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Abstract

Using a bijective proof, we show the number of ways to arrange a maximum

number of nonattacking pawns on a 2m× 2m chessboard is
(
2m
m

)2
, and more gener-

ally, the number of ways to arrange a maximum number of nonattacking pawns on

a 2n× 2m chessboard is
(
m+n
n

)2
.

Mathematics Subject Classifications: 05A10, 05A19

1 Introduction

A set of pieces on a chessboard is said to be independent if no piece may attack another.
Independence problems on chessboards have long been studied; both in terms of the size of
a maximum arrangement as well as the number of such arrangements. For all traditional
chess pieces, kings, queens, bishops, rooks, knights, and pawns, the maximum size of an
independent set is known. While many of these counts have been recognized for years,
books such as those by Dudeney [2], Kraitchik [4], Madachy [6], Watkins [9], and Yaglom
and Yaglom [10] provide good resources for discussions of these results.

When considering the problem of counting the number of maximum arrangements,
some of the pieces, for example rooks and bishops, have elementary solutions. Another
type of piece utilizes a different kind of chessboard mathematics, that is, showing there is
only one or two maximum arrangements of knights uses results on knight’s tours. In the
case of queens, the number of maximum independent arrangements is unknown in general,
with the most recent count for n = 27 generated through long-running computations, see
Prueßer and Engelhardt [8]. For kings an asymptotic approximation is given by Larson [5],
but an exact value is also unknown for even-length chessboards. Table 1 illustrates the
known enumerative results including those shown in this paper, that is, here we wish to
enumerate the number of maximum arrangements of nonattacking pawns. Arrangements
of nonattacking pawns have been studied by Kitaev and Mansour [3] who provide upper
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Kings Queens Bishops Knights Rooks Pawns
Number of pieces

in a maximum
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n n
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2

⌉
arrangement
Number of 1 if n is odd, unknown if 1 if n is odd, 2 if n is odd,

maximum unknown if n > 27 2n 2 if n is even n!
(

n
n/2

)2
if n is even

arrangements n > 26 is even

Table 1: Enumerative results for maximum independent sets placed on an n×n chessboard
where n > 1

and lower bounds on the number of all, not just maximum, arrangements of pawns on
2m× 2n rectangles in terms of Fibonacci numbers.

As there are only two distinct arrangements for odd length chessboards, we focus on
boards with even length. Because we can divide a 2m × 2m chessboard into m2 2 × 2
squares each with at most two pawns, the maximum number of independent pawns is at
most 2m2. This value is easily achieved, and examples are illustrated in Figure 1.
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Figure 1: Arrangements of nonattacking pawns for even length chessboards

We will provide a bijection between the set of maximum nonattacking arrangements
of pawns on a 2m× 2m chessboard and the set of subsets of m rows and m columns of a
2m× 2m matrix.

2 A bijection between arrangements of nonattacking pawns and
pairs of subsets

Instead of considering full arrangements of nonattacking pawns on a 2m×2m chessboard,
we first consider arrangements on a 2×2 chessboard. There are four possible arrangements
labeled with A, B, C, and D, as illustrated in Figure 2. We define a function f on this
set, where f(A) = D and f(B) = f(C) = f(D) = C. We use this function to define an
(m+1)×(m+1) matrix M2m = (mi,j)16i,j6m+1 whose entries correspond to arrangements
of 2m independent pawns on a 2× 2m rectangular chessboard.
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(d) Type D

Figure 2: The four maximum arrangements of 2 pawns on a 2× 2 chessboard

Definition 1. Let M2m = (mi,j)16i,j6m+1 be the matrix whose entries consist of arrange-
ments of 2m nonattacking pawns on a 2 × 2m rectangular chessboard. We can think of
each rectangle as a string of m 2 × 2 squares, each with exactly two pawns. The entries
of M2m are defined as follows:

i. For 1 6 j 6 m+ 1, let m1,j be the arrangement where the leftmost (m+ 1− j) 2× 2
squares of the rectangular chessboard are of Type A and the remaining rightmost
(j − 1) squares are of Type B.

ii. For 1 6 i 6 m + 1, use m1,j to generate the arrangements mi,j by replacing the
leftmost (i − 1) 2 × 2 squares of m1,j, with their image under the function f and
leaving the rightmost (m + 1− i) 2× 2 squares fixed.

