Yan et al. [27] also proved the following result.
Theorem 5. (Theorem 1, [27]) For any graph G and integer $d \geqslant 0$, if

$$
|V(G)| \leqslant(d+1) \chi^{d}(G)+\sqrt{(d+1) \chi^{d}(G)}-d
$$

then $\chi_{l}^{d}(G)=\chi^{d}(G)$.
Wang et al. [26] further improved Theorem 5 as follows.
Theorem 6. (Theorem 2, [26]) Let $d \geqslant 1$. For any graph G, if

$$
|V(G)| \leqslant\left(d+\frac{3}{2}\right) \chi^{d}(G)+\frac{d}{2}
$$

then $\chi_{l}^{d}(G)=\chi^{d}(G)$.
For $n \geqslant 1$, write $[n]=\{1,2, \ldots, n\}$. Let \mathcal{H}_{n}^{r} denote the set of all r-uniform hypergraphs on $[n]$ and let $\mathcal{H}_{n}^{(r)}=\bigcup\left\{G^{(r)}\right\}$ where the union is taken over all graphs G on $[n]$. We notice that $\mathcal{H}_{n}^{(r)}$ is usually a proper subset of \mathcal{H}_{n}^{r}. Using Proposition 3 , we may restate Theorem 6 as follows:

Theorem 7. Let $r \geqslant 3$. For any $H \in \mathcal{H}_{n}^{(r)}$, if

$$
n \leqslant\left(r-\frac{1}{2}\right) \chi(H)+\frac{r}{2}-1
$$

then $\chi_{l}(H)=\chi(H)$.
Furthermore, we may rewrite the original proof of Theorem 6 in the setting of hypergraph coloring. Then in terms of hypergraph coloring, the key point of the proof is to find a coloring f of $G^{(r)}$ such that each color class of f has size at most $r-1$ or is contained in some color class $V_{i}, i \in\{1,2, \ldots, \chi\}$, where $\chi=\chi\left(G^{(r)}\right)$ and $V_{1}, V_{2}, \ldots, V_{\chi}$ are the color classes of $G^{(r)}$ induced by an arbitrary proper χ-coloring of $G^{(r)}$. This means that, though $\mathcal{H}_{n}^{(r)}$ is in general a proper subset of \mathcal{H}_{n}^{r}, the existence of such f does not rely on any structural property specified by the hypergraphs in the class $\mathcal{H}_{n}^{(r)}$ and hence, the proof for the hypergraphs in $\mathcal{H}_{n}^{(r)}$ can be extended for that in \mathcal{H}_{n}^{r}. Therefore, Theorem 7 holds even if we replace $H \in \mathcal{H}_{n}^{(r)}$ by $H \in \mathcal{H}_{n}^{r}$. We write this observation as the following theorem but omit its proof. Interested readers may get a full proof through consulting [26].

Theorem 8. For any r-uniform hypergraph H, if

$$
|V(H)| \leqslant\left(r-\frac{1}{2}\right) \chi(H)+\frac{r}{2}-1
$$

then $\chi_{l}(H)=\chi(H)$.

2.2 Reduction to multipartite hypergraphs

For k positive integers $p_{1}, p_{2}, \ldots, p_{k}$, let $V_{1}, V_{2}, \ldots, V_{k}$ be k disjoint sets of size $p_{1}, p_{2}, \ldots, p_{k}$, respectively. Following [6], we define the r-complete k-partite hypergraph $K_{p_{1}, p_{2}, \ldots, p_{k}}^{r}$ with partite sets $V_{1}, V_{2}, \ldots, V_{k}$ as follows:
1). $V\left(K_{p_{1}, p_{2}, \ldots, p_{k}}^{r}\right)=V_{1} \cup V_{2} \cup \cdots \cup V_{k}$, and
2). $E\left(K_{p_{1}, p_{2}, \ldots, p_{k}}^{r}\right)=\left\{S \subseteq \bigcup_{i=1}^{k} V_{i}:|S|=r, S \nsubseteq V_{i}\right.$ for any $\left.i \in\{1,2, \ldots, k\}\right\}$.

We note that the notion of k-partite hypergraph here means that each edge may contain two or more vertices from a partite set, which is different from others that used in some literatures. Nevertheless, when $r=2, K_{p_{1}, p_{2}, \ldots, p_{k}}^{r}$ agrees with the usual complete k-partite graph $K_{p_{1}, p_{2}, \ldots, p_{k}}$. Further, if there are two p_{i} 's, say p_{1} and p_{2}, which are less than $r-1$, then $K_{p_{1}, p_{2}, \ldots, p_{k}}^{r}$ is isomorphic to $K_{p_{1}+1, p_{2}-1, \ldots, p_{k}}^{r}$ (or $K_{p_{1}+1, p_{3}, \ldots, p_{k}}^{r}$ if $p_{2}=1$). Therefore, in the following we always assume that $p_{i} \geqslant r-1$ for all $i \in\{1,2, \ldots, k\}$ with at most one exception. For simplicity, if $p_{1}=\cdots=p_{s}=p$ for some s with $1 \leqslant s \leqslant k$, we write $K_{p_{1}, p_{2}, \ldots, p_{k}}^{r}$ as $K_{p * s, p_{s+1}, \ldots, p_{k}}^{r}$.
Proposition 9. If $p_{i} \geqslant r-1$ for all $i \in\{1,2, \ldots, k\}$ with at most one exception, then $\chi\left(K_{p_{1}, p_{2}, \ldots, p_{k}}^{r}\right)=k$.
Proof. Since $\chi\left(K_{p_{1}, p_{2}, \ldots, p_{k}}^{r}\right) \leqslant k$ always holds, it suffices to show the reversed inequality. By the assumption of the proposition, $K_{(r-1) *(k-1), 1}^{r}$ is a subgraph of $K_{p_{1}, p_{2}, \ldots, p_{k}}^{r}$ and therefore, $\chi\left(K_{p_{1}, p_{2}, \ldots, p_{k}}^{r}\right) \geqslant \chi\left(K_{(r-1) *(k-1), 1}^{r}\right)$. Further, notice that each r-subset of $V\left(K_{(r-1) *(k-1), 1}^{r}\right)$ is an edge. We have

$$
\chi\left(K_{(r-1) *(k-1), 1}^{r}\right) \geqslant\left\lceil\frac{(r-1)(k-1)+1}{r-1}\right\rceil=k .
$$

Therefore, $\chi\left(K_{p_{1}, p_{2}, \ldots, p_{k}}^{r}\right) \geqslant k$ and the proposition follows.
It is easy to see that Conjecture 1 is true if and only if it is true for all r-complete multipartite hypergraphs. Thus, in view of Proposition 9 we can restate Conjecture 1 as follows.

Conjecture 10. Let $r \geqslant 2$ and let $p_{1}, p_{2}, \ldots, p_{k}$ be k positive integers such that $p_{i} \geqslant$ $r-1$ for all $i \in\{1,2, \ldots, k\}$ with at most one exception. If $\sum_{i=1}^{k} p_{i} \leqslant r k+r-1$, then $\chi_{l}\left(K_{p_{1}, p_{2}, \ldots, p_{k}}^{r}\right)=k$.

