Improved packings of $n(n-1)$ unit squares in a square

M.Z. Arslanov * S.A. Mustafin
Institute of Information and Computational Technologies
Almaty, Kazakhstan
mzarslanov@hotmail.com sam@ipic.kz

Z.K. Shangitbayev
Almaty Management University
Almaty, Kazakhstan
sh.zhanbek@gmail.com

Submitted: Mar 14, 2019; Accepted: Oct 15, 2021; Published: Nov 5, 2021
(c) The authors. Released under the CC BY-ND license (International 4.0).

Abstract

Let $s(n)$ be the side of the smallest square into which we can pack n unit squares. The purpose of this paper is to prove that $s\left(n^{2}-n\right)<n$ for all $n \geqslant 12$. Besides, we show that $s\left(18^{2}-17\right)<18, s\left(17^{2}-16\right)<17$, and $s\left(16^{2}-15\right)<16$.

Mathematics Subject Classifications: 05B40, 52C15

1 Introduction

The problem of packing equal squares in a square has been around for some 40 years [1]. Let $s(n)$ be the side of the smallest square into which we can pack n unit squares. Nagamochi [3] proved that $s\left(n^{2}-2\right)=s\left(n^{2}-1\right)=n$. It follows from [1] that $s\left(n^{2}-O\left(n^{\frac{7}{11}}\right)\right)<n$ for big n. From [4] it follows that the $7 / 11$ degree can be reduced to $5 / 8$.

An important question is to find the minimum n for which $s\left(n^{2}-n\right)<n$. For small n, only $s(2)=2$ and $s(6)=3$ have been proved, but we dont even know the proof of $s(12)=4$. It was proved in [2] that $s\left(n^{2}-n-1\right)<n$ for $3<n<11$. Due to Lars Cleemann it was known that $s\left(17^{2}-17\right)<17$ [2]. Nagamochi in [3] mistakenly says that the following is proved in [2]

$$
\begin{equation*}
s\left(n^{2}-n\right)<n \quad \forall n \geqslant 17 . \tag{1}
\end{equation*}
$$

[^0]The truth is that in [2] a sporadic squeezable packing of 272 unit squares in a square $(17,17)$ is given, proving that $s\left(17^{2}-17\right)<17$, but from this it does not follow that $s\left(18^{2}-18\right)<18$ etc. Thus, Nagamochi's implicit conjecture (1) needs a proof.

We prove the conjecture and even more: $s\left(n^{2}-n\right)<n \quad \forall n \geqslant 12$, and, moreover,

$$
s\left(18^{2}-17\right)<18, \quad s\left(17^{2}-16\right)<17, \quad s\left(16^{2}-15\right)<16 .
$$

2 Some squeezable packing of rectangles

Let a packing of m unit squares in a rectangle $R=\left(R_{x}, R_{y}\right)$ be given. We assume that $\left(R_{x}-1\right)\left(R_{y}=1\right)<m<R_{x} R_{y}$ and we can't pack a unit square in the waste area. This packing is called squeezable if both sides of a rectangle can be reduced, i.e., for some $\delta>0$ there exists a packing of m unit squares in a rectangle $\left(R_{x}-\delta, R_{y}-\delta\right)$. The maximum of such $\delta>0$ is called the value of squeezing and is denoted by $\delta(R, m)$. We write $\delta(R, m)=0$ if the packing is not squeezable.

