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Abstract

Given a family of graphs F , we consider the F-saturation game. In this game,
two players alternate adding edges to an initially empty graph on n vertices, with the
only constraint being that neither player can add an edge that creates a subgraph
that lies in F . The game ends when no more edges can be added to the graph. One
of the players wishes to end the game as quickly as possible, while the other wishes
to prolong the game. We let satg(F ;n) denote the number of edges that are in the
final graph when both players play optimally.

The {C3}-saturation game was the first saturation game to be considered, but
as of now the order of magnitude of satg({C3}, n) remains unknown. We con-
sider a variation of this game. Let C2k+1 := {C3, C5, . . . , C2k+1}. We prove
that satg(C2k+1;n) > (14 − εk)n

2 + o(n2) for all k > 2 and that satg(C2k+1;n) 6
(14 − ε

′
k)n

2 + o(n2) for all k > 4, with εk <
1
4 and ε′k > 0 constants tending to 0 as

k →∞. In addition to this we prove satg({C2k+1};n) 6 4
27n

2 + o(n2) for all k > 2,
and satg(C∞ \ C3;n) 6 2n− 2, where C∞ denotes the set of all odd cycles.

Mathematics Subject Classifications: 05C57

1 Introduction

Hajnal proposed the following game. Initially G is an empty graph on n vertices. Two
players alternate turns adding edges to G, with the only restriction being that neither
player is allowed to add an edge that would create a triangle. The last player to add an
edge wins the game, and the central question is which player wins this game as a function
of n.

The answer to this problem is known only for small values of n, the most recent result
being n = 16 by Gordinowicz and Pra lat [5]. A variation of this game was considered by
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Füredi, Reimer, and Seress [4]. In the modified version of the game, there are two players,
Max and Mini, who alternate turns adding edges to an initially empty graph on n vertices
with the same rules as in Hajnal’s original triangle-free game. The main difference is that
once no more edges can be added to G, Max receives a point for every edge in the graph
and Mini loses a point for every edge in the graph, with both players trying maximize the
number of points they receive at the end. The question is now to figure out how many
edges are at the end of the game when both players play optimally.

This game can be generalized. For a family of graphs F , we say that a graph G is
F -saturated if G contains no graph of F as a subgraph, but adding any edge to G would
create a subgraph of F . The F -saturation game consists of two players, Max and Mini,
who alternate turns adding edges to an initially empty graph G on n vertices, with the
only restriction being that G is never allowed to contain a subgraph that lies in F . The
game ends when G is F -saturated. The payoff for Max is the number of edges in G when
the game ends, and Mini’s payoff is the opposite of this. We let satg(F ;n) denote the
number of edges that the graph in the F -saturation game ends with when both players
play optimally, and we call this quantity the game F -saturation number.

We note that this game, and hence the value of satg(F ;n), depends on whether Max or
Mini makes the first move of the game, and in general this choice can significantly affect
the value of satg(F ;n), as is illustrated in [6]. For simplicity we will only consider the
game where Max makes the first move, though we claim that all of our results continue to
hold when Mini makes the first move by making small adjustments to our current proofs.

Let Ck denote the cycle of length k. The {C3}-saturation game was the original
saturation game studied in [4], where they proved what is still the best known lower
bound of 1

2
n log n + o(n log n) for satg({C3};n). Erdős claimed to have proved an upper

bound of n2/5 for this game, but this proof has been lost. Recently, Biró, Horn, and
Wildstrom [1] published the first non-trivial asymptotic upper bound of 26

121
n2 + o(n2) for

satg({C3};n). A number of other results have been obtained for specific choices of F ,
see for example [2], [3], and [9]. In addition to this, saturation games have recently been
generalized to directed graphs [8], hypergraphs [10], and to avoiding more general graph
properties such as k-colorability in [6] and [7].

1.1 Main Results

Let C2k+1 := {C3, C5, . . . , C2k+1}, and let C∞ denote the set of all odd cycles. Most of
this paper will be focused on studying the C2k+1-saturation games for k > 2. The key idea
with these games is that by forbidding either player from making C5’s, both players can
utilize a strategy that keeps the graph essentially bipartite throughout the game. This
makes it significantly easier to analyze the correctness of our proposed strategies, and to
bound the number of edges that are in the final graph. Our main result is the following
upper and lower bound for satg(C2k+1;n) and most values of k.

Theorem 1.1. For k > 4,(
1

4
− 1

4k2

)
n2 + o(n2) 6 satg(C2k+1;n) 6

(
1

4
− 1

206k4

)
n2 + o(n2).
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We can also obtain a quadratic lower bound for smaller values of k, and more generally
for any collection of non-bipartite graphs which contains C3 and C5.

Theorem 1.2. If C is a set of graphs which are not bipartite with C3, C5 ∈ C, then

satg(C;n) >
6

25
n2 + o(n2).

We emphasize that these results do not imply a quadratic lower bound for the triangle-
free game. We consider two more saturation games. The first is the game where only one
odd cycle is forbidden.

Theorem 1.3. For k > 2,

satg({C2k+1};n) 6
1

12

(
1 +

1

`

)2

n2 + o(n2),

where ` = max(3, b
√

2kc). In particular, satg({C2k+1};n) 6 4
27
n2 + o(n2) for all k > 2.

We also consider the “complement” of the {C3}-saturation game where every odd
cycle except C3 is forbidden. It turns out that in this setting the game saturation number
is linear.

Theorem 1.4.
satg(C∞ \ {C3};n) 6 2n− 2.

This result is in sharp contrast to the fact that satg(C∞;n) = b1
4
n2c, see [2].

Notation. Throughout the paper we let Gt denote the graph in the relevant saturation
game after t edges have been added, and we let et denote the edge of Gt that is not in
Gt−1. We let N t(x) denote the neighborhood of x in Gt and let dt(x, y) denote the distance
between x and y in Gt. We let t =∞ correspond to the point in time when the graph has
become F -saturated. If X t is a real number depending on t, we define ∆(X t) = X t−X t−2.
We let E(G) denote the set of edges of the graph G and let e(G) = |E(G)|. We write
G−X when X is a vertex, edge, or set of vertices and edges to denote the graph obtained
by deleting these vertices and edges from G. We omit floor and ceiling signs throughout
whenever these are not crucial.

Organization. In Section 2 we present a strategy for Max that guarantees that the
game ends with at least as many edges as stated in Theorem 1.2. In Section 3 we modify
this strategy to obtain the lower bound of Theorem 1.1. In Section 4 we present a strategy
for Mini that guarantees that the game ends with at most as many edges as the upper
bound of Theorem 1.1. Theorem 1.3 is proven in Section 5. Theorem 1.4 is proven in
Section 6. We end with some concluding remarks in Section 7.
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2 Proof of Theorem 1.2

Let C be as in the hypothesis of Theorem 1.2. We wish to construct a strategy for Max
in the C-saturation game such that at the end of each of Max’s turns, Gt is bipartite with
parts of roughly the same size. To this end, let uv denote the edge of G1. Let 1 < γ 6 2
and δ = 1

γ−1 . We say that Gt is γ-good if it satisfies the following four conditions.

(1*) Gt contains exactly one non-trivial connected component, and this component is
bipartite with parts U t 3 u and V t 3 v.

Let U t
0 = N t(v) (the good vertices), and U t

1 = U t \ U t
0 (the bad vertices). Define an

analogous partition for V t.

(2*) Every vertex of U t ∪ V t is adjacent to a vertex in U t
0 ∪ V t

0 .

(3*) btU := |V t
1 |+ (|U t| − γ|V t| − δ) 6 0 and btV := |U t

1|+ (|V t| − γ|U t| − δ) 6 0.

(4*) btU + btV 6 −2.

We note that btU 6 0 implies that, up to an additive constant factor, |U t| is larger than |V t|
by a multiplicative factor of at most γ. Moreover, if |U t| ≈ γ|V t|, then btU 6 0 guarantees
that there are few vertices in V t

1 . We note that (2*) and (4*) are trivially satisfied if
U t
1 = V t

1 = ∅. An important consequence of being γ-good is the following. To make
this statement precise, if Gt satisfies (1*) but Gt+1 contains more than one non-trivial
connected component, we define U t+1 := U t and V t+1 := V t.

Lemma 2.1. Let C be a set of graphs with C3, C5 ∈ C. Let t be such that Gt satisfies (1*)
and (2*). Then U t+1 and V t+1 are independent sets for any valid choice of et+1 in the
C-saturation game.

Proof. U t and V t are independent sets since Gt satisfies (1*). If v′, v′′ ∈ V t, let u′, u′′ ∈ U t
0

be neighbors of v′ and v′′ respectively, noting that such vertices exist since Gt satisfies
(2*). Then

dt(v′, v′′) 6 dt(v′, u′) + dt(u′, v) + dt(v, u′′) + dt(u′′, v′′) = 4.

Thus having et+1 = v′v′′ would create either a C3 or a C5 since dt(v′, v′′) is even, which is
forbidden in the C-saturation game. The analysis for U t+1 is similar.

We derive Theorem 1.2 by first proving the following.

Proposition 2.2. Let C be a set of graphs which are not bipartite and with C3, C5 ∈ C.
Then there exists a strategy for Max in the C-saturation game such that for all odd t,
whenever Gt−1 contains an isolated vertex, Max can choose et so that Gt is 3

2
-good.

Proof. Throughout this proof we implicitly use the fact that since C consists of graphs
which are not bipartite, any move that Max makes which keeps the graph bipartite must
be legal. It is not difficult to see that G1 is 3

2
-good. Assume Max has been able to
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play so that Gt−2 is 3
2
-good with t odd. If Gt−1 contains no isolated vertices then we

are done, so assume that there exists an isolated vertex z in Gt−1. Let et−1 = xy. We
will say that et−1 is an I (Internal) move if x ∈ U t−2, y ∈ V t−2, an O (Outside) move
if x, y /∈ U t−2 ∪ V t−2, an AU (Add to U) move if x ∈ V t−2, y /∈ U t−2 ∪ V t−2, and an
AV (Add to V ) move if x ∈ U t−2, y /∈ U t−2 ∪ V t−2. Note that an AU move causes y to
be added to U t−1. Lemma 2.1 shows that et−1 must be one of the four types of moves
discussed above (possibly after relabeling x and y), so it is enough to show how Max
reacts to each of these types of moves.

