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Abstract

We show that real tight frames that generate lattices must be rational, and use
this observation to describe a construction of lattices from vertex transitive graphs.
In the case of irreducible group frames, we show that the corresponding lattice is
always strongly eutactic. This is the case for the more restrictive class of distance
transitive graphs. We show that such lattices exist in arbitrarily large dimensions
and demonstrate examples arising from some notable families of graphs. In par-
ticular, some well-known root lattices and those related to them can be recovered
this way. We discuss various properties of this construction and also mention some
potential applications of lattices generated by incoherent systems of vectors.
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1 Introduction

Let 〈 , 〉 be the usual inner product on Rk and ‖x‖:= 〈x,x〉1/2 the Euclidean norm on
Rk. For a lattice L ⊂ Rk of full rank k (that is a discrete co-compact subgroup of Rk) the
minimal norm of L is

|L|:= min{‖x‖: x ∈ L \ {0}},
and its set of minimal or shortest vectors is

S(L) := {x ∈ L : ‖x‖= |L|}.

The automorphism group of the lattice L, Aut(L), is the group of all k×k real orthogonal
matrices that map L to itself. A particularly interesting class of lattices are eutactic
lattices: a lattice L is called eutactic if its set of minimal vectors S(L) satisfies a eutaxy
condition, i.e. there exist positive real numbers c1, . . . , cn, (called eutaxy coefficients) such
that

‖v‖2=
∑

x∈S(L)

ci 〈v,xi〉2 (1.1)

for all v ∈ Rk. If c1 = · · · = cn, L is said to be strongly eutactic. Eutactic and strongly
eutactic lattices are central objects of lattice theory due to their importance in connection
with well studied optimization problems. A theorem of Voronoi (1908) asserts that L is
a local maximum of the packing density function on the space of lattices in Rk if and
only if L is eutactic and perfect (L is perfect if the set {x>x : x ∈ S(L)} spans the space
of k × k real symmetric matrices) [41]. More details on eutactic, strongly eutactic and
perfect lattices can be found in J. Martinet’s book [32].

Two lattices L and M are called similar, written L ∼ M , if L = αUM for a nonzero
scalar α and an orthogonal transformation U . Similarity is an equivalence relation on
lattices that preserves inner products between vectors (up to the scalar α) and, as a
result, lattice’s automorphism group; it also gives a bijection between sets of minimal
vectors. Consequently, all the geometric properties that we discuss here, such as eutaxy,
strong eutaxy and perfection are preserved on similarity classes.

In the previous papers [4] and [3] of the first two authors, lattices generated by equian-
gular tight frames (ETFs) were studied and examples of strongly eutactic such lattices
were constructed. Here we aim to take this discussion further. Let n > k and let
F := {f 1, . . . ,fn} ⊂ Rk be a sequence of vectors, not necessarily distinct, such that
spanR {f 1, . . . ,fn} = Rk. Such a set F is called an (n, k)-frame, the name originating
in a 1952 paper of Duffin and Schaeffer in connection with their study of nonharmonic
Fourier series [16]. A frame F is called uniform if all of its vectors have the same norm,
and it is called tight if there exists a real constant γ > 0 such that for every v ∈ Rk

‖v‖2= γ
n∑
i=1

〈v,f i〉2, (1.2)

and a tight frame is called Parseval if γ = 1: clearly, any tight frame can be rescaled to a
Parseval frame. Notice the similarity between this equation and the equation (1.1) above.
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Although the tightness condition (1.2) above is well studied in several contemporary
branches of mathematics, the closely related eutaxy condition precedes it by half a century.
Voronoi’s study [41] of quadratic forms in 1908 gave rise to the introduction of eutaxy
condition (1.1). Nonetheless, we can say that a lattice is strongly eutactic whenever its
set of minimal vectors forms a uniform tight frame. Another way to view uniform tight
frames is as projective 1-designs, a subclass of more general designs on compact spaces
introduced by Delsarte, Goethals, and Seidel in their groundbreaking 1977 paper [12]. A
special class of tight frames are examples of optimal packings of lines in projective space.
These uniform tight frames are called equiangular (abbreviated ETF) if

∣∣〈f i,f j〉∣∣ is the
same for all i 6= j. Tight frames in general and ETFs in particular are extensively studied
objects in harmonic analysis; see S. Waldron’s book [42] for detailed information on this
subject.

Given a real (n, k)-frame F = {f 1, . . . ,fn}, define

L(F) = spanZ {f 1, . . . ,fn} .

If we write B for the k × n matrix with vectors f 1, . . . ,fn as columns, then

L(F) = {Ba : a ∈ Zn}.

The norm-form associated with F is the quadratic form

QF(a) = ‖Ba‖2= 〈B>Ba,a〉. (1.3)

We call the frame F rational if QF is (a constant multiple of) a rational quadratic form,
i.e. the n × n Gram matrix B>B is (a constant multiple of) a rational matrix. This
is equivalent to saying that the inner products

〈
f i,f j

〉
are (up to a constant multiple)

rational numbers for all 1 6 i, j 6 n. In [3], it was proved that if F is rational, then L(F)
is a lattice. Further, in the case that F is an ETF, L(F) is a lattice if and only if F is
rational (the converse was previously proved in [4]). More generally, it was shown in [3]
that when the dimension k = 2 or 3 and F is a tight (n, k)-frame for any n so that L(F)
is a lattice, then F must be rational. Our first result is an extension of this observation
to any dimension.

Theorem 1.1. Suppose that F is a tight (n, k)-frame so that L(F) is a lattice. Then F
must be rational.

We give two different proofs of Theorem 1.1 in Section 2, one of them as a consequence of
a stronger result about a larger class of vector systems than tight frames (Theorem 2.3).
All spherical 2-designs are tight frames, and a spherical 2-design when joined with its
antipodes is additionally a spherical 3-design. We call a lattice L a t-design lattice,
whenever L’s minimal vectors form a t-design and L is generated by them. A classical
result of Korkine and Zolotareff says that any t-design lattice with t > 4 is rational [27].
Our result extends this result showing that the same holds for t-design lattices with t > 2.
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Remark 1.2. We have recently become aware of a 2017 paper by T. Sunada [37], where
a result similar to our Theorem 1.1 has been established (Proposition 4.2 of [37]). This
being said, our proof of this result is considerably simpler, and our Theorem 2.3 is more
general: it does not follow from [37].

We can now use this rationality result to pick out lattices generated by tight frames.
We are especially interested in frames that give rise to lattices with nice geometric prop-
erties. For this we need some more notation. Let the automorphism group of a frame F
be

Aut(F) := {U ∈ Ok(R) : Uf ∈ F for all f ∈ F},

where Ok(R) is the group of k × k real orthogonal matrices. As usual, we write H 6 G
to indicate that H is a subgroup of the group G.

We now discuss group frames; see Chapter 10 of [42] for a detailed exposition. Let
f 1 ∈ Rk be a vector and let G a finite group of orthogonal k × k matrices. Define F to
be the orbit of f 1 under the action of G by left multiplication, i.e.

F = Gf 1 := {Uf 1 : U ∈ G} ,

then all the vectors in F have the same norm. If F spans Rk, then F is a uniform frame,
which we refer to as a G-frame. G is said to act irreducibly on the space Rk if there is no
nonzero proper subspace E of Rk that is closed under the action of G, that is, GE 6= E
for any {0} 6= E ( Rk. A G-frame with such an irreducible action corresponding to G
on Rk is similarly called irreducible. All irreducible group frames are tight. In fact, if G
is a group with an irreducible action on Rk, then the orbit of x under G, {Ux : U ∈ G},
is an irreducible tight G-frame for any nonzero vector x ∈ Rk (see Sections 10.5 - 10.9
of [42] for details).

Our next result demonstrates a certain correspondence between irreducible group
frames and strongly eutactic lattices.

Theorem 1.3. Let G be a group of k×k real orthogonal matrices and f ∈ Rk be a vector
so that F = Gf is an irreducible rational group frame in Rk. Then the lattice L(F) is
strongly eutactic.

Remark 1.4. Conversely, suppose L ⊂ Rk is a strongly eutactic lattice of rank k. By
Corollary 16.1.3 of [32], L is strongly eutactic if and only if its set S(L) of minimal vectors
is a spherical 2-design, which is a condition equivalent to the tightness condition (1.2).
Since all minimal vectors have the same norm, S(L) is a uniform tight frame. Now suppose
some Aut(L) acts transitively on S(L). Let x1 ∈ S(L), then for any x ∈ S(L) there exists
a U ∈ Aut(L) such that x = Ux1. Hence

S(L) = {Ux1 : U ∈ Aut(L)},

and so S(L) is an Aut(L)-frame. If the action of Aut(L) on Rk is irreducible then S(L)
is an irreducible group frame.
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We prove Theorem 1.3 in Section 3. This theorem motivates the investigation of
rational irreducible group frames. One steady source of rational group frames comes from
vertex transitive graphs, as detailed in Section 10.7 of [42]. In the special case when the
graph in question is distance transitive, these frames are irreducible.