The property of squeezability of a packing for small parameters can be proved rather simply. However proving this property for large parameters is a non-trivial mathematical problem. The following obvious formula connects $\delta(R, m)$ and $s(n)$:

$$
s(n)=\lceil s(n)\rceil-\delta((\lceil s(n)\rceil,\lceil s(n)\rceil), n)
$$

If $\delta\left(\left(R_{x}, R_{y}\right), m\right)<1$ then the fact that for integer R_{x}, R_{y}

$$
\begin{equation*}
\delta\left(\left(R_{x}, R_{y}\right), m\right) \leqslant \delta\left(\left(R_{x}+1, R_{y}\right), m+R_{y}-1\right) \tag{2}
\end{equation*}
$$

can be proved by adding $R_{y}-1$ unit squares to the x-side of a rectangle (R_{x}, R_{y}). Figure 1 shows the basic idea for efficiently packing unit squares in a square S, where rectangles C and D are integer and the waste is in rectangles A and B. It is easy to see that if the packing of unit squares in rectangles A, B is squeezable, then the packing of unit squares in S is squeezable and

$$
\begin{equation*}
\delta(S, \cdot) \geqslant \min (\delta(A, \cdot), \delta(B, \cdot)) . \tag{3}
\end{equation*}
$$

This bound can be increased if we note that after squeezing there is a little space between rectangles A, B. We can give this space to a rectangle with minimal squeezing value in order to increase that value and thus to increase the evaluation of $\delta(S, \cdot)$.

Let us consider a packing of 26 unit squares in a rectangle $(4,8)$ (see Figure 2). This packing is centrally symmetric and the waste is equal to 6 .

In Figure 2 we see one of the main ideas for packing unit squares: using of stacks $(4,1)$ tilted by an angle $\alpha=\arcsin (8 / 17)$. The main idea for squeezing a packing follows from it: tilting stacks $(4,1)$ by an angle $\alpha+\varepsilon$ so that the stack $(4,1)$ is located in a vertical strip of width $4-\delta$, where ε and δ are sufficiently small. Hereinafter we determine the orientation of a unit square by a unit vector (x, y) with $x>0, y \geqslant 0, x^{2}+y^{2}=1$ directed along the side of this unit square. If the bottom vertex of the unit square is at the origin then the three other vertices have coordinates $(x, y),(x-y, y+x),(-y, x)$. Note that if

Figure 1: Scheme of squeezable packing

Figure 2: Squeezable packing of 26 unit squares in a rectangle $(4,8)$
two points P_{t}, P_{b} are taken on the top side and the bottom side of this unit square then the scalar product $\left\langle P_{t}-P_{b},(x, y)\right\rangle$ is equal to 1 .

Continuing with the example in Figure 2, after increasing the tilt the stack $(4,1)$ in a vertical strip of width $4-\delta$ has orientation $\left(x_{1}, y_{1}\right), x_{1}>0, y_{1} \geqslant 0$ satisfying the system of equations

$$
4 x_{1}+y_{1}=4-\delta, x_{1}^{2}+y_{1}^{2}=1 .
$$

To evaluate the squeezing value $\delta((4,8), 26)$, we use the bisection method. The packing remains centrally symmetric. The distance between the point $P=\left(P_{x}, P_{y}\right)=(1-$ $\delta / 2,2-\delta / 2)$ and the upper side of the square S_{2} intersecting the line $x=1-\delta / 2$ in the point $P_{1}=\left(P_{1 x}, P_{1 y}\right)=\left(1-\frac{\delta}{2},\left(1-\frac{\delta}{2}\right) \frac{y_{1}}{x_{1}}+\frac{1}{x_{1}}+\frac{1-x_{1}}{x_{1} y_{1}}\right)$ is critical. For $\delta=0.01$ we have $x_{1}=.877695 \ldots, y_{1}=.479219 \ldots, P_{y}-P_{1 y}=0.021604>0$. For $\delta=0.02 x_{1}=$ $.87312663 \ldots, y_{!}=.48749347 \ldots, P_{y}-P_{1 y}=-0.0061309 \ldots<0$. The bisection method gives evaluation $\delta((4,8), 26)>0.0177702$.

Figure 3 shows a more complex example, a centrally symmetric squeezable packing of

Figure 3: Squeezable packing of 64 unit squares in a rectangle $(6,12)$

64 unit squares in a rectangle $(6,12)$. Four unit squares: S_{3}, S_{6} and their symmetric ones have not the orientation $\left(\frac{35}{37}, \frac{12}{37}\right)$ nor $(1,0)$. Hereinafter we denote points and squares by the same indices in different figures without losing accuracy.