3 Sharpness of Conjecture 1

It is well known that the condition of Ohba's Conjecture is sharp. Indeed, in [7] it was proved that the complete k-partite graph G on $2 k+2$ vertices is not chromatic-choosable if k is even and either every part of G has size 2 or 4 , or every part of G has size 1 or 3 . In the following, we give an analogue of the former for r-uniform hypergraphs with $r \geqslant 3$ and a partial generalization of the latter when $G=K_{3,3}$ to r-uniform hypergraphs with $r \geqslant 2$, indicating that the upper bound $r \chi(H)+r-1$ in Conjecture 1 is also sharp.

Theorem 11. For any integer $r \geqslant 3$, if k is divisible by $r-1$ then

$$
\chi_{l}\left(K_{2 r, r *(k-1)}^{r}\right)>\chi\left(K_{2 r, r *(k-1)}^{r}\right)=k .
$$

Proof. Let $V_{1}, V_{2}, \ldots, V_{k}$ be the k partite sets of $K_{2 r, r *(k-1)}^{r}$, where

$$
V_{1}=\left\{u_{1}, v_{1}, u_{2}, v_{2}, \ldots, u_{r}, v_{r}\right\} \text { and } V_{i}=\left\{w_{i, 1}, w_{i, 2}, \ldots, w_{i, r}\right\}
$$

for $i \in\{2,3, \ldots, k\}$. Let $C_{1}, C_{2}, \ldots, C_{r}$ be r disjoint color sets of size $\frac{k}{r-1}$. Let L be the k-list assignment of $K_{2 r, r *(k-1)}^{r}$ defined by

$$
L\left(w_{i, j}\right)=L\left(u_{j}\right)=L\left(v_{j}\right)=\bigcup_{t=1, t \neq j}^{r} C_{t}, i=2,3, \ldots, k ; j=1,2, \ldots, r
$$

We show that $K_{2 r, r *(k-1)}^{r}$ is not L-colorable. Suppose to the contrary that $f: V \rightarrow \bigcup_{i=1}^{r} C_{i}$ is an L-coloring of $K_{2 r, r *(k-1)}^{r}$, where $V=V_{1} \cup V_{2} \cup \cdots \cup V_{k}$. Define

$$
S=\left\{c \in \bigcup_{j=1}^{r} C_{j}: f^{-1}(c) \nsubseteq V_{1}\right\} \text { and } T=\left\{c \in \bigcup_{j=1}^{r} C_{j}: f^{-1}(c) \subseteq V_{1}\right\}
$$

Clearly, $S \cup T$ is a partitioning of $\bigcup_{j=1}^{r} C_{j}$.
Claim: $\left|f^{-1}(c)\right| \leqslant r-1$ for each $c \in S$.
Suppose to the contrary that $\left|f^{-1}(c)\right|>r-1$. Since $f^{-1}(c) \nsubseteq V_{1}$, there exists an r-subset W of $f^{-1}(c)$ such that $W \nsubseteq V_{1}$. For any $i \in\{2,3, \ldots, k\}$, by the definition of L we have $L\left(w_{i, 1}\right) \cap L\left(w_{i, 2}\right) \cap \cdots \cap L\left(w_{i, r}\right)=\emptyset$. This means that V_{i} has at least one vertex which is not assigned the color c by f. Therefore, $W \neq V_{i}$, or equivalently, $W \nsubseteq V_{i}$ as $|W|=\left|V_{i}\right|$. Combining with $W \nsubseteq V_{1}$, we have $W \nsubseteq V_{i}$ for all $i \in\{1,2, \ldots, k\}$. Thus, W is an edge of $K_{2 r, r *(k-1)}^{r}$. Further, since f is a proper coloring, the edge W is not monochromatic under f, which contradicts the fact that $W \subseteq f^{-1}(c)$. This proves the claim.

Let $\ell=\left|\bigcup_{c \in T} f^{-1}(c)\right|$. Then $\left|\bigcup_{c \in S} f^{-1}(c)\right|=|V|-\ell=r k+r-\ell$. It follows from the above claim that $|S| \geqslant\left\lceil\frac{r k+r-\ell}{r-1}\right\rceil$. Since $\bigcap_{j=1}^{r} L\left(u_{j}\right)=\emptyset$ and $\bigcap_{j=1}^{r} L\left(v_{j}\right)=\emptyset$, any $2 r-1$ vertices in V_{1} share no common color in their lists. Thus, $\left|f^{-1}(c)\right| \leqslant 2 r-2$ for each $c \in T$ since $f^{-1}(c) \subseteq V_{1}$. Therefore, $|T| \geqslant\left\lceil\frac{\ell}{2 r-2}\right\rceil$. Since $\left|\bigcup_{j=1}^{r} C_{j}\right|=\frac{r k}{r-1}$ and $S \cup T$ is a partitioning of $\bigcup_{j=1}^{r} C_{j}$, we have

$$
\left\lceil\frac{r k+r-\ell}{r-1}\right\rceil+\left\lceil\frac{\ell}{2 r-2}\right\rceil \leqslant|S|+|T| \leqslant \frac{r k}{r-1}
$$

As k is a multiple of $r-1$, the above inequality can be reduced to

$$
\left\lceil\frac{r-\ell}{r-1}\right\rceil+\left\lceil\frac{\ell}{2 r-2}\right\rceil \leqslant 0 .
$$

On the other hand, notice that $\ell \leqslant\left|V_{1}\right|=2 r$. If $\ell \leqslant 2 r-1$ then

$$
\left\lceil\frac{r-\ell}{r-1}\right\rceil+\left\lceil\frac{\ell}{2 r-2}\right\rceil \geqslant \frac{r-\ell}{r-1}+\frac{\ell}{2 r-2}=\frac{2 r-\ell}{2 r-2}>0
$$

a contradiction. If $\ell=2 r$ then

$$
\left\lceil\frac{r-\ell}{r-1}\right\rceil+\left\lceil\frac{\ell}{2 r-2}\right\rceil=\left\lceil\frac{-r}{r-1}\right\rceil+\left\lceil\frac{2 r}{2 r-2}\right\rceil \geqslant-1+2>0
$$

where ' \geqslant ' holds as $r \geqslant 3$. This is again a contradiction and hence completes the proof of the theorem.

Remark 12. Although Theorem 11 is somewhat of an analogue of the $K_{4,2,2, \ldots, 2}$ example, the "divisibility" condition is different. For graphs, one required k to be divisible by r, which is 2 , but for hypergraphs it is $r-1$.
Theorem 13. For any integer $r \geqslant 2$,

$$
\chi_{l}\left(K_{(r+1) * r}^{r}\right)>\chi\left(K_{(r+1) * r}^{r}\right)=r .
$$

Proof. Let $H=K_{(r+1) * r}^{r}$ with r partite sets $V_{1}, V_{2}, \ldots, V_{r}$, where

$$
V_{i}=\left\{v_{i, 1}, v_{i, 2}, \ldots, v_{i, r+1}\right\} \text { for } i \in\{1,2, \ldots, r\}
$$

Let L be the r-list assignment of H defined by $L\left(v_{i, j}\right)=\{1,2, \ldots, r+1\} \backslash\{j\}$ for $i \in$ $\{1,2, \ldots, r\}$ and $j \in\{1,2, \ldots, r+1\}$. We show that H is not L-colorable.