Theorem 1.5. Let Γ be a vertex transitive graph on n vertices and G its automorphism
group. Let A be the adjacency matrix of Γ and λ an eigenvalue of multiplicity m. Assume
λ is rational and let Vλ be the corresponding m-dimensional eigenspace to eigenvalue λ.
Let Pλ be a rational orthogonal projection matrix of Rn onto Vλ. Then LΓ,λ := PλZn is a
lattice of full rank in Vλ, and its automorphism group contains a subgroup isomorphic to
a factor group of G. If Γ is distance transitive, LΓ,λ is strongly eutactic.

We review all the necessary notation and prove Theorem 1.5 in Section 4. Distance
transitive graphs form a subclass of vertex transitive graphs, and there are plenty of
examples of such graphs with rational eigenvalues. In fact, there exist such lattices on
n vertices for arbitrarily large n having eigenvalues of multiplicity m being an increasing
function of n (for instance complete graphs, Johnson graphs, Grassman graphs, folded
cube graphs, etc.), so that this construction yields strongly eutactic lattices in arbitrarily
high dimensions. Further, there are some instances of vertex transitive graphs which are
not distance transitive, however still give rise to strongly eutactic lattices. We demonstrate
several examples of our construction in Section 4, some of which are summarized in
Table 1. A separate collection of lattices coming from several Johnson graphs J(n, 2) is
given in Table 2 in Section 4. Furthermore, in Theorem 4.5 we give a characterization of
lattices coming from product graphs in terms of tensor products and orthogonal direct
sums of component lattices.

For the purposes of all of our examples and constructions, the lattices are viewed up
to similarity and eigenspaces of graphs are identified with real Euclidean spaces Rk for the
appropriate dimension k equal to the multiplicity of the corresponding eigenvalue. Our
examples have been computed in Maple [30] using online catalog [1] of distance regular
graphs and online catalog [31] of strongly eutactic lattices. It can be seen from these
examples that a graph and its complement produce the same lattices. This is true in
general, as is shown in Proposition 4.7 in Section 4. At the end of Section 4 we also
demonstrate an interesting correspondence between contact polytopes of lattices E∗6 , E∗7
and A∗3 and our construction of lattices from their skeleton graphs.

It is also interesting to consider Theorem 1.5 in view of the properties of eutactic
configurations, i.e. finite sets of vectors satisfying the eutaxy condition (1.1). The famous
theorem of Hadwiger ([32], Theorem 3.6.12) asserts that a set S of cardinality n in k-
dimensional space V , n > k, is eutactic if and only if it is an orthogonal projection
onto V of an orthonormal basis in an n-dimensional space containing V . In fact, our
construction considers precisely such a projection, namely the set of vectors {Pλei}ni=1

where e1, . . . , en is the standard basis in Rn. This set is therefore eutactic by Hadwiger.
Our result, however, implies more, specifically that in our setting (in the case of distance
transitive graphs) these vectors generate a lattice whose set of minimal vectors is strongly
eutactic.
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Graph Γ Dist.
trans.?

# of
vert.

Eig.
λ

Mult. of
λ

Lattice LΓ,λ

Disconnected graph No (n) 0 (n) Integer lattice Zn

Complete graph Kn Yes (n) −1 (n− 1) Root lattice An−1

Hamming graph H(2, 3) Yes (9) 1 (4) A2 ⊗Z A2

Petersen graph Yes (10) −2 (4) A∗4, dual of A4

Petersen graph Yes (10) 1 (5) Coxeter lattice A2
5

Petersen line graph Yes (15) −1 (4) A∗4, dual of A4

Petersen line graph Yes (15) −2 (5) Coxeter lattice A3
5

Clebsch graph Yes (16) −3 (5) D∗5 , dual of D5

Clebsch complement Yes (16) 2 (5) D∗5 , dual of D5

Shrikhande graph No (16) 2 (6) D+
6

Shrikhande complement No (16) −3 (6) D+
6

Schläfli graph Yes (27) 4 (6) E∗6 , dual of E6

Schläfli complement Yes (27) −5 (6) E∗6 , dual of E6

Gosset graph Yes (56) 9 (7) E∗7 , dual of E7

Table 1: Examples of strongly eutactic lattices from vertex transitive graphs

Finally, in Section 5 we discuss a possible relation between coherence of a lattice and
its sphere packing density, as well as potential applications of tight frames coming from
sets of minimal vectors of lattices in compressed sensing.

2 Rationality of lattice-generating frames

We start with a simple proof of Theorem 1.1.

Proof of Theorem 1.1. With notation as in the statement of the theorem, let B be a k×n
real matrix whose columns are vectors of the tight frame F and L(F) is a lattice. Let A
be a k × k basis matrix for L(F). Then, there exists a k × n integer matrix Z so that
AZ = B. Thus

AZZ>A> = BB> = γIk

for some γ > 0. Since A is invertible,

ZZ> = γA−1(A>)−1,

so that ZZ> = γ(A>A)−1. Therefore

B>B = Z>A>AZ = Z>γ(ZZ>)−1Z = γZ>(ZZ>)−1Z.

Since Z>(ZZ>)−1Z has rational entries, we have that B>B is a multiple of a rational
matrix. Therefore F is a rational tight frame.
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The above argument implies that if QF as in (1.3) is a quadratic form corresponding
to an irrational tight frame F then the corresponding integer span L(F) is not a lattice
(i.e. is not discrete) because QF cannot be bounded away from 0 on integer points.
This argument, however, relies heavily on the norm-form QF coming from a tight frame.
On the other hand, it is not difficult to construct other irrational quadratic forms (not
corresponding to tight frames) which are bounded away from 0 on integer points. For
instance, take L1, . . . , Lk to be rational linear forms in n variables x1, . . . , xn and c1, . . . , ck
any positive real numbers. Let

Q(x1, . . . , xn) = c1L
2
1 + · · ·+ ckL

2
k.

This Q is a positive semidefinite quadratic form. Suppose Q(a) 6= 0 for some integer
vector a, then there must exist 1 6 i 6 k such that Li(a) 6= 0. Since Li has rational
coefficients, |Li(a)|> 1/di, where di is the least common multiple of the denominators of
these coefficients. Let d = max{d1, . . . , dk} and c = min{c1, . . . , ck}, then we have

Q(a) > c/d2

for all a for which Q(a) 6= 0. In particular, if some of the ci’s are irrational, Q is a form
with irrational coefficients.

In view of this observation, it is interesting to understand what are the necessary and
sufficient conditions on a k × n real matrix B so that BZn is a lattice to imply that B
must be rational? In the rest of this section we prove a sufficient condition that is weaker
than being a tight frame. Write {bi}ni=1 ⊂ Rk for the elements of a frame F (a sequence
of vectors spanning Rk), written as column vectors of a k×n matrix B, where n = k+m.
Let the first k columns in B be denoted in matrix form by B0 and the remaining m column
vectors by B1, so that B = [B0 | B1], B0 ∈ Rk×k, B1 ∈ Rk×m.

Lemma 2.1. Suppose that B = [B0 | B1] is such that B0Rk = Rk and ΛB := BZn is
discrete. Then B−1

0 B1 ∈ Qk×m.

Proof. If ΛB is discrete, it is a full-rank lattice in Rk, and so has a basis matrix A =(
a1 . . . ak

)
such that ΛB = AZk. Hence there exist some integer matrices Z0, Z1 such

that AZ0 = B0, and AZ1 = B1. Since B0 is full rank and A invertible, Z0 is invertible
and B−1

0 B1 = Z−1
0 A−1AZ1 = Z−1

0 Z1 ∈ Qk×m.

Let Q be an k × k orthogonal real matrix, then multiplication by Q preserves inner
products of vectors in Rk and a collection of vectors {bi}ni=1 generates a lattice over Z if
and only if {Qbi}ni=1 does. Let W be orthogonally equivalent to B, that is W = QB for
some Q ∈ Ok(R) (Ok(R) denotes the set of real k × k orthogonal matrices). QQ> = Ik,
the k× k identity matrix, and the matrix of outer products for W is WW> = QBB>Q>.
Having information about the entries of this matrix for certain Q (arising in this case
from the QR-decomposition of a matrix) allows for an easy way to check rationality of
inner products. When B is a tight frame given in matrix form, (as above) BB> = γIk
for some γ > 0, and so WW> collapses to the same matrix as BB>. In general, however
the relationship between WW> and BB> can get “muddled” by transformation so that
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d1 d1u1,2 d1u1,3 d1u1,4 . . . d1v1,1 d1v1,2 . . . d1v1,m

0 d2 d2u2,3 d2u2,4 . . . d2v2,1 d2v2,2 . . . d2v2,m

0 0 d3 d3u3,4 . . . d3v3,1 d3v3,2 . . . d3v3,m
...

...
...

...
. . .

...
...

. . .
...

0 0 0 0 . . . dkvk,1 dkvk,2 . . . dkvk,m


Figure 1: Matrix B.

determining lattice properties of integer combinations of vectors in a tight frame is easier
than the general case.