In this packing the left vertex of S_{2} is on a side of S_{1}. The square S_{3} is placed so that the right vertices of squares S_{2}, S_{5}, and the top vertex of S_{4} are on the sides of S_{3}. Vertices of the squares S_{8}, S_{7}, S_{9} are on sides of S_{6}. Calculations show that there is a small distance between S_{3} and S_{6}, which guarantees squeezability of the given packing.

To calculate the squeezing value $\delta((6,12), 64)$, take $\delta=0.004$ and define the existence of a packing 64 unit squares in a rectangle $(6-\delta, 12-\delta)$. The distance between the right vertex of S_{3} and the top side of S_{6} should be not less than 1 .

Table 1 contains calculations with $\delta=0.004$.
Calculations with $\delta=0.005$ give $\left\langle P_{8}-P_{5},\left(x_{2}, y_{2}\right)\right\rangle=0.999617371807702270$, i.e., the squares S_{3}, S_{6} intersect. The bisection method gives evaluation $\delta((6,12), 64)>.00490823$.

A packing of 58 unit squares in a rectangle ($6,11-2 / 35$) can be obtained by removing one stack $(6,1)$ in Figure 3 and lifting up by $37 / 35$ all the squares that are below this

Object	Formulae or system of equations	Numerical value
δ		0.004
$\begin{gathered} \text { Orientation }\left(x_{1}, y_{1}\right) \\ \text { of stack }(6,1) \\ \hline \end{gathered}$	$y_{1}^{2}+x_{1}^{2}=1,6 y_{1}+x_{1}=6-\delta$	$\begin{gathered} (.328061226490, \\ .94465646225) \\ \hline \end{gathered}$
P_{0}	$\begin{gathered} P_{0}=(-2+\delta / 2, \\ \left(2-\delta / 2 \frac{x_{1}}{y_{1}}+\frac{2}{y_{1}}+\frac{1-y_{1}}{x_{1} y_{1}}\right) \end{gathered}$	(-1.998,2.989621361)
P_{1}	$P_{1}=P_{0}+\left(x_{1}+y_{1}, y_{1}-x_{1}\right)$	(-0.725282311,3.6062165968)
P_{2}	$P_{2}=(\delta / 2-1,4-\delta / 2)$	(-0.998,3.998)
P_{3}	$\begin{gathered} P_{3}=\left(3-3 y_{1}-\frac{\delta}{2},\right. \\ \left.-\frac{\left(3-3 y_{1}-\delta / 2\right) x_{1}}{y_{1}}+\frac{4}{y_{1}}\right) \end{gathered}$	(.1640306130, 4.177378839)
$\begin{aligned} & \text { Orientation } \\ & \left(x_{2}, y_{2}\right) \text { of } S_{3} \end{aligned}$	$\begin{gathered} x_{2}^{2}+y_{2}^{2}=1 ., \\ \left\langle P_{2}-P_{3},\left(-y_{2}, x_{2}\right)\right\rangle=1 \end{gathered}$	(.390085325,.92077871336)
P_{4}	$\begin{gathered} P_{4}=\left\langle P_{1},\left(x_{2}, y_{2}\right)\right\rangle \cdot\left(x_{2}, y_{2}\right)+ \\ +\left\langle P_{2},\left(y_{2},-x_{2}\right)\right\rangle \cdot\left(y_{2},-x_{2}\right) \end{gathered}$	(-1.0972231,3.76378828)
P_{5}	$P_{5}=P_{4}+\left(x_{2}+y_{2}, y_{2}-x_{2}\right)$	(0.213640902,4.29448167498)
P_{6}	$P_{6}=\left(\frac{1}{2} \delta, 5-\frac{1}{2} \delta\right)$	(0.002,4.998)
P_{7}	$\begin{aligned} P_{7}= & \left(3-\delta / 2,-(3-\delta / 2) x_{1} / y_{1}\right)+ \\ & +5\left(0,1 / y_{1}\right)+2\left(-y_{1}, x_{1}\right) \end{aligned}$	(1.108687,4.9079035)
P_{8}	$P_{8}=(1-\delta / 2,5-\delta / 2)$	(0.998,4.998)
$\begin{aligned} & \text { Orientation } \\ & \left(x_{3}, y_{3}\right) \text { of } S_{6} \\ & \hline \end{aligned}$	$\begin{gathered} x_{3}^{2}+y_{3}^{2}=1 ., \\ \left\langle P_{6}-P_{7},\left(-y_{3}, x_{3}\right)\right\rangle=1 \end{gathered}$	(.5062565099,.862382946)
Distance between P_{5} and top side of S_{6}	$\left\langle P_{8}-P_{5},\left(x_{3}, y_{3}\right)\right\rangle$	1.00378910536129684