See Figure 3 for an example of an entry in the first row and fifth row of M14, and see
Figure 4 for the entire matrix M6. We claim this matrix contains all possible nonattacking
arrangements of pawns on a 2× 2m rectangular chessboard.
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(a) Entry m1,5 in the matrix M14

������ � � � �
� � � ��������

(b) Entry m5,5 in the matrix M14

Figure 3: Entries from the matrix M14

Proposition 2. Every nonattacking arrangement of 2m pawns on a 2 × 2m rectangle
appears exactly once in the matrix M2m.

Proof. To begin, we show the number of distinct arrangements of pawns on a 2 × 2m
rectangle is (m+ 1)2. For m = 1, a 2×2 square has the four distinct arrangements shown
in Figure 2, so we induct on m. The leftmost 2 × 2 square of a 2 × 2m rectangle may
have Type A, B, C, or D. First, assume this leftmost square has Type D. Any maximum
independent arrangement of a 2 × 2(m − 1) rectangle may be appended to the Type D
square creating m2 distinct maximum nonattacking arrangements. Next, if the leftmost
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Figure 4: Entries in the matrix M6 = (mi,j)16i,j64

square has Type A or C, it must be followed by a square of same type or of Type B. But
in any 2 × 2m rectangle, when reading from left to right, as soon as a Type B square is
introduced in the strip, all remaining squares to the right must also be of Type B. Thus
any 2×2m strip beginning with a Type A or Type C square consists of k squares of Type
A or C followed by m− k squares of Type B for 1 6 k 6 m. Finally there is one possible
arrangement beginning with a Type B square. Thus we have

m2 + 2m + 1 = (m + 1)2

distinct arrangements as desired.
Further, no arrangement appears more than once in the matrix M2m. We continue to

think of the entries of the matrix M2m as a string of m 2 × 2 squares. We observe, by
construction, as one reads from top to bottom down a column of the matrix, the only
actions on these 2× 2 squares are:

i. Type A squares may be changed to Type D squares.

ii. Type B squares may be changed to Type C squares.

iii. Any type square may remain fixed.

Similarly, as you read from left to right across a row of the matrix, the only actions are:

i. Type A squares may be changed to Type B squares.

ii. Type D squares may be changed to Type C squares.

iii. Any type square may remain fixed.
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Given any two arrangements in distinct positions in the matrix M2m, at least one square
has changed from the lower-indexed entry to the higher-indexed entry. If that square was
of Type B or D, respectively, it was changed into a Type C square and no action may
change it back to a Type B or D square, respectively. If the square was of Type A, then
it was changed to a Type B, C, or D square, but in any case, may not return to Type A.
Because Type C squares cannot be changed, we have a matrix with unique elements whose
size is equal to the size of the set, so therefore each independent maximum arrangement
of pawns occurs exactly once in M2m.

Now, we define a map from the set of subsets of m rows and m columns of a 2m× 2m
matrix into the set of nonattacking arrangements of 2m2 pawns.

Definition 3. Suppose the rows and columns of a 2m× 2m matrix are indexed by [2m].
Set

A = {C ∪R : C,R ⊂ [2m] and |C| = |R| = m},

that is, A is the set of all subsets consisting of m rows R = {r1, r2, . . . , rm} ⊂ [2m] and m
columns C = {c1, c2, . . . , cm} ⊂ [2m]. Let B be the set of all nonattacking arrangements
of 2m2 pawns on a 2m× 2m chessboard. Define the map Φ : A −→ B as follows:

Given a subset C ∪ R, assume without loss of generality that r1 < r2 < · · · < rm and
c1 < c2 < · · · < cm. Then set S to be the set of m ordered pairs where

S = {(ai, bi) : (ai, bi) = (ri − i + 1, ci − i + 1) for 1 6 i 6 m}.

For each ordered pair (ai, bi), identify the 2 × 2m chessboard arrangement mai,bi from
the matrix M2m. Concatenate these strips sequentially so that mai,bi is directly above
mai+1,bi+1

for 1 6 i 6 m − 1 to create an arrangement of 2m2 pawns on a 2m × 2m
chessboard. This arrangement is the image of the subset C ∪R under Φ.

Example 4. Given 2m = 6, suppose R = {1, 4, 5} and C = {2, 4, 6}. Then S =
{(1, 2), (3, 3), (3, 4)}. Thus, we concatenate the arrangements m1,2,m3,3,m3,4 from Fig-
ure 4 to get the maximum 6× 6 arrangement:

���� �
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�� � �
� ����
� � �

������

Example 5. Given 2m = 8, suppose R = {2, 3, 4, 8} and C = {1, 6, 7, 8}. Then S =
{(2, 1), (2, 5), (2, 5), (5, 5)} and we have the following 8× 8 arrangement:
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We check that the arrangements of pawns given by the function Φ are nonattacking.