Remark 2.2. Given B0 = QR, the QR factorization of B0, so that Q ∈ Ok(R) and R is
upper-triangular with positive entries along the diagonal, it will be useful to work with
the alternative representation of B: B̃ = Q−1B = [R | Q−1B1].

In the arguments which follow, we choose to write B̃ = D[U | V ], where D ∈ Rk×k

is diagonal with entries d1, . . . , dk, U ∈ Rk×k is upper-triangular with ones along the
diagonal, and V ∈ Rk×m is the remaining entries. In the above, di are taken to be
positive (which is possible since R has positive diagonal entries). From now on, let B
denote a matrix of the form B̃ when not specified otherwise.

Theorem 2.3. Suppose a collection of vectors B = {bi}ni=1 ⊂ Rk, n = k + m, is given
as column vectors of a matrix of the form B̃ (as in the preceding remark). Suppose these
column vectors have the following properties:

(i) spanZB is discrete,

(ii) the row-vectors of B, r1, . . . , rk, satisfy 〈ri, rj〉 = didjqi,j for some qi,j ∈ Q and all
i 6= j, that is, [U | V ][U | V ]T has rational entries off the diagonal, and

(iii) 〈ri, ri〉 = qi,i ∈ Q for all i = 1, . . . , k, that is, BBT = D[U | V ][U | V ]TD has
rational entries on the diagonal.

Then the inner products 〈bi, bj〉 must all be rational, i.e. B>B ∈ Qn×n.

Proof. For each column vector bj from B, Lemma 2.1 implies there exists a vector pj ∈ Qk

such that B−1
0 bj = pj. Letting pi,j be the i-th entry of each pj, we now use these rational

numbers to demonstrate, under the above conditions, that B>B must be rational.
Recall that B has k rows and k+m columns. From now on, denote the last m column

vectors of B by vl, 1 6 l 6 m. The condition B−1
0 vl = pl gives that dkpk,l = dkvk,l, so

vk,l = pk,l for all l = 1, . . . ,m, i.e., the numbers vk,l are rational. In the same manner, we
obtain m equations:

dk−1pk−1,l + dk−1uk−1,kpk,l = dk−1vk−1,l,

which imply that pk−1,l + uk−1,kpk,l = vk−1,l for all l = 1, . . . ,m, as well as

dkdk−1(uk−1,k + vk−1,1vk,1 + · · ·+ vk−1,mvk,m) = qk,k−1dkdk−1,
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which implies uk−1,k + vk−1,1vk,1 + · · ·+ vk−1,mvk,m = qk,k−1. Now, these m+ 1 equations
can be written together in a matrix equation:

1 vk,1 vk,2 . . . vk,m
pk,1 −1 0 . . . 0
pk,2 0 −1 . . . 0

...
...

...
. . .

...
pk,m 0 0 . . . −1




uk−1,k

vk−1,1

vk−1,2
...

vk−1,m

 =


qk,k−1

−pk−1,1

−pk−1,2
...

−pk−1,m

 .

The matrix formed above on the left is invertible as all the rows of index greater than
one are orthogonal to the first (this may be checked using the condition vk,l = pk,l) and
the lower right block being the negative identity shows the last m rows (arising from
the first set of equalities above) are linearly independent amongst themselves. Thus by
applying the inverse of the matrix on the left to each side we can express the coordinates
uk−1,k, vk−1,1, . . . , vk−1,m of the vector on the left as rational numbers.

Proceeding, the idea now is to induct on “levels” (each level is determined by the
smallest index in the variables appearing in the matrix equations of the type above)
supposing that all the variables appearing in the previous level (with the exception of
variables of the form di which must be treated separately later) have been demonstrated
to be rational. At the i-th such level the arising matrix equation analogous to the one
above is of the form:



1 uk−i+1,k−i+2 uk−i+1,k−i+3 ... uk−i+1,k vk−i+1,1 vk−i+1,2 ... vk−i+1,m

0 1 uk−i+2,k−i+3 ... uk−i+2,k vk−i+2,1 vk−i+2,2 ... vk−i+2,m

0 0 1 ... uk−i+3,k vk−i+3,1 vk−i+3,2 ... vk−i+3,m

...
...

...
...

...
...

...
...

...
0 0 0 ... 1 vk,1 vk,2 ... vk,m

pk−i+1,1 pk−i+2,1 pk−i+3,1 ... pk,1 −1 0 ... 0
pk−i+1,2 pk−i+2,2 pk−i+3,2 ... pk,2 0 −1 ... 0

...
...

...
...

...
...

...
...

...
pk−i+1,m pk−i+2,m pk−i+3,m ... pk,m 0 0 ... −1





uk−i,k−i+1
uk−i,k−i+2
uk−i,k−i+3

...
uk−i,k
vk−i,1
vk−i,2

...
vk−i,m



=



qk−i+1,k−i
qk−i+2,k−i
qk−i+3,k−i

...
qk,k−i

−pk−i,1

−pk−i,2

...
−pk−i,m



.

As all entries in the matrix on the left appear in the left or right hand side vector of
some matrix equation from a previous level, the inductive hypothesis implies that they
are rational. A few observations are in order. The first i rows in the matrix above are
linearly independent by the fact the first i column sub-matrix is upper-triangular with
ones along the diagonal. Second, the remaining m row vectors have inner products with
the first i row vectors which are zero as the expressions resulting in computing these inner
products come exactly as the equations B0pl = vl.

Lastly, note that the last m row vectors are linearly independent amongst them-
selves by the lower right block being minus the identity in Rm×m. Together, these ob-
servations justify the claim that the above matrix is invertible, so that the variables
uk−i,k−i+1, uk−i,k−i+2, . . . , uk−i,k, vk−i,1, . . . , vk−i,m may be expressed as rationals. This com-
pletes the inductive portion of the argument.
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Reflect on what is known about the variables which have appeared in this process so
far. For each i, the variables {uk−i,j+1}k−1

j=k−i have been shown to be rational along with
the variables {vk−i,j}mj=1. There is one set of equations which have not appeared yet, along
with a set of variables which have yet to play a role (the variables dj). Treating these will
be the last step of this argument.

The diagonal elements of BB> give rise to the equations

d2
l

(
1 +

k−1∑
j=l

u2
l,j+1 +

m∑
i=1

v2
l,i

)
= ql,l, l = 1 . . . , k,

where the convention is that a sum with starting index larger than the ending index is
zero. For l = k, the corresponding equation is

d2
k

(
1 +

m∑
i=1

v2
k,i

)
= qk,k.

Since all of the variables vk,i, qk,k are rational, so is d2
k. An analogous argument establishes

that d2
l is rational as in those equations, ul,j+1, ql,l and vl,j are rational (by the previous

inductive argument). All that remains now is to compute the inner products. These are
of the form

〈vi,vj〉 =
∑
l

d2
l vi,lvj,l, 〈ui,uj〉 =

∑
l

d2
l ui,l+1uj,l+1, 〈ui,vj〉 =

∑
l

d2
l ui,l+1vj,l,

which are all rational.

We now show that conditions of Theorem 2.3 include tight frames, thus providing an
alternate proof of Theorem 1.1.

Corollary 2.4. Suppose that B = {bi}ni=1 ⊂ Rk is a matrix with column vectors given by
F , a Parseval tight frame. Then spanZF is discrete if and only if 〈bi, bj〉 are rational.

Proof. If the frame F is rational, then spanZF is a lattice by Proposition 1 of [3]. The
reverse implication follows by setting qi,j = 0, i 6= j and qi,i = 1 in Theorem 2.3 (after
computing the QR decomposition of B).

Second proof of Theorem 1.1. Suppose that F = {f 1, . . . ,fn} is a uniform tight (n, k)-
frame so that L(F) = spanZF is a lattice. Then for all v ∈ Rk,

‖v‖2= γ
n∑
i=1

〈v,f i〉2 =
n∑
i=1

〈v,√γf i〉2

for an appropriate constant γ > 0. Hence F ′ =
√
γ F is a Parseval tight frame and

spanZF ′ =
√
γ L(F) is again a lattice. Then Corollary 2.4 implies that inner products

of vectors in F ′ are rational, and so inner products of vectors in F are rational multiples
of 1/γ.
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3 Lattices from irreducible group frames

In this section we focus on group frames and lattices generated by them, in particular
proving Theorem 1.3. As in Section 1, let f 1 ∈ Rk be a vector and let G a finite group of
orthogonal k × k matrices. Assume that

F := {Uf 1 : U ∈ G} ,
spans Rk, that is, it is a G-frame. If G is a cyclic group, F is called a cyclic frame. An
example of a cyclic frame is the (k, k+ 1)-ETF discussed, for instance, in Section 5 of [4]:

f1 =
1√

k2 + k


−k

1
...
1

 , . . . , fk+1 =
1√

k2 + k


1
1
...

