# Improved packings of n(n-1)unit squares in a square

M.Z. Arslanov \* S.A. Mustafin

Institute of Information and Computational Technologies Almaty, Kazakhstan

mzarslanov@hotmail.com sam@ipic.kz

Z.K. Shangitbayev Almaty Management University

Almaty, Kazakhstan

sh.zhanbek@gmail.com

Submitted: Mar 14, 2019; Accepted: Oct 15, 2021; Published: Nov 5, 2021 © The authors. Released under the CC BY-ND license (International 4.0).

#### Abstract

Let s(n) be the side of the smallest square into which we can pack n unit squares. The purpose of this paper is to prove that  $s(n^2 - n) < n$  for all  $n \ge 12$ . Besides, we show that  $s(18^2 - 17) < 18$ ,  $s(17^2 - 16) < 17$ , and  $s(16^2 - 15) < 16$ . Mathematics Subject Classifications: 05B40, 52C15

### 1 Introduction

The problem of packing equal squares in a square has been around for some 40 years [1]. Let s(n) be the side of the smallest square into which we can pack n unit squares. Nagamochi [3] proved that  $s(n^2-2) = s(n^2-1) = n$ . It follows from [1] that  $s(n^2-O(n^{\frac{7}{11}})) < n$  for big n. From [4] it follows that the 7/11 degree can be reduced to 5/8.

An important question is to find the minimum n for which  $s(n^2 - n) < n$ . For small n, only s(2) = 2 and s(6) = 3 have been proved, but we dont even know the proof of s(12) = 4. It was proved in [2] that  $s(n^2 - n - 1) < n$  for 3 < n < 11. Due to Lars Cleemann it was known that  $s(17^2 - 17) < 17$  [2]. Nagamochi in [3] mistakenly says that the following is proved in [2]

$$s(n^2 - n) < n \quad \forall n \ge 17.$$

https://doi.org/10.37236/8586

<sup>\*</sup>Supported by MSE of Kazakhstan grant GF4 AP05133090.

The electronic journal of combinatorics  $\mathbf{28(4)}$  (2021), #P4.22

The truth is that in [2] a sporadic squeezable packing of 272 unit squares in a square (17,17) is given, proving that  $s(17^2 - 17) < 17$ , but from this it does not follow that  $s(18^2 - 18) < 18$  etc. Thus, Nagamochi's implicit conjecture (1) needs a proof.

We prove the conjecture and even more:  $s(n^2 - n) < n \quad \forall n \ge 12$ , and, moreover,

 $s(18^2 - 17) < 18$ ,  $s(17^2 - 16) < 17$ ,  $s(16^2 - 15) < 16$ .

# 2 Some squeezable packing of rectangles

Let a packing of m unit squares in a rectangle  $R = (R_x, R_y)$  be given. We assume that  $(R_x - 1)(R_y = 1) < m < R_x R_y$  and we can't pack a unit square in the waste area. This packing is called *squeezable* if both sides of a rectangle can be reduced, i.e., for some  $\delta > 0$  there exists a packing of m unit squares in a rectangle  $(R_x - \delta, R_y - \delta)$ . The maximum of such  $\delta > 0$  is called *the value of squeezing* and is denoted by  $\delta(R, m)$ . We write  $\delta(R, m) = 0$  if the packing is not squeezable.

The property of squeezability of a packing for small parameters can be proved rather simply. However proving this property for large parameters is a non-trivial mathematical problem. The following obvious formula connects  $\delta(R, m)$  and s(n):

$$s(n) = \lceil s(n) \rceil - \delta((\lceil s(n) \rceil, \lceil s(n) \rceil), n).$$

If  $\delta((R_x, R_y), m) < 1$  then the fact that for integer  $R_x, R_y$ 

$$\delta((R_x, R_y), m) \leqslant \delta((R_x + 1, R_y), m + R_y - 1)$$
(2)

can be proved by adding  $R_y - 1$  unit squares to the x-side of a rectangle  $(R_x, R_y)$ . Figure 1 shows the basic idea for efficiently packing unit squares in a square S, where rectangles C and D are integer and the waste is in rectangles A and B. It is easy to see that if the packing of unit squares in rectangles A, B is squeezable, then the packing of unit squares in S is squeezable and

$$\delta(S, \cdot) \ge \min(\delta(A, \cdot), \delta(B, \cdot)). \tag{3}$$

This bound can be increased if we note that after squeezing there is a little space between rectangles A, B. We can give this space to a rectangle with minimal squeezing value in order to increase that value and thus to increase the evaluation of  $\delta(S, \cdot)$ .