Proposition 6. Each arrangement of 2m2 pawns on a 2m× 2m chessboard in the image
Φ(A) is independent.

Proof. By construction, we know the the pawns may not attack within each 2 × 2m
rectangular chessboard, so it is left to show that the pawns may not attack from one
rectangle to another. We apply the restrictions on movement along rows and columns
noted in the proof of Proposition 2.

Let a = mi,j and b = mi′,j′ be any two nonattacking arrangements from the matrix
M2m such that i 6 i′ and j 6 j′. We assume a lies directly above b in a maximum
arrangement of independent pawns on the 2m × 2m chessboard. Divide each 2 × 2m
rectangle into 2× 2 squares and denote a 2× 2 square of a, or b respectively, at position
k where 1 6 k 6 m by Ak or Bk, respectively. First, if Ak has Type A, then the pawns
in Ak may not attack any pawns in the arrangement b. Next, suppose Ak has Type B, so
thus Bk has Type B or Type C. In either case the pawns in Ak may not attack the pawns
in Bk. However the pawn in Ak may also attack the upper left corner of Bk+1. Because
the square Ak+1 must also have Type B, we know Bk+1 has Type B or C. In either case
there is no pawn in the upper left corner, so pawns in Ak may not attack pawns in Bk+1.
Similarly, if Ak has Type D then Bi also has Type D, and thus no attack is possible. In
this case a pawn in Ai could also attack the upper right corner of Bi−1. We see that Ai−1
also has Type D, so Bk−1 has Type D and thus no attack is possible from Ak to Bk−1.
Finally, suppose Ak is of Type C, so pawns in Ak may attack squares Bk−1, Bk, and Bk+1.
We know Ak−1 is of Type C or Type D and Ak+1 is of Type C. So we have that Bk−1 is
of Type C or D, thus not susceptible to an attack from Ak. The squares Bk and Bk+1 are
both of Type C and also have no pawns that may be attacked by pawns in Ak. Finally,
we note in any case, if the squares Bk−1 or Bk+1 do not exist, then trivially there is no
attacking pawn. Therefore, we have shown that any entry weakly to the left or above
another entry in M2m may not attack when placed directly above the second entry, and
thus have proven the claim.

We have shown that each subset in A provides exactly one maximum nonattacking
arrangement of pawns on a 2m× 2m chessboard, thus Φ(A) ⊆ B. It is left to show that
no other maximum independent arrangements are possible.
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Proposition 7. Every nonattacking arrangement of 2m2 pawns on a 2m×2m chessboard
is the image of a subset C ∪R ∈ A under the map Φ.

Proof. Any arrangement of 2m2 pawns on a 2m × 2m chessboard may be divided into
m 2× 2m rectangular boards which correspond to the entries (ma1,b1 , . . . ,mam,bm) in the
matrix M2m. For all i, as long as ai 6 ai+1 and bi 6 bi+1, then the arrangement is an
element of the image Φ(A). Suppose to the contrary ai > ai+1 for some i. This implies
the arrangement mai,bi is in a lower row in M2m than arrangement mai+1,bi+1

, but appears
directly above mai+1,bi+1

in the 2m × 2m arrangement. We apply a similar argument to
that used in Proposition 6. At least one square, say Ak in mai,bi is different from the
square in the same position, Bk, in mai+1,bi+1

. If Ak is of type D, then Bk is of type A
or C, hence the pawn in the lower left corner of Ak may attack the pawn in the upper
right corner of Bk. If Ak is of Type C, then Bk is of Type A or B, and the pawn in
the lower left corner of Ak may attack the pawn in the upper right corner of Bk. Thus
ai 6> ai+1. Similarly, if bi > bi+1, the arrangement mai,bi is in column further to the right
in M2m than arrangement mai+1,bi+1

, but appears directly above mai+1,bi+1
in the 2m×2m

arrangement. Again at least one square, say Ak in mai,bi is different from the square in
the same position, Bk, in mai+1,bi+1

. If Ak of Type B, then Bk is of Type A or D and the
pawn in the lower right corner of Ak may attack the pawn in the upper left corner of Bk.
Further if Ak is of Type C, then Bk is of Type A or D and the pawn in the lower right
corner of Ak may attack the pawn in the upper left corner of Bk. Thus bi 6> bi+1, and we
have arrived at the contradiction.

