Hamiltonian cycles in tough $\left(P_{2} \cup P_{3}\right)$-free graphs

Songling Shan
Department of Mathematics
Illinois State University
Normal, IL 61790, U.S.A.
sshan12@ilstu.edu

Submitted: Apr 11, 2019; Accepted: Jan 11, 2021; Published: Feb 12, 2021
(C) The author. Released under the CC BY license (International 4.0).

Abstract

Let $t>0$ be a real number and G be a graph. We say G is t-tough if for every cutset S of G, the ratio of $|S|$ to the number of components of $G-S$ is at least t. Determining toughness is an NP-hard problem for arbitrary graphs. The Toughness Conjecture of Chvátal, stating that there exists a constant t_{0} such that every $t_{0^{-}}$ tough graph with at least three vertices is hamiltonian, is still open in general. A graph is called $\left(P_{2} \cup P_{3}\right)$-free if it does not contain any induced subgraph isomorphic to $P_{2} \cup P_{3}$, the union of two vertex-disjoint paths of order 2 and 3 , respectively. In this paper, we show that every 15 -tough $\left(P_{2} \cup P_{3}\right)$-free graph with at least three vertices is hamiltonian.

Mathematics Subject Classifications: 05C38

1 Introduction

Graphs considered in this paper are simple, undirected, and finite. Let G be a graph. Denote by $V(G)$ and $E(G)$ the vertex set and edge set of G, respectively. For $v \in V(G)$, $N_{G}(v)$ denotes the set of neighbors of v in G. For $S \subseteq V(G)$ and $x \in V(G)$, define $\operatorname{deg}_{G}(x, S)=\left|N_{G}(x) \cap S\right|$. If $H \subseteq G$, we simply write $\operatorname{deg}_{G}(x, H)$ for $\operatorname{deg}_{G}(x, V(H))$. We skip the subscript G if the graph in consideration is clear from the context. Let $S \subseteq V(G)$. Then the subgraph induced on $V(G) \backslash S$ is denoted by $G-S$. For notational simplicity, we write $G-x$ for $G-\{x\}$. If $u v \in E(G)$ is an edge, we write $u \sim v$. Let $V_{1}, V_{2} \subseteq V(G)$ be two disjoint vertex sets. Then $E_{G}\left(V_{1}, V_{2}\right)$ is the set of edges of G with one end in V_{1} and the other end in V_{2}.

The number of components of G is denoted by $c(G)$. Let $t \geqslant 0$ be a real number. The graph G is said to be t-tough if $|S| \geqslant t \cdot c(G-S)$ for each $S \subseteq V(G)$ with $c(G-S) \geqslant 2$. The toughness $\tau(G)$ is the largest real number t for which G is t-tough, or is ∞ if G is complete. This concept, a measure of graph connectivity and "resilience" under removal of vertices,
was introduced by Chvátal [7] in 1973. It is easy to see that if G has a hamiltonian cycle then G is 1 -tough. Conversely, Chvátal [7] conjectured that there exists a constant t_{0} such that every t_{0}-tough graph is hamiltonian (Chvátal's toughness conjecture). Bauer, Broersma and Veldman [2] have constructed t-tough graphs that are not hamiltonian for all $t<\frac{9}{4}$, so t_{0} must be at least $\frac{9}{4}$. It is not difficult to see that a non-complete t-tough graph is $2\lceil t\rceil$-connected.

There are many papers on Chvátal's toughness conjecture, and it has been verified when restricted to a number of graph classes [3], including planar graphs, claw-free graphs, co-comparability graphs, and chordal graphs. A graph G is called $2 K_{2}$-free if it does not contain two independent edges as an induced subgraph. In 2014, Broersma, Patel and Pyatkin [5] proved that every 25 -tough $2 K_{2}$-free graph on at least three vertices is hamiltonian, and the author of this paper improved the required toughness in this result from 25 to 3 [13].

Let P_{ℓ} denote a path on ℓ-vertices. A graph is $\left(P_{2} \cup P_{3}\right)$-free if it does not contain any induced copy of $P_{2} \cup P_{3}$, the disjoint union of P_{2} and P_{3}. In this paper, we confirm Chvátal's toughness conjecture for the class of $\left(P_{2} \cup P_{3}\right)$-free graphs, a superclass of $2 K_{2^{-}}$ free graphs.