Let us consider a packing of 26 unit squares in a rectangle (4, 8) (see Figure 2). This packing is centrally symmetric and the waste is equal to 6.

In Figure 2 we see one of the main ideas for packing unit squares: using of stacks (4, 1) tilted by an angle  $\alpha = \arcsin(8/17)$ . The main idea for squeezing a packing follows from it: tilting stacks (4, 1) by an angle  $\alpha + \varepsilon$  so that the stack (4, 1) is located in a vertical strip of width  $4 - \delta$ , where  $\varepsilon$  and  $\delta$  are sufficiently small. Hereinafter we determine the orientation of a unit square by a unit vector (x, y) with  $x > 0, y \ge 0, x^2 + y^2 = 1$  directed along the side of this unit square. If the bottom vertex of the unit square is at the origin then the three other vertices have coordinates (x, y), (x - y, y + x), (-y, x). Note that if



Figure 1: Scheme of squeezable packing



Figure 2: Squeezable packing of 26 unit squares in a rectangle (4,8)

two points  $P_t, P_b$  are taken on the top side and the bottom side of this unit square then the scalar product  $\langle P_t - P_b, (x, y) \rangle$  is equal to 1.

Continuing with the example in Figure 2, after increasing the tilt the stack (4, 1) in a vertical strip of width  $4 - \delta$  has orientation  $(x_1, y_1), x_1 > 0, y_1 \ge 0$  satisfying the system of equations

$$4x_1 + y_1 = 4 - \delta, x_1^2 + y_1^2 = 1.$$

To evaluate the squeezing value  $\delta((4, 8), 26)$ , we use the bisection method. The packing remains centrally symmetric. The distance between the point  $P = (P_x, P_y) = (1 - \delta/2, 2 - \delta/2)$  and the upper side of the square  $S_2$  intersecting the line  $x = 1 - \delta/2$  in the point  $P_1 = (P_{1x}, P_{1y}) = (1 - \frac{\delta}{2}, (1 - \frac{\delta}{2})\frac{y_1}{x_1} + \frac{1}{x_1} + \frac{1-x_1}{x_1y_1})$  is critical. For  $\delta = 0.01$  we have  $x_1 = .877695..., y_1 = .479219..., P_y - P_{1y} = 0.021604 > 0$ . For  $\delta = 0.02 x_1 = .87312663..., y_! = .48749347..., P_y - P_{1y} = -0.0061309... < 0$ . The bisection method gives evaluation  $\delta((4, 8), 26) > 0.0177702$ .

Figure 3 shows a more complex example, a centrally symmetric squeezable packing of



Figure 3: Squeezable packing of 64 unit squares in a rectangle (6,12)

64 unit squares in a rectangle (6,12). Four unit squares:  $S_3$ ,  $S_6$  and their symmetric ones have not the orientation  $(\frac{35}{37}, \frac{12}{37})$  nor (1,0). Hereinafter we denote points and squares by the same indices in different figures without losing accuracy.

In this packing the left vertex of  $S_2$  is on a side of  $S_1$ . The square  $S_3$  is placed so that the right vertices of squares  $S_2, S_5$ , and the top vertex of  $S_4$  are on the sides of  $S_3$ . Vertices of the squares  $S_8, S_7, S_9$  are on sides of  $S_6$ . Calculations show that there is a small distance between  $S_3$  and  $S_6$ , which guarantees squeezability of the given packing.

To calculate the squeezing value  $\delta((6, 12), 64)$ , take  $\delta = 0.004$  and define the existence of a packing 64 unit squares in a rectangle  $(6 - \delta, 12 - \delta)$ . The distance between the right vertex of  $S_3$  and the top side of  $S_6$  should be not less than 1.

