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Abstract

We show for a prime power number of parts m that the first differences of par-
titions into at most m parts can be expressed as a non-negative linear combination
of partitions into at most m − 1 parts. To show this relationship, we combine a
quasipolynomial construction of p(n,m) with a new partition identity for a finite
number of parts. We prove these results by providing combinatorial interpretations
of the quasipolynomial of p(n,m) and the new partition identity. We extend these
results by establishing conditions for when partitions of n with parts coming from
a finite set A can be expressed as a non-negative linear combination of partitions
with parts coming from a finite set B.

Mathematics Subject Classifications: 11P84, 05A17, 05A19

1 Introduction

A partition λ, of a non-negative integer n is a non-increasing sequence of parts λ1, . . . , λk
such that the parts sum to n. We denote this λ ` n and is read “λ is a partition of n”. Let
p(n) be the function which enumerates all partitions of n. The first example of partitions
traces back to Leibniz in a letter to Bernoulli. While neither did much work on the subject,
Euler took up the subject giving the first deep results into the theory of partitions, such
as the following relationship for partitions of n into at most m parts, p(n,m).

Proposition 1 (Euler). For all non-negative integer n and all positive integers m,

p(n,m) = p(n,m− 1) + p(n−m,m). (1)

The proof follows from generating function for p(n,m) which is

∞∑
n=0

p(n,m)qn =
m∏
i=1

1

1− qi
=

1

(q; q)m
(2)
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where (q; q)m is the q-pochhammer symbol defined as

(a;x)n =
n−1∏
i=0

(1− axi). (3)

Partition identities, expressing one kind of partitions as another, have been extensively
studied by mathematicians since Euler. In this paper, we examine first differences of
partitions p(n,m)− p(n− 1,m) for prime power m. We capture several known partition
identities found in [1] and [6] as well as previously unknown partition identities.

Example 2. For k > 0,

p(6k + 3, 3)− p(6k + 2, 3) = p(2k + 1, 2) (4)

p(12k + 5, 4)− p(12k + 4, 4) = p(6k + 1, 3) (5)

p(60k + 0, 5)− p(60k − 1, 5) = p(12k + 0, 4) + p(12k − 1, 4) + 4p(12k − 2, 4)

+ 5p(12k − 3, 4) + 7p(12k − 4, 4) + 4p(12k − 5, 4)

+ 3p(12k − 6, 4). (6)

Lines (4) and (5)are known ([1], [6]) while line (6) was previously unknown. These
identities are special cases of the following theorem.

Theorem 3. Let s be a prime. If m = sx where x is a positive integer and for k > 0,
0 6 j < lcm(m), then

p(lcm(m)k+ j,m)− p(lcm(m)k+ j− 1,m) =
∑
i>0

cr+sip(lcm(m− 1)k+ l′− i,m− 1) (7)

where l′ and r satisfy j = l′s+ r with 0 6 r < s, lcm(m) is the least common multiple of
the numbers 1 through m, and cr+is are the coefficients of some polynomial G(q).

G(q) is given in Section 3 in the statement of Lemma 13. Identities similar to Theorem 3
have been explored [3], [2], and [5].

Let A be a finite set of positive integers not necessarily distinct. We denote the number
of partitions of n with parts from A as p(n,A). Its generating function is given by

∞∑
n=0

p(n,A)qn =
∏
i∈A

1

1− qi
. (8)

We provide the following combinatorial interpretation for a partition from a finite set A.
Let αi denote the number of copies of an integer i ∈ A. For a partition λ into parts from
A, a part of size i can have colors 1, 2, . . . , αi and we use the notation

λ = (ai1,1, ai1,2, . . . , ai1,αi1
, . . . , aik,1, aik,2, . . . , aik,αik

)

= (a1,1, a1,2, . . . , a1,α1 , . . . , ak,1, . . . ak,αk
)
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where i1, i2, . . . , ik are the distinct elements of A in order of least to greatest and at,s is the
number of parts of size it in color s. We remark that p(n,m) = p(n, {1, 2, . . . ,m}) and it
is assumed throughout that m in place of A is the set of positive integers 1 through m.

In this context, Theorem 3 asserts that when m is a prime power and that if A =
{2, 3, . . . ,m} and B = {1, 2, . . . ,m− 1} that p(n,A) can be expressed as a non-negative
linear combination of p(n1, B) for some finite collection of n1 < n. The techniques used
to prove Theorem 3 can be applied to determine when partitions with parts from a finite
set positive integers A can be expressed as a non-negative linear combination of partitions
with parts from a finite set positive integers B.

The paper is organized as follows: in Section 2, we establish a quasipolynomial for
p(n,A) and provide a proof that “counts” p(n,m) similar to [7]. Next in Section 3, we build
intuition for Theorem 3 by providing a new proof of the case m = 4 that highlights useful
generating function arithmetic. We prove several important lemmas and propositions
regarding factorization of generating functions for particular sets of partitions. With
that, we apply the results of Section 2 to prove Theorem 3. Lastly, in Section 4 introduce
a group structure on a finite set of partitions and introduce conditions in which partitions
with parts from a finite set positive integers A can be expressed as a non-negative linear
combination of partitions with parts from a finite set positive integers B.

Through the proof of Theorem 3, providing a quasipolynomial for p(n,A), and Sec-
tion 4, we offer a combinatorial framework discussing p(n,A). This framework is equipped
with a group structure that arises naturally in the course of proving Theorem 3.

2 Establishing a quasipolynomial for p(n,A)

In this section, we summarize several arguments for creating quasipolynomial for p(n,A).

Definition 4. A quasipolynomial is a piecewise integer function, f , such that there are
polynomials f0(k), f1(k), . . . , fj−1(k) with rational coefficients, called constituents, such
that

f(k) =


f0(k) if k ≡ 0 (mod j)

f1(k) if k ≡ 1 (mod j)
...

fj−1(k) if k ≡ j − 1 (mod j).