We note that if we assume Gt−2 satisfies (1*), any vertex not in U t−2 ∪ V t−2 must be
isolated. When Max plays, it will always be obvious that (1*) is maintained, so we will
not verify this condition in our analysis. Throughout the rest of this section we write γ
instead of 3

2
whenever our argument continues to hold when Gt−2 is assumed to be γ-good

for any 1 < γ 6 2, and we will emphasize whenever we need to use γ = 3
2

in our proofs.
This will make proving the lower bound of Theorem 1.1 somewhat simpler.

Claim 2.3. If et−1 is an I move, then Max can play so that Gt is γ-good.

Proof. If there exists u′ ∈ U t−1, v′ ∈ V t−1 with u′v′ /∈ Gt−1, then Max adds the edge u′v′,
and it is not hard to see that in this case Gt is γ-good. If no such pair of vertices exists,
then U t−1 ∪ V t−1 is a complete bipartite graph with, say, |U t−1| 6 |V t−1|, in which case
Max adds the edge zv. This gives ∆(|U t|) = 1 and ∆(|X t|) = 0 for X = U1, V, V1. Since
U t−1∪V t−1 is a complete bipartite graph (and since Max added no vertex to U t−1

1 ∪V t−1
1 ),

U t
1 = V t

1 = ∅, so (2*) and (4*) hold. We have ∆(btV ) = −γ 6 0, and hence btV 6 0. If
|U t−1| < δ = 1

γ−1 , we automatically have btU 6 0. Otherwise |V t−1| > |U t−1| > 1
γ−1 , which

implies

|U t| = |U t−1|+ 1 6 |V t−1|+ (γ − 1)
1

γ − 1
6 |V t−1|+ (γ − 1)|V t−1| = γ|V t−1| = γ|V t|.

Thus btU 6 0 and (3*) holds, so Gt is γ-good.

For some slight ease of notation, we say that a vertex w satisfies (2’) if it is adjacent
to some vertex in U t

0∪V t
0 . Thus Gt satisfying (2*) is equivalent to every vertex of U t∪V t

satisfying (2’). We also note that if w satisfies (2’) at time t− 2, then it will also satisfy
(2’) at time t.

Claim 2.4. If et−1 is an O move, then Max can play so that Gt is 3
2
-good.

Proof. Since bt−2U +bt−2V 6 −2, one of bt−2U or bt−2V must be at most −1. If bt−2U 6 −1 6 −1
2
,

Max adds the edge xv, which leads to ∆(|U t|) = ∆(|V t|) = ∆(|V t
1 |) = 1, ∆(|U t

1|) = 0. x
and y satisfy (2’), so (2*) continues to hold. We have ∆(btV ) = 1 − γ 6 0 and ∆(btU) =
2− γ = 1

2
when γ = 3

2
, so btU 6 0 since we assumed bt−2U 6 −1

2
, and thus (3*) holds. We

have ∆(btU) + ∆(btV ) = 3− 2γ = 0 since γ = 3
2
, so (4*) holds and Gt is 3

2
-good. If instead

bt−2V 6 −1, Max adds the edge xu and essentially the same analysis gives the result.

In response to AU and AV type moves, Max has to consider the overall “State” of
Gt−1 in order to make his move. To this end, we make the following observations.
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Claim 2.5.

(a) If |U t−1| > γ|V t−1|+ δ, then et−1 is an AU move, V t−2
1 = V t−1

1 = ∅, and bt−2V 6 −1.

(b) If |V t−1| > γ|U t−1|+ δ, then et−1 is an AV move, U t−2
1 = U t−1

1 = ∅, and bt−2U 6 −1.

Proof. For (a), assume that |U t−1| > γ|V t−1|+ δ. Since we assumed that bt−2U 6 0, and in
particular that |U t−2| 6 γ|V t−2|+δ since |V t−2

1 | is non-negative, it must be that et−1 is an
AU move, meaning bt−1U = bt−2U + 1 6 1. Thus |V t−1

1 | = (−|U t−1|+ γ|V t−1|+ δ) + bt−1U < 1,
which implies that |V t−1

1 | = 0 since |V t−1
1 | is a non-negative integer, and thus |V t−2

1 | = 0
as nothing is removed from V t−2

1 by an AU move. Lastly, bt−2U + bt−2V 6 −2 by (4*) and
bt−2U + 1 = bt−1U > 0, so

bt−2V < bt−2V + bt−1U = bt−2V + bt−2U + 1 6 −1.

This proves (a), and the analysis for (b) is similar.

Claim 2.6. If et−1 is an AU move, then the game must be in precisely one of the following
three States.

• State N (Nice): U t−1
1 = V t−1

1 = ∅, |U t−1| 6 γ|V t−1|+ δ, and |V t−1| 6 γ|U t−1|+ δ.

• State OU (Overflow U): |U t−1| > γ|V t−1|+ δ and V t−1
1 = ∅.

• State C (Clean-Up): |U t−1
1 ∪V t−1

1 | 6= 0, |U t−1| 6 γ|V t−1|+δ, and |V t−1| 6 γ|U t−1|+δ.

Proof. Observe that we always have |V t−1| 6 γ|U t−1|+δ by Claim 2.5 since we assume that
et−1 is not an AV move. Assume that the game is not in State N . If |U t−1| > γ|V t−1|+ δ,
then Claim 2.5 shows that V t−1

1 = ∅. If |U t−1| 6 γ|V t−1| + δ, then by assumption of the
game not being in State N, we must have |U t−1

1 ∪ V t−1
1 | 6= 0, and hence the game is in

State C.

By Claim 2.6, in order to show how Max reacts to an AU move, it is enough to show
how he reacts to AU moves that put the game into each of the States defined above.

Claim 2.7. If et−1 is an AU move putting the game into State N, then Max can play so
that Gt is γ-good.

Proof. Max adds the edge zu. With this we maintain that U t
1 = V t

1 = ∅, so (2*) and (4*)
are satisfied, and we have that ∆(|U t|) = ∆(|V t|) = 1, from which one can deduce that
(3*) is satisfied.

Claim 2.8. If et−1 is an AU move putting the game into State OU, then Max can play
so that Gt is 3

2
-good.

Proof. Max adds the edge zu. This gives ∆(|U t|) = ∆(|V t|) = 1, ∆(|V t
1 |) = 0, ∆(|U t

1|) 6
1. Clearly z satisfies condition (2’), and y does as well since V t−1

1 = V t
1 = ∅ by virtue

of the game being in State OU, so (2*) is maintained. We have ∆(btU) = 1 − γ 6 0
and ∆(btV ) 6 2 − γ 6 1, so btV 6 0 by Claim 2.5, and thus (3*) is maintained. Lastly,
∆(btU) + ∆(btV ) 6 3− 2γ = 0 since γ = 3

2
, so (4*) is maintained and Gt is 3

2
-good.
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Claim 2.9. If et−1 is an AU move putting the game into State C, then Max can play so
that Gt is γ-good.

Proof. First assume that V t−1
1 6= ∅. If x ∈ V t−1

1 , then Max adds the edge xu, and
otherwise Max picks an arbitrary v′ ∈ V t−1

1 and adds the edge v′u. After this we have
∆(|U t|) = 1, ∆(|V t|) = 0, ∆(|V t

1 |) = −1, ∆(|U t
1|) 6 1. (2*) is maintained since we made

sure that y’s neighbor x was in V t
0 . We have ∆(btU) = 0 and ∆(btV ) 6 1− γ 6 0, so (3*)

is maintained. ∆(btU) + ∆(btV ) 6 1− γ 6 0, so (4*) is maintained and Gt is γ-good.
Now assume V t−1

1 = ∅, which implies U t−1
1 6= ∅ since we are in State C. In this case

Max arbitrarily picks a u′ ∈ U t−1
1 and adds the edge u′v, giving ∆(|U t|) = 1, ∆(|V t|) =

∆(|V t
1 |) = 0, ∆(|U t

1|) 6 0. (2*) is maintained since y has a neighbor in V t = V t
0 . Because

we are in State C and |V t
1 | = |V t−1

1 | = 0, we have

btU = |U t| − γ|V t| − δ = |U t−1| − γ|V t−1| − δ 6 0.

We also have ∆(btV ) 6 −γ 6 0, so (3*) is maintained. Lastly, ∆(btU) + ∆(btV ) 6 1−γ 6 0,
so (4*) is maintained and Gt is γ-good.

Thus regardless of the State, Max can react as desired to AU moves, and an analogous
argument works for AV moves. Thus regardless of what et−1 is, Max can play so that Gt

is 3
2
-good whenever Gt−1 contains an isolated vertex.

We emphasize for later that the only two places in this subsection where we explicitly
used γ = 3

2
was in the proof of Claim 2.4 and in verifying (4*) in the proof of Claim 2.8.

Before proving Theorem 1.2, we require a small technical lemma.

Lemma 2.10. For every even t, if Gt−1 satisfies (1*) and (2*) in the C-saturation game,
then Max can play so that Gt satisfies (1*) and (2*).

Proof. By Lemma 2.1, et−1 must be an I, O, AU , or AV type move. If et−1 is of type I
or O, then Max plays exactly as he did in Proposition 2.2, and one can verify that in this
case (1*) and (2*) are satisfied (in particular, the strategy and proof for these properties
did not utilize the isolated vertex z, nor properties (3*) or (4*) in these cases). If, say,
et−1 = xy is an AU move with x ∈ V t−2, then Max adds the edge vy, in which case one
can verify that (1*) and (2*) are satisfied. A similar strategy and analysis holds for AV
moves.

Proof of Theorem 1.2. Max uses the strategy given by Proposition 2.2 as long as Gt−1

contains isolated vertices, after which Max uses the strategy given by Lemma 2.10. Note
that this implies that Gt satisfies (1*) and (2*) for all even t, and thus Gt will be bipartite
for all t by Lemma 2.1. In particular this holds for t = ∞, so e(G∞) = |U∞||V ∞|.
Because |U∞|+ |V ∞| = n, this product will be minimized when ||U∞| − |V ∞|| is as large
as possible. We thus need to determine how large, say, |U∞| can be.