Table 1 contains calculations with  $\delta = 0.004$ .

Calculations with  $\delta = 0.005$  give  $\langle P_8 - P_5, (x_2, y_2) \rangle = 0.999617371807702270$ , i.e., the squares  $S_3, S_6$  intersect. The bisection method gives evaluation  $\delta((6, 12), 64) > .00490823$ .

A packing of 58 unit squares in a rectangle (6,11-2/35) can be obtained by removing one stack (6,1) in Figure 3 and lifting up by 37/35 all the squares that are below this

| Object                   | Formulae or system of equations                                            | Numerical value              |
|--------------------------|----------------------------------------------------------------------------|------------------------------|
| δ                        |                                                                            | 0.004                        |
| Orientation $(x_1, y_1)$ | $y_1^2 + x_1^2 = 1, 6y_1 + x_1 = 6 - \delta$                               | (.328061226490,              |
| of stack $(6,1)$         |                                                                            | .94465646225)                |
| $P_0$                    | $P_0 = (-2 + \delta/2,$                                                    | (-1.998, 2.989621361)        |
|                          | $(2 - \delta/2)\frac{x_1}{y_1} + \frac{2}{y_1} + \frac{1 - y_1}{x_1 y_1})$ |                              |
| D                        |                                                                            |                              |
| P <sub>1</sub>           | $P_1 = P_0 + (x_1 + y_1, y_1 - x_1)$                                       | (-0.725282311, 3.6062165968) |
| $P_2$                    | $P_2 = (\delta/2 - 1, 4 - \delta/2)$                                       | (-0.998, 3.998)              |
| $P_3$                    | $P_3 = (3 - 3y_1 - \frac{\delta}{2}),$                                     | (.1640306130, 4.177378839)   |
|                          | $-\frac{(3-3y_1-\delta/2)x_1}{y_1}+\frac{4}{y_1})$                         |                              |
| Orientation              | $x_2^2 + y_2^2 = 1.,$                                                      | (.390085325, .92077871336)   |
| $(x_2, y_2)$ of $S_3$    | $\langle P_2 - P_3, (-y_2, x_2) \rangle = 1$                               |                              |
| $P_4$                    | $P_4 = \langle P_1, (x_2, y_2) \rangle \cdot (x_2, y_2) +$                 | (-1.0972231, 3.76378828)     |
|                          | $+\langle P_2,(y_2,-x_2) angle\cdot(y_2,-x_2)$                             |                              |
| $P_5$                    | $P_5 = P_4 + (x_2 + y_2, y_2 - x_2)$                                       | (0.213640902, 4.29448167498) |
| $P_6$                    | $P_6 = \left(\frac{1}{2}\delta, 5 - \frac{1}{2}\delta\right)$              | (0.002, 4.998)               |
| $P_7$                    | $P_7 = (3 - \delta/2, -(3 - \delta/2)x_1/y_1) +$                           | (1.108687, 4.9079035)        |
|                          | $+5(0,1/y_1)+2(-y_1,x_1)$                                                  |                              |
| $P_8$                    | $P_8 = (1 - \delta/2, 5 - \delta/2)$                                       | (0.998, 4.998)               |
| Orientation              | $x_3^2 + y_3^2 = 1.,$                                                      | (.5062565099, .862382946)    |
| $(x_3, y_3)$ of $S_6$    | $\langle P_6 - P_7, (-y_3, x_3) \rangle = 1$                               |                              |
| Distance between $P_5$   | $\langle P_8 - P_5, (x_3, y_3) \rangle$                                    | 1.00378910536129684          |
| and top side of $S_6$    |                                                                            |                              |

Table 1: Calculations with  $\delta = 0.004$ .

stack. Similar calculations give the evaluation of the squeezing value  $\delta((6, 11), 58) > 0.01681735886$ .

Consider a more difficult problem of a squeezable packing of 43 unit squares in a rectangle (5,10). In Figure 4 six unit squares  $S_1, S_4, S_9, S_{10}, S_{11}, S_{12}$  have not the orientation  $(\frac{5}{13}, \frac{12}{13})$  nor (1,0).