Theorem 1. Let G be a 15 -tough $\left(P_{2} \cup P_{3}\right)$-free graph with at least three vertices. Then G is hamiltonian.

In [10] it was shown that every $3 / 2$-tough split graph on at least three vertices is hamiltonian. And the authors constructed a sequence $\left\{G_{n}\right\}_{n=1}^{\infty}$ of split graphs (graphs whose vertices can be partitioned into a clique and an independent set) with no 2-factor and $\tau\left(G_{n}\right) \nearrow 3 / 2$. So $3 / 2$ is the best possible toughness for split graphs to be hamiltonian. Since split graphs are ($P_{2} \cup P_{3}$)-free, we cannot decrease the bound in Theorem 1 below $3 / 2$. Although it is certain that 15 -tough is not optimal, we are not sure about the best possible toughness for giving a hamiltonian cycle in a ($P_{2} \cup P_{3}$)-free graph.

The class of $2 K_{2}$-free graphs is well studied, for instance, see [5, 6, 8, 9, 11, 12]. It is a superclass of split graphs. One can also easily check that every cochordal graph (i.e., a graph that is the complement of a chordal graph) is $2 K_{2}$-free and so the class of $2 K_{2}$-free graphs is at least as rich as the class of chordal graphs. By the definition, the class of $\left(P_{2} \cup P_{3}\right)$-free graphs is a superclass of $2 K_{2}$-free graphs but with much more complicated structures than graphs that are $2 K_{2}$-free. The proof techniques used in [5] and [13] for showing that certain tough $2 K_{2}$-free graphs are hamiltonian do not seem to be applicable for $\left(P_{2} \cup P_{3}\right)$-free graphs. The proof approach used in this paper for showing Theorem 1 is new and more general and reveals some structural properties of $\left(P_{2} \cup P_{3}\right)$-free graphs.

2 Proof of Theorem 1

We start this section with some definitions. Let G be a graph and $S \subseteq V(G)$ a cutset of G, and let D be a component of $G-S$. For a vertex $x \in S$, we say that x is adjacent to D if x is adjacent in G to a vertex of D. We call D a clique component of $G-S$ if
$V(D)$ is a clique in G. We call D a trivial component of $G-S$ if D has only one vertex, otherwise D is nontrivial.

A star-matching is a set of vertex-disjoint copies of stars. The vertices of degree at least 2 in a star-matching are called the centers of the star-matching. In particular, if all the stars in a star-matching are isomorphic to $K_{1, t}$, where $t \geqslant 1$ is an integer, we call the star-matching a $K_{1, t}$-matching. For a star-matching M, we denote by $V(M)$ the set of vertices covered by M.

Let C be an oriented cycle. For $x \in V(C)$, denote the immediate successor of x on C by x^{+}and the immediate predecessor of x on C by x^{-}. For $u, v \in V(C), u \vec{C} v$ denotes the segment of C starting at u, following C in the orientation, and ending at v. Likewise, $u \stackrel{\leftharpoonup}{C} v$ is the opposite segment of C with endpoints as u and v. We assume all cycles in consideration afterwards are oriented. A path P connecting two vertices u and v is called a (u, v)-path, and we write $u P v$ or $v P u$ in specifying the two endvertices of P. Let $u P v$ and $x Q y$ be two paths. If $v x$ is an edge, we write $u P v x Q y$ as the concatenation of P and Q through the edge $v x$.

Lemma 2 ([1], Theorem 2.10). Let G be a bipartite graph with partite sets X and Y, and let f be a function from X to the set of positive integers. If for every $S \subseteq X$, it holds that $\left|N_{G}(S)\right| \geqslant \sum_{x \in S} f(x)$, then G has a subgraph H such that $X \subseteq V(H), d_{H}(x)=f(x)$ for every $x \in X$, and $d_{H}(y)=1$ for every $y \in Y \cap V(H)$.