−k

 . (3.1)

If G is an abelian group, F is a harmonic frame (see Section 11.3 of [42], Theorem 11.1).
Notice that for any G-frame F , G 6 Aut(F). We also make a simple observation about
the size of the G-frame F .

Lemma 3.1. Let F := {Uf 1 : U ∈ G} be a G-frame in Rk, then |F|= |G : Gf1
| where

Gf1
is the stabilizer of f 1 and |F|6 |G|. Further, |F|< |G| if and only if f 1 if an

eigenvector for some non-identity matrix W ∈ G with the corresponding eigenvalue equal
to 1.

Proof. The fact that |F|= |G : Gf1
|6 |G| is clear from the definition. Now assume

|F|< |G|, which is equivalent to saying that |Gf1
|> 1. This is true if and only if there

exists a non-identity matrix W ∈ G such that Wf 1 = f 1.

Proof of Theorem 1.3. The automorphism group of L(F), Aut(L(F)), is the group of all
orthogonal matrices that permute the lattice. Then we have

G 6 Aut(F) 6 Aut(L(F)),

and the action of G on Rk is irreducible. Let S(L(F)) be the set of minimal vectors
of L(F) and let E = spanR S(L(F)). Since the automorphisms of L(F) permute the
minimal vectors, it must be true that E is closed under the action of G. Thus we must
have E = Rk, and so G acts irreducibly on E, the space spanned by the minimal vectors
of L(F). Then Theorem 3.6.6 of [32] guarantees that S(L(F)) is a strongly eutactic
configuration, and hence L(F) is a strongly eutactic lattice.

4 Vertex transitive graphs

Construction of group frames from vertex transitive graphs is described in Section 10.7
of [42]1. We briefly review this subject here, proving Theorem 1.5 and providing some
applications.

1We found some comments to be misleading in this reference, such as in the proof of Proposition 10.2.
That said, the treatment there is valuable, and overall the problems in this section are minor.

the electronic journal of combinatorics 26(3) (2019), #P3.49 11



Let Γ be a graph on n vertices labeled by integers 1, . . . , n with automorphism group
G := Aut(Γ). Γ is called vertex transitive if for each pair of vertices i, j there exists
τ ∈ G such that τ(i) = j. We define the distance between two vertices in a graph to be
the number of edges in a shortest path connecting them. A connected graph Γ is called
distance transitive if for any two pairs of vertices i, j and k, l at the same distance from
each other there existence an automorphism τ ∈ G such that τ(i) = k and τ(j) = l.
Clearly, distance transitive graphs are always vertex transitive, but the converse is not
true. From here on graphs considered will always be vertex transitive, and we will indicate
specifically when we need them to also be distance transitive. Let e1, . . . , en denote the
standard basis vectors in Rn. Then G acts on Rn by

τ

(
n∑
i=1

ciei

)
=

n∑
i=1

cieτ(i)

for every τ ∈ G and vector
∑n

i=1 ciei ∈ Rn. Let A = (aij) be the n×n adjacency matrix of
Γ, so that aij = 1 if vertices i and j are connected by an edge and aij = 0 otherwise. Then
aτ(i)τ(j) = aij for all τ ∈ G. The matrix A is symmetric, with real eigenvalues λ1, . . . , λk,

each of multiplicity mλi , so that
∑k

i=1mλi = n. From now on, we call these the eigenvalues
of the graph Γ. For each λi let Vλi ⊂ Rn be the corresponding mλi-dimensional eigenspace.
The group G acts on each eigenspace Vλi and for any nonzero vector v ∈ Vλi the orbit Gv
of v under the action of G is a group frame in Vλi

∼= Rmi . When Γ is a distance transitive
graph, this action of G on Vλi is irreducible, hence producing an irreducible group frame
(see Proposition 4.1.11 on p. 137 of [5]). Further, if Pλi is the orthogonal projection onto
Vλi , then for any τ ∈ G and x ∈ Rn,

τ(Pλi(x)) = Pλi(τ(x)).

As indicated in Section 10.7 of [42], this identity is true since the action of τ ∈ G and the
action of the adjacency matrix A on a vector commute, i.e.

τ(Aek) =
∑
i

aikτei =
∑
j

aτ−1(j),kej =
∑
j

aj,τ(k)ej = A(τ(ek)).

Proof of Theorem 1.5. Suppose now that an eigenvalue λi is an integer. We know that the
group G consists of permutation matrices. Pick a nonzero integer vector x ∈ Rn. Then
Pλix ∈ Vλi and the frame Fλi(x) := GPλix = Pλi(Gx) is rational, and hence generates a
lattice L(Fλi(x)) = spanZFλi(x). This lattice is strongly eutactic if this group frame is
irreducible, which is the case when the graph is distance transitive. Let H be the kernel
of the action of G on Vλi , i.e.

H = {τ ∈ G : τ(x) = x for all x ∈ Vλi} .

Notice that H is a normal subgroup of G, since for any σ ∈ G and x ∈ Vλi , σ(x) ∈ Vλi ,
and so

(τσ)(x) = τ(σ(x)) = σ(x) = σ(τ(x)) = (στ)(x),
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for any τ ∈ H. Then the quotient group G/H is isomorphic to a subgroup of Aut(L(Fλi)).
If x = e1, then the corresponding frame

Fλi := Fλi(e1)

consists of column vectors of Pλi (possibly with repetitions), since τe1 is some ej for every
τ ∈ G, and every ej is representable as τe1 for some τ ∈ G, since the graph is vertex
transitive. Then the resulting lattice L(Fλi) = PλiZn, and this concludes the proof of
Theorem 1.5.

We refer to the lattice L(Fλi) described above as lattice generated by the graph Γ and
denote it by LΓ,λi .

Remark 4.1. While our proof that the lattice LΓ,λi is strongly eutactic only applies to the
situations when Γ is distance transitive, there are examples of vertex transitive graphs
which are not distance transitive that nonetheless still produce strongly eutactic lattices:
we demonstrate some such examples below. It would be interesting to understand if this
is indeed the case for all vertex transitive graphs, or if there exist some that generate
lattices that are not strongly eutactic.

For the rest of this section, we consider examples of this lattice construction when
applied to various graphs and their products. One class of lattices that will figure promi-
nently in our examples are root lattices, that is, integral lattices generated by vectors of
norm 2, which are called its roots (recall that a lattice is integral if the inner product
between any two vectors is always an integer). Also recall that the dual lattice of a full
rank lattice L ⊂ Rn is

L∗ := {x ∈ Rn : 〈x,y〉 ∈ Z for all y ∈ L} .

If L is integral, then L ⊆ L∗.

Lemma 4.2. Let 0n be a completely disconnected graph on n vertices, then 0n generates
the integer lattice Zn.

Proof. The adjacency matrix for 0n is the n × n 0-matrix, and so it has one eigenvalue
0 with multiplicity n with the corresponding eigenspace being the entire Rn. The auto-
morphism group of 0n is Sn, so the group frame obtained from the vector e1 is the full
standard basis, which spans the lattice Zn.

Lemma 4.3. The complete graph Kn generates (a lattice similar to) the root lattice

An−1 =

{
x ∈ Zn :

n∑
i=1

xi = 0

}
.

Proof. The complete graph Kn is the graph on n vertices with no loops in which every
vertex is connected to every other. Hence adjacency matrix A has 1’s for all the off-
diagonal entries and 0’s on the diagonal. There are two eigenvalues: λ1 = −1 with
multiplicity n − 1 and λ2 = n − 1 with multiplicity 1. The eigenspace corresponding
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to λ2 is Vn−1 = spanR{(1, . . . , 1)>} and the eigenspace V−1 corresponding to λ1 is the
orthogonal complement of Vn−1 in Rn. The automorphism group of Kn is Sn. The
orthogonal projection onto V−1 is given by

P−1 =
1

n− 1


n− 1 −1 . . . −1
−1 n− 1 . . . −1
...

...
. . .

...
−1 −1 . . . n− 1

 ,

so the lattice LKn,−1 generated by the columns of P−1 is the root lattice An−1 = Zn ∩ V−1

rescaled by the factor 1/(n− 1).

Next we consider graphs that are constructed as products of smaller graphs. We start
with disjoint unions. In order for such a graph to be vertex transitive, all the components
in the disjoint union need to be vertex transitive and isomorphic to each other. Hence we
can think of them as copies of the same vertex transitive graph.

Lemma 4.4. Let Γ be a vertex transitive graph constructed as a disjoint union of k copies
of a vertex transitive graph ∆. Let λ be a rational eigenvalue of ∆ and L∆,λ be a lattice
generated by the λ-eigenspace of ∆. Then Γ also has λ as an eigenvalue and generates a
lattice given by the orthogonal sum of k copies of L∆,λ.

Proof. Let m be the number of vertices of ∆ and let A∆ be its adjacency matrix. Then
the mk×mk adjacency matrix AΓ of the graph Γ is a block matrix with diagonal m×m
blocks being A∆ and the rest filled up with 0 blocks, i.e.

AΓ =


A∆ 0 . . . 0
0 A∆ . . . 0
...