The square  $S_1$  has a vertex on the side of the rectangle (5,10), one on a side of  $S_2$ , and one on a side of  $S_3$ . The right vertex of  $S_1$  is on the bottom side of  $S_4$ .  $S_4$  is tilted so that the bottom right vertex of  $S_3$  is on the left side of  $S_4$  and the top vertex of the stack (3, 1) is on the right side of  $S_4$ . The left vertex of  $S_5$  is on the side of  $S_6$ . The squares  $S_9$ ,  $S_{10}$  are tilted by the same angle so that the vertex of  $S_8$  is on the side of  $S_9$ , the vertex of  $S_5$  is on the bottom side of  $S_9$ , and the vertex of  $S_7$  is on the bottom side of  $S_{10}$ . The squares  $S_{11}$ ,  $S_{12}$  form a rectangle (2,1). The right vertex of  $S_{12}$  is on the right side of a rectangle (5,10). The vertex of  $S_{13}$  is on the top side of  $S_{11}$ . The bottom sides of  $S_{11}$  and  $S_{12}$  are parallel to the line connecting the right vertices of  $S_9$  and  $S_{10}$ . The vertex of  $S_{14}$ is on the bottom side of  $S_{15}$ . Calculations show that there is a small distance 0.0055111... between the bottom side of the rectangle  $(2, 1) = S_{11} \cup S_{12}$  and the line connecting the



Figure 4: Squeezable packing of 43 unit squares in a rectangle (5,10)

right vertices of  $S_9$  and  $S_{10}$ . This guarantees squeezability of the given packing.

Calculation of the squeezing value  $\delta((5, 10), 43)$  gives the evaluation  $\delta((5, 10), 43) > 0.0009652493$ . This packing plays an important role in the squeezable packing of 132 unit squares in a square (12,12). Below we show the evaluation of  $\delta((12, 12), 132)$ . From this evaluation one can obtain the evaluation of  $\delta((5, 10), 43)$ . Analogous calculations give the evaluation of the squeezing value  $\delta((5, 9), 38) > 0.020403$ .

Table 2 contains the evaluations of the squeezing values of some rectangles.

| Rectangle $R$ | n  | $\delta(R,n)$       |
|---------------|----|---------------------|
| (4,8)         | 26 | > 0.01777021751     |
| (5,10)        | 43 | > 0.0009652493      |
| (5,9)         | 38 | > 0.020403          |
| (6,12)        | 64 | > 0.004908231774819 |
| (6,11)        | 58 | > 0.01681735886     |

Table 2. Evaluations of squeezing value of some rectangles

To prove conjecture (1), we need the following lemma.

**Lemma 1.** For any  $k \ge 3$  there exists a squeezable packing of  $4k^2 + 6k - 2$  unit squares in a rectangle (2k, 2k + 4) (the waste is equal to 2k + 2).

The proof is technically simple and can be understood from Figure 5, showing a centrally symmetric squeezable packing of 86 unit squares in a rectangle (8,12). For an arbitrary  $k \ge 3$ , the centrally symmetric packing in the upper half of a rectangle (2k, 2k + 4) consists of 2 staircases. A staircase with orientation (1,0) having  $\frac{k(k+1)}{2}$  unit squares, and a staircase with orientation  $(x_1, y_1) = (\frac{4k^2-1}{4k^2+1}, \frac{4k}{4k^2+1})$  that has  $\frac{(3k-1)(k+2)}{2}$  unit squares. The top vertex of  $S_{k+1}$  has ordinate

$$y_{k+1} = -\frac{4k^2}{4k^2 - 1} + (k+2)\frac{4k^2 + 1}{4k^2 - 1} + (k-1)\frac{4k}{4k^2 + 1} < -\frac{4k^2}{4k^2 - 1} + (k+2)\frac{4k^2 + 1}{4k^2 - 1} + (k-1)\frac{4k}{4k^2 - 1} = k + 2 - \frac{2(k-2)}{4k^2 - 1} < k+2$$

i.e.,  $S_{k+1}$  is in rectangle (2k, 2k+4). The top vertex of  $S_0$  has ordinate

$$\frac{4k^2}{4k^2 - 1} + \frac{4k^2 - 1}{4k^2 + 1} = 2 + \frac{1}{4k^2 - 1} - \frac{2}{4k^2 + 1} < 2$$