(9)

The number of constituents, j, of the quasipolynomial is called the period.

We refer the reader to [17] for further reading about quasipolynomials. The particular
technique in Theorem 5 that we show has been presented a number of times, notably a
integral aspect of the geometry of Ehrhart in [8], as a consequence of generating functions
in [9] and [18], and more recently in [4], [5], [6], and [15]. Other methods for creating
quasipolynomials of p(n,m) rely on partial fraction decomposition of rational functions
such as in [14] and [16].

We start by generalizing the notation of lcm(m) in the previous section. For a finite
set of positive integers, A, we define lcm(A) to be the least common multiple of all the
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elements of A. For example lcm(3) = lcm({1, 2, 3}) = 6. Let d count the number of
elements in A. We define the polynomial EA(q) by

EA(q) =
∏
i∈A

 lcm(A)−i
i∑

j=0

qij

 =

dlcm(A)−
∑

i∈A i∑
x=0

axq
x. (10)

Furthermore, EA(q) has the following property,∏
i∈A

(1− qi)EA(q) = (1− qlcm(A))d. (11)

Lastly, we remark that it is known that for d a non-negative integer,

1

(1− q)d
=
∞∑
k=0

(
k + d− 1

d− 1

)
qk. (12)

Theorem 5. For all k > 0 and for 0 6 j < lcm(A),

p(lcm(A)k + j, A) =
∑
t>0

aj+lcm(A)t

(
k − t+ (d− 1)

d− 1

)
. (13)

Proof. We begin by manipulating the generating function for p(n,A),

∞∑
n=0

p(n,A)qn =
∏
i∈A

1

(1− qi)
·EA(q)

EA(q)
=

EA(q)

(1− qlcm(A))d
= EA(q)

∞∑
k=0

(
k + (d− 1)

d− 1

)
qlcm(A)k

(14)

by line (11) and substituting q with qlcm(A) in (12). Consider n (mod lcm(A)), that is
n = lcm(A)k + j for some positive integers k and j. We consider the possibilities for
arriving at an exponent of q which is lcm(A)k + j in

EA(q)
∞∑
k=0

(
k + (d− 1)

d− 1

)
qlcm(A)k =

dlcm(A)−
∑

i∈A i∑
x=0

axq
x

( ∞∑
k=0

(
k + (d− 1)

d− 1

)
qlcm(A)k

)
(15)

which is exactly when x+ lcm(A)(k − t) = lcm(A)k + j and hence we have

p(lcm(A)k + j, A) =
∑
t>0

aj+lcm(A)t

(
k − t+ (d− 1)

d− 1

)
. (16)

We arrive at a quasipolynomial for p(n,A) when all values possible values of j are
considered in Theorem 5 are considered. In the case of p(n,m), Em(q) has a nice form

Em(q) = (1−qlcm(m))m

(q;q)m
. For example, let m = 3 then,
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E3(q) =
(1− q6)3

(q; q)3
= (1 + q + q2 + q3 + q4 + q5)(1 + q2 + q4)(1 + q3)

= 1 + q + 2q2 + 3q3 + 4q4 + 5q5 + 4q6 + 5q7 + 4q8 + 3q9 + 2q10 + q11 + q12. (17)

Therefore, as a consequence of Theorem 5, for k > 0,

p(n, 3) =



p(6k + 0, 3) = 1
(
k+2
2

)
+ 4
(
k+1
2

)
+ 1
(
k
2

)
= 3k2 + 3k + 1

p(6k + 1, 3) = 1
(
k+2
2

)
+ 5
(
k+1
2

)
= 3k2 + 4k + 1

p(6k + 2, 3) = 2
(
k+2
2

)
+ 4
(
k+1
2

)
= 3k2 + 5k + 2

p(6k + 3, 3) = 3
(
k+2
2

)
+ 3
(
k+1
2

)
= 3k2 + 6k + 3

p(6k + 4, 3) = 4
(
k+2
2

)
+ 2
(
k+1
2

)
= 3k2 + 7k + 4

p(6k + 5, 3) = 5
(
k+2
2

)
+ 1
(
k+1
2

)
= 3k2 + 8k + 5.

(18)

There are other quasipolynomoial expressions for p(n, 3) such as || 1
12

(n + 3)2||, where
|| · | denotes the nearest integer. Further explicit quasipolynomials for p(n, 4), p(n, 5) and
p(n, 6) can be found in [13].

2.1 A combinatorial interpretation of a quasipolynomial for p(n,m)

Choliy and Sills in [7] provide a formula for p(n) that “counts” using Durfee squares.
Following their work, we aim to provide an analogous proof for the quasipolynomial
formula of p(n,m) in Theorem 5 that “counts”. We start with essential definitions.

Recall that the notation λ = (a1, a2, . . . , an) where the ith component denotes the
number of parts of size i is used throughout. A subpartition of λ is a partition such
that a′i 6 ai for all parts of size i and is denoted λ′ = (a′1, a

′
2, . . . , a

′
k). We say that

two partitions λ′ and λ′′ sum to a partition λ if for all i, ai = a′i + a′′i and is denoted
λ = λ′ + λ′′. Choliy and Sills [7] refer to this sum as the union of two partitions. We
define remainder-like objects for p(n,m).

Definition 6. A lcm(m)-remainder partition is a partition such that there are no parts

larger than m and for any part of size i, there are less than lcm(m)
i

copies of that part.
Let Em be the collection of all lcm(m)-remainder partitions. The generating function for
lcm(m)-remainder partitions is Em(q).

Example 7. A lcm(3)-remainder partition is 3 + 2 + 1 = (1, 1, 1) but 3 + 3 + 1 = (1, 0, 2)
is not an lcm(3)-remainder partition.

Definition 8. Let the set of partitions Emj
be the partitions in Em such that

they partition j (mod lcm(m)).