...
. . .

...
0 0 . . . A∆

 .

Let us refer to a block matrix like this as
⊕

k(A∆). AΓ has the same eigenvalues as
A∆, but of k times greater multiplicity. Let V∆,λ be the λ-eigenspace of A∆ with the
corresponding projection matrix P∆,λ. The λ-eigenspace of AΓ is the orthogonal sum of
k copies of V∆,λ and the corresponding projection matrix is

⊕
k(P∆,λ). Hence the lattice

LΓ,λ generated by the column vectors of this matrix is the orthogonal sum of k copies
of L∆,λ.

Now we recall the three fundamental commutative product constructions of graphs (see
[25] and [26] for detailed information). In each of these constructions, each eigenvalue ν of
the product graph Γ is derived from a pair of eigenvalues λ and µ of the component graphs
∆1 and ∆2, respectively, via some function f(λ, µ). This function f differs depending on
which product we consider. Spectral properties of product graphs are nicely summarized
in [35].
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The Cartesian product of two graphs ∆1 and ∆2, denoted ∆1�∆2, is the graph whose
vertices are pairs (u, v), where u is a vertex of ∆1 and v is a vertex of ∆2, and two
vertices (u1, v1) and (u2, v2) are connected by an edge if and only if either u1 = u2 and
v1, v2 are connected by an edge in ∆2, or v1 = v2 and u1, u2 are connected by an edge in
∆1. Then ∆1�∆2 is vertex transitive if and only if both ∆1 and ∆2 are vertex transitive
([21], Section 7.14, or [25]). For each pair of eigenvalues λ of ∆1 and µ of ∆2, there is an
eigenvalue ν of ∆1�∆2 given by

ν = f(λ, µ) := λ+ µ,

and if u,v are corresponding eigenvectors of ∆1,∆2, respectively, then u⊗ v is an eigen-
vector of Γ corresponding to ν.

The direct product of two graphs ∆1 and ∆2, denoted ∆1 × ∆2 is the graph whose
vertices are pairs (u, v), where u is a vertex of ∆1 and v is a vertex of ∆2, and two vertices
(u1, v1) and (u2, v2) are connected by an edge if and only if both pairs u1, u2 and v1, v2

are connected by an edge in ∆1,∆2, respectively. If ∆1 and ∆2 are vertex transitive,
then ∆1 × ∆2 is vertex transitive. The converse statement is not as straight-forward,
and distinguishes between bipartite and non-bipartite graphs (see [24]). For each pair of
eigenvalues λ of ∆1 and µ of ∆2, there is an eigenvalue ν of ∆1 ×∆2 given by

ν = f(λ, µ) := λµ,

and if u,v are corresponding eigenvectors of ∆1,∆2, respectively, then u⊗ v is an eigen-
vector of Γ corresponding to ν.

The strong product of two graphs ∆1 and ∆2, denoted ∆1 � ∆2, is the graph whose
vertices are pairs (u, v), where u is a vertex of ∆1 and v is a vertex of ∆2, and two vertices
(u1, v1) and (u2, v2) are connected by an edge if and only if u1, u2 and v1, v2 are either equal
or connected by an edge in ∆1,∆2, respectively. The graph ∆1 �∆2 is vertex transitive
if and only if both ∆1 and ∆2 are vertex transitive (Section 7.4 of [25]). For each pair of
eigenvalues λ of ∆1 and µ of ∆2, there is an eigenvalue ν of ∆1 �∆2 given by

ν = f(λ, µ) := (λ+ 1)(µ+ 1)− 1,

and if u,v are corresponding eigenvectors of ∆1,∆2, respectively, then u⊗ v is an eigen-
vector of Γ corresponding to ν.

The lexicographic product of two vertex transitive graphs ∆1 and ∆2 is a vertex tran-
sitive graph whose vertices are pairs (u, v), where u is a vertex of ∆1 and v is a vertex of
∆2, and two vertices (u1, v1) and (u2, v2) are connected by an edge if and only if either
u1, u2 are connected in ∆1, or u1 = u2 and v1, v2 are connected in ∆2.

For two vectors x ∈ Rm1 ,y ∈ Rm2 and m1×m1, m2×m2 matrices A,B, respectively,
we have

(Ax)⊗ (By) = (A⊗B)(x⊗ y), (4.1)

where ⊗ stands for the usual Kronecker (outer) product of matrices and vectors. Further,
if two vectors x1,x2 ∈ Rm1 are orthogonal and y ∈ Rm2 , then simple tensors x1 ⊗ y and
x2 ⊗ y are also orthogonal.
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Theorem 4.5. Let ∆1,∆2 be vertex transitive graphs on m1, m2 vertices, respectively,
and let Γ be a product graph

Γ = ∆1 ∗∆2

on m1m2 vertices, where ∗ stands for �, ×, or �. Let ν be an eigenvalue of Γ and (λi, µi)
for 1 6 i 6 k pairs of eigenvalues of ∆1,∆2 respectively so that

ν = f(λi, µi) for all 1 6 i 6 k

for the appropriate f . Let L∆1,λi and L∆2,µi for each 1 6 i 6 k be the corresponding
lattices. Then LΓ,ν is the orthogonal projection of Zm1m2 onto the space spanned by

(L∆1,λ1 ⊗Z L∆2,µ1)⊕ · · · ⊕ (L∆1,λk ⊗Z L∆2,µk) ,

where ⊕ is the orthogonal direct sum. In particular, if k = 1 then

LΓ,ν = L∆1,λ1 ⊗Z L∆2,µ1 ,

up to similarity.

Proof. Let V∆1,λi , W∆2,µi be the eigenspaces of ∆1, ∆2 corresponding to λi, µi, respectively,
with the corresponding orthogonal projection matrices P∆1,λi , P∆2,µi . Then

L∆1,λi = P∆1,λiZm1 ⊂ V∆1,λi , L∆2,µi = P∆2,µiZm2 ⊂ W∆2,µi ,

and V∆1,λi = spanR L∆1,λi , W∆2,µi = spanR L∆2,µi , so

V∆1,λi ⊗R W∆2,µi = spanR (L∆1,λi ⊗Z L∆2,µi) .

Since adjacency matrices of graphs are symmetric, the eigenspaces corresponding to dis-
tinct eigenvalues are orthogonal, so that any two V∆1,λi are orthogonal to each other, as
are any two W∆2,µi . Then each two V∆1,λi ⊗R W∆2,µi are also orthogonal to each other,
and the eigenspace of Γ corresponding to ν is

UΓ,ν = PΓ,νRm1m2 = (P∆1,λ1 ⊗ P∆2,µ1)Rm1m2 ⊕ · · · ⊕ (P∆1,λk ⊗ P∆2,µk)Rm1m2

= (P∆1,λ1Rm1 ⊗R P∆2,µ1Rm2)⊕ · · · ⊕ (P∆1,λkR
m1 ⊗R P∆2,µkR

m2)

= (V∆1,λ1 ⊗R W∆2,µ1)⊕ · · · ⊕ (V∆1,λk ⊗R W∆2,µk) ,

by (4.1), where PΓ,ν is the orthogonal projection matrix onto UΓ,ν ; we are using here the
fact that Rm1 ⊗R Rm2 = Rm1m2 . Then LΓ,ν = PΓ,νZm1m2 .

Now suppose k = 1, then applying (4.1) again and using that Zm1 ⊗Z Zm2 = Zm1m2 ,
we have:

LΓ,ν = PΓ,νZm1m2 = (P∆1,λ1 ⊗ P∆2,µ1)Zm1m2 = P∆1,λ1Zm1⊗ZP∆2,µ1Zm2 = L∆1,λ1⊗ZL∆2,µ1 .

This completes the proof.
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Example 4.6. Let ∆1 be the complete graph K3 and ∆2 the 4-cycle graph C4. Eigen-
values of K3 are λ1 = 2 (multiplicity 1) and λ2 = −1 (multiplicity 2); eigenvalues of
C4 are µ1 = 2 (multiplicity 1), µ2 = −2 (multiplicity 1), µ3 = 0 (multiplicity 2). The
corresponding lattices are

LK3,2 =
1

3

 1
1
1

Z, LK3,−1 =
1

3

 2 −1
−1 2
−1 −1

Z2,

and

LC4,2 =
1

4


1
1
1
1

Z, LC4,−2 =
1

4


1
−1

1
−1

Z, LC4,0 =
1

4


1 0
0 1
−1 0

0 −1

Z2.

Let Γ1 = K3�C4, then ν = −1 is an eigenvalue of Γ1, obtained in a unique way as
ν = λ2 + µ3, hence

LΓ1,−1 = LK3,−1 ⊗Z LC4,0 ∼ A2 ⊗Z Z2 = A2 ⊕ A2.

Let Γ2 = K3 × C4, then ν = 0 is an eigenvalue of Γ2, obtained as

ν = λ1µ3 = λ2µ3,

hence LΓ2,0 is the orthogonal projection of Z12 onto the space spanned by

(LK3,2 ⊗Z LC4,0)⊕ (LK3,−1 ⊗Z LC4,0) = (LK3,2 ⊕ LK3,−1)⊗Z LC4,0 ∼ Z3 ⊗Z Z2 = Z6.