i.e.,  $S_0$  does not intersect the staircase with orientation (1,0). Each square  $S_j, 1 \leq j \leq k$  intersects the vertical line x = k - j in the point

$$(k-j, j \cdot \frac{1-x_1}{x_1y_1} + (k-j)\frac{y_1}{x_1} + \frac{j}{x_1}).$$

The ordinate of this point satisfies

$$j \cdot \frac{1-x_1}{x_1y_1} + (k-j)\frac{y_1}{x_1} + \frac{j}{x_1} = 1 + j + \frac{1}{2} \cdot \frac{j \cdot (-4k^2 + 4k + 1) + 2k}{k(4k^2 - 1)} < 1 + j,$$

i.e., none of the  $S_j, 1 \leq j \leq k$  intersects the staircase with orientation (1,0). We see that there is a positive distance between the two staircases. Therefore, this packing is squeezable. The lemma is proved.

### 3 Improved squeezable packing of some squares

As mentioned in the introduction, in [3] Nagamochi mistakebly says that in [2] it is proved that

$$s(n^2 - n) < n \quad \forall n \ge 17.$$

$$\tag{4}$$

Thus he implicitly formulates the conjecture (4). For the proof of this conjecture we use lemma 1 as follows.

For even  $n \ge 14$  we use Figure 1 with rectangles A = (12, 6), B = (n - 10, n - 6), C = (10, n - 6), D = (n - 12, 6).

For odd  $n \ge 13$  we use Figure 1 with rectangles A = (10, 5), B = (n - 9, n - 5), C = (9, n - 5), D = (n - 10, 5).

Thus the conjecture (4) is proved for  $n \ge 13$ .

For the proof of this conjecture for n = 12 see Figure 6.

The electronic journal of combinatorics  $\mathbf{28(4)}$  (2021),  $\#\mathrm{P4.22}$ 



Figure 5: Squeezable packing of  $4k^2 + 6k - 2$  unit squares in a rectangle (2k, 2k + 4)

The packing in Figure 6 is obtained from the squeezable packing in rectangles (8,4), (5,10). In the packing in (5,10) we tilt the angular squares  $S_1, S_2$  by an angle  $\arcsin(10/26)$  so that the bottom vertex of  $S_1$  has an integer y-coordinate and  $S_2$  has intruded space in the rectangle (8,4). From the packing in (8,4) we remove two right top squares and move to the left by 1/20 unit squares tilted by an angle  $\arcsin(8/17)$  so that the bottom vertex of  $S_3$  is on the side of  $S_4$ . The small distance between  $S_2$  and  $S_5$  makes the packing in Figure 6 squeezable.

Thus we have proved that

$$s(n^2 - n) < n \ \forall n \ge 12.$$

To evaluate  $\delta((12, 12), 132)$ , take  $\delta = 0.002$ . The origin is in the right bottom vertex of the integer rectangle (7,8). The bottom side of (12,12) has y-coordinate  $-4 + \delta$ , the right side of (12,12) has x-coordinate  $5 - \delta$ .

Table 2 contains the calculations.