We will apply the following consequences of Lemma 2 in our proof.
Corollary 3. Let G be a graph and $X \subseteq V(G)$ be an independent set in G. If G does not have a subgraph H such that $X \subseteq V(H), d_{H}(x)=2$ for every $x \in X$, and $d_{H}(y)=1$ for every $y \in Y \cap V(H)$, where $Y \subseteq V(G) \backslash X$, then there exists $X_{1} \subseteq X$ such that $\left|N_{G}\left(X_{1}\right) \cap Y\right|<2\left|X_{1}\right|$.

Proof. Let $R[X, Y]$ be the bipartite graph with bipartition X and Y and with $E(R)$ being the set of edges in G between X and Y. Let f be a function on X such that $f(x)=2$ for each $x \in X$. The assumption that G does not have a subgraph H with the requirements implies that R does not have such a subgraph also. Applying Lemma 2, we find $X_{1} \subseteq X$ such that $\left|N_{R}\left(X_{1}\right)\right|<2\left|X_{1}\right|$. Since X is an independent set in G, $N_{R}\left(X_{1}\right)=N_{G}\left(X_{1}\right) \cap Y$. Therefore there exists $X_{1} \subseteq X$ such that $\left|N_{G}\left(X_{1}\right) \cap Y\right|<2\left|X_{1}\right|$, as desired.

Corollary 4. Let G be a 2-tough graph with at least three vertices and $X \subseteq V(G)$ be an independent set in G. Then G has a subgraph H such that $X \subseteq V(H), d_{H}(x)=2$ for every $x \in X$, and $d_{H}(y)=1$ for every $y \in(V(G) \backslash X) \cap V(H)$.

Proof. Let $Y=V(G) \backslash X$, and $R[X, Y]$ be the bipartite graph with bipartition X and Y and with $E(R)$ being the set of edges in G between X and Y. Let f be a function on X such that $f(x)=2$ for each $x \in X$. Let $S \subseteq X$. If $|S| \leqslant 1$, then since G is 4-connected, $\left|N_{R}(S)\right|=\left|N_{G}(S)\right| \geqslant 2|S|$. Thus, $|S| \geqslant 2$. Note that $c\left(G-N_{G}(S)\right) \geqslant|S| \geqslant 2$. By the
toughness of $G,\left|N_{R}(S)\right|=\left|N_{G}(S)\right| \geqslant 2|S|$. Therefore, by Lemma $2, R$ and so G has a desired subgraph H such that $X \subseteq V(H), d_{H}(x)=2$ for every $x \in X$, and $d_{H}(y)=1$ for every $y \in(V(G) \backslash X) \cap V(H)$.

Lemma 5 (Bauer et al. [4]). Let $t>0$ be real and G be a t-tough n-vertex graph ($n \geqslant 3$) with $\delta(G)>\frac{n}{t+1}-1$. Then G is hamiltonian.

Lemmas 6 and 7 below are consequences of $\left(P_{2} \cup P_{3}\right)$-freeness.
Lemma 6. Let G be a $\left(P_{2} \cup P_{3}\right)$-free graph and $S \subseteq V(G)$ a cutset of G. If $G-S$ has a component that is not a clique component, then all other components of $G-S$ are trivial. Consequently, if $G-S$ has at least two nontrivial components, then all components of $G-S$ are clique components.

Lemma 7. Let G be a $\left(P_{2} \cup P_{3}\right)$-free graph and $S \subseteq V(G)$ a cutset of G, and let $x \in S$. Suppose that x is adjacent to exactly one component D of $G-S$, and $G-S$ has a nontrivial component to which x is not adjacent, then x is adjacent in G to all vertices of D.

Lemma 8. Let G be a connected $\left(P_{2} \cup P_{3}\right)$-free graph and $S \subseteq V(G)$ a cutset of G such that each vertex in S is adjacent to at least two components of $G-S$. Then each of the following statement holds.
(i) For every nontrivial clique component $D \subseteq G-S$ and for every vertex $x \in S, x$ is adjacent to D.
(ii) For every nontrivial clique component $D \subseteq G-S$ and for every vertex $x \in S$, if x is adjacent in G to at least three components of $G-S$, then x is adjacent in G to at least $|V(D)|-1$ vertices of D.
(iii) Let D_{1} and D_{2} be two nontrivial clique components of $G-S$. Then for every vertex $x \in S$, either x is adjacent in G to at least $\left|V\left(D_{i}\right)\right|-1$ vertices of each D_{i}, or x is adjacent in G to all vertices of one of $D_{i}, i=1,2$.