Hence LΓ2,0 is similar to Z6.

Let Γ3 = K3 � C4, then ν = −1 is an eigenvalue of Γ2, obtained as

ν = (λ1 + 1)(µ1 + 1)− 1 = (λ1 + 1)(µ2 + 1)− 1 = (λ1 + 1)(µ3 + 1)− 1,

hence LΓ3,−1 is the orthogonal projection of Z12 onto the space spanned by

(LK3,−1 ⊗Z LC4,2)⊕ (LK3,−1 ⊗Z LC4,−2)⊕ (LK3,−1 ⊗Z LC4,0)

= LK3,−1 ⊗Z (LC4,2 ⊕ LC4,−2 ⊕ LC4,0) ∼ A2 ⊗Z Z4

= A2 ⊕ A2 ⊕ A2 ⊕ A2.

Hence LΓ2,0 is similar to A2 ⊕ A2 ⊕ A2 ⊕ A2.

Let Γ4 = K3 ◦C4 be the lexicographic product of K3 by C4. Unlike the previously consid-
ered products, this one is not commutative.Then eigenvalues of Γ4 are 10 (multiplicity 1),
0 (multiplicity 6), −2 (multiplicity 5). The lattice LΓ4,−2 is similar to A∗5, and the lattice
LΓ4,0 is similar to Z6.
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We also discuss a relation between lattices generated by a graph and by its complement.
If Γ is a graph on n vertices, then its complement Γ′ is a graph on the same vertices that
has no common edges with Γ and so when ‘put together’ the two form a complete graph
Kn. Vertex transitive graphs are regular, so let k be the common degree of the vertices
of Γ. Then n − k − 1 is the common degree of the vertices of Γ′. So k is an eigenvalue
of Γ of multiplicity 1 with the corresponding eigenvector 1 := (1, . . . , 1)> and n − k − 1
is an eigenvalue of Γ′ of the same multiplicity with the same corresponding eigenvector.
Moreover the following result holds.

Proposition 4.7. Let Γ be a vertex transitive graph on n vertices of degree k and Γ′ its
complement. Then for each eigenvalue λ 6= k of Γ there is an eigenvalue λ′ = −λ− 1 of
Γ′ of the same multiplicity and the lattices LΓ,λ and LΓ′,λ′ are the same.

Proof. It is well known that if p(x) is the characteristic polynomial of the adjacency matrix
A of Γ, then the characteristic polynomial of the adjacency matrix B of Γ′ is

q(x) = (−1)n
x− n+ k + 1

x+ k + 1
p(−x− 1),

and so for each eigenvalue λ 6= k of Γ there is an eigenvalue λ′ = −λ− 1 of Γ′ of the same
multiplicity (see, for instance, p. 27 of [6]). Further, the adjacency matrices satisfy the
relation

B = Jn − In − A,

where In is the n× n identity matrix and Jn is the n× n matrix consisting of all 1’s. Let
λ 6= k be an eigenvalue of Γ with a corresponding eigenvector x. Since eigenspaces of Γ
corresponding to different eigenvalues are orthogonal, x must be orthogonal to 1, which
means that

n∑
i=1

xi = 0,

and so Jnx = 0. Then

Bx = Jnx− x− λx = (−λ− 1)x,

i.e. x is an eigenvector of B corresponding to the eigenvalue λ′. This means that the
eigenspace of Γ′ corresponding to the eigenvalue λ′ = −λ−1 is the same as the eigenspace
of Γ corresponding to the eigenvalue λ, hence they generate the same lattices.

We now consider more examples. In all the examples to follow, lattices are specified
up to similarity. Information about the graphs we mention can be found, for instance,
in [6].

Example 4.8. Recall the construction of the Hamming graph H(d, q): if S is a set of
q elements and d a positive integer, then vertex set of H(d, q) is Sd, the set of ordered
d-tuples of elements of S, and two vertices are connected by an edge if they differ in
precisely one coordinate. H(d, q) has eigenvalues (q−1)d−qi with multiplicity

(
d
i

)
(q−1)i
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for 0 6 i 6 d. It is well known that H(d, q) is the Cartesian product of d complete graphs
Kq, and hence gives rise to product lattices. Hamming graphs are known to be distance
transitive.

For instance, H(2, 3) has 9 vertices and three eigenvalues: 4 (multiplicity 1), −2
(multiplicity 4) and 1 (multiplicity 4). Projection matrices of both of the 4-dimensional
eigenspaces give rise to the same tensor product lattice: A2 ⊗Z A2.

On the other hand, the graph H(3, 2) has 8 vertices and is isomorphic to the cube
graph Q3, i.e.

H(3, 2) = K2�K2�K2 = K2�C4,

where C4 is as in Example 4.6 with eigenvalues µ1, µ2, µ3 and the corresponding lattices,
and K2 that has multiplicity 1 eigenvalues λ1 = 1, λ2 = −1 with

LK2,1 =
1

2

(
1
1

)
Z, LK2,−1 =

1

2

(
1
−1

)
Z.

Therefore eigenvalues of H(3, 2) are:

• 1 (multiplicity 3), obtained in 2 ways: λ1 + µ3 = 1 + 0 and λ2 + µ1 = −1 + 2;

• −1 (multiplicity 3), obtained in 2 ways: λ1 + µ2 = 1 + (−2) and λ2 + µ3 = −1 + 0;

• 3 (multiplicity 1), obtained as λ1 + µ1;

• −3 (multiplicity 1), obtained as λ2 + µ2.

The lattices LH(3,2),3 and LH(3,2),3 are both similar to Z, however LH(3,2),1 is the orthogonal
projection of Z8 onto the space spanned by

(LK2,1 ⊗Z LC4,0)⊕ (LK2,−1 ⊗Z LC4,2) .

This lattice is similar to A∗3, and the same is true for the lattice LH(3,2),−1. This example
demonstrates that a product graph construction can generate a lattice that is not a tensor
product or direct sum.

Example 4.9. Recall the construction of the Kneser graph KGn,k: vertices of this graph
correspond to k-element subsets of a set of n elements, and two vertices are connected
by an edge if the corresponding sets are disjoint. KGn,k has eigenvalue (−1)j

(
n−k−j
k−j

)
occurring with multiplicity

(
n
j

)
−
(
n
j−1

)
for all j = 1, . . . , k, and therefore gives rise to

lattices in arbitrarily large dimensions. While Kneser graphs are not distance transitive
in general, there are some examples that are.

For instance, Petersen graph (which is the same as the Kneser graph KG5,2) has 10
vertices and three eigenvalues: 3 (multiplicity 1), 1 (multiplicity 5) and −2 (multiplicity
4). It is distance transitive, and hence generates strongly eutactic lattices corresponding
to its eigenvalues. For eigenvalue −2, we obtain the lattice A∗4. For eigenvalue 1, we
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obtain A2
5, an example of the Coxeter-Barnes lattice Arn, defined as the lattice contained

in the hyperplane H = (e1 + · · ·+ en+1)⊥ with the basis{
e1 − e2, . . . , e1 − en,

1

r

n+1∑
i=2

(e1 − ei)

}

and defined for all positive rational r. When r is an integer dividing n + 1, these are
exactly the lattices Λ for which An ⊂ Λ ⊂ A∗n, so that Arn contains An to index r ([32],
Section 5.2). In particular, A2

5 is the unique sublattice of the dual lattice

A∗5 := {x ∈ R5 : x>y ∈ Z for all y ∈ A5},

which contains A5 to index 2. As mentioned above, it can be described as a full rank
lattice in the hyperplane {

x ∈ R6 :
6∑
i=1

xi = 0

}
,

identified with R5. Here is this description:

A2
5 = spanZ

{
e1 − e2, . . . , e1 − e5,

1

2

(
5e1 −

6∑
i=2

ei

)}
,

where e1, . . . , e6 are standard basis vectors in R6.

Example 4.10. The line graph of a graph Γ is the graph Γ′ whose vertices correspond
to edges of Γ, and two vertices are connected by an edge if and only if the corresponding
edges in Γ meet in a vertex. For instance, the line graph of the Petersen graph is a distance
transitive graph on 15 vertices. Among its eigenvalues, −1 comes with multiplicity 4 and
the corresponding lattice is A∗4, −2 comes with multiplicity 5 and the corresponding lattice
is the Coxeter lattice A3

5, which can be described as a full rank lattice in the hyperplane{
x ∈ R6 :

6∑
i=1

xi = 0

}
,

identified with R5. Here is the description:

A3
5 = spanZ

{
e1 − e2, . . . , e1 − e5,

1

3

(
5e1 −

6∑
i=2

ei

)}
,

where e1, . . . , e6 are standard basis vectors in R6. It is the unique sublattice of A∗5 con-
taining A5 to index 3; it is isometric to the dual of A2

5.