Let T denote the largest even number such that GT−1 contains isolated vertices. Since
GT+2 satisfies (1*) and contains no isolated vertices, GT+2 must be connected, and hence
U∞ = UT+2 and V ∞ = V T+2. Because Max followed Proposition 2.2 at time T , we have
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|UT | 6 3
2
|V T |+δ. Because the only components of GT were UT ∪V T and isolated vertices,

we have |UT+2| 6 |UT |+ 2. In total we conclude that |U∞| 6 3
2
|V ∞|+ δ+ 2. Thus e(G∞)

is minimized if, say, |U∞| = 3
2
|V ∞|+ δ + 2, in which case we have

n = |U∞|+ |V ∞| = 5

2
|V ∞|+ δ + 2 =⇒ |V ∞| = 2

5
(n− 2− δ).

We conclude that e(G∞) = |U∞||V ∞| > 6
25
n2 + o(n2) as desired.

3 The Lower Bound of Theorem 1.1

The strategy of Proposition 2.2 gives a bound for the C2k+1-saturation game for k > 2.
When k is large we can further improve upon this strategy. Namely, Max will be able
to maintain that Gt is γk-good with γk such that limk→∞ γk → 1, increasing the total
number of edges guaranteed at the end of the game for large k. The strategy will be
essentially the same as before but with two key differences. First, we will identify our
“bad vertices” as those that are at distance roughly k from u or v, instead of those that
are not adjacent to u or v. Second, in the proof of Claim 2.9 we “fixed” a bad vertex x by
adding the edge, say, xv. In this setting we will instead fix this vertex by adding an edge
zv for some “representative” z that lies along a shortest path from x to v. The idea with
this is that a given z could represent multiple bad vertices, so adding this edge has the
potential to make multiple bad vertices sufficiently close to v. We note that our strategy
for Max in this section is also valid for the C-saturation game where C is any set of odd
cycles with C2k+1 ⊆ C and k > 3.

We now proceed with our proof of the lower bound of Theorem 1.1. Throughout this
section we fix some k > 3. Our notation for the proof of Proposition 3.2 will be very
similar to the notation of the proof of Proposition 2.2, but we emphasize that a large
portion of the notation used here will differ somewhat from how it was used before.

Let uv denote the first edge of Gt. When the connected component containing u and
v in Gt is bipartite, we let U t 3 u and V t 3 v denote the parts of this bipartition. Let
` = k if k is even and ` = k + 1 if k is odd. Define U t

0 = {u′ ∈ U t : dt(u′, u) < `} and
Ũ t
1 = U t \ U t

0. Arbitrarily assign a linear ordering to the vertices of U t. We will say that
a vertex x ∈ U t is the representative for u′ ∈ Ũ t

1 if

1. dt(x, u) = 4.

2. x lies along a shortest path from u′ to u.

3. x is the minimal vertex (with respect to the ordering of U t) satisfying these prop-
erties.

We note that since k > 3, we have dt(x, u) 6 dt(u′, u), so every u′ ∈ Ũ t
1 has a represen-

tative. Define U t
1 to be the set of vertices that are representatives for some vertex of Ũ t

1.
Note that |Ũ t

1| = 0 if and only if |U t
1| = 0. We similarly define V t

0 , Ṽ
t
1 , and V t

1 .
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For 1 < γ 6 2 we let δ = 1
γ−1 , and we now say that Gt is γ-good if it satisfies the same

four conditions as we had before but with our new definitions for the sets U t
0, U

t
1, V

t
0 , and

V t
1 being used. We first prove an analog of Lemma 2.1 using our new definitions. Again if
Gt satisfies (1*) but Gt+1 has more than one non-trivial connected component, we define
U t+1 := U t and V t+1 := V t.

Lemma 3.1. Let t be such that Gt satisfies (1*) and (2*). Then U t+1 and V t+1 are both
independent sets for any valid choice of et+1 in the C2k+1-saturation game for k > 3.

Proof. Let v′, v′′ ∈ V t, and let u′, u′′ ∈ U t
0 be neighbors of v′ and v′′ respectively, noting

that such vertices exist by (2*). We then have

dt(v′, v′′) 6 dt(v′, u′) + dt(u′, u) + dt(u, u′′) + dt(u′′, v′′) 6 1 + (`− 2) + (`− 2) + 1 6 2k,

where we used that dt(u′, u) < ` is even and that ` 6 k + 1. Since dt(v′, v′′) is even,
having et+1 = v′v′′ would create a C2k′+1 for some k′ 6 k, which is forbidden in the
C2k+1-saturation game. The analysis for U t is similar.

Proposition 3.2. There exists a strategy for Max in the C2k+1-saturation game when
k > 3 such that for all odd t, whenever Gt−1 contains an isolated vertex, Max can add an
edge so that Gt is γk-good with

γk =
4k−1 +

√
16k−2 + 4

2
.

Proof. G1 is γk-good, so inductively assume that Max has been able to play so that Gt−2

is γk-good with t odd. Before describing the strategy, we first make an observation about
Ũ t−2
1 and Ṽ t−2

1 .

Claim 3.3. Ũ t−2
1 = {u′ : dt−2(u, u′) = `} and Ṽ t−2

1 = {v′ : dt−2(v, v′) = `}.

Proof. Let u′ ∈ U t−2
0 be a neighbor of v′ ∈ Ṽ t−2

1 , which exists by (2*). Then

dt−2(v′, v) 6 dt−2(v′, u′) + dt−2(u′, u) + dt−2(u, v) 6 1 + (`− 2) + 1 = `,

with the ` − 2 term coming from the fact that dt−2(u′, u) is even and less than `. Since
v′ ∈ Ṽ t−2

1 implies dt−2(v′, v) > `, the distance must be exactly `. The analysis for Ũ t−2
1 is

similar.

We are now ready to describe the strategy we wish to use to prove Proposition 3.2.
We define I, O, AU, and AV moves, as well as the States N, OU, and C exactly as we
had written before, but we now use our new definitions for the relevant sets. The strategy
for Proposition 3.2 is almost the same strategy as that of Proposition 2.2 after using our
new definitions for the relevant sets, move types, and States. The only change we make
is how Max responds to an AU or AV move that brings the game into State C. Namely,
before if Mini added the edge et = xy with y an isolated vertex in Gt−1, we checked to see
if x was in, say, U t

1, in which case we added the edge xv. We now instead check if x ∈ Ũ t
1,
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and if it is we add the edge zv where z is the representative for x. Adding this edge makes
dt(x, u) strictly smaller than dt−2(x, u), so by Claim 3.3 we will have dt(x, u) < ` and y
will have a neighbor in U t

0, so (2*) will still hold.
One can verify that with this slight modification all of the previous analysis we did in

proving the claims within the proof of Proposition 2.2 continues to hold. It remains to
address the two points in the proof of Proposition 2.2 where we required γ = 3

2
, namely

Claim 2.4 and Claim 2.8.

Claim 3.4. If et−1 is an O move, then Max can play so that Gt is γ-good.

Proof. Max reacts as he did in Claim 2.4. Observe that no vertices are added to Ũ t
1 or

Ṽ t
1 . Indeed, the new vertices are within distance 2 < ` of u and v, so they will both be

added to U t
0 ∪ V t

0 . In particular, ∆(|U t
1|) = ∆(|V t

1 |) = 0, and the remaining analysis is
straightforward.

In order to deal with AU moves putting the game into State OU, we will need the
following result showing that |U t

1| is small.

Claim 3.5. For k > 3, |U t
1| 6 4k−1|U t|.

Proof. For each x ∈ U t
1, let ux denote a vertex that x is the representative for, and let Px

denote the set of vertices that make up a shortest path from x to ux. We claim that Px
and Py are disjoint if x 6= y. Indeed, let w ∈ Px ∩ Py. If dt(w, x) < dt(w, y), then

dt(uy, w) + dt(w, y) + dt(y, u) = dt(uy, u) 6 dt(uy, w) + dt(w, x) + dt(x, u).

Since dt(y, u) = dt(x, u) = 4 this implies that dt(w, y) 6 dt(w, x), a contradiction. By
using a symmetric argument we see that we must have dt(w, x) = dt(w, y). If we had,
say, x < y in the ordering of U t, then y could not be the representative for uy since x also
satisfies properties (1) and (2) for being a representative for uy, meaning that y is not the
minimal vertex satisfying these properties. A similar result occurs if x > y. We conclude
that the only way Px ∩ Py could be non-empty is if x = y.

For each x ∈ U t
1, we observe that the number of vertices in Px ∩ U t is

dt(ux, x)

2
+ 1 =

`− 4

2
+ 1 =

`

2
− 1 >

k

4
,

and none of these vertices appear in any other Py for x 6= y ∈ U t
1. Since we can associate

to each x ∈ U t
1 a set of at least k/4 elements of U t without any element of U t appearing

in more than one set, we must have |U t
1| 6 4k−1|U t|.

Claim 3.6. If et−1 is an AU move putting the game into State OU, then Max can play
so that Gt is γk-good.

Proof. Max reacts as in the proof of Claim 2.8. As mentioned before, essentially the
same proof used to prove Claim 2.8 can be used here to show that Gt satisfies (1*), (2*)
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and (3*), so it remains to verify (4*). By definition of State OU, we have V t
1 = ∅ and

|U t−1| > γk|V t−1|+ δ. The latter implies that

|V t| = |V t−1|+ 1 <
1

γk
|U t−1| − 1

γk
δ + 1 =

1

γk
|U t| − 1

γk
δ + 1.

Combining these observations with Claim 3.5 gives

btU + btV = |U t
1|+ (1− γk)(|U t|+ |V t|)− 2δ

6 4k−1|U t|+ (1− γk)
(
|U t|+ 1

γk
|U t| − 1

γk
δ + 1

)
− 2δ

=

(
−γk + 4k−1 +

1

γk

)
|U t| −

(
1 +

1

γk

)
δ + (1− γk)

= −
(

1 +
1

γk

)
δ + (1− γk),

with the last equality coming from the fact that γk is a root of −x2 + 4k−1x + 1. It
is not too hard to see that the remaining value is at most −2. This shows that (4*) is
maintained in this case, completing the proof.