Table 1: Calculations with $\delta=0.004$.
stack. Similar calculations give the evaluation of the squeezing value $\delta((6,11), 58)>$ 0.01681735886 .

Consider a more difficult problem of a squeezable packing of 43 unit squares in a rectangle $(5,10)$. In Figure 4 six unit squares $S_{1}, S_{4}, S_{9}, S_{10}, S_{11}, S_{12}$ have not the orientation $\left(\frac{5}{13}, \frac{12}{13}\right)$ nor $(1,0)$.

The square S_{1} has a vertex on the side of the rectangle $(5,10)$, one on a side of S_{2}, and one on a side of S_{3}. The right vertex of S_{1} is on the bottom side of S_{4}. S_{4} is tilted so that the bottom right vertex of S_{3} is on the left side of S_{4} and the top vertex of the stack $(3,1)$ is on the right side of S_{4}. The left vertex of S_{5} is on the side of S_{6}. The squares S_{9}, S_{10} are tilted by the same angle so that the vertex of S_{8} is on the side of S_{9}, the vertex of S_{5} is on the bottom side of S_{9}, and the vertex of S_{7} is on the bottom side of S_{10}. The squares S_{11}, S_{12} form a rectangle $(2,1)$. The right vertex of S_{12} is on the right side of a rectangle $(5,10)$. The vertex of S_{13} is on the top side of S_{11}. The bottom sides of S_{11} and S_{12} are parallel to the line connecting the right vertices of S_{9} and S_{10}. The vertex of S_{14} is on the bottom side of S_{15}. Calculations show that there is a small distance $0.0055111 \ldots$ between the bottom side of the rectangle $(2,1)=S_{11} \cup S_{12}$ and the line connecting the

Figure 4: Squeezable packing of 43 unit squares in a rectangle $(5,10)$
right vertices of S_{9} and S_{10}. This guarantees squeezability of the given packing.
Calculation of the squeezing value $\delta((5,10), 43)$ gives the evaluation $\delta((5,10), 43)>$ 0.0009652493 . This packing plays an important role in the squeezable packing of 132 unit squares in a square $(12,12)$. Below we show the evaluation of $\delta((12,12), 132)$. From this evaluation one can obtain the evaluation of $\delta((5,10), 43)$. Analogous calculations give the evaluation of the squeezing value $\delta((5,9), 38)>0.020403$.

Table 2 contains the evaluations of the squeezing values of some rectangles.

Rectangle R	n	$\delta(R, n)$
$(4,8)$	26	>0.01777021751
$(5,10)$	43	>0.0009652493
$(5,9)$	38	>0.020403
$(6,12)$	64	>0.004908231774819
$(6,11)$	58	>0.01681735886

Table 2. Evaluations of squeezing value of some rectangles
To prove conjecture (1), we need the following lemma.
Lemma 1. For any $k \geqslant 3$ there exists a squeezable packing of $4 k^{2}+6 k-2$ unit squares in a rectangle $(2 k, 2 k+4)$ (the waste is equal to $2 k+2$).