Therefore we have the following corollary.

Corollary 8. The function Φ : A −→ B is a bijection.

Hence, because we may choose an m-subset of [2m] in
(
2m
m

)
ways, we have our main

result.

Theorem 9. The number of maximum nonattacking arrangements of pawns on a 2m×2m

chessboard is
(
2m
m

)2
.

We may generalized this result to maximum independent arrangements of pawns on
2n× 2m rectangles.

Theorem 10. The number of maximum nonattacking arrangements of pawns on a 2n×
2m chessboard is

(
m+n
n

)2
.

Proof. Assume without loss of generality that n 6 m. We may utilize the bijection Φ
from above. Given a nonattacking arrangement of 2mn pawns on a 2n× 2m chessboard,
we may divide the arrangement into n rectangles of size 2× 2m. These correspond to n
(not necessarily distinct) entries in the matrix M2m. Thus we have a set of indices from
the matrix entries

S = {(ai, bi)|1 6 a1 6 a2 6 · · · 6 an 6 m + 1 and 1 6 b1 6 b2 6 · · · 6 bn 6 m + 1}.
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Two create distinct column and row entries we have

C ∪R = {a1, a2 + 1, a3 + 2, . . . , an + n− 1} ∪ {b1, b2 + 1, b2 + 3, . . . , bn + n− 1}.

We note the maximum value of elements in C or R is m+ n, thus C,R ⊂ [m+ n]. Hence
we are choosing an n-subset of rows from [m+n] and an n-subset of columns from [m+n],
and the result follows.

3 Connections with lattice paths and directed polyominoes

There are other combinatorial objects enumerated by
(
2m
m

)2
. Entry A002894 in the Online

Encyclopedia of Integer Sequences [7] provides an overview of some of these objects. Here
we want to examine two types of lattice paths and a set of directed polyominoes. The
first type of lattice path is a path on the integer lattice from the point (0, 0) to (2m, 2m)
using only north and east steps and passing through the point (m,m). Let L be the set
of all such lattice paths. It is not hard to see that L is in bijection with A, that is, the set
of pairs of subsets (C,R) where C,R ⊂ [2m] and |C| = |R| = m. Note any lattice path
from (0, 0) to (m,m) has exactly 2m steps of which m are east steps and m are north
steps. To define the path from (0, 0) to (m,m) simply let C indicate the positions of the
east steps among the 2m total steps, and further let R indicate the positions of the m
north steps among the 2m total steps between (m,m) and (2m, 2m). Because the set of
lattice paths is in bijection with A, composing with the map Φ gives a bijection between
the set of lattice paths L and the set of maximum arrangements of nonattacking pawns
on a 2m× 2m chessboard.

Another interesting combinatorial object is a directed-convex polyomino. A polyomino
is finite union of cells on a square lattice with a simply connected interior. The polyomino
is convex if the intersection of each row and each column with a horizontal, respectively
vertical, line of cells is connected. Finally, the convex polyomino is directed if each cell
may be reached from a distinguished cell, called the root, using only north and east
steps. Barcucci, Frosini, and Rinaldi [1] provide a bijection between the set of directed
polyominoes contained in an square with side length m + 1 and a subset of 2-colored
grand Motzkin paths. In this case, a 2-colored grand Motzkin path is a path from (0, 0)
to (0, 2m) using up steps of the form (1, 1), down steps of the form (1,−1), and two
colors of horizontal steps of the form (1, 0). Here we use the specific condition that the
number of horizontal steps of each color must be equal, although Barcucci, Frosini, and
Rinaldi prove a more general bijection by removing this condition and allowing directed
polyominoes in a rectangle. These authors do not provide a bijection directly from the
set of polyominoes into the set of 2-colored grand Motzkin paths, but instead utilize a set
of 2 × 2m matrices whose entries are either 0 or 1. Our condition states then that each
row has an equal number of 0’s and 1’s. Of course this means that each row has exactly
m 0’s and m 1’s, so thus we have a simple bijection from A to the set of such matrices
by letting C and R indicate the positions of the m 1’s in the upper and lower rows of
the matrix, respectively. Further, by composing Φ with this bijection and the bijections
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by Barcucci, Frosini, and Rinaldi, we have a map between nonattacking arrangements of
pawns on a 2m× 2m chessboard and 2-colored grand Motzkin paths of length 2m having
an equal number of horizontal steps of each color as well as between the arrangements of
pawns and directed polyominoes contained in a (m + 1)× (m + 1) square.
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