To finish the proof, observe that Lemma 3.1 implies that et−1 must be an I, O, AU ,
or AV type move. The claims we have proven here together with our work from Proposi-
tion 2.2 shows, provided Gt−1 contains an isolated vertex, that Max can play so that Gt

is γk-good regardless of what type of move et−1 is, proving the statement.

Proof of the lower bound of Theorem 1.1. Max follows the strategy of Proposition 3.2 un-
til there are no isolated vertices remaining, at which point he follows the strategy of
Lemma 2.10, and one can easily verify that the statement and proof of Lemma 2.10 con-
tinues to hold with our newly defined sets. Using the same sort of reasoning as before,
one can show e(G∞) > γk

(1+γk)2
n2 + o(n2). Note that

γk
(1 + γk)2

=
k

8

(√
k2 + 4− k

)
>

(
1

4
− 1

4k2

)
,

giving the desired result.

4 The Upper Bound of Theorem 1.1

Throughout this section we will consider the C2k−1-saturation game, so that the smallest
odd cycle that can be made is a C2k+1, and we will always have k > 5. We again let
e1 = uv.

The proof of Theorem 1.2 shows that Mini has no strategy in the C2k−1-saturation
game that guarantees the creation of any odd cycles. On the other hand, the fact that
satg(C∞;n) = b1

4
n2c shows that if Mini does not attempt to make any odd cycles, then
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Max can force the game to end with a complete balanced bipartite graph. Thus in order
to get any non-trivial upper bound on satg(C2k−1;n), Mini must attempt to construct odd
cycles, while also making sure that the game does not end as a balanced bipartite graph
if she fails to construct any odd cycles.

Because of the obstructions mentioned above, the proof of the upper bound of Theo-
rem 1.1 needs some preparations. The main idea of the proof is that Mini will maintain a
number of long, disjoint paths in Gt, and then eventually either Mini will be able to join
these paths together and create many odd cycles, or the graph will be “almost” bipartite
with one side significantly larger than the other.

4.1 Paths

We wish to define a special set of disjoint paths P t in Gt, with each path having v
as one of its endpoints. To construct this set, we first need to establish some notation.
We say that xy is an isolated edge if d(x) = d(y) = 1. Let Ct

x denote the connected
component containing x in Gt. We say that Ct

x is good if v /∈ Ct
x and if Ct

x is either

an isolated vertex or an isolated edge. If p is a path in Gt, let C
t

p denote the connected
component in Gt − {v} containing p− {v}.

We start with P 1 = {uv}, and inductively we define P t based on the following proce-
dure.

Step 0. Set P t := P t−1.

Step 1. If Mini adds the edge et = xv with Ct−1
x good, set P t := P t ∪ {xv}.

Step 2. If Mini adds the edge et = xw with Ct−1
x good, and if there exists some p ∈ P t−1

with p = w · · · v, set P t := (P t \ {p}) ∪ {xp}.

Step 3. While there exists p ∈ P t and x ∈ C
t

p such that there does not exist a unique
path from x to v in Gt, set P t := P t \ {p}.

We first observe that the C
t

p components are disjoint from one another.

Lemma 4.1. If p, p′ ∈ P t and p 6= p′, then C
t

p 6= C
t

p′.

Proof. This certainly holds for t = 1, so assume this holds up to time t. Assume for

contradiction that there exist p, p′ ∈ P t such that p 6= p and C
t

p = C
t

p′ . If p, p′ ∈ P t−1,

then we had C
t−1
p 6= C

t−1
p′ by our inductive hypothesis, which means we must have et = xy

with x ∈ Ct−1
p , y ∈ Ct−1

p′ . But this implies that x ∈ Ct

p has two paths from itself to v,
namely the path it had in Gt−1 and the path from y to v in Gt−1 together with the edge
xy. Thus p /∈ P t by Step 3, a contradiction.

Thus we must have, say, p /∈ P t−1. The only way we could have p ∈ P t then is if
et = xw with Ct−1

x good and either w = v or w the endpoint of some p′′ ∈ P t−1. Observe in
either case that p is the only new path added to P t (Step 2 can not be applied twice since
our inductive hypothesis shows that there exists at most one path with w as an endpoint).
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Thus we must have p′ ∈ P t−1. Note that C
t−1
p′ 6= C

t−1
p′′ by our inductive hypothesis, and

that C
t−1
p′ 6= Ct−1

x since p′ contains v while Ct−1
x does not since it is good. Thus et does

not involve any vertex of C
t−1
p′ , and in particular C

t

p′ = C
t−1
p′ 6= C

t−1
p′′ ∪Ct−1

x ∪ {xw} = C
t

p

as desired.

Another key point with this procedure is that Step 3 does not “interfere” with Steps
1 and 2.

Lemma 4.2. For any t, if Step 1 or 2 adds the path p to P t, then p ∈ P t. That is, p is
not removed by Step 3.

Proof. If Step 1 or 2 added the path p, then we must have et = xw with Ct−1
x good.

First consider the case w 6= v, which means that p = xp′ with p′ = w · · · v a path in

P t−1. Observe that Ct−1
x and C

t−1
p′ are disjoint since p′ contains v while Ct−1

x does not,

and hence C
t

p = C
t−1
p′ ∪ Ct−1

x ∪ {xw}.
Since p′ was not deleted by Step 3, every vertex of C

t−1
p′ contains a unique path to v in

Gt−1. Since no vertex of Ct−1
x contains a path to v, every vertex of C

t

p′ continues to have
a unique path to v in Gt. Moreover, every path from y ∈ Ct−1

x to v in Gt must consist of
a path from y to x (possibly the empty path) followed by the unique path from w to v.
Since Ct−1

x is acyclic, the path from y to x is unique and we conclude that p is not deleted
by Step 3. The proof for the case w = v is similar, and we omit the details.

We will be primarily interested in the endpoints of the paths of P t. To this end, let Dt
`

denote the set of vertices other than v that are the endpoint of a path of length ` in P t.

Lemma 4.3. Let `, t > 1 and assume x ∈ Dt
`.

(a) dt(x, v) = `.

(b) |Dt
`|− |Dt−1

` | > −2, and this difference is 0 whenever Max adds an edge to Gt−1 that
involves an isolated vertex of Gt−1.

(c) For any t > 0, if w1 6= w2 are two vertices of Dt
k, then choosing et+1 = w1w2 is a

legal move in the C2k−1-saturation game.

Proof. For (a), by definition of Dt
` there exists a path of length ` from x to v, and this is

the only path from x to v by Step 3.
For (b), observe that et can involve at most two components of Gt−1 − {v}, and each

component contains at most one path of P t−1 by Lemma 4.1. Any path not in these
components will not be modified or deleted by the Steps. Hence |Dt

`| − |Dt−1
` | > −2. If

Max takes an edge involving an isolated vertex, then none of the Steps for modifying P t

apply and we have Dt
` = Dt−1

` .
For (c), let pi denote the path for which wi is an endpoint for, noting that p1 6= p2 since

w1 6= w2 and neither are equal to v. Since p1 6= p2, w1 and w2 lie in different components
of Gt−{v} by Lemma 4.1. Thus if the edge w1w2 created a forbidden cycle it would have
to involve the vertex v. Since dt(wi, v) = k for i = 1, 2 by part (a), the smallest cycle that
could be formed is a C2k+1, which is allowed.
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4.2 Phases and Phase Transitions

For the rest of the section we assume that t is even. We wish to describe each Gt as
belonging to a certain “Phase” which will determine how Mini will play. To do this we
will need some additional definitions.

Set U0 := ∅ and V 0 := {v}. Assume et = xy. If x ∈ V t−1 and y is an isolated vertex,
then U t := U t−1 ∪ {y}, V t := V t−1. If x ∈ V t−1 and y is in an isolated edge yz in Gt−1,
then U t := U t−1 ∪ {y}, V t := V t−1 ∪ {z}. If x ∈ U t−1 we define U t and V t analogously.
For any other case of et, set U t := U t−1, V t := V t−1.

The idea behind these definitions is that for most of the game, Mini will try and make
it so that Gt consists only of isolated vertices, isolated edges, and a bipartite component
containing v. If she achieves this for all t 6 t′, then U t′ ∪ V t′ defines a bipartition for the
component containing v. However, at some point the graph will likely cease to have these
properties, in which case U t ∪ V t will serve as an “approximate” bipartition. Another
feature of these sets is that they are compatible with the Dt

` sets.

Lemma 4.4. If x ∈ Dt
` for some t with ` odd, then x ∈ U t′ for all t′ > t. If x ∈ Dt

` for
some t with ` even, then x ∈ V t′ for all t′ > t.

Proof. Note that the sets U t and V t never lose elements, so it is enough to consider the
case t′ = t and t chosen to be the minimal value such that x ∈ Dt

`. First consider the case
` = 1. By the Steps used to define P t, having x ∈ Dt

1 and t minimal implies that et = xv
with x an isolated vertex or part of an isolated edge of Gt−1. Since v ∈ V t−1, this implies
that x ∈ U t, proving the statement for ` = 1.

Now inductively assume that we have proven the statement up to ` > 1, and for
concreteness we will assume that ` is odd. Again by the Steps, having x ∈ Dt

` implies
that et = xy for some y ∈ Dt−1

`−1 and that x is an isolated vertex or part of an isolated edge
of Gt−1. By our inductive hypothesis we have y ∈ V t−1, and hence x ∈ U t as desired.

Let it denote the number of isolated vertices in Gt and let c = (1000k2)−1. We will
say that Gt is in Phase ` for some −1 6 ` 6 k based on the following set of rules.

• G0 is in Phase 0.

• If Gt−2 is in Phase 0, |Dt
1| > (1

9
+ 9c)n, |Dt

2| = 0, ||U t| − |V t|| < cn, and 1
2
n 6 it 6

(1
2

+ 4c)n, then Gt is in Phase 1.