Example 9. We give the example for m = 3 and j = 0. We have the set of partitions

E30 = {(0, 0, 0), (1, 1, 1), (2, 2, 0), (3, 0, 1), (4, 1, 0), (5, 2, 1)}.
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Let x be a non-negative integer, we say ax is the number of partitions in Em such that
they partition x. We note that ax is the xth coefficient of Em(q). We now present a proof
that “counts” the case of Theorem 5 when A = {1, 2, . . . ,m}.

Theorem 10. For all k > 0 and 0 6 j < lcm(m),

p(lcm(m)k + j,m) =
∑
t>0

alcm(m)t+j

(
k − t+m− 1

m− 1

)
. (19)

Proof. It is sufficient to consider partitions of n into parts no larger than m. Let n =
lcm(m)k + j and consider a partition λ = (a1, a2, . . . , am). Let ri ≡ ai (mod lcm(m)

i
).

Define λr = (r1, . . . , rm) and λq = (a1− r1, . . . , am− rm). Then we note first, λ = λq +λr.

Second, λr ∈ Em, and third, for any i, lcm(m)
i

divides ai − ri, that is, lcm(m)
i

ki = ai − ri
for some positive integer ki. We will show that λr ∈ Emj

and that k − t =
m∑
i=1

ki for some

non-negative integer t.
We start by showing λr ∈ Emj

. Since λ ` lcm(m)k + j, we have

lcm(m)k + j =
m∑
i=1

iai =
m∑
i=1

i(ai − ri) +
m∑
i=1

iri =
m∑
i=1

i
lcm(m)

i
ki +

m∑
i=1

iri. (20)

Therefore,

lcm(m)k + j ≡
m∑
i=1

iri ≡ j (mod lcm(m)). (21)

As
m∑
i=1

iri = λr, and is a partition of a number that is equivalent to j (mod lcm(m)),

then λr ∈ Emr as desired. Express
m∑
i=1

iri as lcm(m)t+ j for some non-negative integer t.

Furthermore, λq ` lcm(m)(k − t) by combining lines (20) and (21). Hence, by canceling

lcm(m), we have k − t =
m∑
i=1

ki as desired.

Now, we count the partitions of lcm(m)k+j into parts no larger than m in the following
manner. We count the number of partitions such that λ = λq+λr where λr ` lcm(m)t+j
and λq ` lcm(m)(k−t). The number of choices for λr is alcm(m)t+j since this is the number
of partitions in Em and in Emj

such that they partition lcm(m)t + j. By line (20) and

Stars and Bars counting, the number of choices for λq ` lcm(m)(k− t) which is
(
k−t+m−1
m−1

)
.

Thus the number of choices for λ is the product of the number of choices for λq and λr.
Accounting for every possibility of t, we have

p(lcm(m)k + j,m) =
∑
t>0

alcm(m)t+j

(
k − t+m− 1

m− 1

)
. (22)
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3 Partition identities for differences of partitions of n into at
most m parts

With a quasipolynomial for p(n,m) in hand, we now aim to prove Theorem 3 and a new
proof of Proposition 1.

Definition 11. We define the difference at distance k of p(n,m), denoted ∆k(n,m), is

∞∑
n=0

∆(n,m)qn =
∞∑
n=0

(p(n,m)− p(n− 1,m)) qn =
1− q

(q; q)m
. (23)

When k 6 m, ∆k(n,m) can be interpreted as partitions of n with at most m parts
without any parts of size k. In particular, these are twin partitions following [1] and we
omit the subscript. When A = {1, 2, . . . ,m} \ 1, then ∆(n,m) = p(n,A). In this case
we say p(n,A) = p(n,m\1) and use the notation m\1 in regards to EA. Proposition 1
studies the difference of p(n,m)− p(n−m,m) and Theorem 3 studies the first differences
of p(n,m).

The case of m = 4 of Theorem 3 occurs in [1] and [6]. We provide a new proof
for this via generating functions distinguishing the proof from the direct computation of
differences of quasipolynomials as in [6] and the recursion used in [1]. It illustrates a
necessary lemma to prove Theorem 3. Then we provide an example of the case of m = 5
to build intuition for the arithmetic of Theorem 3. Results similar to the case of m = 3
are found in articles regarding Gaussian polynomials such as in [6], [10], [11], and [12].

Theorem 12. For ` > 0,

p(2`− 3, 4)− p(2`− 4, 4) = p(`− 3, 3) (24)

p(2`− 4, 4)− p(2`− 5, 4) = p(`− 2, 3). (25)

Proof. By considering ` modulo 6 in lines (24) and (25), the following is an equivalent set
of statements: for k > 0,

p(6k, 3) =

{
p(12k, 4)− p(12k − 1, 4)

p(12k + 3, 4)− p(12k + 2, 4)

p(6k + 1, 3) =

{
p(12k + 2, 4)− p(12k + 1, 4)

p(12k + 5, 4)− p(12k + 4, 4)

p(6k + 2, 3) =

{
p(12k + 4, 4)− p(12k + 3, 4)

p(12k + 7, 4)− p(12k + 6, 4)

p(6k + 3, 3) =

{
p(12k + 6, 4)− p(12k + 5, 4)

p(12k + 9, 4)− p(12k + 8, 4)

p(6k + 4, 3) =

{
p(12k + 8, 4)− p(12k + 7, 4)

p(12k + 11, 4)− p(12k + 10, 4)
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p(6k + 5, 3) =

{
p(12k + 10, 4)− p(12k + 9, 4)

p(12k + 13, 4)− p(12k + 12, 4)
.