The proof is technically simple and can be understood from Figure 5, showing a centrally symmetric squeezable packing of 86 unit squares in a rectangle $(8,12)$. For an arbitrary $k \geqslant 3$, the centrally symmetric packing in the upper half of a rectangle $(2 k, 2 k+4)$ consists of 2 staircases. A staircase with orientation $(1,0)$ having $\frac{k(k+1)}{2}$ unit squares, and a staircase with orientation $\left(x_{1}, y_{1}\right)=\left(\frac{4 k^{2}-1}{4 k^{2}+1}, \frac{4 k}{4 k^{2}+1}\right)$ that has $\frac{(3 k-1)(k+2)}{2}$ unit squares. The top vertex of S_{k+1} has ordinate

$$
\begin{gathered}
y_{k+1}=-\frac{4 k^{2}}{4 k^{2}-1}+(k+2) \frac{4 k^{2}+1}{4 k^{2}-1}+(k-1) \frac{4 k}{4 k^{2}+1}< \\
<-\frac{4 k^{2}}{4 k^{2}-1}+(k+2) \frac{4 k^{2}+1}{4 k^{2}-1}+(k-1) \frac{4 k}{4 k^{2}-1}=k+2-\frac{2(k-2)}{4 k^{2}-1}<k+2,
\end{gathered}
$$

i.e., S_{k+1} is in rectangle $(2 k, 2 k+4)$. The top vertex of S_{0} has ordinate

$$
\frac{4 k^{2}}{4 k^{2}-1}+\frac{4 k^{2}-1}{4 k^{2}+1}=2+\frac{1}{4 k^{2}-1}-\frac{2}{4 k^{2}+1}<2
$$

i.e., S_{0} does not intersect the staircase with orientation $(1,0)$. Each square $S_{j}, 1 \leqslant j \leqslant k$ intersects the vertical line $x=k-j$ in the point

$$
\left(k-j, j \cdot \frac{1-x_{1}}{x_{1} y_{1}}+(k-j) \frac{y_{1}}{x_{1}}+\frac{j}{x_{1}}\right)
$$

The ordinate of this point satisfies

$$
j \cdot \frac{1-x_{1}}{x_{1} y_{1}}+(k-j) \frac{y_{1}}{x_{1}}+\frac{j}{x_{1}}=1+j+\frac{1}{2} \cdot \frac{j \cdot\left(-4 k^{2}+4 k+1\right)+2 k}{k\left(4 k^{2}-1\right)}<1+j,
$$

i.e., none of the $S_{j}, 1 \leqslant j \leqslant k$ intersects the staircase with orientation (1,0). We see that there is a positive distance between the two staircases. Therefore, this packing is squeezable. The lemma is proved.

3 Improved squeezable packing of some squares

As mentioned in the introduction, in [3] Nagamochi mistakebly says that in [2] it is proved that

$$
\begin{equation*}
s\left(n^{2}-n\right)<n \quad \forall n \geqslant 17 . \tag{4}
\end{equation*}
$$

Thus he implicitly formulates the conjecture (4). For the proof of this conjecture we use lemma 1 as follows.

For even $n \geqslant 14$ we use Figure 1 with rectangles $A=(12,6), B=(n-10, n-6), C=$ (10, $n-6), D=(n-12,6)$.

For odd $n \geqslant 13$ we use Figure 1 with rectangles $A=(10,5), B=(n-9, n-5), C=$ $(9, n-5), D=(n-10,5)$.

Thus the conjecture (4) is proved for $n \geqslant 13$.
For the proof of this conjecture for $n=12$ see Figure 6 .