Proof. Let w_{1} and w_{2} be two neighbors of x in G respectively from two distinct components of $G-S$. Then $w_{1} x w_{2}$ is an induced P_{3}. Now for every nontrivial component D, if $V(D) \cap\left\{w_{1}, w_{2}\right\} \neq \varnothing$, then x is already adjacent to D in G. So $V(D) \cap\left\{w_{1}, w_{2}\right\}=\varnothing$. For every edge $u v \in E(D), x$ is adjacent to u or v by the assumption of G being $\left(P_{2} \cup P_{3}\right)$-free. This proves (i). For (ii), let $x \in S$ and D be a nontrivial clique component of $G-S$. Since x is adjacent in G to at least three components of $G-S$, there exists u, w, respectively from two components of $G-S$ that are distinct from D such that $x \sim u$ and $x \sim w$ in G. Thus, $u x w$ is an induced P_{3} in G. Furthermore, since $u, w \in V(G) \backslash(S \cup V(D))$, $E_{G}(\{u, w\}, V(D))=\varnothing$. Thus, by the $\left(P_{2} \cup P_{3}\right)$-freeness assumption, for every edge in D, x is adjacent to at least one endvertex of that edge. This, together with the fact that D is a clique component of $G-S$, we know that x is adjacent in G to at least $|V(D)|-1$ vertices of D. For (iii), assume to the contrary that the statement does not hold. By symmetry, we assume that there exists $u v \in E\left(D_{1}\right)$ such that $x \nsim u, v$ in G, and there exists $w \in V\left(D_{2}\right)$ such that $x \nsim w$ in G. Let $y \in V\left(D_{2}\right) \cap N_{G}(x)$ that exists by Lemma 8 (i). Then $u v \cup x y w$ is an induced $P_{2} \cup P_{3}$, giving a contradiction.

Lemma 9. Let $t>0$ and G be a non-complete n-vertex t-tough graph. Then $|W| \leqslant \frac{1}{t+1} n$ holds for every independent set W in G.

Proof. Since G is $2\lceil t\rceil$-connected, $n \geqslant 2\lceil t\rceil+1 \geqslant 2 t+1 \geqslant t+1$. Therefore, if $|W|=1$, then $|W| \leqslant \frac{1}{t+1} n$. Suppose $|W| \geqslant 2$. Let $S=V(G) \backslash W$ and $\alpha=\frac{|W|}{n}$. Clearly $|S|=$ $(1-\alpha) n$. Since $c(G-S)=|W| \geqslant 2$ and G is t-tough, we get

$$
(1-\alpha) n=|S| \geqslant t \cdot c(G-S)=t|W|=t \alpha n
$$

Therefore, we get $(1-\alpha) n \geqslant t \alpha n$, which yields $\alpha \leqslant \frac{1}{t+1}$ and $|W| \leqslant \frac{1}{t+1} n$.
Lemma 10. Let $t \geqslant 1$ and G be an n-vertex t-tough graph, and let C be a non-hamiltonian cycle of G. If $x \in V(G) \backslash V(C)$ satisfies that $\operatorname{deg}(x, C)>\frac{n}{t+1}$, then G has a cycle C^{\prime} such that $V\left(C^{\prime}\right)=V(C) \cup\{x\}$.