Suppose to the contrary that $f: V(H) \rightarrow\{1,2, \ldots, r+1\}$ is an L-coloring of H. Then we have

$$
\begin{equation*}
\left|f^{-1}(1)\right|+\left|f^{-1}(2)\right|+\cdots+\left|f^{-1}(r+1)\right|=|V(H)|=(r+1) r \tag{1}
\end{equation*}
$$

On the other hand, for any $i \in\{1,2, \ldots, r\}$, the lists of all $r+1$ vertices in V_{i} have an empty intersection. Thus, $\left|f^{-1}(k)\right| \leqslant r$ for $k \in\{1,2, \ldots, r+1\}$. This, combining with (1), implies that $\left|f^{-1}(k)\right|=r$ for $k \in\{1,2, \ldots, r+1\}$. Therefore, for each $k \in\{1,2, \ldots, r+1\}, f^{-1}(k)$ must be contained in V_{i} for some $i \in\{1,2, \ldots, r\}$ since otherwise $f^{-1}(k)$ is an edge in H. By the pigeonhole principle, there exist two color classes, say $f^{-1}(1)$ and $f^{-1}(2)$, contained in the same partite set, say V_{1}. Consequently, $\left|f^{-1}(1)\right|+\left|f^{-1}(2)\right|=2 r>r+1=\left|V_{1}\right|$. This is a contradiction and hence completes the proof.

4 Support for Conjecture 1

We begin with some lemmas that are necessary for our forthcoming argument.
For an r-hypergraph H and a subset $X \subseteq V(H)$, we denote by $H[X]$ the subgraph of H induced by X, i.e., $H[X]=(X,\{e: e \in E(H), e \subseteq X\})$. For a list assignment L of H, let $L(X)=\bigcup_{v \in X} L(v)$ and let L_{X} denote L restricted to X. We may omit the subscript of L_{X} when there is no ambiguity. For example, when $H[X]$ is L_{X}-colorable we simply say that $H[X]$ is L-colorable. For a color set C, let $L \backslash C$ be the list assignment of H defined by $(L \backslash C)(v)=L(v) \backslash C$ for each vertex $v \in V(H)$.

Lemma 14. Let $X \cup Y=V(H)$ be a partitioning of the vertex set of an r-uniform hypergraph H and f be an L-coloring of $H[X]$. If there is a color set C such that $C \supseteq f(X)$ and $H[Y]$ is $L \backslash C$-colorable, then H is L-colorable.

Proof. Let g be an $L \backslash C$-coloring of $H[Y]$. Define a coloring h of H by $h(v)=f(v)$ if $v \in X$, and $h(v)=g(v)$ if $v \in Y$. Thus, for any edge e of H, if $e \subseteq X$ or $e \subseteq X$ then e has two vertices colored differently by h since f and g are proper. Further, if e contains vertices of both X and Y, say $x \in X$ and $y \in Y$, then x and y are colored differently by h since C and $L \backslash C$ are disjoint. Therefore, h is an L-coloring of H.

Lemma 15. Let L be a list assignment of an r-uniform hypergraph H. If $(r-1)|L(X)| \geqslant$ $|X|$ for every nonempty subset $X \subseteq V(H)$, then H is L-colorable.

Proof. Consider the bipartite graph B with vertex partition $V(B)=(V(H), C)$, where C consists of $(r-1)$ copies of $L(V(H))$ and each $v \in V(H)$ is adjacent to the $(r-1)$ copies of $L(v)$. Clearly, for each $X \subseteq V(H)$, we have $N_{B}(X)=(r-1) L(X)$ and hence $\left|N_{B}(X)\right| \geqslant|X|$ by the condition of the lemma. Thus, by Hall's Matching Theorem, there exists a matching M that saturates $V(H)$. We associate M with an L-coloring f_{M} of H where $f_{M}(v)$ is defined to be the color matched to v by M. We can see that each vertex v is colored by a color from its own list $L(v)$, and each color class of H induced by f_{M} contains at most $r-1$ vertices. This means that each edge of H contains at least two vertices with different colors since H is r-uniform. Thus, f_{M} is proper and therefore, H is L-colorable.

Lemma 16. For a list assignment L of an r-uniform hypergraph H, if $H[X]$ is L-colorable for each nonempty subset $X \subseteq V(H)$ with $(r-1)|L(X)|<|X|$, then H is L-colorable.

Proof. If $(r-1)|L(X)| \geqslant|X|$ for each nonempty subset $X \subseteq V(H)$, then we are done by Lemma 15. We now assume that X is a maximal nonempty subset of $V(H)$ such that $(r-1)|L(X)|<|X|$. Let $C=L(X)$, let $Y=V(H) \backslash X$ and let S be an arbitrary nonempty subset of Y. Then by the maximality of $X,(r-1)|L(X \cup S)| \geqslant|X \cup S|$. On the other hand, notice that $|L(X \cup S)|=|L(X)|+|(L \backslash C)(S)|$ and $|X \cup S|=|X|+|S|$ as $X \cap S=\emptyset$. So we have $(r-1)|(L \backslash C)(S)| \geqslant|S|$. Consequently, $H[Y]$ is $L \backslash C$-colorable by Lemma 15. Let f be any L-coloring of $H[X]$. Clearly, $L(X) \supseteq f(X)$, that is, $C \supseteq f(X)$. Therefore, H is L-colorable by Lemma 14 .

The following lemma is an extension of a widely used lemma in list colorings of graphs [15, 21], namely the "Small Pot Lemma" [4, 5, 16, 19].

Lemma 17. For an r-uniform hypergraph H, if H is L-colorable for every k-list assignment L such that $(r-1)|L(V(H))|<|V(H)|$ then H is k-choosable.

Proof. Suppose to the contrary that H is not k-choosable and let L^{\prime} be a k-list assignment such that H is not L^{\prime}-colorable. We show that there is a k-list assignment L with $(r-$ 1) $|L(V(H))|<|V(H)|$ such that H is not L-colorable.

By Lemma 16, there is a nonempty subset $X \subseteq V(H)$ such that $(r-1)\left|L^{\prime}(X)\right|<|X|$ and $H[X]$ is not L^{\prime}-colorable. Choose $x \in X$ and define the list assignment L of H by
$L(v)=L^{\prime}(v)$ if $v \in X$ and $L(v)=L^{\prime}(x)$ otherwise. Clearly, H is not L-colorable since $H[X]$ is not L^{\prime}-colorable and therefore, not L-colorable. Moreover, $L(V(H))=L^{\prime}(X)$ and hence $(r-1)|L(V(H))|<|X| \leqslant|V(H)|$. This contradicts the condition of the lemma.