Figure 5: Squeezable packing of $4 k^{2}+6 k-2$ unit squares in a rectangle $(2 k, 2 k+4)$

The packing in Figure 6 is obtained from the squeezable packing in rectangles (8,4), $(5,10)$. In the packing in $(5,10)$ we tilt the angular squares S_{1}, S_{2} by an angle $\arcsin (10 / 26)$ so that the bottom vertex of S_{1} has an integer y-coordinate and S_{2} has intruded space in the rectangle $(8,4)$. From the packing in $(8,4)$ we remove two right top squares and move to the left by $1 / 20$ unit squares tilted by an angle $\arcsin (8 / 17)$ so that the bottom vertex of S_{3} is on the side of S_{4}. The small distance between S_{2} and S_{5} makes the packing in Figure 6 squeezable.

Thus we have proved that

$$
s\left(n^{2}-n\right)<n \forall n \geqslant 12 .
$$

To evaluate $\delta((12,12), 132)$, take $\delta=0.002$. The origin is in the right bottom vertex of the integer rectangle $(7,8)$. The bottom side of $(12,12)$ has y-coordinate $-4+\delta$, the right side of $(12,12)$ has x-coordinate $5-\delta$.

Table 2 contains the calculations.

Object	Formulae or system of equations	Numerical value
δ		0.002
$\text { Orientation }\left(x_{1}, y_{1}\right)$ $\text { of stack }(4,1)$	$y_{1}^{2}+x_{1}^{2}=1, y_{1}+4 x_{1}=4-\delta$	$\begin{gathered} (.881413748866, \\ 0.4723450045357421) \\ \hline \end{gathered}$
P_{0}	$P_{0}=\left(4 / x_{1}-1 / y_{1}+x_{1} / y_{1}-5,0\right)$	(-.712894713,0)
$\begin{gathered} \text { Orientation }\left(x_{2}, y_{2}\right) \\ \text { of stack }(5,1) \end{gathered}$	$y_{2}^{2}+x_{2}^{2}=1,5 y_{2}+x_{2}=5-\delta$	$(.386451637219073 \ldots$, $.9223096725561 \ldots)$
$P_{1}=\left(P_{1 x}, P_{1 y}\right)$	$\begin{gathered} P_{1}=\left(\left(2-2 x_{2}-\delta\right) \cdot y_{1} / x_{1}+2 \cdot y_{2},\right. \\ -2+\delta)+P_{0} \end{gathered}$	(1.788247541,-1.998)
Lower ordinate of intersection S_{2} with line $x=0$	$Y_{1}=P_{1 y}+P_{1 x} \cdot \frac{x_{2}}{y_{2}}$	-1.248716749
Orientation $\left(x_{3}, y_{3}\right)$ of square S_{6}	$\begin{gathered} x_{3}^{2}+y_{3}^{2}=1, \\ \frac{x_{2}}{y_{2}}=\frac{\left(x_{2}+y_{2}-y_{3}\right)}{Y_{1}+4 / y_{2}+y_{2}-x_{2}-4+x_{3}+y_{3}} \end{gathered}$	$\begin{aligned} & (.1523435 \ldots, \\ & .98832760 \ldots) \end{aligned}$
P_{2}	$P_{2}=\left(x_{3}+y_{3}, 4-x_{3}\right)$	(1.140671137,3.847656465)
P_{3}	$P_{3}=\left(x_{2}+2 y_{2}, Y_{1}+\frac{5}{y_{2}}+y_{2}-2 x_{2}\right)$	(2.231070982,4.321862330)
Orientation $\left(x_{4}, y_{4}\right)$ of square S_{9}	$\begin{gathered} x_{4}^{2}+y_{4}^{2}=1 \\ \left\langle P_{3}-(1,4),\left(y_{4},-x_{4}\right)\right\rangle=1 \end{gathered}$	$\begin{gathered} (.39947627 \ldots, \\ 0.9167435347 \ldots) \\ \hline \end{gathered}$