Proof. It is clear that if x is adjacent to two consecutive vertices u, w on C, then

$$
C^{\prime}=(C-\{u w\}) \cup\{u x, x w\}
$$

is a cycle with the desired property. So we assume that for any $u, w \in N_{G}(x) \cap V(C)$, $u w \notin E(C)$. Let $W=\left\{u^{+} \mid u \in N_{G}(x) \cap V(C)\right\}$ be the set of the successors of the neighbors of x on C. Because there is a one-to-one correspondence between W and $N_{G}(x) \cap V(C)$, by the assumption that $\operatorname{deg}(x, C)>\frac{n}{t+1}$, we know that

$$
\begin{equation*}
|W|>\frac{n}{t+1} \tag{1}
\end{equation*}
$$

Thus, W is not an independent set in G by Lemma 9 , and there exist $u^{+}, w^{+} \in W$ with $u, w \in N_{G}(x) \cap V(C)$ such that $u^{+} \sim w^{+}$in G. Then

$$
C^{\prime}=u^{+} \stackrel{\rightharpoonup}{C} w x u \stackrel{\llcorner }{C} w^{+} u^{+}
$$

is a desired cycle.
Lemma 11. Let G be an n-vertex 15 -tough $\left(P_{2} \cup P_{3}\right)$-free graph, and let C be a nonhamiltonian cycle of G. Let $P \subseteq G-V(C)$ be an (x, z)-path. If both x and z are adjacent in G to more than $\frac{4.5 n}{16}$ vertices from $V(C)$, then G has a cycle C^{\prime} such that $V\left(C^{\prime}\right)=V(C) \cup V(P)$.

Proof. It is clear that if x is adjacent to a vertex u on C and z is adjacent to a vertex w on C such that $u w \in E(C)$, then

$$
C^{\prime}=(C-\{u w\}) \cup\{u x, z w\} \cup P
$$

is a cycle with the desired property. So we assume that

$$
\begin{equation*}
\text { for any } u \in N_{G}(x) \cap V(C) \text { and any } w \in N_{G}(z) \cap V(C), u w \notin E(C) \text {. } \tag{2}
\end{equation*}
$$

Let

$$
\begin{aligned}
& W_{x}=\left\{u^{+} \mid u \in N_{G}(x) \cap V(C)\right\}, \\
& W_{z}=\left\{u^{+} \mid u \in N_{G}(z) \cap V(C)\right\} .
\end{aligned}
$$

Clearly,

$$
\begin{equation*}
\left|W_{x}\right|=\left|N_{G}(x) \cap V(C)\right|>\frac{4.5 n}{16}, \quad \text { and } \quad\left|W_{z}\right|=\left|N_{G}(z) \cap V(C)\right|>\frac{4.5 n}{16} . \tag{3}
\end{equation*}
$$

If there exist $u^{+} \in W_{x}$ and $w^{+} \in W_{z}$ with $u \in N_{G}(x) \cap V(C)$ and $w \in N_{G}(z) \cap V(C)$ such that $u^{+} \sim w^{+}$in G, then

$$
C^{\prime}=u^{+} \stackrel{\rightharpoonup}{C} w z P x u \stackrel{\iota}{C} w^{+} u^{+}
$$

is a desired cycle. Therefore, we assume

$$
\begin{equation*}
E_{G}\left(W_{x}, W_{z}\right)=\varnothing \tag{4}
\end{equation*}
$$

We further claim that
no two vertices in $N_{G}(x) \cap V(C)$ or $N_{G}(z) \cap V(C)$ are consecutive on C.
By symmetry, we only show that no two vertices in $N_{G}(x) \cap V(C)$ are consecutive on C.
Assume to the contrary that there exists a path $v_{1} v_{2} \cdots v_{\ell} \subseteq C$ with $\ell \geqslant 2$ such that for each i with $1 \leqslant i \leqslant \ell, v_{i} \in N_{G}(x) \cap V(C), v_{1}^{-} \notin N_{G}(x) \cap V(C)$, and $v_{\ell}^{+} \notin$ $N_{G}(x) \cap V(C)$. Note that such vertices v_{1} and v_{ℓ} exist by the assumption in (2) and the fact that $N_{G}(z) \cap V(C) \neq \varnothing$. By (3) and Lemma $9, W_{z}$ is not an independent set in G and so there exist $w_{1}, w_{2} \in W_{z}$ such that $w_{1} \sim w_{2}$ in G.