In [10] (before Ohba's Conjecture was formulated), Gravier and Maffray showed that $K_{3,2 *(k-1)}$ is chromatic-choosable. The following two theorems are the generalizations of this result to uniform hypergraphs and therefore, give support to Conjecture 1.

For a color c of L and a vertex subset X of H, the multiplicity of c in X is defined by $|\{v: v \in X, c \in L(v)\}|$, that is, the total times of c that appears in the lists of the vertices in X. For a list assignment L, the multiplicity of c in X is denoted by $\eta_{L, X}(c)$, or simply $\eta_{X}(c)$ when the list assignment is clear.

Theorem 18. $\chi_{l}\left(K_{2 r-1, r *(k-1)}^{r}\right)=k$ for $r \geqslant 2$ and $k \geqslant 1$.
Proof. We prove it by contradiction. Suppose k is the minimal positive integer such that $K_{2 r-1, r *(k-1)}^{r}$ is not k-choosable. Note that if $k=1$ then $K_{2 r-1, r *(k-1)}^{r}$ contains no edges and therefore is trivially 1 -choosable. Thus $k \geqslant 2$. Write $H=K_{2 r-1, r *(k-1)}^{r}$. Since H is not k-choosable, Lemma 17 implies that there exists a k-list assignment L such that $(r-1)|L(V(H))|<|V(H)|$ and H is not L-colorable. Let $V_{1}, V_{2}, \ldots, V_{k}$ be all partite sets of H, where $\left|V_{1}\right|=2 r-1$ and $\left|V_{i}\right|=r$ for $i \in\{2,3, \ldots, k\}$. As $(r-1)|L(V(H))|<$ $|V(H)|=r k+r-1$ and $L\left(V_{i}\right) \subseteq L(V(H))$, we have $(r-1)\left|L\left(V_{i}\right)\right| \leqslant r k+r-2$ and hence

$$
\begin{equation*}
\left|L\left(V_{i}\right)\right| \leqslant\left\lfloor\frac{r k+r-2}{r-1}\right\rfloor, i=1,2, \ldots, k . \tag{2}
\end{equation*}
$$

Claim 1: $\bigcap_{v \in V_{i}} L(v)=\emptyset$ for each $i \in\{2,3, \ldots, k\}$.
Suppose to the contrary that there exists a color $c^{*} \in \bigcap_{v \in V_{i}} L(v)$ for some $i \in$ $\{2,3, \ldots, k\}$. We use c^{*} to color all vertices in V_{i} and let $Y=V(H) \backslash V_{i}$. Note that $H[Y]=K_{2 r-1, r *(k-2)}^{r}$. By the minimality of $k, H[Y]$ is $(k-1)$-choosable. Therefore, $H[Y]$ is $L \backslash\left\{c^{*}\right\}$-colorable since $\left(L \backslash\left\{c^{*}\right\}\right)(v)$ contains at least $k-1$ colors for each $v \in Y$. So by Lemma 14, H is L-colorable. This is a contradiction and hence Claim 1 follows.

Let

$$
\begin{equation*}
\xi=\left\lceil\frac{(2 r-1) k}{\left\lfloor\frac{r k+r-2}{r-1}\right\rfloor}\right\rceil \text {. } \tag{3}
\end{equation*}
$$

Claim 2: L has a color \bar{c} such that $\eta_{V_{1}}(\bar{c}) \geqslant \xi$.
Clearly, $\sum_{c \in L\left(V_{1}\right)} \eta_{V_{1}}(c)=\sum_{v \in V_{1}}|L(v)|=(2 r-1) k$. Let \bar{c} be the color such that $\eta_{V_{1}}(\bar{c})$ is maximum. By (2) we have

$$
\eta_{V_{1}}(\bar{c}) \geqslant \frac{\sum_{v \in V_{1}}|L(v)|}{\left|L\left(V_{1}\right)\right|} \geqslant \frac{(2 r-1) k}{\left\lfloor\frac{r k+r-2}{r-1}\right\rfloor},
$$

which implies $\eta_{V_{1}}(\bar{c}) \geqslant \xi$. Thus, Claim 2 follows.
Claim 3: $\left|L\left(V_{i}\right)\right|=\left\lfloor\frac{r k+r-2}{r-1}\right\rfloor$ for each $i \in\{2,3, \ldots, k\}$.

Suppose to the contrary that $\left|L\left(V_{i}\right)\right| \neq\left\lfloor\frac{r k+r-2}{r-1}\right\rfloor$ for some $i \in\{2,3, \ldots, k\}$. Then, by (2), $\left|L\left(V_{i}\right)\right| \leqslant\left\lfloor\frac{r k+r-2}{r-1}\right\rfloor-1$ and hence $\left|L\left(V_{i}\right)\right| \leqslant \frac{r k-1}{r-1}$. Let c_{i} be the color in $L\left(V_{i}\right)$ such that $\eta_{V_{i}}\left(c_{i}\right)$ is maximum. By an argument similar to the proof of Claim 2, we have

$$
\eta_{V_{i}}\left(c_{i}\right) \geqslant \frac{\sum_{c \in L\left(V_{i}\right)} \eta_{V_{i}}(c)}{\left|L\left(V_{i}\right)\right|}=\frac{r k}{\left|L\left(V_{i}\right)\right|} \geqslant \frac{r k}{\frac{r k-1}{r-1}}>r-1 .
$$

This means that all vertices in V_{i} have a common color in their lists. This contradicts Claim 1 and therefore, Claim 3 follows.
Claim 4: $\xi \geqslant r+(r-1)\left(\frac{r k+r-2}{r-1}-\left\lfloor\frac{r k+r-2}{r-1}\right\rfloor\right)$ and in particular, $\xi \geqslant r$.
Write $k-1=(r-1) p+q$, where $p=\left\lfloor\frac{k-1}{r-1}\right\rfloor$ and $0 \leqslant q \leqslant r-2$. Then $\frac{r k+r-2}{r-1}=$ $k+1+\frac{k-1}{r-1}=r p+q+2+\frac{q}{r-1}$. Thus, the first inequality in the claim is reduced to

$$
\begin{equation*}
\left\lceil\frac{(2 r-1)((r-1) p+q+1)}{r p+q+2}\right\rceil \geqslant r+q \text {, } \tag{4}
\end{equation*}
$$

that is,

$$
\begin{equation*}
(2 r-1)((r-1) p+q+1)>(r p+q+2)(r+q-1) . \tag{5}
\end{equation*}
$$

Let $\Delta=(2 r-1)((r-1) p+q+1)-(r p+q+2)(r+q-1)=-q^{2}+(r-2-p r) q+$ $\left(1+p-2 p r+p r^{2}\right)$. In order to show $\Delta>0$ we consider the quadratic function $f(x)=$ $-x^{2}+(r-2-p r) x+\left(1+p-2 p r+p r^{2}\right)$. Note that $0 \leqslant q \leqslant r-2$ and $\Delta=f(q)$. As $f(x)$ is strictly concave on the interval $[0, r-2]$, the minimum value of $f(x)$ must be attained at $x=0$ or $r-2$. Direct calculation leads to $f(0)=1+p-2 p r+p r^{2}=r p(r-2)+p+1>0$ and $f(r-2)=p+1>0$. Therefore, $f(x)>0$ on $[0, r-2]$ and hence $\Delta>0$. This proves Claim 4.