• If Gt−2 is in Phase 1, |Dt
2| > 1

9
n, ||U t| − |V t|| < cn, and it > ( 5

18
− 9c)n, then Gt is

in Phase 2.

• For 2 6 ` < k, if Gt−2 is in Phase `, |Dt
`+1| > (9(k− `− 1) + 4)cn, ||U t|− |V t|| < cn,

and it > (8(k − `− 1) +
∑k

j=`+1 27(k − j))cn, then Gt is in Phase `+ 1.

• If Gt−2 is in Phase ` with ` < k and ||U t| − |V t|| > cn, then Gt is in Phase −1.

• If Gt−2 is in Phase ` and if Gt satisfies none of the above situations, then Gt is in
Phase `.
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Intuitively, these rules say that if we ever have ||U t|− |V t|| large, then the game enters
Phase −1 and never leaves it. Otherwise the game goes from Phase ` to `+1 if Gt contains
many isolated vertices and many paths of length ` + 1 with v as an endpoint. We note
that to leave Phase 0 we additionally require there to not be too many isolated vertices in
Gt. Our goal will be to show that Mini can play so that the game eventually enters either
Phase −1 or Phase k, and that once the game reaches one of these Phases that Mini can
play so that e(G∞) is small.

4.3 The Beginning of the Game

We will say that a path in U t ∪ V t is alternating if the vertices in the path alternate
being in U t and V t, and we define dta(x, y) for x, y ∈ U t ∪ V t to be the length of the
shortest alternating path in U t ∪ V t from x to y, with this value being infinite if no such
path exists. We record some observations about this definition as a lemma.

Lemma 4.5. Let t, ` > 1.

(a) dta(x, v) is even if x ∈ V t and odd if x ∈ U t.

(b) If x ∈ Dt
`, then dta(x, v) = dt(x, v).

Proof. The proof of (a) is immediate from our definitions. For (b), every x ∈ Dt
` has a

unique path (of length `) from itself to v by Step 3. Further, this path is alternating by
Lemma 4.4, so we conclude the result.

We now describe the kind of structure that Mini tries to preserve during the beginning
of the game. If t is even and Gt is in Phase ` with 0 6 ` < k, we say that Gt is `-nice if
it satisfies the following three conditions.

(1-`) Gt contains exactly one non-trivial connected component whose vertices are U t∪V t.

(2-`) dta(x, v) 6 `+ 2 for all x ∈ U t ∪ V t.

(3-`) it > 3, and if ` 6= 0 then |Dt
`| > 3.

Proposition 4.6. Let k > 5. Mini can play in the C2k−1-saturation game so that, when-
ever Gt is in Phase ` for some even t > 0 and 0 6 ` < k, Gt is `-nice.

Proof. For any given t we say that the edge et−1 is of type I if it involves two vertices of
U t−2∪V t−2, of type O if it involves two isolated vertices of Gt−2, of type AU if it involves
one isolated vertex of Gt−2 and one vertex of V t−2, of type AV if it involves one isolated
vertex of Gt−2 and one vertex of U t−2, and of type X if it is not any of the four types
mentioned above. Mini’s strategy is as follows, where we define Dt

0 = {v} for all t to deal
with the case ` = 0.

Strategy 4.7. Let t be such that Gt−2 is in Phase ` with 0 6 ` < k, and assume that Max
has just played et−1. If |Dt−1

` | = 0, it−1 = 0, or if et−1 is an X move, Mini plays arbitrarily,
and in this case we will say that Mini has forfeited the game.

If Mini does not forfeit, let y ∈ Dt−1
` and let z be an isolated vertex of Gt−1. If ` is

even, Mini plays as follows.
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• If et−1 is an I move, Mini plays yz.

• If et−1 = xw is an O move, Mini plays xy.

• If et−1 = xu′ is an AV move with u′ ∈ U t−2 and x /∈ U t−2 ∪ V t−2, Mini plays yz.

• Assume et−1 = xv′ is an AU move with v′ ∈ V t−2 and x /∈ U t−2 ∪ V t−2. If
dt−1a (v′, v) 6 `, Mini plays zv (essentially skipping her turn). If dt−1a (v′, v) > `,
let v′x′v′′ · · · v be a shortest alternating path from v′ to v. Then Mini adds the edge
xv′′ if this is a legal move, otherwise she forfeits and plays arbitrarily.

The strategy for ` odd is exactly the same as the strategy for ` even, except that the roles
of U t and V t are reversed throughout and that Mini plays zu in order to “skip her turn”
instead of zv.

We note that in the AU case with ` even and with dt−1a (v′, v) > ` > 0, the vertex
v′′ always exists. Indeed, dt−1a (v′, v) is even by Lemma 4.5 and hence dt−1a (v′, v) > 2, so
v′′ exists. A similar result holds with ` odd. With this in mind, it is not difficult to see
that Mini can always follow Strategy 4.7 in the C2k−1-saturation game. We would like to
further argue that Mini never has to forfeit the game.

Claim 4.8. If Gt−2 is in Phase ` with 0 6 ` < k and is `-nice, then Mini does not forfeit
when using Strategy 4.7 at time t.

Proof. We only prove this when ` is even, the case when ` is odd being essentially the
same. Condition (1-`) guarantees that et−1 is not of type X, and (3-`) together with
Lemma 4.3 guarantees that |Dt−1

` |, it−1 6= 0 (for ` = 0 we use that |Dt−1
0 | = 1 for all t).

Thus the only potential issue is when, say, et−1 = xv′ is an AU move with dt−1a (v′, v) > `.
Assume that this is the case.

Let G̃t = Gt−1 ∪ {xv′′}, and assume that G̃t contains an odd cycle C of length less
than 2k + 1. Note that C is not contained in Gt−1 since we assume that Gt−1 is a legal
state in the C2k−1-saturation game, so xv′′ must be an edge of C. This implies that xv′

is also an edge of C since x has degree two in G̃t. If x′ is not a vertex of C, then let C ′

be C after replacing the edges xv′ and xv′′ with x′v′ and x′v′′. Then C ′ is an odd cycle of
length less than 2k + 1 in Gt−1, a contradiction.

Thus x′ must be a vertex of C, which means that there exists in Gt−1 a path from x′ to
v′ and a path from x′ to v′′ that lie in C, and exactly one of these paths is of even length.
Any path of even length from x′ to v′ in Gt−1 has length at least 2k, since otherwise this
path together with the edge x′v′ would create a forbidden odd cycle in Gt−1. A similar
observation holds for paths of even length from x′ to v′′. We conclude that C has length
at least 2k + 3, which is allowed.

With this established, we will prove our result by induction. G0 is in Phase 0 and is
0-nice. From now on we inductively assume that Gt−2 is in Phase ` for some 0 6 ` < k,
that Gt−2 is `-nice, and further that Mini played according to Strategy 4.7 for all even
t′ < t without forfeiting, which we can assume by Claim 4.8. Assume that Mini chooses
et as prescribed by Strategy 4.7. We note that it is possible for Gt to not be in Phase `.
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Claim 4.9. Gt satisfies (1-`) and (2-`).

Proof. It is not difficult to see that (1-`) is maintained. In verifying (2-`), we only consider
the case ` even, the analysis for the odd case being exactly the same but with the roles of
U t and V t reversed throughout. Observe that in this case we have y ∈ V t−1 by Lemma 4.4
and that dta(y, v) = ` by Lemma 4.5.

If et−1 is an I move, then dta(z, v) = ` + 1 since dta(y, v) = `, and no other distances
increase, so (2-`) is maintained.

If et−1 is an O move, observe that xw is an isolated edge in Gt−1. Because of this and
the fact that y ∈ V t−1, we have x ∈ U t and w ∈ V t by how these sets are defined. We
then have dta(x, v) = `+ 1 and dta(w, v) = `+ 2, so (2-`) is maintained.

If et is an AV move, note that dt−1a (u′, v) is odd by Lemma 4.5, and hence at most
` + 1 by (2-`) and the fact that ` + 2 is even. Thus dta(x, v) 6 ` + 2, and we also have
dta(z, v) = `+ 1, so (2-`) is maintained.

If et is an AU move with dt−1a (v′, v) 6 ` then it is not hard to see that (2-`) is
maintained. Otherwise we have dta(x, v) = `+ 1 and (2-`) is maintained.

Let t` denote the smallest even value such that Gt` is in Phase `. Observe that the game
can not leave Phase ` and come back to it at a later time, which means that Gt′ is in Phase
` for all even t′ with t` 6 t′ < t. For any even t′ with t` 6 t′ 6 t, define gt

′
= |V t′| − |U t′|

if ` is even and gt
′

= |U t′| − |V t′ | if ` is odd. Recall the definition ∆(X t′) := X t′ −X t′−2

for any relevant X, and that we assumed that Mini used Strategy 4.7 without forfeiting
for all even t′ with t` < t′ 6 t.

Claim 4.10. Let t′ be even with t` < t′ 6 t. If ` > 0 is even, then the following hold.

• If et
′−1 is type I: ∆(|Dt′

`+1|) > −1, ∆(|Dt′

` |) > −3, ∆(gt
′
) = −1, ∆(it

′
) = −1.

• If et
′−1 is type O: ∆(|Dt′

`+1|) = 1, ∆(|Dt′

` |) = −1, ∆(gt
′
) = 0, ∆(it

′
) = −2.

• If et
′−1 is type AV : ∆(|Dt′

`+1|) = 1, ∆(|Dt′

` |) = −1, ∆(gt
′
) = 0, ∆(it

′
) = −2.

• If et
′−1 is type AU : ∆(|Dt′

`+1|) > 0, ∆(|Dt′

` |) = 0, ∆(gt
′
) 6 −1, −1 > ∆(it

′
) > −2.

The same results hold for ` = 0 when one ignores the ∆(|Dt′

` |) terms. Analogous results
hold for ` odd by switching the results for AU with those of AV .