P_{4}	$\begin{aligned} P_{4}= & \left(1, \frac{6}{y_{2}}+\left(P_{1 x}-1\right) \frac{x_{2}}{y_{2}}-\right. \\ & \left.-2+\delta+\frac{1-y_{2}}{x_{2} y_{2}}\right) \end{aligned}$	(1,5.055655408)
P_{5}	$P_{5}=P_{4}+\left(x_{2}+y_{2}, y_{2}-x_{2}\right)$	$\begin{gathered} (2.30876131, \\ 5.5915134434) \end{gathered}$
P_{6}	$\begin{gathered} \left\langle\left(P_{6}-P_{2}\right),\left(x_{4}, y_{4}\right)\right\rangle=1 \\ \left\langle\left(P_{6}-P_{4}\right),\left(y_{2},-x_{2}\right)\right\rangle=1 \end{gathered}$	$\begin{gathered} (1.897035430423, \\ 4.608883990) \\ \hline \end{gathered}$
P_{7}	$P_{7}=P_{6}+\left(x_{2}+y_{2}, y_{2}-x_{2}\right)$	$\begin{aligned} & (3.20579674042318, \\ & 5.14474202553891) \end{aligned}$
P_{8}	$P_{8}=P_{3}+\left(2 y_{2}, 2 / y 2-2 x_{2}\right)$	(4.075690327,5.717428128)
Orientation $\left(x_{5}, y_{5}\right)$ of squares S_{14}, S_{15}	$\begin{gathered} x_{5}^{2}+y_{5}^{2}=1 \\ \left\langle P_{8}-(2,6),\left(y_{5},-x_{5}\right)\right\rangle=2 \end{gathered}$	$\begin{gathered} (.4235421115 \ldots, \\ .905876415 \ldots) \\ \hline \end{gathered}$
$P_{9}=\left(P_{9 x}, P_{9 y}\right)$	$\begin{aligned} & P_{9}=\left\langle P_{5},\left(x_{5}, y_{5}\right)\right\rangle \cdot\left(x_{5}, y_{5}\right)+ \\ & +\left\langle(2,6),\left(-y_{5}, x_{5}\right)\right\rangle \cdot\left(-y_{5}, x_{5}\right) \\ & \quad+\left(x_{5}+y_{5}, y_{5}-x_{5}\right) \end{aligned}$	$\begin{array}{r} 3.22807975740513 \\ 6.26558985540152) \end{array}$
$P_{10}=\left(P_{10 x}, P_{10 y}\right)$	$\begin{gathered} P_{10}=\left\langle P_{7},\left(x_{5}, y_{5}\right)\right\rangle \cdot\left(x_{5}, y_{5}\right)+ \\ +\left\langle(2,6),\left(-y_{5}, x_{5}\right)\right\rangle \cdot\left(-y_{5}, x_{5}\right) \\ +\left(x_{5}+2 y_{5}, y_{5}-2 x_{5}\right) \end{gathered}$	$\begin{aligned} & 4.12345766036105 \\ & 5.81959341362795 \end{aligned}$
$P_{11}=\left(P_{11 x}, P_{11 y}\right)$	$P_{11}=(4-\delta, 7)$	(3.998,7)
Distance between P_{11} and segment $\left[P_{9}, P_{10}\right]$	$\begin{aligned} & \frac{\left(P_{9 y}-P_{10 y} \cdot \cdot \cdot\left(P_{11 x}-P_{9 x}\right)\right.}{\left.\sqrt{\left(\left(P_{9 y}-P_{10}\right)\right.}\right)^{2}+\left(P_{9 x}-P_{10 x}{ }^{2}\right)} \\ & -\frac{\left(P_{9 x} x P_{10 x} \cdot P_{11 y}-P_{9 y}\right)}{\sqrt{\left(\left(P_{9 y}-P_{10 y}\right)^{2}+\left(P_{9 x}-P_{10 x}\right)^{2}\right)}} \end{aligned}$	1.000648944...

Table 2: Calculations for $\delta=0.002$.