Let $X=\left\{v \in V_{1}: \bar{c} \in L(v)\right\}$. Let $Y=V(H) \backslash X, V_{1}^{\prime}=V_{1} \backslash X$ and $L^{\prime}=L_{Y} \backslash\{\bar{c}\}$. Then by Claims 2 and 4 , we have $|X| \geqslant \xi \geqslant r$ and therefore,

$$
\begin{equation*}
\left|V_{1}^{\prime}\right|=\left|V_{1} \backslash X\right| \leqslant 2 r-1-\xi \leqslant r-1 . \tag{6}
\end{equation*}
$$

Clearly, $\left|L^{\prime}(v)\right|=|L(v)|=k$ for each $v \in V_{1}^{\prime}$, and $\left|L^{\prime}(v)\right| \geqslant|L(v)|-1=k-1$ for each $v \in V_{i}, i \in\{2,3, \ldots, k\}$.
Claim 5: $H[Y]$ is L^{\prime}-colorable.
Let S be an arbitrary nonempty subset of Y. By Lemma 15 , it suffices to show that $(r-1)\left|L^{\prime}(S)\right| \geqslant|S|$. To this end, we consider two cases.
Case 1: $V_{i} \nsubseteq S$ for any $i \in\{2,3, \ldots, k\}$.
In this case, we have

$$
\begin{equation*}
\left|S \cap\left(V(H) \backslash V_{1}\right)\right| \leqslant\left(\left|V_{2}\right|-1\right)+\cdots+\left(\left|V_{k}\right|-1\right)=(r-1)(k-1) . \tag{7}
\end{equation*}
$$

Notice that $\left|L^{\prime}(S)\right| \geqslant\left|L^{\prime}(v)\right| \geqslant k-1$ for any vertex v in S. So by (7), if $S \cap V_{1}^{\prime}=\emptyset$ then $(r-1)\left|L^{\prime}(S)\right| \geqslant(r-1)(k-1)\left|\geqslant\left|S \cap\left(V(H) \backslash V_{1}\right)\right|=|S|\right.$, as desired. Now we assume that $S \cap V_{1}^{\prime} \neq \emptyset$. Then by (6) and (7) we have $|S|=\left|\left(S \cap V_{1}^{\prime}\right) \cup\left(S \cap\left(V(H) \backslash V_{1}\right)\right)\right| \leqslant$ $(r-1)+(r-1)(k-1)=(r-1) k$. Let $v \in S \cap V_{1}^{\prime}$. Then $\left|L^{\prime}(v)\right|=k$ and hence $\left|L^{\prime}(S)\right| \geqslant k$. Again we have $(r-1)\left|L^{\prime}(S)\right| \geqslant|S|$.

Case 2: $V_{i} \subseteq S$ for some $i \in\{2,3, \ldots, k\}$.
By Claim 3, $L^{\prime}\left(V_{i}\right) \geqslant\left\lfloor\frac{r k+r-2}{r-1}\right\rfloor-1$. On the other hand, by the first inequality in (6), $|S| \leqslant\left|V_{1}^{\prime}\right|+\left|V_{2}\right|+\cdots+\left|V_{k}\right| \leqslant 2 r-1-\xi+r(k-1)$. Therefore, by Claim 4,

$$
\begin{aligned}
(r-1)\left|L^{\prime}(S)\right|-|S| \geqslant & (r-1)\left(\left\lfloor\frac{r k+r-2}{r-1}\right\rfloor-1\right)-(2 r-1-\xi+r(k-1)) \\
= & \xi+(r-1)\left\lfloor\frac{r k+r-2}{r-1}\right\rfloor-r k-2 r+2 \\
\geqslant & r+(r-1)\left(\frac{r k+r-2}{r-1}-\left\lfloor\frac{r k+r-2}{r-1}\right\rfloor\right) \\
& +(r-1)\left\lfloor\frac{r k+r-2}{r-1}\right\rfloor-r k-2 r+2 \\
= & 0 .
\end{aligned}
$$

Thus, $(r-1)\left|L^{\prime}(S)\right| \geqslant|S|$, as desired.
From the above two cases, Claim 5 follows.
Finally, by Claim 5 and Lemma 14, H is L-colorable. This is a contradiction and hence completes the proof of this theorem.

In the previous section we have known that $\chi_{l}\left(K_{2 r, r *(k-1)}^{r}\right) \geqslant k+1$ if k is divisible by $r-1$. By Theorem 18, we have $k \leqslant \chi_{l}\left(K_{2 r, r *(k-1)}^{r}\right) \leqslant \chi_{l}\left(K_{2 r-1, r *(k-1)}^{r}\right)+1=k+1$. This gives that

$$
\chi_{l}\left(K_{2 r, r *(k-1)}^{r}\right)=k+1
$$

if k is divisible by $r-1$. We propose the following problem.
Problem 19. If k is not divisible by $r-1$, determine when does $\chi_{l}\left(K_{2 r, r *(k-1)}^{r}\right)$ equal k and when does it equal $k+1$?

The following result gives the second generalization of $K_{3,2 *(k-1)}$ for supporting our conjecture.

Theorem 20. $\chi_{l}\left(K_{(r+1) *(r-1), r *(k-r+1)}^{r}\right)=k$ for $r \geqslant 2$ and $k \geqslant r-1$.
Before proving it, we need first to show that $\chi_{l}\left(K_{(r+1) *(r-1)}^{r}\right)=r-1$. In fact, we prove the following more general result.

Proposition 21. $\chi_{l}\left(K_{(r+1) * k}^{r}\right)=k$ for $r \geqslant 2$ and $k \leqslant r-1$.
Proof. If $r=2$ then $k=1$ and the assertion trivially holds. We may assume that $r \geqslant 3$. We prove the proposition by induction on k. Since $\chi_{l}\left(K_{(r+1) * k}^{r}\right) \geqslant \chi\left(K_{(r+1) * k}^{r}\right)=k$, it suffices to show that $K_{(r+1) * k}^{r}$ is k-choosable. If $k=1$ then $K_{(r+1) * k}^{r}$ contains no edges and hence is 1 -choosable. Let $1<k \leqslant r-1$ and assume that $K_{(r+1) * t}^{r}$ is t-choosable for any $t<k$. For simplicity, let $H=K_{(r+1) * k}^{r}$ and let $V_{1}, V_{2}, \ldots, V_{k}$ be the k partite sets of H. We need to show that H is k-choosable.

Let L be any k-list assignment of H such that

$$
\begin{equation*}
(r-1)|L(V(H))|<|V(H)|=(r+1) k . \tag{8}
\end{equation*}
$$

By Lemma 17, to show that H is k-choosable, it suffices to show that H is L-colorable. If there is some V_{i} such that all vertices in V_{i} have a common color c^{*} in their lists, then we can color each vertex in V_{i} by c^{*} and remove c^{*} from the lists of all other vertices in H. Using induction on k and Lemma 14, one can easily verify that H is L-colorable.