| Object                                  | Formulae or system of equations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Numerical value            |
|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| δ                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.002                      |
| Orientation $(x_1, y_1)$                | $y_1^2 + x_1^2 = 1, y_1 + 4x_1 = 4 - \delta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (.881413748866,            |
| of stack $(4,1)$                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.4723450045357421)        |
| $P_0$                                   | $P_0 = (4/x_1 - 1/y_1 + x_1/y_1 - 5, 0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (712894713,0)              |
| Orientation $(x_2, y_2)$                | $y_2^2 + x_2^2 = 1, 5y_2 + x_2 = 5 - \delta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (.386451637219073,         |
| of stack $(5,1)$                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .9223096725561)            |
| $P_1 = (P_{1x}, P_{1y})$                | $P_1 = ((2 - 2x_2 - \delta) \cdot y_1 / x_1 + 2 \cdot y_2,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (1.788247541, -1.998)      |
|                                         | $-2+\delta)+P_0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |
| Lower ordinate of                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |
| intersection $S_2$                      | $Y_1 = P_{1y} + P_{1x} \cdot \frac{x_2}{y_2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1.248716749               |
| with line $x = 0$                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |
| Orientation $(x_3, y_3)$                | $x_3^2 + y_3^2 = 1,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (.1523435,                 |
| of square $S_6$                         | $\frac{x_2}{x_1} = \frac{(x_2 + y_2 - y_3)}{\sum \frac{1}{2} \frac{1}{2}$ | .98832760)                 |
| $P_2$                                   | $\begin{array}{c} g_2 & r_1 + \frac{4}{y_2} + g_2 - \frac{x_2}{x_2} - \frac{4}{x_3} + g_3 \\ P_2 &= (x_2 + y_2, 4 - x_2) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (1.140671137.3.847656465)  |
| $P_3$                                   | $P_3 = (x_2 + 2y_2, Y_1 + \frac{5}{2} + y_2 - 2x_2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (2.231070982.4.321862330)  |
| Orientation $(x_4, y_4)$                | $\frac{1}{x_1^2 + y_2^2 + y_2^2} = 1.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (.39947627                 |
| of square $S_0$                         | $\langle P_3 - (1, 4), (y_4, -x_4) \rangle = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9167435347)              |
| $P_4$                                   | $P_4 = (1, \frac{6}{x} + (P_{1x} - 1)\frac{x_2}{x} -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (1,5.055655408)            |
| -                                       | $-2 + \delta + \frac{1-y_2}{x_2y_2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            |
| $P_5$                                   | $P_5 = P_4 + (x_2 + y_2, y_2 - x_2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (2.30876131,               |
| , i i i i i i i i i i i i i i i i i i i |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.5915134434)              |
| $P_6$                                   | $\langle (P_6 - P_2), (x_4, y_4) \rangle = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (1.897035430423,           |
|                                         | $\langle (P_6 - P_4), (y_2, -x_2) \rangle = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.608883990)               |
| $P_7$                                   | $P_7 = P_6 + (x_2 + y_2, y_2 - x_2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (3.20579674042318,         |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.14474202553891)          |
| $P_8$                                   | $P_8 = P_3 + (2y_2, 2/y_2 - 2x_2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (4.075690327, 5.717428128) |
| Orientation $(x_5, y_5)$                | $x_5^2 + y_5^2 = 1,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (.4235421115,              |
| of squares $S_{14}, S_{15}$             | $\langle P_8 - (2,6), (y_5, -x_5) \rangle = 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .905876415)                |
| $P_9 = (P_{9x}, P_{9y})$                | $P_9 = \langle P_5, (x_5, y_5) \rangle \cdot (x_5, y_5) +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.22807975740513           |
|                                         | $+\langle (2,6), (-y_5, x_5) \rangle \cdot (-y_5, x_5)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.26558985540152)          |
|                                         | $+(x_5+y_5,y_5-x_5)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            |
| $P_{10} = (P_{10x}, P_{10y})$           | $P_{10} = \langle P_7, (x_5, y_5) \rangle \cdot (x_5, y_5) +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.12345766036105           |
|                                         | $+\langle (2,6), (-y_5, x_5) \rangle \cdot (-y_5, x_5)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.81959341362795           |
|                                         | $+(x_5+2y_5,y_5-2x_5)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |
| $P_{11} = (P_{11x}, P_{11y})$           | $P_{11} = (4 - \delta, 7)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (3.998,7)                  |
| Distance between $P_{11}$               | $\frac{(P_{9y}-P_{10y})\cdot(P_{11x}-P_{9x})}{\sqrt{((P_{0y}-P_{10y})^2+(P_{0y}-P_{10y})^2)}} -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.000648944                |
| and segment $[P_0, P_{10}]$             | $-\frac{(P_{9x} - P_{10x}) + (P_{9x} - P_{10x})}{(P_{9x} - P_{10x}) \cdot (P_{11y} - P_{9y})}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |
|                                         | $\sqrt{((P_{9y}-P_{10y})^2+(P_{9x}-P_{10x})^2)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |

Table 2: Calculations for  $\delta = 0.002$ .