We following the proof of Theorem 5 we produce a quasipolynomial for ∆(n, 4) and p(n, 3).
Line (17) gives E3(q). Next, we must compute E4\1(q) which is,

E4\1(q) = 1 + q2 + q3 + 2q4 + q5 + 3q6 + 2q7 + 4q8 + 3q9 + 5q10 + 4q11 + 4q12 + 5q13 + 5q14

+ 4q15 + 4q16 + 5q17 + 3q18 + 4q19 + 2q20 + 3q21 + q22 + 2q23 + q24 + q25 + q27. (26)

We highlight that,

E4\1(q) = (1+q3)(1+q2+2q4+3q6+4q8+5q10+4q12+5q14+4q16+3q18+2q20+q22+q24)

= (1 + q3)E3(q
2). (27)

Next, generating function arithmetic yields

∞∑
n=0

∆(n, 4)qn =
1

(q2; q)3
=

E4\1(q)

E4\1(q)(q2; q)3
=

E4\1(q)

(1− q12)3
= E4\1(q)

∞∑
k=0

(
k + 2

2

)
q12k

= (1 + q3)E3(q
2)

∞∑
k=0

(
k + 2

2

)
q12k

= (1 + q3)

( ∞∑
k=0

((
k + 2

2

)
+ 4

(
k + 1

2

)
+

(
k

2

))
q12k

+

∞∑
k=0

((
k + 2

2

)
+ 5

(
k + 1

2

))
q12k+2

+

∞∑
k=0

(
2

(
k + 2

2

)
+ 4

(
k + 1

2

))
q12k+4 +

∞∑
k=0

(
3

(
k + 2

2

)
+ 3

(
k + 1

2

))
q12k+6

+

∞∑
k=0

(
4

(
k + 2

2

)
+ 2

(
k + 1

2

))
q12k+8 +

∞∑
k=0

(
5

(
k + 2

2

)
+

(
k + 1

2

))
q12k+10

)

= (1 + q3)

( ∞∑
k=0

p(6k, 3)q12k +
∞∑
k=0

p(6k + 1, 3)q12k+2 +
∞∑
k=0

p(6k + 2, 3)q12k+4

+
∞∑
k=0

p(6k + 3, 3)q12k+6 +
∞∑
k=0

p(6k + 4, 3)q12k+8 +
∞∑
k=0

p(6k + 4, 3)q12k+10

)
.

(28)

by lines (17), (18), and (26). Comparing powers of q modulo 12 in the preceding equation,
the result is as desired.

The ability to factor E4\1(q) into (1 + q3)E3(q
2) was essential in proving the claim.

Fortunately, in this specific case a computer can handle this factorization with ease as
E4\1(q) is a polynomial of degree 27. This leads to the following lemma which states under
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what conditions Em\1(q) factors. We will provide three proofs for. The first two proofs
will occur in this section; one following the generating function arithmetic of Theorem 5
and another following the counting of Theorem 10. The third occurs in Section 4.

Lemma 13. Let m = sk where s is prime and k is a positive integer, then Em\1(q) =

G(q)Em−1(q
s) where G(q) =

m∏
i=2,i 6=sa,∀a∈N

s−1∑
j=0

qij.

Remark 14. Strictly speaking, G(q) is the generating function for the collection of lcm(m)-
remainder partitions which have no parts of size 1, any positive integer power of s, and
parts of any size occur less than s times. The nature of G(q) is seemly mysterious. In a
broader context, we can also think of G(q) as the generating function for a collection
of “remainder partitions” when the collection of partitions generated by Em\1(q) are
considered modulo lcm(m− 1)-remainder partitions. This arises naturally from defining
a group structure on partitions generated by EA(q) which will be treated in Section 4.
For now, we can experience G(q) as a consequence of arithmetic and as a property of the
sum of partitions and some particular combinatorial map.

Proof. We show that
Em\1(q)

Em−1(q)
= G(q) by simplifying the expression,

Em\1(q)

Em−1(qs)
=

(1−qlcm(m))m−1

(q2;q)m−1

(1−qlcm(m))m−1

(qs;qs)m−1

=
(qs; qs)m−1
(q2; q)m−1

=

∏k
r=1

(
(1− qsr)

∏sk−1
i=sr−1+1(1− qsi)

)
∏k

r=1

(
(1− qsr)

∏sk−1
i=sr−1+1(1− qi)

)

=

∏k
r=1

∏sk−1
i=sr−1+1

(
s−1∑
j=0

qij

)
(1− qi)∏k

r=1

∏sk−1
i=sr−1+1(1− qi)

= G(q). (29)

For the combinatorial proof of Lemma 13, we introduce a generalization of lcm(m)-
remainder partitions. Furthermore, we discuss how the sums of restricted partitions be-
have in regards to their generating functions. Definition 6 can be generalized by using
a finite set positive integers A in place m. The notation uses A in place of m with as
opposed to each part form 1 though m, we have parts from the set A.

Proposition 15. Let ′,′′ , and ′′′ be restrictions on partitions such that for any λ′′ and λ′′′

obeying ′′ and ′′′ respectively, that the sum of λ′′ and λ′′′ is a partition, λ′, obeying ′. If
there are unique partitions λ′′ and λ′′′ such that λ′ = λ′′ + λ′′′, then

∑
n>0

p′(n)qn =

(∑
n>0

p′′(n)qn

)(∑
n>0

p′′′(n)qn

)
.

Proof. Suppose that there are unique partitions λ′′ and λ′′′ such that λ′ = λ′′ + λ′′′. Let
n be given, we work on counting the number of partitions of n such that they obey the

the electronic journal of combinatorics 28(3) (2021), #P3.20 9



restriction ′. First, for any 0 6 i 6 n, p′′(i)p′′′(n − i) is the number of ways such that
if λ′′ ` i and λ′′′ ` n − i then λ′′ + λ′′′ ` n where λ′′ + λ′′′ is a partition that satisfies

the restrictions ′. Then over all possibilities of i, this yields p′(n) =
n∑
i=0

p′′(i)p′′′(n − i) as

the sums are assumed to be unique, no partition is counted twice and there is never a
partition satisfying the restriction ′ such that there are no λ′′ and λ′′′ that sum to it. We
now observe the product of the generating functions of partitions of n satisfying ′′ and ′′′

respectively. We arrive at(∑
n>0

p′′(n)qn

)(∑
n>0

p′′′(n)qn

)
=
∑
n>0

(
n∑
i=0

p′′(i)p′′′(n− i)

)
qn =

∑
n>0

p′(n)qn. (30)

We now provide a combinatorial proof of Lemma 13.