Proof. This is not particularly difficult to verify. In particular one uses Lemma 4.2 to
show that |Dt′−1

`+1 | increases after Mini responds to I, O, and AU moves, and Lemma 4.3

to bound the changes in |Dt′−2
` | and |Dt′−2

`+1 | after Max plays. We omit the details.

In order to show that Gt satisfies (3-`), we will use Claim 4.10 together with the
following claim which shows that |Dt`

` | and it` are large.

Claim 4.11. We have the following.

(a) For ` > 2 we have |Dt`
` | > (9(k− `) + 4)cn and it` > (8(k− `) +

∑k
j=` 27(k− j))cn.
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(b) For any ` with 0 6 ` < k, Gt` satisfies (3-`) when n is sufficiently large.

Proof. Part (a) is immediate for ` > 2 by how we defined our Phases. To deal with the
case ` = 2, recall that c = (1000k2)−1. We have

|Dt2
2 | >

1

9
n >

9

1000k
n >

9k − 14

1000k2
n = (9(k − 2) + 4)cn,

it2 >

(
5

18
− 9c

)
n >

35

1000
n >

8k + 27k2

1000k2
n > (8(k − 2) +

k∑
j=2

27(k − j))cn.

Part (b) for ` > 2 follows from (a). The statement is true for ` = 0 when n > 3 and
is true for ` = 1 when n > 27 since |Dt1

1 |, it1 > 1
9
n by the rule for moving from Phase 0 to

Phase 1.

Claim 4.12. Let `′ denote the Phase of Gt. If n is sufficiently large, then either `′ = −1,
`′ = k, or Gt satisfies (3-`′).

Proof. Note that by the way our Phases were defined, we must have `′ = −1, `, or `+ 1.
There is nothing to prove if `′ = −1, so we can assume that `′ 6= −1. Consider the case
that `′ = `+ 1. If ` = k − 1 then there is nothing to prove, and otherwise we have t = t`′
since Gt−2 was in Phase `, which means that Gt satisfies (3-`′) by Claim 4.11. We can
thus assume that `′ = `.

Assume first that ` is even. For any even t′ with t` < t′ 6 t, let rt
′
1 denote the

number of even t′′ with t` < t′′ 6 t′ such that et
′′−1 was of type I or AU , and similarly

define rt
′
2 to correspond to the number of O and AV moves. Observe that we always have

rt
′
1 +rt

′
2 = 1

2
(t′−t`) since we assume that Mini has used Strategy 4.7 up to time t′, and hence

Max never played an X move by Claim 4.8. By Claim 4.10 we have that gt
′
6 gt` − rt′1 .

Note that gt` < cn and gt
′
> −cn, as otherwise we would have either Gt` or Gt′ in Phase

−1. Thus we can assume that rt
′
1 6 2cn, and hence rt

′
2 = 1

2
(t′− t`)− rt

′
1 > 1

2
(t′− t`)− 2cn.

By using this, Claim 4.10, and rt
′
1 + rt

′
2 = 1

2
(t′ − t`), we conclude that

|Dt′

` | > |D
t`
` | − 3rt

′

1 − rt
′

2 > |Dt`
` | −

1

2
(t′ − t`)− 4cn, (4.1)

|Dt′

`+1| > |D
t`
`+1| − r

t′

1 + rt
′

2 > |Dt`
`+1|+

1

2
(t′ − t`)− 4cn, (4.2)

it
′
> it` − 2rt

′

1 − 2rt
′

2 = it` − (t′ − t`), (4.3)

it
′
6 it` − rt′1 − 2rt

′

2 6 it` − (t′ − t`) + 4cn. (4.4)

First consider the case ` = 0, which implies that t0 = 0, |Dt0
1 | = 0, and it0 = n.

Observe that using Strategy 4.7 we have |Dt′
2 | = 0 for any t′ with Gt′ in Phase 0. Let

t̃ be an even integer such that (2
9

+ 26c)n 6 t̃ 6 1
2
n, which exists when n is sufficiently

large since 1
2
− (2

9
+ 26c) > 0. If t′ is even with (2

9
+ 26c)n 6 t′ 6 min(t, t̃) 6 1

2
n, then

Equations (4.2), (4.3), and (4.4) imply that |Dt′
1 | > (1

9
+ 9c)n and 1

2
n 6 it

′
6 (1

2
n+ 4c)n.
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This implies that Gt′ is in Phase 1 since Gt′−2 was in Phase 0. But Gt′ was in Phase 0
since t′ 6 t and we assumed Gt was in Phase 0, a contradiction. Thus no such t′ exists,
and in particular we must have t < (2

9
+ 26c)n 6 1

2
n. Equation (4.3) then implies that

it > 1
2
n > 3 for n > 6, so Gt satisfies (3-0).

Now assume ` > 0 is even. Let t̃ be the smallest even integer such that t̃ > (16 +
18(k − ` − 1))cn + t`. If t̃ 6 t, then Claim 4.11 together with Equations (4.2) and (4.3)
imply that

|Dt̃
`+1| >

1

2
(16 + 18(k − `− 1))cn− 4cn = (4 + 9(k − `− 1))cn,

and

it̃ > (8(k − `) +
k∑
j=`

27(k − j))cn− (16 + 18(k − `− 1))cn− 2

= (8(k − `− 1) +
k∑

j=`+1

27(k − j) + 9(k − `)− 8)cn− 2

> (8(k − `− 1) +
k∑

j=`+1

27(k − j))cn+ 3,

for n such that cn > 5. Thus Gt̃ is in Phase ` + 1, a contradiction, so t 6 (16 + 18(k −
` − 1))cn + t`. Assuming this, one can go through the same calculations as above and
conclude that it > 3, and we also have

|Dt
`| > (9(k − `) + 4)cn− 1

2
· (16 + 18(k − `− 1))cn− 4cn = cn > 3

when n is sufficiently large.
The analysis for ` > 3 odd is essentially the same as above after switching the roles of

AU and AV when defining rt
′
1 and rt

′
2 . The analysis is almost the same for ` = 1, except

we use |Dt1
1 | > 1

9
n+ 9cn, it1 > 1

2
n, and t̃ > (2

9
+ 8c)n+ t1.

By Claim 4.12 and Claim 4.9, if Gt is in Phase `′ with `′ 6= −1, k, then Gt satisfies
(1-`), (2-`), and (3-`′). Since (1-`) and (2-`) imply (1-`′) and (2-`′) when we have `′ = `
or `′ = `+ 1, Gt is `′-nice and we conclude the result by induction.

4.4 Endgame

It remains to describe Mini’s strategy in Phases −1 and k, and to argue that with this
strategy G∞ will end up with few edges.

Proposition 4.13. Assume Gtk is in Phase k in the C2k−1-saturation game with k > 5
and such that tk is the minimum value for which this holds. Then Mini can play so that
e(G∞) 6 1

4
(1− c2)n2 + o(n2).
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Proof. Mini’s strategy is as follows. Let t > tk be even. If |Dt−1
k | > 2, Mini plays et = xy

with x, y ∈ Dt−1
k , which is a legal move by Lemma 4.3. Otherwise Mini plays arbitrarily.

Note that ∆(|Dt
k|) > −4 by Lemma 4.3. Since |Dtk

k | > 4cn, G∞ will contain at least
cn − 1 C2k+1’s which all share a common vertex v and with no other vertices shared
between the cycles. Let C denote a set of cn− 1 such cycles. We wish to show that there
are few edges involving vertices of C.

Claim 4.14. If C is a C2k+1 in G∞, then every vertex of G∞ has at most two neighbors
in C.

Proof. Let v′ be a vertex with neighbors v1, v2, v3 ∈ C. First assume v′ ∈ C, and without
loss of generality that v1v

′, v2v
′ are edges in C. Thus there exist paths from v′ to v3 of

lengths ` and 2k + 1− ` for some ` > 2. One of these path lengths must be even and at
most 2k − 1. By adding the edge v3v

′ to this path, we find an odd cycle in G∞ of length
at most 2k, a contradiction.

Now assume v′ /∈ C. Let P12 denote the path in C from v1 to v2 that does not contain
v3, and similarly define P23 and P13. Note that e(P12) + e(P23) + e(P13) = 2k + 1, so at
least one of these paths must be of odd length. If e(Pij) = 1 for any i, j, then {vi, vj, v′}
defines a C3 in G∞, which is forbidden, so assume that this is not the case. We conclude
that for some i, j we have e(Pij) 6 2k−3 odd, which together with v′ implies the existence
of an odd cycle of length at most 2k − 1 in G∞, a contradiction.

By Claim 4.14, each cycle of C is involved in at most 2n edges, so the number of edges
involving some vertex of C is at most 2n(cn − 1). By Mantel’s theorem, the number of
edges involving vertices that are not in C is at most

1

4
(n− 2k(cn− 1)− 1)2 =

(
1

4
− kc+ k2c2

)
n2 + o(n2).

In total then the number of edges in G∞ is at most(
1

4
− (k − 2)c+ k2c2

)
n2 + o(n2).

One can verify that (k − 2)c− k2c2 > c2/4 for k > 5, from which the result follows.

We now deal with Phase −1.

Proposition 4.15. Assume that Gt̃ is in Phase −1 in the C2k−1-saturation game with
k > 5 and t̃ the minimum value for which this holds. Then Mini can play so that e(G∞) 6
1
4
(1− c2)n2 + o(n2).

Proof. Let ` < k be the number such that Gt̃−2 was in Phase `. Mini’s strategy is as
follows. If Gt−1 is connected, Mini plays arbitrarily. Otherwise Mini plays almost the
same way as in Strategy 4.7 with parameter `, with the only changes being that Mini
does not forfeit if |Dt

`| = 0, if ` is even we replace anywhere y is written in Strategy 4.7
with v, and if ` is odd we replace y with u. If one goes back through the analysis of
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Proposition 4.6, one can verify that with this strategy, for all even t > t̃, Gt satisfies (1-`),
(2-`), and that ||U t| − |V t|| > cn− 1.

Let U ′ = {u′ ∈ U∞ : ∃u′′ ∈ U∞, u′u′′ ∈ E(G∞)} and V ′ = {v′ ∈ V ∞ : ∃v′′ ∈
V ∞, v′v′′ ∈ E(G∞)}. Let D′` denote the set of vertices in G∞ that were in Dt

` for some t.