In the following, we assume that $\bigcap_{v \in V_{i}} L(v)=\emptyset$ for any $i \in\{1,2, \ldots, k\}$. As $\left|V_{i}\right|=$ $r+1$ we have $\eta_{V_{i}}(c) \leqslant r$ for each $c \in L\left(V_{i}\right)$. For each $i \in\{1,2, \ldots, k\}$, let $C_{i}=\{c \in$ $\left.L\left(V_{i}\right): \eta_{V_{i}}(c)=r\right\}$. Thus, for each color $c \in L\left(V_{i}\right) \backslash C_{i}$, we have $\eta_{V_{i}}(c) \leqslant r-1$ and hence,

$$
\begin{equation*}
r\left|C_{i}\right|+(r-1)\left(\left|L\left(V_{i}\right)\right|-\left|C_{i}\right|\right) \geqslant \sum_{v \in V_{i}}|L(v)|=(r+1) k \tag{9}
\end{equation*}
$$

for each $i \in\{1,2, \ldots, k\}$. Equivalently, $\left|C_{i}\right| \geqslant(r+1) k-(r-1)\left|L\left(V_{i}\right)\right|$. Since $\left|L\left(V_{i}\right)\right| \leqslant$ $|L(V(H))|$, we have $\left|C_{i}\right|>0$ by (8).

Let I be a maximal subset of $\{1,2, \ldots, k\}$ such that $\left\{C_{i}: i \in I\right\}$ has a system of distinct representatives and let $s=|I|$. Since C_{i} is nonempty, $s \geqslant 1$. With no loss of generality, we may assume that $I=\{1,2, \ldots, s\}$. Let $\left(c_{1}, c_{2}, \ldots, c_{s}\right)$ be a system of distinct representatives of $\left(C_{1}, C_{2}, \ldots, C_{s}\right)$. Notice that $\eta_{V_{i}}\left(c_{i}\right)=r$ and $\left|V_{i}\right|=r+1$. For each $i \in\{1,2, \ldots, s\}$, let v_{i} be the only vertex in V_{i} such that $c_{i} \notin L\left(v_{i}\right)$. Let $H^{\prime}=H\left[\left\{v_{1}, \ldots, v_{s}\right\} \cup V_{s+1} \cup \cdots \cup V_{k}\right]$ and define a list assignment L^{\prime} on the hypergraph H^{\prime} by $L^{\prime}(v)=L(v) \backslash\left\{c_{1}, \ldots, c_{s}\right\}$ for any $v \in V\left(H^{\prime}\right)$. For each $i \in\{1,2, \ldots, s\}$, we use c_{i} to color all vertices in V_{i} except v_{i}. By Lemma 14, to show that H is L-colorable, it suffices to show that H^{\prime} is L^{\prime}-colorable.

For each $i \in\{1,2, \ldots, s\}$, as $s \leqslant k$ and $c_{i} \notin L\left(v_{i}\right)$, we have $\left|L^{\prime}\left(v_{i}\right)\right| \geqslant L\left(v_{i}\right)-(s-1)=$ $k-(s-1) \geqslant 1$. If $s=k$ then $\left|V\left(H^{\prime}\right)\right|=k<r$ and hence H^{\prime} contains no edges. In this case, H^{\prime} is trivially L^{\prime}-colorable. Thus, we assume that $s \leqslant k-1$. For each $p \in\{s+1, s+2, \ldots, k\}$, by the maximality of I, we have $C_{p} \subseteq\left\{c_{1}, c_{2}, \ldots, c_{s}\right\}$ and hence $\left|C_{p}\right| \leqslant s$.

Let S be an arbitrary subset of $V\left(H^{\prime}\right)$. We consider three cases:
Case 1: $v_{i} \notin S$ for any $i \in\{1,2, \ldots, s\}$.
In this case, $H^{\prime}[S]$ is an induced subgraph of $K_{(r+1) *(k-s)}^{r}$. Further, by the induction hypothesis, $K_{(r+1) *(k-s)}^{r}$ is $(k-s)$-choosable. Therefore, $H^{\prime}[S]$ is $(k-s)$-choosable. As $\left|L^{\prime}(v)\right| \geqslant|L(v)|-s=k-s$ for each $v \in S, H^{\prime}[S]$ is L^{\prime}-colorable.
Case 2: $v_{i} \in S$ for some $i \in\{1,2, \ldots, s\}$ and $V_{p} \nsubseteq S$ for any $p \in\{s+1, s+2, \ldots, k\}$.
In this case, $|S| \leqslant r(k-s)+s$. As $\left|L^{\prime}\left(v_{i}\right)\right| \geqslant k-s+1$ and $k \leqslant r-1$, we have

$$
(r-1)\left|L^{\prime}(S)\right|-|S| \geqslant(r-1)(k-s+1)-(r(k-s)+s)=r-1-k \geqslant 0
$$

that is, $(r-1)\left|L^{\prime}(S)\right| \geqslant|S|$.
Case 3: $v_{i} \in S$ for some $i \in\{1,2, \ldots, s\}$ and $V_{p} \subseteq S$ for some $p \in\{s+1, s+2, \ldots, k\}$.
By (9), we have $(r-1)\left|L\left(V_{p}\right)\right| \geqslant(r+1) k-\left|C_{p}\right|$ and hence $(r-1)\left|L\left(V_{p}\right)\right| \geqslant(r+1) k-s$ as $\left|C_{p}\right| \leqslant s$. Therefore,

$$
(r-1)\left|L^{\prime}(S)\right| \geqslant(r-1)\left|L^{\prime}\left(V_{p}\right)\right| \geqslant(r-1)\left(\left|L\left(V_{p}\right)\right|-s\right) \geqslant(r+1) k-r s
$$

On the other hand, $|S| \leqslant\left|V\left(H^{\prime}\right)\right|=(r+1) k-r s$. Thus, $(r-1)\left|L^{\prime}(S)\right| \geqslant|S|$.
By the above three cases, for any $S \subseteq V\left(H^{\prime}\right)$, either $(r-1)\left|L^{\prime}(S)\right| \geqslant|S|$ or $H^{\prime}[S]$ is L^{\prime}-colorable. It follows from Lemma 16 that H^{\prime} is L^{\prime}-colorable. Thus, H is L-colorable and hence k-choosable. This proves the proposition by induction.

Proof of Theorem 20. We prove the theorem by induction on k. If $k=r-1$ then the assertion holds by Proposition 21. Now let $k \geqslant r$ and assume that $K_{(r+1) *(r-1), r *(k-r)}^{r}$ is ($k-1$)-choosable. We are going to show that $K_{(r+1) *(r-1), r *(k-r+1)}^{r}$ is k-choosable. Write $H=K_{(r+1) *(r-1), r *(k-r+1)}^{r}$ and let $V_{1}, V_{2}, \ldots, V_{k}$ be the partite sets of H with $\left|V_{i}\right|=r+1$ for $i \in\{1,2, \ldots, r-1\}$ and $\left|V_{i}\right|=r$ for $i \in\{r, r+1, \ldots, k\}$.