Example 4.11. Recall the construction of the Johnson graph J(n, k): vertices of this
graph correspond to k-element subsets of a set of n elements, and two vertices are con-
nected by an edge if the corresponding sets intersect in k−1 elements. J(n, k) is a distance
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transitive graph, which has
(
n
k

)
vertices and eigenvalue ((k− j)(n− k− j)− j) occurring

with multiplicity
(
n
j

)
−
(
n
j−1

)
for all j = 1, . . . ,min{k, n − k}, and therefore gives rise to

strongly eutactic lattices in arbitrarily large dimensions.
It is well known that Johnson graph J(n, 2) (also known as the triangular graph Tn) is

the line graph of the complete graph Kn and the complement of the Kneser graph KGn,2.
In particular, J(5, 2) is the line graph of K5 and the complement of the Petersen graph.
Further, J(n, 2) is a strongly regular graph, and so always has three eigenvalues: 2(n− 2)
(multiplicity 1), n−4 (multiplicity n−1), −2 (multiplicity n(n−3)/2). We present some
examples of lattices from J(n, 2) in Table 2, which are the same as for its complement
KGn,2. In this table, the lattice LJ(n,2),−2 for n = 6 is listed as the 9-dimensional lattice
sth15 in the online catalog [31] of strongly eutactic lattices; for larger n in our table these
lattices are not catalogued.

J(n, 2) # of
vertices

LJ(n,2),n−4 LJ(n,2),−2

J(4, 2) (6) Z3 A2

J(5, 2) (10) A∗4 A2
5

J(6, 2) (15) A3
5 SE in R9

J(7, 2) (21) A∗6 SE in R14

J(8, 2) (28) E∗7 SE in R20

J(9, 2) (36) A∗8 SE in R27

J(10, 2) (45) A5
9 SE in R35

Table 2: Examples of strongly eutactic lattices from Johnson J(n, 2) graphs. “SE” stands
for strongly eutactic lattice.

As we we mentioned above, the Johnson graphs J(n, 2) are strongly regular, as are
their complements Kneser graphs KGn,2. Recall that a (connected) graph Γ on n vertices
is called strongly regular with parameters k, `, m whenever it is not complete and:

1. each vertex is adjacent to k vertices,

2. for each pair of adjacent vertices there are ` vertices adjacent to both,

3. for each pair of non-adjacent vertices there are m vertices adjacent to both.

Strongly regular graphs are known to have many remarkable properties. In particular,
these are precisely the k-regular graphs with three distinct eigenvalues. One of these
eigenvalues is always k (multiplicity 1) with the vector (1, . . . , 1)> being a corresponding
eigenvector; the other two eigenvalues are roots of the polynomial x2−(`−m)x+(m−k),
which are known to be integers when they have different multiplicity. See Chapter 9 of [6]
for many more details.
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Example 4.12. We mention a few more examples of notable vertex transitive strongly
regular graphs giving rise to interesting lattices (these graphs are described, for instance,
in [6] and in [1]). These examples are all connected by the common property of being
graphs represented by the roots of the lattice E8 (along with some others already described
above; see Section 3.11 of [5], also Section 14.3 of [14]).

The folded 5-cube obtained by identifying the antipodal vertices of the 5-cube is a
distance transitive and strongly regular graph on 16 vertices with parameters k = 5, ` =
0, m = 2. Its complement (also distance transitive and strongly regular) is called the
Clebsch graph. They each have an eigenvalue of multiplicity 5 (−3 and 2, respectively),
and the corresponding lattice is D∗5, the dual of the root lattice D5, where the lattice
family Dn is defined as

Dn =

{
x ∈ Zn :

n∑
i=1

xi ≡ 0 (mod 2)

}
.

The Shrikhande graph can be constructed as Cayley graph of the group Z/4Z ×
Z/4Z, taking elements for vertices and connecting two vertices by an edge if and only if
their difference is in {±(1, 0),±(0, 1),±(1, 1)}. This graph is a vertex transitive, but not
distance transitive, and strongly regular graph on 16 vertices with parameters k = 6, ` =
2, m = 2. It has an eigenvalue 2 of multiplicity 6, and the corresponding lattice is D+

6 ,
which is an example of one of the lattices

D+
n = Dn ∪

(
1

2

n∑
i=1

ei +Dn

)
,

defined for even n. The complement of the Shrikhande graph (also vertex transitive, but
not distance transitive, and strongly regular) has eigenvalue −3 with multiplicity 6 and
produces the same lattice. Notice that even though the graphs are not distance transitive,
the generated lattice is still strongly eutactic.

The Schläfli graph is the complement of the intersection graph of the 27 lines on a
cubic surface. It is a distance transitive and strongly regular graph on 27 vertices with
parameters k = 16, ` = 10, m = 8 and has eigenvalue 4 of multiplicity 6. Its complement
(also distance transitive and strongly regular) has eigenvalue −5 with multiplicity 6. Both
of these generate the lattice E∗6 , the dual of the root lattice E6. Recall that the lattice
E8 = D+

8 , the lattice E7 is the sublattice of E8 with x7 = x8, and the lattice E6 is the
sublattice of E8 with x6 = x7 = x8 (see [9] for more details).

Finally, the Gosset graph (the only one out of these E8-root graphs which is not
strongly regular) is a distance transitive graph on 56 vertices that can be identified with
two copies of the set of edges of the complete graph K8. Then two vertices from the same
copy of K8 are connected by an edge if they correspond to disjoint edges of K8, and two
vertices from different copies of K8 are connected by an edge if they correspond to edges
that meet in a vertex (see [5] for more details). The Gosset graph has eigenvalue 9 of
multiplicity 7, generating the lattice E∗7 , the dual of E7.
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The main purpose of all these examples is to demonstrate that this construction of
strongly eutactic lattices from distance transitive (and possibly from vertex transitive)
graphs appears to produce a wide range of interesting examples already in low dimensions,
and hence may be quite useful in higher dimensions too where a classification of strongly
eutactic lattices is not yet available.

We also observe here an interesting connection between contact polytopes of some
lattices and graphs generating them. For a lattice Λ, its contact polytope C(Λ) is defined
as the convex hull of the set of minimal vectors. The significance of the contact polytope
is that its vertices are points on the sphere centered at the origin in the sphere packing
associated to Λ at which neighboring spheres touch it. Hence the number of vertices of
C(Λ) is the kissing number of Λ. The skeleton graph of this polytope skel(C(Λ)) is the
graph consisting of vertices and edges of C(Λ).

Let us consider an example Λ = E∗6 . The contact polytope of E∗6 has 54 vertices,
split into 27 ± pairs: it is a diplo-Schläfli polytope (see [8]). The prefix “diplo” means
double: for a polytope Π a diplo-Π polytope is a polytope whose vertices are vertices of
Π and its opposite −Π. The Schläfli polytope, with Coxeter symbol 221, has 27 vertices
corresponding to the 27 lines on a cubic surface [10]. Its skeleton is the Schläfli graph Γ.
By Example 4.12 above, Γ has an eigenvalue 4 of multiplicity 6, and LΓ,4 = E∗6 .

Here is another example of this dual correspondence. For Λ = E∗7 , its contact polytope
is the Gosset polytope (also called Hess polytope) 321, which has 56 vertices (see [23],
[11]). Its skeleton is the Gosset graph Γ. As we know from Example 4.12 above, Γ has an
eigenvalue 9 of multiplicity 7, and LΓ,9 = E∗7 .

This kind of correspondence certainly does not work for all strongly eutactic lattices.
For instance, the contact polytope of A∗n is a diplo-simplex (see [8]), and the skeleton graph
of a regular simplex on n+ 1 vertices is the complete graph Kn+1. By Lemma 4.3, Kn+1

generates An, but not A∗n. On the other hand, the diplo-simplex for A∗3 is a cube, whose
skeleton graph Q3 is isomorphic to H(3, 2) and the lattice corresponding to eigenvalue
1 (or −1) is A∗3 (see Example 4.8 above). It would be interesting to understand this
correspondence better.

5 On the coherence of a lattice

We conclude with some remarks on the coherence of lattices and frames and their use in
the application of compressed sensing. While this discussion is speculative, we hope it
will also draw interesting connections and spark interesting future directions. We start
with some definitions. Let L ⊂ Rn be a lattice. As usual, let S(L) be the set of minimal
vectors of L, which come in ± pairs, and let us write S∗(L) for the subset of S(L) where
only one vector of each pair is included. Then any two vectors x,y ∈ S∗(L) are linearly
independent, so the angle θ(x,y) between them is in the interval [π/3, 2π/3]. Define the
coherence of L to be

C(L) := max{|cos θ(x,y)|: x 6= y ∈ S∗(L)},

the electronic journal of combinatorics 26(3) (2019), #P3.49 23



then 0 6 C(L) 6 1
2
. In fact, we can speculate a little more about C(L).