Then $x v_{\ell} v_{\ell}^{+}$is an induced P_{3} in G. Consider the edge $w_{1} w_{2}$. By the assumption in (2), $x \nsim w_{1}, w_{2}$ in G (otherwise, $w_{1}^{-} w_{1} \in E(C)$ or $w_{2}^{-} w_{2} \in E(C)$ with $\left.w_{1}^{-}, w_{2}^{-} \in N_{G}(z) \cap V(C)\right)$, and by the assumption in (4), $v_{\ell}^{+} \nsim w_{1}, w_{2}$ in G. Thus, $v_{\ell} \sim w_{1}$ or $v_{\ell} \sim w_{2}$ in G by the $\left(P_{2} \cup P_{3}\right)$-freeness assumption. However, $v_{\ell}=v_{\ell-1}^{+} \in W_{x}$, showing a contradiction to (4).

Therefore, by (5),

$$
\begin{equation*}
\left(N_{G}(x) \cap V(C)\right) \cap W_{x}=\varnothing, \quad \text { and } \quad\left(N_{G}(z) \cap V(C)\right) \cap W_{z}=\varnothing . \tag{6}
\end{equation*}
$$

Also, by (2),

$$
\begin{equation*}
\left(N_{G}(x) \cap V(C)\right) \cap W_{z}=\varnothing, \quad \text { and } \quad\left(N_{G}(z) \cap V(C)\right) \cap W_{x}=\varnothing . \tag{7}
\end{equation*}
$$

Let

$$
W_{x z}=W_{x} \cap W_{z} .
$$

By the assumption in (4), $W_{x z}$ is an independent set in G. By Lemma $9,\left|W_{x z}\right| \leqslant \frac{n}{16}$. Therefore, $\left|N_{G}(x) \cap N_{G}(z) \cap V(C)\right| \leqslant \frac{n}{16}$. These, together with (3), (6) and (7), imply

$$
\begin{aligned}
n & \geqslant\left|\left(N_{G}(x) \cap V(C)\right) \cup\left(N_{G}(z) \cap V(C)\right) \cup W_{x} \cup W_{z}\right| \\
& >\frac{9 n}{16}+\frac{9 n}{16}-\left|N_{G}(x) \cap N_{G}(z) \cap V(C)\right|-\left|W_{x z}\right| \\
& \geqslant \frac{16 n}{16}=n,
\end{aligned}
$$

showing a contradiction.

Lemma 12. Let G be an n-vertex 15 -tough $\left(P_{2} \cup P_{3}\right)$-free graph, and let $S \subseteq V(G)$ be a cutset of G with $|S| \leqslant \frac{3 n}{4}$. Assume that $G-S$ has at least two nontrivial clique components, and that for every edge $u v \in E(G), d(u)+d(v) \geqslant|S|$. Then G has a hamiltonian cycle.
Proof. By Lemma 6, every component of $G-S$ is a clique component. If there exists $x \in S$ such that x is adjacent to exactly one component, say D of $G-S$, then we move x from S into D. By Lemma 7, every component of $G-(S \backslash\{x\})$ is still a clique component. We move out all such vertex x from S iteratively and denote the remaining vertices in S by S_{1}. Note that $S_{1} \neq \varnothing$, since G is a connected graph and S is a cutset of G. Also, $c(G-S)=c\left(G-S_{1}\right)$ and $G-S_{1}$ has at least two nontrivial components. By Lemma 6, every component of $G-S_{1}$ is a clique component. Let

$$
\begin{aligned}
& S_{0}=\left\{x \in S_{1} \mid x \text { is not adjacent to any component of } G-S_{1}\right\} \\
& S_{2}=\left\{x \in S_{1} \mid x \text { is adjacent to at least two components of } G-S_{1}\right\} .
\end{aligned}
$$

Note that $S_{2}=S_{1}-S_{0}$.
Since $G-S_{1}$ has a nontrivial component that has no edge going to S_{0}, the $\left(P_{2} \cup P_{3}\right)$ freeness of G implies that $G\left[S_{0}\right]$ consists of vertex-disjoint complete subgraphs of G. Thus S_{2} is a cutset of G with components consisting those from $G-S_{1}$ and $G\left[S_{0}\right]$. Also, all components of $G-S_{2}$ are clique components in which at least two of them are nontrivial. By the toughness of $G,\left|S_{2}\right| \geqslant 15 c\left(G-S_{2}\right)$.