![](_page_9_Figure_0.jpeg)

Figure 6: Squeezable packing of 132 unit squares in a square (12,12)

Calculations with  $\delta = .0021$  give the distance 0.9999866543 between the bottom left vertex of  $S_{18}$  and the segment  $[P_9, P_{10}]$ . The bisection method gives the evaluation  $\delta((12, 12), 132) > 0.00209798269$ , i.e., s(132) < 11.99790201731.

Analogous calculations give evaluations

 $\delta((5,10), 43) > 0.0009652493, \delta((5,9), 38) > 0.020403$ 

 $\delta((13, 13), 156) > 0.0059576, s(156) < 12.9940424.$ 

Calculations with C = (10, 8), D = (3, 6), A = (11, 6), B = (4, 8) in Figure 1 give

 $\delta((14, 14), 182) > 0.01681735886, s(14^2 - 14) < 13.98318264114.$ 

For the square (15, 15) we have  $\delta((15, 15), 210) \ge \min(\delta((5, 9), 38), \delta((11, 6), 58)) > 0.01681735886$ , i.e., s(210) < 14.98318264114.

For the square (16, 16) we have  $\delta((16, 16), 241) > \min(\delta((5, 10), 43), \delta((12, 6), 64)) > 0.0009652493$ , i.e.,  $s(16^2 - 15) < 15.9990347507$ .

More careful analysis when we use the space between rectangles (5,10) and (12,6) gives  $\delta((16, 16), 241) > 0.00404996$ , i.e.,  $s(16^2 - 15) < 15.99595004$ .

Calculations with A = (12, 6), B = (6, 11), C = (11, 11), D = (5, 6) give

 $\delta((17, 17), 17^2 - 16) > 0.0049082317748, s(17^2 - 16) < 16.9950917682252.$ 

The electronic journal of combinatorics  $\mathbf{28(4)}$  (2021), #P4.22

Notice that this squeezable packing of a square (17,17) contains one unit square more than in [2].

Calculations with A = (13, 6), B = (6, 12), C = (12, 12), D = (5, 6) give

 $\delta((18, 18), 18^2 - 17) \ge 0.0049082317748, s(18^2 - 17) < 17.9950917682252.$ 

Table 4 contains the evaluations of the squeezing values and the upper bounds of s(n) for new n.

| n   | s(n)                              | $\delta((\lceil s(n)\rceil,\lceil s(n)\rceil),n)$ |
|-----|-----------------------------------|---------------------------------------------------|
| 132 | $s(12^2 - 12) < 11.99790201731$   | $\delta((12, 12), 132) > 0.00209798269$           |
| 156 | $s(13^2 - 13) < 12.9940424$       | $\delta((13, 13), 156) > 0.0059576$               |
| 182 | $s(14^2 - 14) < 13.98318264114$   | $\delta((14, 14), 182) > 0.01681735886$           |
| 210 | $s(15^2 - 15) < 14.98318264114$   | $\delta((15, 15), 210) > 0.01681735886$           |
| 241 | $s(16^2 - 15) < 15.99595004.$     | $\delta((16, 16), 241) > 0.00404996$              |
| 273 | $s(17^2 - 16) < 16.9950917682252$ | $\delta((17, 17), 17^2 - 16) > 0.0049082317748$   |
| 307 | $s(18^2 - 17) < 17.9950917682252$ | $\delta((18, 18), 18^2 - 17) > 0.0049082317748$   |

Table 4. Evaluations of squeezing values and upper bounds of s(n) for new n

## References

- P. Erdős and R. L. Graham, On packing squares with equal squares, J. Combin. Theory Ser. A, 19 (1975) 119-123.
- [2] E. Friedman, Packing unit squares in squares: A survey and new results, Elect. J. Combin., Dynamic Survey # DS7 (1998, last version 2009). DOI: https://doi.org/10.37236/28
- [3] Nagamochi H., Packing unit squares in a rectangle, Elect. J. Combin., 12 (2005), #R37. DOI: https://doi.org/10.37236/1934
- [4] Shuang Wang, Tian Dong, Jiamin Li, A New Result on Packing Unit Squares into a Large Square, arXiv:1603.02368 [math.CO]