Proof. Let λ\1 = (0, a2, . . . , am) ∈ Em\1. Let λ
(r)
\1 = (0, r2, . . . , rm) be a sub partition of

λ\1. λ
(r)
\1 is defined by two cases, parts that are powers of s and parts that are not powers

of s. If a part of size i is a power of s, then the number of parts ri, is zero. Otherwise,
we define the number of parts, ri =≡ ai (mod s). Let λ

(q)
\1 be (0, a2 − r2, . . . , am − rm).

The number ai − ri, unless i is a power of s, is divisible by s. We have λ\1 = λ
(r)
\1 +

λ
(q)
\1 . Furthermore, by the uniqueness of quotient and remainders of non-negative integer

division, this sum is unique.
λ
(r)
\1 is a partition generated G(q). That is, λ

(r)
\1 is a partition such that no part has a

power of s and for any part of size i there are less than s copies. The generating function
Em−1(q

s) describes partitions such parts of size i that are powers of s occur no more than

lcm(m−1) = lcm(m)
s

times and parts of size i that are not powers of s occur a multiple of s

number of times, with no more than s·lcm(m−1)
i

copies of a part of size i. Any subpartition

λ
(q)
\1 if λ\1 is generated by Em−1(q

s) as its construction satisfies the description of partitions

generated by Em−1(q
s).

Let ′ be the restriction describing partitions in Em\1. Let ′′ be the restriction that

is described by λ
(r)
\1 in the first paragraph of this proof and ′′′ be the restriction that is

described by λ
(q)
\1 in the first paragraph. The restrictions ′,′′ ,′′′ satisfy the conditions of

Proposition 15, and the lemma is proven.

With Lemma 13 in hand, deducing if a constituent of ∆(n,m) can be expressed as a
non-negative linear combination of constituents of p(n,m− 1) is straightforward.

Example 16. Let m = 5, then by Lemma 13,

E5\1(q) = G(q)E4(q
5) =

(
4∏
i=2

4∑
j=0

qij

)
E4(q

5).
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Now, construct the respective quasipolynomials of ∆(n, 5) and p(n, 4),

∞∑
n=0

∆(n, 5)qn =
1

(q2; q)4
=

E5\1(q)

(1− q60)4
= E5\1(q)

∞∑
k=0

(
k + 3

3

)
q60k (31)

= G(q)E4(q
5)
∞∑
k=0

(
k + 3

3

)
q60k =

(
4∏
i=2

4∑
j=0

qij

)
E4(q

5)
∞∑
k=0

(
k + 3

3

)
q60k

(32)

and
∞∑
n=0

p(n, 4)qn =
1

(q; q)4
=

E4(q)

(1− q12)4
= E4(q)

∞∑
k=0

(
k + 3

3

)
q12k. (33)

Where

G(q) =

(
4∏
i=2

4∑
j=0

qij

)
= 1 + q2 + q3 + 2q4 + q5 + 3q6 + 2q7 + 4q8 + 3q9 + 4q10 + 4q11 + 6q12

+4q13+6q14+5q15+7q16+5q17+7q18+5q19+7q20+5q21+6q22+4q23+6q24+4q25+4q26+3q27

+ 4q28 + 2q29 + 3q30 + q31 + 2q32 + q33 + q34 + q36, (34)

E4(q) = 1+q+2q2+3q3+5q4+6q5+9q6+11q7+15q8+18q9+23q10+27q11+30q12+35q13

+39q14+42q15+44q16+48q17+48q18+50q19+48q20+48q21+44q22+42q23+39q24+35q25

+30q26+27q27+23q28+18q29+15q30+11q31+9q32+6q33+5q34+3q35+2q36+q37+q38, and
(35)

E4(q
5) = 1+q5+2q10+3q15+5q20+6q25+9q30+11q35+15q40+18q45+23q50+27q55+30q60

+35q65+39q70+42q75+44q80+48q85+48q90+50q95+48q100+48q105+44q110+42q115+39q120

+35q125+30q130+27q135+23q140+18q145+15q150+11q155+9q160+6q165+5q170+3q175+2q180

+ q185 + q190. (36)

For example, ∆(60k + 0, 5) = p(12k + 0, 4) + p(12k − 1, 4) + 4p(12k − 2, 4) + 5p(12k −
3, 4) + 7p(12k − 4, 4) + 4p(12k − 5, 4) + 3p(12k − 6, 4).

While further arithmetic could explicitly show the partition identity between ∆(n, 5)
and p(n, 4), it is tedious and the observed relationship above motivates the proof of the
Theorem 3. We now prove Theorem 3.

Proof. We manipulate the generating function of ∆(n,m) following the proof for Theorem
5 and apply Lemma 13,

∞∑
n=0

∆(n,m)qn =
1

(q2; q)m−1
=

Em\1(q)

Em\1(q)(q2; q)m−1
=

Em\1(q)

(1− qlcm(m))m−1
(37)
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= Em\1(q)
∞∑
k=0

(
k + m− 2

m− 2

)
qlcm(m)k = G(q)Em−1(q

s)
∞∑
k=0

(
k + m− 2

m− 2

)
qlcm(m)k.

(38)

with G(q) =
m∏

i=2,i 6=sa,∀a∈N

s−1∑
j=0

qij. Next, we construct the quasipolynomial for p(n,m− 1),

∞∑
n=0

p(n,m− 1)qn =
1

(q; q)m−1
=

Em−1(q)

(1− qlcm(m−1))m−1
= Em−1(q)

∞∑
k=0

(
k + m− 2

m− 2

)
qlcm(m−1)k.