Claim 4.16. No vertex w ∈ U ′ ∪ V ′ has d∞a (w, v) < k− 1. No vertex of U ′ is adjacent to
any vertex of D′2, and no vertex of V ′ is adjacent to any vertex of D′1.

Proof. Let u1, u2 ∈ U ′ be such that u1u2 is an edge in G∞, and assume d∞a (u1, v) < k− 1.
Let pi denote a shortest alternating path from ui to v, and let w be the vertex that is
in both p1 and p2 and with d∞a (w, v) maximal (such a w exists since in particular v is in
both of these paths). Observe that the parity of d∞a (ui, w) is independent of i and that
d∞a (u2, w) 6 d∞a (u2, v) 6 k + 1 since G∞ satisfies (2-`). Thus G∞ contains an odd cycle
of length d∞a (u1, w) + d∞a (w, u2) + d(u1, u2) < 2k + 1, a contradiction.

If u′v′ were an edge in G∞ for some u′ ∈ U ′ and v′ ∈ D′2, then we would have
d∞a (u1, v) 6 3 < k − 1 when k > 5, a contradiction to what we have just proven. The
proof for V ′ is analogous.

We note that the only place we truly use the hypothesis k > 5 in this section is in
proving the second part of the above claim.

With the above claim in hand, assume first that G∞ is not bipartite, or equivalently
that U ′∪V ′ is non-empty since G∞ satisfies (1-`). If t is such that Gt was in Phase 1, then
Proposition 4.6 shows that any x with dta(x, v) > 3 must be isolated in Gt. In particular,
since w ∈ U ′ ∪ V ′ has dta(w, v) > d∞a (w, v) > k − 1 > 4 by Claim 4.16, every such w was
isolated during all of Phase 1. Further, d∞a (w, v) > 4 implies that U ′ ∪ V ′ will be empty
unless ` > 2 since Mini maintains (2-`). In particular, there exists a smallest even number
t2 such that Gt2 is in Phase 2 with |Dt2

2 | > 1
9
n. Observe then that Gt2−2 is in Phase 1,

|Dt2−2
2 | > 1

9
n− 1, none of the vertices of Dt2−2

2 are isolated at time t2− 2, and all of these
vertices were isolated at the beginning of Phase 1 since we require |Dt

2| = 0 in order to
transition to Phase 1. Since Phase 1 starts with at most (1

2
+ 4c)n isolated vertices, we

conclude that s := |U ′ ∪ V ′| 6 (1
2

+ 4c)n− (1
9
n− 1).

Let G′ be the complete bipartite graph with bipartition U∞∪V ∞, where we note that
we have G′ = G∞ if s = 0. The only edges of G∞ that are not in G′ are those contained
in U ′ ∪ V ′, and there are at most 1

4
s2 + 1 such edges by Mantel’s theorem. However, G′

contains all of the edges from D′2 to U ′ and D′1 to V ′, and none of these edges are in G∞

by Claim 4.16. There are at least |D′2||U ′|+ |D′1||V ′| > 1
9
ns edges of this kind, so in total

G′ contains at least 1
9
ns − 1

4
s2 − 1 more edges than G∞ does. One can verify that this

number is non-negative if s 6= 0 and if n is sufficiently large by our bound on s and how
we defined c. Thus it is enough to give an upper bound for e(G′) = |U∞||V ∞|. Since
||U∞| − |V ∞|| > cn− 1, we have

|U∞||V ∞| 6
(

1

2
n− 1

2
(cn− 1)

)(
1

2
n+

1

2
(cn− 1)

)
=

1

4

(
1− c2

)
n2 + o(n2).

We are now ready to finish our proof of Theorem 1.1.
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Proof of the upper bound of Theorem 1.1. Recall that Theorem 1.1 is stated in terms of
the C2k+1-saturation game as opposed to the C2k−1-saturation game. In particular, c =
(1000(k+1)2)−1 and Gt can be in Phase ` for any −1 6 ` 6 k+1. In the C2k+1-saturation
game, Mini plays as in Proposition 4.6 as long as Gt is not in Phase −1 or k+1. If the game
ever enters Phase −1 or k + 1, then she plays as in Proposition 4.15 or Proposition 4.13,
respectively.

By Proposition 4.6, it > 3 whenever Gt is not in Phase −1 or k+ 1. Since i∞ = 0, we
must have G∞ in Phase −1 or k + 1, and in particular Mini must have played according
to either Proposition 4.15 or Proposition 4.13. By these propositions, G∞ contains at
most (1

4
− 1

4
c2)n2 + o(n2) edges. Plugging in c and using k + 1 6 2k for k > 4 gives the

result.

5 Proof of Theorem 1.3

In order to prove Theorem 1.3 we need to argue that Mini can create a certain subgraph
in Gt.

Lemma 5.1. Let k > 2 and ` = max(3, b
√

2kc). There exists a constant t0 such that, for
n sufficiently large, Mini can play in the {C2k+1}-saturation game such that Gt0 contains
a clique on the vertex set U = {u1, . . . , u`}, and such that there exist ` vertex disjoint
paths of length k − 2, each with a distinct ui as its endpoint.

Proof. Mini will use the following strategy.

Strategy 5.2.

Step 0. If there exists some ui, uj such that Gt−1 does not contain the edge uiuj,
Mini plays et = uiuj.

Step 1. Let t′ be the smallest even value such that Gt′−1 contains every edge of the
form uiuj. Mini plays et

′
= u1x1, e

t′+2 = x1x2, . . . , e
t′+2k−6 = xk−3xk−2, where xi is

some isolated vertex in Gt′+2i−3.

Step 2. Mini plays et
′+2k−4 = u2y1, e

t′+2k−2 = y1y2, . . . , e
t′+4k−12 = yk−3yk−2, where

yi is some isolated vertex in Gt′+2k+2i−7.

One defines Step i for all 3 6 i 6 ` in essentially the same way as Steps 1 and 2.

Observe that if Mini can use the above strategy, then she finishes at time at most
t0 := 2

(
`
2

)
+ 2`(k − 2) with the desired structure. Thus its enough to argue that she

can indeed use this strategy when n is sufficiently large. Since t0 is a constant, for n
sufficiently large there will always exist an isolated vertex in Gt−1 for t 6 t0, so Mini can
play as prescribed by Steps 1 through ` if the game reaches this point. It remains to argue
that Mini can plays as prescribed by Step 0.

If ` = 3, then it is not too difficult to see that Mini can play as prescribed by Step
0 regardless of what Max does, so assume ` =

√
2k > 3. For any t 6 2

(
`
2

)
, we claim

that any choice of et is a legal move. Indeed, for any such t, Gt−1 will contain at most
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2
(
`
2

)
− 1 6 `2 − 1 6 2k − 1 edges, and hence any choice of et will not create a C2k+1 in

Gt. Thus Mini can play according to Strategy 5.2 and we conclude the result.

Proof of Theorem 1.3. Mini first uses the strategy in Lemma 5.1, making sure that Gt0

contains a clique on U = {u1, . . . , u`} and vertex disjoint paths {p1, . . . , p`}, each of length
k−2 with pj starting at uj and ending at, say, vj. Let V = {v1, . . . , v`}, and let vt denote
a vj with minimal degree in Gt. Let it denote the number of isolated vertices of Gt.

For all even t > t0, Mini uses the following strategy. If it−1 = 0, Mini plays arbitrarily.
Otherwise if Max plays xy with x, y isolated vertices of Gt−1, Mini plays xvt (which is a
legal move since this does not create a cycle). Otherwise Mini plays xvt with x an isolated
vertex of Gt−1.

We wish to bound the number of edges of G∞ when Mini uses the above strategy.
To this end, let P denote the vertices that belong to some pj (including uj and vj), let
Vj = N∞(vj), let V =

⋃
Vj, and let W = V (G∞) \ (P ∪ V ). Let p′j denote pj but with

p′j treated as a path from vj to uj. Lastly, for X, Y ⊆ V (G∞), let e(X, Y ) denote the
number of edges in G∞ where one vertex lies in X and the other in Y .

Claim 5.3. The following bounds hold.

(a) e(P, V (G∞)) 6 `(k − 1)n = o(n2).

(b) e(V, V ) 6 k · 2k−1
2
n = o(n2).

(c) e(W,V ) 6 (1
2
(1 + 1

`
)n− |W |)|W |+ o(n2).

Proof. (a) follows from |P | = `(k − 1).
For (b), we first claim that e(Vj, Vj) 6 2k−1

2
n. Indeed if this were not the case, then

by the Erdős-Gallai Theorem there would exist a path of length 2k in Vj. Since vj is
adjacent to the two endpoints of this path, this would imply that G∞ contains a C2k+1,
a contradiction. We also claim that e(Vj, Vj′) = 0 whenever j 6= j′. Indeed assume that
G∞ contained the edge wjwj′ with wj ∈ Vj, wj′ ∈ Vj′ . Then for any r 6= j, j′ (and such
an r exists since ` > 3), G∞ would contain the cycle wjp

′
jurpj′wj′ . But this is a C2k+1, a

contradiction. We conclude that (b) holds.
For (c), we claim that, for any w ∈ W , we have e({w}, Vj) 6= 0 for at most one j.

Indeed assume G∞ contained the edges wwj and wwj′ with wj ∈ Vj, wj′ ∈ Vj′ , j 6= j′.
Then G∞ would contain the cycle wwjp

′
jpj′wj′ , which is a C2k+1, a contradiction. It

follows that e(W,V ) 6 |W |max(|Vj|), so it will be enough to bound max(|Vj|).
Note that it0 > n− 2t0 and ∆(it) > −2 for all even t > t0 + 2 by the way the strategy

was constructed. It follows that there are at least n/2+O(1) even values of t with it−1 6= 0,
and hence Mini adds an edge of the form xvt for at least this many values of t. Thus Mini
ensures that each of the ` vertices vj have at least n

2`
+O(1) neighbors in G∞, and hence

|Vj| > n
2`

+O(1) for all i. Thus

|Vj| = n−
∑
j′ 6=i

|Vj′ | − |W | − |P | 6
(

1− `− 1

2`

)
n− |W |+O(1)
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for all j. This together with e(W,
⋃
Vj) 6 |W |max(|Vj|) and (1− `−1

2`
) = 1

2
(1 + 1

`
) shows

that (c) holds.