The packing density of L is

δ(L) =
ωn|L|n

2n det(L)
,

where ωn is the volume of a unit ball in Rn. Suppose that a lattice L ⊂ Rn has a basis
consisting of minimal vectors b1 . . . bn ∈ S(L) and let

B =
(
b1 . . . bn

)
be the corresponding basis matrix, then ‖bi‖= |L| for each i. For each 1 6 i 6 n− 1, let
us write νi as the angle between bi+1 and the subspace spanned by b1, . . . , bi. Then

det(L) = |det(B)|= |L|n
n−1∏
i=1

|sin νi|,

and so
δ(L) =

ωn

2n
∏n−1

i=1 |sin νi|
.

Therefore
ωn

2nδ(L)
=

n−1∏
i=1

|sin νi|6 min
16i6n−1

|sin νi|,

meaning that

max
16i6n−1

|cos νi|6

√
1−

(
ωn

2nδ(L)

)2

. (5.1)

Now, the larger
∏n

i=1|sin νi| is, the smaller is δ(L), and it is known that for a lattice
L to be a local minimum of δ it has to be (weakly) eutactic, but not perfect (Section 9.4
of [32]). Hence it is natural to expect that

∏n
i=1|sin νi| will be large on non-perfect eutactic

lattices (at least some of the time), meaning that the angles ν1, . . . , νn−1 will be large. This
suggests that minimal basis vectors might be closer to orthogonal, and so the coherence
of the set of minimal vectors, although possibly large relative to the number of minimal
vectors, might be expected to be small. We now demonstrate a couple of non-perfect
strongly eutactic lattices with coherence < 1/2, which come out of our construction of
lattices from graphs.

Example 5.1. There are three strongly eutactic lattices in R3 (up to similarity): Z3 =
L03,0, A3 = LK3,−1 and A∗3 = LH(3,2),1, out of which A3 is the only one that is perfect, and
hence a local maximum of the packing density function δ on the space of lattices. Then
Z3 and A∗3 are local minima of δ. Notice that S∗(Z3) is an orthogonal basis, while S∗(A3)
and S∗(A∗3) are tight frames of cardinalities 6 and 4, respectively. The lattice A∗3 can be
represented in R3 as  1 −1 1

−1 1 1
−1 −1 1

Z3
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with the set of minimal vectors {(±1,±1,±1)}. Hence the coherence C(A∗3) = 1/3. On
the other hand, C(A3) = 1/2, and no subset of S∗(A3) of cardinality 4 has lower coherence.
More generally, the lattice A∗k represented in Rk+1 has S∗(A∗k) given by (3.1), i.e. gives a
cyclic (k, k + 1)-ETF with coherence 1/k discussed in [4].

Let us also consider the non-perfect strongly eutactic lattice D+
6 , generated by the

Shrikhande graph. It has 32 minimal vectors of the form

1

2
(±1,±1,±1,±1,±1,±1)

with an even number of negative coordinates ([32], Section 4.4), hence |D+
6 |=

√
3/2 and

C(D+
6 ) = 1/3. Thus S∗(D+

6 ) is a tight frame of 16 vectors in R6 with coherence 1/3:
this, again, is an ETF discussed in [4]. This lattice also has a basis of minimal vectors by
Theorem 1.1 of [33].

Three other examples constructed in [4] we briefly mention are strongly eutactic non-
perfect lattices in dimensions 5, 13 and 25, generated by (10, 5), (26, 13) and (50, 25) ETFs,
respectively. In all of these three cases the set of minimal vectors of the resulting lattice
consists precisely of ± vectors of the generating frame, and the resulting coherences of
these lattices are 1/3, 1/5 and 1/7, respectively. For comparison, the coherence of densest
known lattices in dimensions 5 and 13 is 1/2.

It would be interesting to further investigate coherence of eutactic lattices and, more
generally, well-rounded lattices: recall that a full-rank lattice in Rn is called well-rounded
if it has n linearly independent minimal vectors; all eutactic and perfect lattices are well-
rounded.

Coherence plays an important role in many applications, and lattice generating ETFs
with small coherence are particularly useful. For example, the field of compressed sensing
aims to recover a sparse vector from a small number of linear measurements. The appli-
cations are abundant, ranging from medical imaging and environmental sensing to radar
and communications [19, 28]. Here, we say a vector is s-sparse when it has at most s
non-zero entries. Put succinctly, compressed sensing aims to recover an s-sparse vector
x ∈ Rn from the measurements y = Ax ∈ Rk, where A is a suitable k × n measurement
matrix. It is now well known that an s-sparse vector x can be efficiently and robustly
recovered from measurements y when the number of measurements k is approximately
s log n, yielding a significant reduction in the dimension of the representation from n to
s log n (since s is typically much smaller than n).

For such techniques, one typically constructs A randomly and/or asks that the matrix
has highly incoherent columns; this is equivalent to requiring C(L) to be small in situations
when columns of A are minimal vectors of a lattice L. To this end, it is very natural to
consider ETFs and other frames with nice algebraic properties as suitable measurement
operators [40, 20]. Moreover, in many applications, more is known about the signal
than simple sparsity; for example, the signal may often also have integer-valued entries
or entries in some other lattice. Such is the case for example in wireless communications
[34], collaborative filtering [13], error correcting codes [7], and many others. Although
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there is some preliminary work for this setting [29, 15, 36, 38, 43, 18], there is still not a
rigorous understanding of when and how the lattice structure of the signal can actually
be utilized in reconstruction.

Our work may shed some light on integer-valued sparse recovery by observing the fol-
lowing. If the integer span of an ETF or another suitable frame is a lattice, then viewing
this frame as a measurement matrix (whose columns are the frame vectors), its image re-
stricted to integer-valued signals forms a lattice. This allows for separation of such images
of sparse signals, analogous to the well-known Johnson-Lindenstrauss lemma, which has
been used to guarantee accurate recovery in compressed sensing [2]. In fact, when the
minimal vectors of the lattice contain the frame vectors, this separation can be bounded.
Viewed in this context, Theorem 1.1 gives an answer as to which measurement matrices
(given as tight frames) map integer-valued signals to elements of a lattice. Studies of
properties of such lattices (e.g. Voronoi cell) have the potential to give stronger guaran-
tees in the integer sparse regime for reconstruction. Of course the integer span of vectors
is a larger subset than the image of sparse vectors, however it may be interesting future
work to specialize these questions to integer vectors that are in particular also sparse.
Group frames may also be interesting for further study given the advantage they give due
to their compact representation: fixing a group and picking a starting vector, the entire
frame can be generated as its orbit under the group action.

To examine how deterministic low-coherence measurement matrices perform in the
integer sparse framework we perform a simple experiment using a Steiner ETF of 4000
vectors in R775, generated from the incidence matrix of an affine Steiner triple system. A
schematic representation of this ETF and its Gram matrix is shown in Figure 2. We chose
this measurement matrix for these experiments for a couple of reasons. Steiner ETFs,
ETFs generated from a type of combinatorial construction, have been singled out as some
of the ETFs with the most potential in application to problems in compressed sensing
[17].

These Steiner ETFs stand out because by working in a sufficiently large dimension
the coherence can be made arbitrarily small and the redundancy as large as desired, this
property being inherited from known constructions of Hadamard matrices and Steiner
triple systems used to generate these incoherent frames [17, 22]. Although these matrices
have other undesirable properties such as being sparse themselves, the freedom to generate
large matrices with small coherence is instrumental in sparse recovery given the well-
studied relation between low-coherence matrices and guarantees in compressed sensing.

Denoting this frame of vectors by F , we acquire the measurements y = Fx or the
noisy measurements y = Fx + e where x is a vector of varying sparsity and e is scaled
Gaussian noise. We then use various compressed sensing algorithms to recover x̂ and
calculate how often recovery is exact (x = x̂) in the noiseless case, and the magnitude
of the recovery error (‖x − x̂‖2) in the noisy case. We show results for the simple least-
squares method (LS) that simply sets x̂ = F †y, basic hard thresholding (HT) which first
estimates the support of x via the proxy F Ty and then performs least-squares over that
support, Orthogonal Matching Pursuit [39] (OMP) which is an iterative greedy algorithm,
and PrOMP [18] which is a modification of OMP for integer-valued signals. The results
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are shown in Figure 3, where we see unsurprisingly that PrOMP performs quite well in
this case, confirming the previous observations of effectiveness of pre-processing steps in
lattice-valued compressed sensing.

The previous analysis in [18] has explained via a concentration of measure argument
why this should hold for Gaussian matrices, but numerically there is some evidence that
performance improvements hold for deterministic measurements and integer signals in
iterative compressed sensing procedures when a pre-processing step, as is found in PrOMP,
is applied.

Figure 2: Left: A plot of entries in the Steiner ETF. Right: The corresponding ‘hollow’
Gram matrix (A>A− I).

Figure 3: Recovery results for various algorithms (PrOMP, OMP, Hard Thresholding,
Least Squares) using a Steiner ETF in R775, size 4000, as the measurement matrix.
Left: Percentage of accurate recovery. Right: Noise added to the measurements to have
norm 0.1.
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