(39)

Express the polynomials Em\1(q), Em−1(q), and G(q) as

Em\1(q) =
∑
i>0

aiq
i, Em−1(q) =

∑
i>0

biq
i, and G(q) =

∑
i>0

ciq
i. (40)

Notice if the index of any coefficient of Em\1(q), Em−1(q), and G(q) is less than zero, then
the coefficient is zero. For any constituent

∆(lcm(m)k + j, n) =
∑
t>0

aj+lcm(m)t

(
k +m− 2− t

m− 2

)
(41)

of the quasipolynomial of ∆(n,m), let l and r be integers such that j = l+ r where r ≡ j
(mod s) with 0 6 r < s. Since G(q)Em−1(q

s) = Em\1(q) by Lemma 13, this implies by
polynomial multiplication that the coefficient aj+lcm(m)t in line (41) is

aj+lcm(m)t =
∑
i>0

cis+rblcm(m)t+l−is. (42)

Therefore, we apply line (42) to line (41) and rearrange the sum to see∑
t>0

aj+lcm(m)t

(
k +m− 2− t

m− 2

)
=
∑
t>0

∑
i>0

cis+rblcm(m)t+l−is

(
k +m− 2− t

m− 2

)
(43)

= cr
∑
t>0

blcm(m)t+l

(
k +m− 2− t

m− 2

)
+
∑
i>1

∑
t>0

cis+rblcm(m)t+l−is

(
k +m− 2− t

m− 2

)
(44)

= cr
∑
t>0

blcm(m)t+l

(
k +m− 2− t

m− 2

)
+
∑
i>1

∑
t>1

cis+rblcm(m)t+l−is

(
k +m− 2− t

m− 2

)
(45)

= cr
∑
t>0

blcm(m)t+l

(
k +m− 2− t

m− 2

)
+
∑
i>1

cis+r
∑
t>0

blcm(m)(t−1)+l−is

(
k +m− 2− (t+ 1)

m− 2

)
.

(46)

Set l′ = l
s
. We now compare line (46) to constituents of p(n,m− 1). In particular,

p(lcm(m−1)k+l′+(lcm(m−1)−i),m−1) =
∑
t>0

blcm(m−1)t+l′+(lcm(m−1)−i)

(
k +m− 2− t

m− 2

)
.

(47)
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Taking k = k − 1 we have,

p(lcm(m− 1)(k − 1) + l′ + (lcm(m− 1)− i),m− 1) = p(lcm(m− 1)k + l′ − i,m− 1)

=
∑
t>0

blcm(m−1)t+l′+(lcm(m−1)−i)

(
k +m− 2− (t+ 1)

m− 2

)
(48)

By substituting q for qs in Em−1(q), we have blcm(m)t+l+is = blcm(m−1)t+l′+i. Furthermore,
since lcm(m) = s · lcm(m− 1), the following holds by combining lines (46) and (48),

∆(lcm(m)k + j,m) =
∑
i>0

cr+sip(lcm(m− 1)k + l′ − i,m− 1). (49)

We now prove Proposition 1.

Proof. We start by creating the quasipolynomial for ∆(n,m) and apply properties of
Em(q) and Em\1(q),

∞∑
n=0

∆(n,m)qn =
1

(q2; q)m−1
=

1− q
(q; q)m

=
(1− q)Em(q)

(1− qlcm(m))m
(50)

=
Em\1(q)

(1− qlcm(m))m−1
= Em\1(q)

∞∑
k=0

(
k +m− 2

m− 2

)
qlcm(m)k. (51)

Next, we address p(n,m− 1).

∞∑
n=0

p(n,m− 1)qn =
1

(q; q)m−1
=

1− qm

(q; q)m
=

(1− qm)Em(q)

(1− qlcm(m))m
(52)

=

(1− q)
(
m−1∑
i=0

qi
)
Em(q)

(1− qlcm(m))m
=

(
m−1∑
i=0

qi
)
Em\1(q)

(1− qlcm(m))m−1
(53)

=

(
m−1∑
i=0

qi

)
Em\1(q)

∞∑
k=0

(
k +m− 2

m− 2

)
qlcm(m)k. (54)

The arguments in the proof of Theorem 3 yield,

p(lcm(m− 1)k + j,m− 1) =
m−1∑
i=0

∆(lcm(m)k + j − i,m) = ∆m(lcm(m)k + j,m). (55)

Thus p(n,m−1) can always be written as a linear combination of constituents of ∆(n,m)
in a manner that is equivalent to the familiar partition identity, p(n,m− 1) = p(n,m)−
p(n−m,m).
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4 Partition identities for partitions with parts from Finite Sets
A and B

We now aim to generalize the previous section into partitions with parts from finite sets
A and B. First, lcm(A)-remainder partitions are equipped with a natural group structure
as an operation on the number of parts.

Definition 17. Let A be a finite set of positive integers and consider the set EA con-
sisting of all lcm(A)-remainder partitions. We define an operation, ⊕, on EA. Let
λ1, λ2 ∈ EA, and λ1 = (ai1,1, . . . , aik,αik

) and λ2 = (bi1,1, . . . , bik,αik
). Then λ1 ⊕ λ2 = λ3 =

(ci1,1, . . . , cik,αik
) by defining cij ,` with ` ∈ {1, 2, . . . , αij} to be the smallest non-negative

remainder of aij ,` + bij ,` divided by lcm(A)
ij

. That is, aij ,` + bij ,` ≡ cij ,` (mod lcm(A)
ij

). The

operation ⊕ is called piecewise modular addition.

The operation ⊕ on EA is a commutative group. The notation EA will be used for
both the group (EA,⊕) and the set of partitions lcm(A)-remainder partitions. We now
give several important properties of EA, the group of lcm(A)-remainder partitions.