By Claim 5.3 and Mantel’s theorem, we have

e(G∞) 6 e(W,W ) + e(W,V ) + o(n2)

6
1

4
|W |2 +

(
1

2
(1 +

1

`
)n− |W |

)
|W |+ o(n2).

This value is maximized when |W | = 1
3
(1 + 1

`
)n, giving a bound of 1

12
(1 + 1

`
)2n2 + o(n2)

as desired.

6 Proof of Theorem 1.4

We will say that a vertex v is good if all but at most one edge incident to v is contained
in a triangle. We will say that a graph G is k-good if there exists a set of edges B(G)
with |B(G)| 6 k such that every vertex of G−B(G) is good. Observe that if G is k-good
and G′ is G plus an edge, then G′ is (k + 1)-good.

Proposition 6.1. There exists a strategy for Mini in the (C∞ \ {C3})-saturation game
such that for all even t, either Gt−1 is (C∞ \ {C3})-saturated or Gt is 1-good.

To prove this, we need the following lemma concerning the structure of 2-good graphs.

Lemma 6.2. Let G be a 2-good graph that contains no C2k+1 for any k > 2. Then G
contains no C` for any ` > 5.

Proof. Assume for contradiction that there exists an even cycle C in G of length 2k with
k > 3 on the vertex set {v1, . . . , v2k}, and let C ′ = C − B(G). Since k > 3, there exists
an i such that C ′ contains the edges vi−1vi and vivi+1. Since these edges are in G−B(G),
at least one of these edges is in a triangle, say vivi+1w is a triangle in G. If w is not in
C, then v1v2 · · · viwvi+1 · · · v2k is a C2k+1 in G, a contradiction. Thus w = vj for some
j 6= i, i+ 1.

Note that vj 6= i+ 2, i+ 3. Indeed if, say, j = i+ 2, then v1v2 · · · vivi+2 · · · v2k would be
a C2k−1 in G, a contradiction. A similar result holds if j = i+ 3. Observe that G contains
the cycles vivi+1 · · · vj and vi+1vi+2 · · · vj. One of these cycles must have odd parity with
length at least 5 since j 6= i + 2, i + 3, a contradiction. We conclude that G contains no
C2k with k > 3, proving the result.

Proof of Proposition 6.1. G0 is 1-good, so inductively assume that Mini has been able to
play so that Gt−2 is 1-good for some even t > 2. If Gt−1 is saturated then we are done, so
assume this is not the case. If Gt−1 is 0-good, then Mini plays et arbitrarily and Gt will
be 1-good.

Now assume that Gt−1 is not 0-good. That is, there exist edges v1x and v2x with
v1 6= v2 such that neither of these edges are contained in triangles. Mini then adds the
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edge et = v1v2, which we claim is a legal move. If it were not, then there must exist a
path P of length 2k with k > 2 from v1 to v2 in Gt−1. If x is not a vertex of P , then
Gt−1 contains the cycle formed by taking P and adding the edges xv1 and xv2, which is a
C2k+2. Since inductively Gt−2 is 1-good, Gt−1 is 2-good, and hence does not contain such
a C2k+2 by Lemma 6.2. Thus x must be a vertex of P .

Assume without loss of generality that P does not use the edge xv1. Let P1 denote
the subpath of P from x to v1 and let k1 denote the length of P1. Note that k1 6= 1 since
P does not use xv1, and that k1 6= 2 since this would imply that xv1 is contained in a
triangle. Note that Gt−1 contains a Ck1+1, namely by taking P1 together with the edge
xv1. Thus k1 6 3 by Lemma 6.2, so we conclude that k1 = 3.

Let C = v1abx be the 4-cycle formed from P1 and xv1. If, say, ab were contained in a
triangle abc, then we must have c = v1 or c = x, as otherwise v1acbx defines a C5 in Gt−1.
But if c = v1 or x, then v1x is contained in a triangle, a contradiction. A similar analysis
shows that no edge of C is contained in a triangle. This is only possible if B(Gt−1) consists
of two edges of C that are not both incident to x, as otherwise one of ab and v1a would be
contained in a triangle. In particular, two of the edges {xv1, xv2, xb} are not in B(Gt−1),
and we conclude that at least one of these edges must be contained in a triangle. But
we have assumed that none of these edges are in triangles, a contradiction. We conclude
that v1v2 is a legal move to play.

Note that at least one of the edges xv1 and xv2 must be in B(Gt−1), as otherwise
Gt−1−B(Gt−1) would not have all good vertices (namely, x would not be a good vertex).
Since v1x, v2x, and the new edge v1v2 are contained in a triangle of Gt, the set B(Gt) :=
B(Gt−1) \ {v1x, v2x} shows that Gt is 1-good as desired.

It remains to bound how many edges G∞ will have after Mini uses the strategy of
Proposition 6.1.

Lemma 6.3. ex(n, {C5, C6, . . .}) 6 2n− 2.

Proof. The statement is trivially true for n 6 4, so assume we have proven the statement
up to n > 4. Let G be an extremal n-vertex graph and assume that e(G) > 2n − 1. If
G contains a vertex x with d(x) 6 2, then G′ = G− {x} is an (n− 1)-vertex graph with
e(G′) > 2(n − 1) − 1. By our inductive hypothesis, G′ contains a large cycle, and hence
the same is true for G. Thus we can assume that every vertex of G has degree at least 3.

We can assume that G is connected, as adding an edge between two components of G
would increase e(G) without creating any cycles. Let T be a depth-first-search tree of G.
For any x ∈ T , let x1 denote the parent of x in T , and recursively define xi = (xi−1)1 for
i > 2. Observe that if xy is an edge in G, then either y = xi or x = yi with i = 1, 2, or 3.
Indeed, assume without loss of generality that y was discovered before x when constructing
T . Observe that the subtree of T with y as a root will contain every neighbor of y that
has not been discovered before y. In particular, this subtree will contain x, and we will
have y = xi where i is the depth of x in this subtree. Further, we must have i = 1, 2, or
3, as otherwise G would contain a Ck with k > 5.

Let x be a vertex of maximum depth in T , which in particular means that x is a leaf
in T . We wish to show that {x, x1, x2, x3} induces a K4 in G and that d(x) = d(x1) =
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d(x2) = 3. To this end, we will say that a vertex y has label i with i > 1 if yiy is an edge
in G, and we let S(y) denote the set of vertices z 6= y with z1 = y1. Note that by our
above argument, no vertex can have label i > 3.

Since we assumed d(x) > 3 and since x only has one neighbor in T , x must have both
label 2 and 3. We claim that S(x) = ∅. Indeed, if there exists some y ∈ S(x), then y
would also be a leaf (since x is a vertex of maximum depth), so it would also have to have
label 3, but then G would contain the cycle xx2x3yx1, a contradiction. Thus we must
have S(x) = ∅. Since d(x1) > 3, and since S(x) = ∅, x1 must have at least one of label 2
or 3, but if it had label 3 then G would contain the cycle xx2x3x4x1, so x1 only has label
2. If x2 had label 2, then G would contain the cycle xx1x2x4x3, and a similar result holds
if x2 had label 3. Thus x2 does not have any label. We claim that S(x1) = ∅. Indeed if
we had y ∈ S(x1) with y a leaf, then y must have label 2 and G would contain the cycle
yx3xx1x2. Otherwise, y would have a child z which is a leaf (since it is at the same depth
as x) and hence must have label 3, which means that G contains the cycle zx3xx1x2y.
Thus S(x1) = ∅, proving our claims about the vertices x, x1, x2, x3.

Let G′ = G − {x, x1, x2}. By our above analysis, G′ is an (n − 3)-vertex graph with
e(G′) = e(G)−6 > 2(n−3)−1, so by the induction hypothesis G′, and hence G, contains
a large cycle, proving the desired bound.

We note that the above bound is sharp, as can be seen by taking G to be the graph
obtained by taking k disjoint triangles and then adding an additional vertex which is made
adjacent to every other vertex. The above proof can easily be modified to characterize all
extremal graphs, though we have no need for this here.

Proof of Theorem 1.4. Mini uses the strategy of Proposition 6.1. This implies that G∞ is
2-good with no C2k+1 for any k > 2, and hence contains no Ck for any k > 5. Lemma 6.3
then implies that e(G∞) 6 2n− 2.

7 Concluding Remarks

We claim that by analyzing the proof of Theorem 1.1, one can conclude that satg(C5;n)
and satg(C7;n) are strictly less than b1

4
n2c, which, as we mention in the beginning of

Section 4 is a non-trivial result. We suspect that stronger bounds exist.

Conjecture 7.1. For all k > 1 there exists a ck > 0 such that

satg(C2k+1;n) 6

(
1

4
− ck

)
n2 + o(n2).

In fact, we believe that a stronger statement is true. As a consequence of the bounds
of Theorem 1.1, we know that satg(C2k+1;n) 6 satg(C2k′+1;n) when k′ is sufficiently larger
than k and n is sufficiently large. We conjecture that this remains true when k′ = k + 1.

Conjecture 7.2. For all k > 2,

satg(C2k−1;n) 6 satg(C2k+1;n)
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for n sufficiently large.

Note that the bound satg({C3};n) 6 26
121
n2 + o(n2) of [1] together with Theorem 1.2

shows that the conjecture is true for k = 2, and moreover that satg(C3;n) 6 satg(C2k+1;n)
for all k > 2 and n sufficiently large.

Theorem 1.2 shows that satg(C∞ \ {C2k+1};n) is quadratic for all k > 3. Theorem 1.4
shows that satg(C∞ \ {C3};n) is linear. Given this, it is natural to ask about the order of
magnitude of satg(C∞ \ {C5};n).

Question 7.3. What is the order of magnitude of satg(C∞ \ {C5};n)? In particular, is
this value linear, quadratic, or something else?
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