We will construct a hamiltonian cycle in G through two steps: (1) combing spanning cycles from every clique component of $G-S_{2}$ that has at least three vertices into a single cycle C, and (2) inserting remaining vertices in $V(G) \backslash V(C)$ into C to obtain a hamiltonian cycle of G.

Suppose that $G-S_{2}$ has exactly h clique components $D_{1}, D_{2}, \cdots, D_{h}$ with $\left|V\left(D_{1}\right)\right| \geqslant$ $\left|V\left(D_{2}\right)\right| \geqslant \cdots \geqslant\left|V\left(D_{h}\right)\right| \geqslant 1$, and that the first $t(0 \leqslant t \leqslant h)$ of them are components that contain at least three vertices. Since $G-S_{2}$ has at least two nontrivial components, both D_{1} and D_{2} are nontrivial.
Claim 1. The component D_{1} contains at least 5 vertices.
Proof: Since $\left|S_{2}\right| \leqslant|S| \leqslant \frac{3 n}{4}, n \geqslant \frac{4\left|S_{2}\right|}{3}$. Also, $c\left(G-S_{2}\right) \leqslant \frac{\left|S_{2}\right|}{15}$ by $\tau(G) \geqslant 15$. Therefore, a largest component of $G-S_{2}$ contains at least

$$
\frac{n-\left|S_{2}\right|}{c\left(G-S_{2}\right)} \geqslant \frac{\frac{4\left|S_{2}\right|}{3}-\left|S_{2}\right|}{\frac{\left|S_{2}\right|}{15}}=5
$$

vertices.
Let

$$
\begin{aligned}
& Q_{1}=\left\{x \in S_{2} \mid x \text { is adjacent to a component distinct from } D_{1} \text { and } D_{2}\right\}, \\
& Q_{2}=\left\{x \in S_{2} \mid x \text { is adjacent to less than } \frac{\left|V\left(D_{1}\right)\right|-1}{2} \text { vertices of } D_{1}\right\}, \\
& Q_{3}=\left\{x \in S_{2} \mid x \text { is adjacent to less than } \frac{\left|V\left(D_{2}\right)\right|-1}{2} \text { vertices of } D_{2}\right\} .
\end{aligned}
$$

By Lemma 8 (i) and the definition of Q_{1}, we know that if $Q_{1} \neq \varnothing$, then every vertex in Q_{1} is adjacent to at least three components of $G-S_{2}$. By Lemma 8 (ii), we get the following claim.

Claim 2. Suppose that $Q_{1} \neq \varnothing$. Then for every $x \in Q_{1}$ and for every nontrivial component D of $G-S_{2}, x$ is adjacent to at least $|V(D)|-1$ vertices of D.
Claim 3. Suppose that $Q_{2} \neq \varnothing$. Then for every $x \in Q_{2}, x$ is adjacent to all vertices of D_{2} and Q_{2} is a clique in G.
Proof: Note that both D_{1} and D_{2} are nontrivial components of $G-S_{2}$. Since D_{1} is a nontrivial component, $\frac{\left|V\left(D_{1}\right)\right|+1}{2}>1$. Hence, by the definition of Q_{2}, D_{1} contains at least two vertices that are not adjacent to x in G. Therefore, x is adjacent in G to all vertices of D_{2} by Lemma 8 (iii). For the second part, suppose to the contrary that there exist $x, y \in Q_{2}$ such that $x \nsim y$ in G. Let $w \in V\left(D_{2}\right)$. Then $w \sim x$ and $w \sim y$ in G by the first part of this claim. Thus, we find an induced $P_{3}=x w y$. Since $E_{G}\left(\{w\}, V\left(D_{1}\right)\right)=\varnothing$, the $\left(P_{2} \cup P_{3}\right)$-freeness implies that for every edge in D_{1}, at least one of x and y is adjacent to at least one endpoint of the edge. Since D_{1} is complete, by Pigeonhole Principle, one of x and y is adjacent to at least $\frac{\left|V\left(D_{1}\right)\right|-1}{2}$ vertices of D_{1}. This gives a contradiction to the assumption that $x, y \in Q_{2}$.