Figure 6: Squeezable packing of 132 unit squares in a square $(12,12)$

Calculations with $\delta=.0021$ give the distance 0.9999866543 between the bottom left vertex of S_{18} and the segment $\left[P_{9}, P_{10}\right]$. The bisection method gives the evaluation $\delta((12,12), 132)>0.00209798269$, i.e., $s(132)<11.99790201731$.

Analogous calculations give evaluations

$$
\begin{gathered}
\delta((5,10), 43)>0.0009652493, \delta((5,9), 38)>0.020403 \\
\delta((13,13), 156)>0.0059576, s(156)<12.9940424
\end{gathered}
$$

Calculations with $C=(10,8), D=(3,6), A=(11,6), B=(4,8)$ in Figure 1 give

$$
\delta((14,14), 182)>0.01681735886, s\left(14^{2}-14\right)<13.98318264114
$$

For the square $(15,15)$ we have $\delta((15,15), 210) \geqslant \min (\delta((5,9), 38), \delta((11,6), 58))>$ 0.01681735886 , i.e., $s(210)<14.98318264114$.

For the square $(16,16)$ we have $\delta((16,16), 241)>\min (\delta((5,10), 43), \delta((12,6), 64))>$ 0.0009652493 , i.e., $s\left(16^{2}-15\right)<15.9990347507$.

More careful analysis when we use the space between rectangles $(5,10)$ and $(12,6)$ gives $\delta((16,16), 241)>0.00404996$, i.e., $s\left(16^{2}-15\right)<15.99595004$.

Calculations with $A=(12,6), B=(6,11), C=(11,11), D=(5,6)$ give

$$
\delta\left((17,17), 17^{2}-16\right)>0.0049082317748, s\left(17^{2}-16\right)<16.9950917682252 .
$$

Notice that this squeezable packing of a square $(17,17)$ contains one unit square more than in [2].

Calculations with $A=(13,6), B=(6,12), C=(12,12), D=(5,6)$ give

$$
\delta\left((18,18), 18^{2}-17\right) \geqslant 0.0049082317748, s\left(18^{2}-17\right)<17.9950917682252 .
$$

Table 4 contains the evaluations of the squeezing values and the upper bounds of $s(n)$ for new n.

n	$s(n)$	$\delta((\lceil s(n)\rceil,\lceil s(n)\rceil), n)$
132	$s\left(12^{2}-12\right)<11.99790201731$	$\delta((12,12), 132)>0.00209798269$
156	$s\left(13^{2}-13\right)<12.9940424$	$\delta((13,13), 156)>0.0059576$
182	$s\left(14^{2}-14\right)<13.98318264114$	$\delta((14,14), 182)>0.01681735886$
210	$s\left(15^{2}-15\right)<14.98318264114$	$\delta((15,15), 210)>0.01681735886$
241	$s\left(16^{2}-15\right)<15.99595004$.	$\delta((16,16), 241)>0.00404996$
273	$s\left(17^{2}-16\right)<16.9950917682252$	$\delta\left((17,17), 17^{2}-16\right)>0.0049082317748$
307	$s\left(18^{2}-17\right)<17.9950917682252$	$\delta\left((18,18), 18^{2}-17\right)>0.0049082317748$

Table 4. Evaluations of squeezing values and upper bounds of $s(n)$ for new n

References

[1] P. Erdős and R. L. Graham, On packing squares with equal squares, J. Combin. Theory Ser. A, 19 (1975) 119-123.
[2] E. Friedman, Packing unit squares in squares: A survey and new results, Elect. J. Combin., Dynamic Survey \# DS7 (1998, last version 2009). DOI: https://doi.org/ 10.37236/28
[3] Nagamochi H., Packing unit squares in a rectangle, Elect. J. Combin., 12 (2005), \#R37. DOI: https://doi.org/10.37236/1934
[4] Shuang Wang, Tian Dong, Jiamin Li, A New Result on Packing Unit Squares into a Large Square, arXiv:1603.02368 [math.CO]

[^0]: *Supported by MSE of Kazakhstan grant GF4 AP05133090.