Proposition 18. The group EA is isomorphic to
∏
i∈A

Z lcm(A)
i

where the product is the usual

direct product of groups and Zn is a cyclic group of order n.

The proof is left to the reader. The group EA has order
∏
i∈A

lcm(A)
i

by Proposition 18

or by counting and the order of any element in EA is at most lcm(A).

Proposition 19. Let λ1, λ2 ∈ EA and suppose that λ1 ` g and λ2 ` h. Then λ1 ⊕ λ2 `
(g + h) (mod lcm(A)).

Proof. We first note that g =
k∑
s=1

αis∑
t=1

ij · ais,t and h =
k∑
s=1

αis∑
t=1

ij · bis,t. Furthermore, it must

be the case that λ1 ⊕ λ2 implies that (ais,t + bis,t) = cis,t + xis,t

(
lcm(A)
is

)
for some positive

integer xis,t by definition. The following arithmetic shows the result,

g + h =
k∑
s=1

αis∑
t=1

ij (ais,t + bis,t)

=
k∑
s=1

αis∑
t=1

ij

(
cis,t + xis,t

(
lcm(A)

is

))

=
k∑
s=1

αis∑
t=1

(ijcis,t + xis,tlcm(A))

= λ1 ⊕ λ2 + lcm(A)
k∑
s=1

αis∑
t=1

xis,t ≡ λ1 ⊕ λ2 (mod lcm(A)).
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The proof of Proposition 19 closely follows the strategy employed in Theorem 10
applied strictly to lcm(A)-remainder partitions. We are now ready to state and prove the
generalization of Lemma 13.

Lemma 20. Let A and B be two sets of positive integers with |B| 6 |A|. If there is an
onto homomorphism from EA to EB, then EA(q) = G(q)EB(qs) for G(q) a generating

function of some collection of lcm(A)-remainder partitions and s = lcm(A)
lcm(B)

.

Proof. Suppose that there is an onto homomorphism ϕ from EA to EB. By the first
isomorphism theorem, Im(ϕ) ∼= EA/ ker(ϕ) and as the mapping is onto, Im(ϕ) ∼= EB. We
essentially have two tasks; first, show that there is a collection of partitions H ⊆ EA that is
generated by EB(qs); second, to find a collection, G, of lcm(A)-remainder partitions such
that H and G are restrictions of lcm(A)-remainder partitions which satisfy the conditions
of Proposition 15.

To satisfy the first task, we make a few notes about EB in relationship to EA. Let
λ
(A)
iv,w
∈ EA be be a partition that has one part of size iv in color w. λ

(A)
iv,w

is a generator

of group EA. Likewise, let λ
(B)
it,u
∈ EB be a partition that has one part of size it in color

u. Likewise λ
(B)
it,u

is a generator of the group EB. As ϕ can be viewed as an onto homo-

morphism for direct products of cyclic groups, it is the case that ϕ(x ·λ(A)iv,w
) = λ

(B)
it,u

where

x · λ(A)iv,w
:=

x⊕
k=1

λ
(A)
iv,w

is piecewise modular addition of λ
(A)
iv,w

x times and gcd(x, lcm(A)
iv

) = 1.

Since the order of x · λ(A)iv,w
is lcm(A)

iv,w
, we have

lcm(A)
iv,w∑
k=1

(
x∑
j=1

λ
(A)
iv,w

)
` x · iv,w ·

lcm(A)

iv,w
= x · lcm(A) (56)

and in the group EA, it is the case that lcm(A)
iv,w

· (x · λ(A)iv,w
) = λe. We apply ϕ, which yields

lcm(A)

iv,w
· ϕ(x · λ(A)iv,w

) =
lcm(A)

iv,w
· λ(B)

it,u
= λ(B)

e . (57)

Applying Proposition 19 to (57), we see that

λ(B)
e =

lcm(A)
iv,w⊕
r=1

λ
(B)
it,u
`

lcm(A)
iv,w∑
r=1

it,u =
lcm(A)

iv,w
· it,u ≡ 0 (mod lcm(B)). (58)

This implies that there is a smallest positive integer y such that

y · lcm(B) =
lcm(A)

iv,w
· it,u which is equivalent to y · iv,w =

lcm(A)

lcm(B)
· it,u = s · it,u. (59)

If s|y in the previous line, there is a positive integer z such that z ·iv,w = it,u. Furthermore,

z · iv,w · lcm(B)
it,u

= lcm(A). If s 6 |y in line (59), then s|iv,w. For each generator λ
(B)
it,u

of EB,
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we name a partition λ
(A)
it,u
∈ EA. Let λ

(A)
it,u

= y · λ(A)iv,w
∈ EA such that y · λ(A)iv,w

` s · it,u. We
define the set H by

H =

⊕
it,u∈B

kit,u · λ
(A)
it,u

∣∣∣∣ 0 6 kit,u <
lcm(B)

it,u

 . (60)

We have a natural bijection between H and EB by mapping λ
(A)
it,u

to λ
(B)
it,u

. Next, if λ ` n
in EB, the corresponding partition by the natural bijection in H must partition s · n. By
this correspondence, the generating function for H must be EB(qs).

With our first task complete, we turn to the second. Let λ ∈ EA. We will define
λq and λr such that λq + λr = λ and that λq ∈ H, λr ∈ G. We start by defining λr.

For the number aiv,w of parts of size iv and color w, if there is a λ
(A)
it,u
∈ H such that

λ
(A)
it,u

= y · λ(A)iv,w
` s · it,u then we have two cases: if y|s and if y 6 |s. For the first case,

we divide aiv,w by y letting the remainder be defined as riv,w . In the second case, we
set riv,w = 0. In all other cases, we set riv,w to aiv,w . Let λr be the partition with the
number riv,w of parts of size iv and color w. Let λq be the partition with the number
qiv,w = aiv,w − riv,w of parts of size iv and color w. Then we define G be the set of all
λr partitions. As G is a finite set, G(q) is the polynomial generating function for the
partitions in G. Furthermore, by uniqueness of non-negative integer division, we the
unique sum λq + λr = λ.