Let L be any k-list assignment of H such that

$$
\begin{equation*}
(r-1)|L(V(H))|<|V(H)|=r k+r-1 . \tag{10}
\end{equation*}
$$

By Lemma 17, it suffices to show that H is L-colorable.
For some $i \in\{1,2, \ldots, k\}$, if all vertices in V_{i} have a common color, say c^{*}, in their lists, then we can color each vertex in V_{i} by c^{*}. Let H^{\prime} be the subgraph of H induced by $V(H) \backslash V_{i}$. That is, $H^{\prime}=K_{(r+1) *(r-2), r *(k-r+1)}^{r}$ if $i \leqslant r-1$ or $K_{(r+1) *(r-1), r *(k-r)}^{r}$ if $i>r-1$, both of which are subgraphs of $K_{(r+1) *(r-1), r *(k-r)}^{r}$. Further, by the induction hypothesis, $K_{(r+1) *(r-1), r *(k-r)}^{r}$ is $(k-1)$-choosable and so is H^{\prime}. Let L^{\prime} be the list assignment of H^{\prime} defined by $L^{\prime}(v)=L(v) \backslash\left\{c^{*}\right\}$ for each $v \in V\left(H^{\prime}\right)$. Then $\left|L^{\prime}(v)\right| \geqslant k-1$ and hence H^{\prime} is L^{\prime}-colorable. Thus, H is L-colorable by Lemma 14.

We now assume that $\bigcap_{v \in V_{i}} L(v)=\emptyset$ for each $i \in\{1,2, \ldots, k\}$. The following discussion is much similar to the proof of Proposition 21. For each $i \in\{1,2, \ldots, r-1\}$ let $C_{i}=$ $\left\{c \in L\left(V_{i}\right): \eta_{V_{i}}(c)=r\right\}$. Then (9) holds for each $i \in\{1,2, \ldots, r-1\}$ and, therefore, $\left|C_{i}\right| \geqslant(r+1) k-(r-1)\left|L\left(V_{i}\right)\right|$. Since $\left|L\left(V_{i}\right)\right| \leqslant|L(V(H))|$ and $k \geqslant r$, it follows by (10) that $\left|C_{i}\right|>1$.

Let I be a maximal subset of $\{1,2, \ldots, r-1\}$ such that $\left\{C_{i}: i \in I\right\}$ has a system of distinct representatives, and let $s=|I|$. It is clear that $1 \leqslant s \leqslant r-1$ as $C_{i} \neq \emptyset$ for each $i \in\{1,2, \ldots, r-1\}$. With no loss of generality, we assume that $I=\{1,2, \ldots, s\}$ and $\left(c_{1}, c_{2}, \ldots, c_{s}\right)$ is a system of distinct representatives of $\left(C_{1}, C_{2}, \ldots, C_{s}\right)$. For each $i \in$ $\{1,2, \ldots, s\}$, let v_{i} be the only vertex of V_{i} such that $c_{i} \notin L\left(v_{i}\right)$. Let $H^{\prime}=H\left[\left\{v_{1}, \ldots, v_{s}\right\} \cup\right.$ $\left.V_{s+1} \cup \cdots \cup V_{k}\right]$ and define $L^{\prime}(v)=L(v) \backslash\left\{c_{1}, c_{2} \ldots, c_{s}\right\}$ for every $v \in V\left(H^{\prime}\right)$. It suffices to show that H^{\prime} is L^{\prime}-colorable by Lemma 14 .

For each $i \in\{1,2, \ldots, s\}$, since $c_{i} \notin L\left(v_{i}\right)$, we have

$$
\begin{equation*}
\left|L^{\prime}\left(v_{i}\right)\right| \geqslant\left|L\left(v_{i}\right)\right|-(s-1)=k-s+1 . \tag{11}
\end{equation*}
$$

For each $p \in\{r, r+1, \ldots, k\}$, since $\bigcap_{v \in V_{p}} L(v)=\emptyset$, each color of $L\left(V_{p}\right)$ appears at most $r-1$ times in V_{p}. Therefore,

$$
\begin{equation*}
\left|L\left(V_{p}\right)\right| \geqslant \frac{\sum_{v \in V_{p}}|L(v)|}{r-1}=\frac{r k}{r-1} . \tag{12}
\end{equation*}
$$

As $\left|L^{\prime}\left(V_{p}\right)\right| \geqslant\left(\left|L\left(V_{p}\right)\right|-s\right),(12)$ implies

$$
\begin{equation*}
(r-1)\left|L^{\prime}\left(V_{p}\right)\right| \geqslant r k-(r-1) s \tag{13}
\end{equation*}
$$

If $s<r-1$, then for each $q \in\{s+1, s+2, \cdots, r-1\}$, we have $C_{q} \subseteq\left\{c_{1}, c_{2}, \ldots, c_{s}\right\}$ by the maximality of I. Thus $\left|C_{q}\right| \leqslant s$. It follows from (9) (regard i as q) that $(r-1)\left|L\left(V_{q}\right)\right| \geqslant$ $(r+1) k-\left|C_{q}\right| \geqslant(r+1) k-s$. Thus,

$$
\begin{equation*}
(r-1)\left|L^{\prime}\left(V_{q}\right)\right| \geqslant(r-1)\left(\left|L\left(V_{q}\right)\right|-s\right) \geqslant(r+1) k-r s \tag{14}
\end{equation*}
$$

Let S be an arbitrary subset of $V\left(H^{\prime}\right)$. We will show that either $H^{\prime}[S]$ is L^{\prime}-colorable or $(r-1)|L(S)| \geqslant|S|$.

First assume that $s<r-1$ and $V_{q} \subseteq S$ for some $q \in\{s+1, s+2, \ldots, r-1\}$. Note that $|S| \leqslant\left|V\left(H^{\prime}\right)\right|=r k+(r-1)-r s,\left|L^{\prime}(S)\right| \geqslant\left|L^{\prime}\left(V_{q}\right)\right|$ and $k \geqslant r$. It follows from (14) that

$$
\begin{equation*}
(r-1)\left|L^{\prime}(S)\right| \geqslant(r+1) k-r s \geqslant r k+r-r s>|S|, \tag{15}
\end{equation*}
$$

as desired. In the following, we always assume that $V_{q} \nsubseteq S$ for any $q \in\{s+1, s+$ $2, \ldots, r-1\}$, unless $s=r-1$. Under this assumption, we have $\left|S \cap V_{i}\right| \leqslant r$ for all $i \in\{s+1, s+2, \ldots, k\}$. We consider three cases:
Case 1: $v_{i} \notin S$ for any $i \in\{1,2, \ldots, s\}$.
In this case, $H^{\prime}[S]$ is an induced subgraph of $K_{r *(k-s)}^{r}$ and hence of $K_{2 r-1, r *(k-s-1)}^{r}$. Thus, $H^{\prime}[S]$ is $(k-s)$-choosable by Theorem 18. Since $\left|L^{\prime}(v)\right| \geqslant|L(v)|-s=k-s$ for each $v \in S, H^{\prime}[S]$ is L^{\prime}-colorable, as desired.
Case 2: $v_{i} \in S$ for some $i \in\{1,2, \ldots, s\}$ and $V_{p} \nsubseteq S$ for any $p \in\{r, r+1, \ldots, k\}$.
Combining with our assumption that $V_{q} \nsubseteq S$ for $q \in\{s+1, s+2, \ldots, r-1\}$, we have $V_{j} \nsubseteq S$ for any $j \in\{s+1, s+2, \ldots, k\}$. Thus,

$$
S \leqslant\left|V\left(H^{\prime}\right)\right|-(k-s)=(r k+(r-1)-r s)-(k-s)=(r-1)(k+1-s) .
$$