We verify that λq ∈ H. For the number qiv,w of parts of size iv and color w, if there

is a λ
(A)
it,u
∈ H such that λ

(A)
it,u

= y · λ(A)iv,w
` s · it,u, then we have two cases. If s|y, then

y|qiv,w by definition and hence qiv,w = kit,u · y for some 0 6 kit,u < lcm(B)
it,u

. If s 6 |y,

then gcd(y, lcm(B)
it,u

) = 1 and there is some 0 6 kit,u < lcm(B)
it,u

such that y · kit,u ≡ qiv,w

(mod lcm(A)
iv,w

). In all other cases, qiv,w = 0 and hence implicitly is in H. Since λq + λr = λ

is unique, we have satisfied the conditions of Proposition 15, proving the lemma.

Remark 21. The reader is encouraged to show that H is isomorphic to EB (hence a
subgroup of EA) and that EA/H ∼= G ∼= ker(ϕ). This fact is not necessary in the proof
but gives an idea how to describe G. We can think of the set G as the “remainder” of EA
when considered modulo partitions from EB.

When A = {2, . . . ,m} and B = {1, . . . ,m − 1}, we construct an explicit mapping in
the second proof of Lemma 13 between Em\1 and Em−1. This mapping inspires the more
general proof. Since both Em\1 and Em−1 are isomorphic to direct products of cyclic
groups, we simply need to describe a homomorphism between these groups. We now
sketch the proof Lemma 13 using Lemma 20. This exhibits how Lemma 20 can be used
to establish infinite families for partition identities.

Proof. Let m = sk where s is prime and k is a positive integer. By Proposition 18, it is

sufficient to define a homomorphism ϕ :
m∏
i=2

Z lcm(m)
i

→
m−1∏
i=1

Z lcm(m−1)
i

. Let (x2, x3, . . . , xm) =
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x ∈
m∏
i=2

Z lcm(m)
i

and (y1, y2, . . . , ym−1) = y ∈
m−1∏
i=1

Z lcm(m−1)
i

. The generators of
m∏
i=2

Z lcm(m)
i

are

e2 = (1, 0, 0, . . . , 0), e3 = (0, 1, 0, . . . , 0), . . . , em = (0, 0, 0, . . . , 1) and the generators of
m−1∏
i=1

Z lcm(m−1)
i

are f1 = (1, 0, 0, . . . , 0), f2 = (0, 1, 0, . . . , 0), . . . , fm−1 = (0, 0, 0, . . . , 1). We

define ϕ based on generators. If j = sr for any r = 1, . . . , k, let ϕ(ej) = fsr−1 and
ϕ(ej) = fj otherwise. With ϕ defined, the completion of the proof is routine using
lcm(m) = s · lcm(m− 1) and Lemma 20 and it is left to the reader.

With Lemma 20, we can now generalize Theorem 3.

Theorem 22. Let A and B be two sets of positive integers such that |A| = |B|. If there is
an onto homomorphism from EA to EB, then any constituent of p(n,A) can be expressed
as a non-negative linear combination of constituents p(n,B).

Proof. First, by Lemma 20, EA(q) = G(q)EB(qs) for s = lcm(A)
lcm(B)

. That is, G(q) = EA(q)
BEqs

and can be computed because EA(q) and EB(qs) are known. We proceed to manipulate
the generating function of p(n,A) using the facts noted above,

∞∑
n=0

p(n,A)qn =
∏
i∈A

1

(1− qi)
=

EA(q)

(1− qlcm(A))d
= EA(q)

∞∑
k=0

(
k + d− 1

d− 1

)
qlcm(A)k (61)

= G(q)EB(qs)
∞∑
k=0

(
k + d− 1

d− 1

)
qlcm(A)k. (62)

Next, we construct the quasipolynomial for p(n,B),

∞∑
n=0

p(n,B)qn =
∏
i∈B

1

(1− qi)
=

EB(q)

(1− qlcm(B))d
= EB(q)

∞∑
k=0

(
k + d− 1

d− 1

)
qlcm(B)k. (63)

The remainder of the proof follows the proof of Theorem 3 by using the same diligent
arithmetic. In particular considering j (mod s), that is j = l′s+ r, we have,

p(lcm(A)k + j, A) =
∑
i>0

cr+sip(lcm(B)k + l′ − i, B). (64)

The third proof of Lemma 13 using Lemma 20 in conjunction with Theorem 22 proves
Theorem 3.

5 Conclusion

We have given three proofs of Theorem 3. First, though classic generating function
arithmetic. Second, by showing a combinatorial map between 1-free partitions into at
most m parts and partitions with no more than m− 1 parts via conjugation and the sum
operation in Section 2. Third, by proving the more general theorem, Theorem 22, which
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applies algebraic structure to lcm(A)-remainder partitions and the sum operation to find
a ‘universal’ mapping. Unifying these proofs is the fact that p(n,A) can be expressed as
a quasipolynomial with a finite number of constituents.

The existence of an onto homomoprhism from EA to EB gives a sufficient condition for
when a constituent of the quasipolynomial of p(n,A) can be expressed as a non-negative
linear combination of constituents of the quasipolynomial of p(n1, B) with n1 6 n. The
converse is in general not true. For example, Proposition 1 implies that any a constituent
of p(n,m − 1) can be written as a non-negative linear combination of constituents of
∆(n,m) by line (55). When m = 5, there is no onto homomorphism from E4 → E5\1 as
|E5\1| > |E4|. Given Theorem 3, we pose the following questions.

Question 23. If m is not a prime power, can any constituent of ∆(n,m) be expressed as a
non-negative linear combination of constituents of p(n,m−1) in accordance to Theorem 5?

Question 24. What other infinite families of partition identities can be established using
Theorem 22?
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