As $v_{i} \in S$, we have $\left|L^{\prime}(S)\right| \geqslant\left|L^{\prime}\left(v_{i}\right)\right|$, implying that $\left|L^{\prime}(S)\right| \geqslant k+1-s$ by (11). Thus, $(r-1)\left|L^{\prime}(S)\right| \geqslant|S|$.
Case 3: $v_{i} \in S$ for some $i \in\{1,2, \ldots, s\}$ and $V_{p} \subseteq S$ for some $p \in\{r, r+1, \ldots, k\}$.
In this case, again by our assumption that $V_{p} \nsubseteq S$ for any $p \in\{s+1, s+2, \ldots, r-1\}$, we have $|S| \leqslant\left|V\left(H^{\prime}\right)\right|-(r-1-s)=(r k+(r-1)-r s)-(r-1-s)=r k-(r-1) s$. Since $V_{p} \subseteq S$, so by (13) we have $(r-1)\left|L^{\prime}(S)\right| \geqslant(r-1)\left|L^{\prime}\left(V_{p}\right)\right| \geqslant r k-(r-1) s \geqslant|S|$.

By the above three cases, for any $S \subseteq V\left(H^{\prime}\right)$, either $(r-1)\left|L^{\prime}(S)\right| \geqslant|S|$ or $H^{\prime}[S]$ is L^{\prime}-colorable. Therefore, H^{\prime} is L^{\prime}-colorable by Lemma 16. This completes the proof of Theorem 20.

Corollary 22. $\chi_{l}\left(K_{(r+1) * r}^{r}\right)=r+1$ for $r \geqslant 2$.
Proof. By Theorem 13, $\chi_{l}\left(K_{(r+1) * r}^{r}\right) \geqslant r+1$. On the other hand, using Theorem 20 for $k=r$, we have $\chi_{l}\left(K_{(r+1) *(r-1), r}^{r}\right)=r$. Thus $\chi_{l}\left(K_{(r+1) * r}^{r}\right) \leqslant r+1$. This proves the corollary.

Acknowledgments

The authors thank the referee for her/his valuable and detailed suggestions. In particular, Problem 19 is suggested by the referee.

References

[1] N. Alon. Restricted colorings of graphs. in Surveys in Combinatorics, 1993 (Keele), volume 187 of London Mathematical Society Lecture Note Series, pages 1-33. Cambridge University Press, Cambridge, 1993.
[2] N. Alon and A. Kostochka. Hypergraph list coloring and Euclidean Ramsey theory. Random Structures Algorithms, 39:377-390,2011.
[3] C. Benzaken, S. Gravier, and R. S̆krekovski. Hajós' theorem for list colorings of hypergraphs. Discuss. Math. Graph Theory, 23:207-213,2003.
[4] D. W. Cranston and L. Rabern. Coloring claw-free graphs with $\Delta-1$ colors. SIAM J. Discrete Math. 27:534-549,2013.
[5] D. W. Cranston and L. Rabern. Coloring a graph with $\Delta-1$ colors: Conjectures equivalent to the Borodin-Kostochka conjecture that appear weaker. European J. Combin. 44:23-42, 2015.
[6] E. Emtander. Betti numbers of hypergraphs. Comm. Algebra, 37:1545-1571,2009.
[7] H. Enomoto, K.Ohba, K. Ota, and J. Sakamoto. Choice number of some complete multi-partite graphs. Discrete Math., 244: 55-66,2002.
[8] P. Erdős, A. L. Rubin, and H. Taylor. Choosability in graphs. Cong. Numer., 26:125157,1979.
[9] S. Gravier and F. Maffray. Choice number of 3-colorable elementary graphs. Discrete Math., 165/166: 353-358,1997.
[10] S. Gravier and F. Maffray. Graphs whose choice number is equal to their chromatic number. J Graph Theory, 27: 87-97,1998.
[11] R. Häggkvist and A. Chetwynd. Some upper bounds on the total and list chromatic numbers of multigraphs. J. Graph Theory, 16: 503-516,1992.
[12] P. Haxell and J. Verstraete. List coloring hypergraphs. Electron. J. Combin., 17:pp.12,2010.
[13] J. Kahn. Asymptotically good list-colorings. J. Combin. Theory, Ser. A, 73:159,1996.
[14] J. Kratochvíl, Zs. Tuza, and M. Voigt. New trends in the theory of graph colorings: choosability and list coloring, in Contemporary Trends in Discrete Mathematics, volume 49 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages 183-197. American Mathematical Society,1999.
[15] H. A. Kierstead. On the choosability of complete multipartite graphs with part size three. Discrete Math., 211:255-259,2000.
[16] J. A. Noel, D. B. West, H. Wu, and X. Zhu. Beyond Ohba's conjecture: a bound on the choice number of k-chromatic graphs with n vertices. European J. Combin. 43:295-305, 2015.
[17] J. A. Noel, B. A. Reed, and H. Wu. A proof of a conjecture of Ohba. J. Graph Theory, 79:86-102,2015.
[18] K. Ohba. On chromatic-choosable graphs. J. Graph Theory, 40:130-135,2002.
[19] L. Rabern. Coloring graphs with dense neighborhoods. J. Graph Theory, 76:323-340, 2014.
[20] R. Ramamurthi and D. B. West. Hypergraph extension of the Alon-Tarsi list coloring theorem. Combinatorica, 25:355-366,2005.
[21] B. Reed and B. Sudakov. List colouring when the chromatic number is close to the order of the graph. Combinatorica, 25:117-123,2005.
[22] D. Saxton and A. Thomason. Hypergraph containers. Invent. Math., 201:925992,2015.
[23] D. Saxton and A. Thomason. List colourings of regular hypergraphs. Combin. Probab. Comput., 21:315-322,2012.
[24] Zs. Tuza. Graph colorings with local constraints-a survey. Discuss. Math. Graph Theory, 17:161-228,1997.
[25] V.G. Vizing. Coloring the vertices of a graph in prescribed colors. Diskret Analiz, 29:3-10,1976.
[26] W. Wang, J. Qian, and Z. Yan. Towards a version of Ohba's Conjecture for improper colorings. Graphs Combin., 33:489-501,2017.
[27] Z. Yan, W. Wang, and N. Xue. On improperly chromatic-choosable graphs. Graphs Combin., 31:1807-1814,2015.

[^0]: *Supported by the National Natural Science Foundation of China under Grant No. 11471273 and 11561058.
 ${ }^{\dagger}$ Corresponding author