Similarly, we have the following result.
Claim 4. Suppose that $Q_{3} \neq \varnothing$. Then for every $x \in Q_{3}, x$ is adjacent to all vertices of D_{1} and Q_{3} is a clique in G.

By Claims 2 to 4, we have that

$$
\begin{equation*}
Q_{i} \cap Q_{j}=\varnothing, i \neq j, i, j=1,2,3 \tag{8}
\end{equation*}
$$

Define

$$
W=\bigcup_{\max \{t+1,3\} \leqslant i \leqslant h} V\left(D_{i}\right) .
$$

Since $\left|V\left(D_{i}\right)\right| \leqslant 2$ for each i with $t+1 \leqslant i \leqslant h$, we have $\sum_{i=t+1}^{h}\left|V\left(D_{i}\right)\right| \leqslant 2(h-t)$. Moreover, since S_{2} is a cutset of G, the toughness of G yields $\left|S_{2}\right| \geqslant 15 c\left(G-S_{2}\right)=15 h$. Therefore, we have

$$
\begin{equation*}
|W| \leqslant \sum_{i=t+1}^{h}\left|V\left(D_{i}\right)\right| \leqslant 2(h-t) \leqslant \frac{2\left|S_{2}\right|}{15}-2 t . \tag{9}
\end{equation*}
$$

If $W \neq \varnothing$, we claim that there is a $K_{1,2}$-matching M between W and S_{2} such that every vertex in W is the center of a $K_{1,2}$-star. This is clearly true if $|W| \leqslant 2$, as G is non-complete and 15 -tough and so is 30 -connected. Thus, we assume that $|W| \geqslant 3$, and suppose to the contrary that there is no $K_{1,2}$-matching between W and S_{2}. Let G^{*} be obtained from G by deleting all edges within W. Applying Corollary 3 on G^{*} with W and S_{2}, there exists $W_{1} \subseteq W$ such that $2\left|W_{1}\right|>\left|N_{G^{*}}\left(W_{1}\right) \cap S_{2}\right|$. Note that $\left|W_{1}\right| \geqslant 3$ by the argument in the beginning of this paragraph. Let $W_{1}^{\prime} \subseteq W \backslash W_{1}$ be the set of all vertices that is adjacent in G to a vertex in W_{1}. As each component in $G[W]$ is either K_{1} or $K_{2},\left|W_{1}^{\prime}\right| \leqslant\left|W_{1}\right|$, and $G-\left(\left(N_{G}\left(W_{1}\right) \cap S_{2}\right) \cup W_{1}^{\prime}\right)$ has at least $\left\lceil\left|W_{1}\right| / 2\right\rceil \geqslant 2$ components. Therefore,

$$
\frac{\left|\left(N_{G}\left(W_{1}\right) \cap S_{2}\right) \cup W_{1}^{\prime}\right|}{c\left(G-\left(\left(N_{G}\left(W_{1}\right) \cap S_{2}\right) \cup W_{1}^{\prime}\right)\right)}<\frac{3\left|W_{1}\right|}{\left|W_{1}\right| / 2}<15 .
$$

This gives a contradiction to the toughness.
Let M be a $K_{1,2}$-matching between W and S_{2}.
Claim 5. It holds that $N_{G}(W) \cap S_{2} \subseteq Q_{1}$ and $N_{G}(W) \cap S_{2}=Q_{1}$ if $t=2$. Consequently, for every $x \in N_{G}(W) \cap S_{2}$ and every nontrivial component D of $G-S_{2}, x$ is adjacent in G to at least $|V(D)|-1$ vertices of D.

Proof: For the first part of the Claim, we may assume that $N_{G}(W) \cap S_{2} \neq \varnothing$. If $G-$ S_{2} has at least three nontrivial components, then every vertex of S_{2} is adjacent to all those nontrivial components by Lemma 8 (i). Therefore, $S_{2}=Q_{1}$ by the definition of Q_{1}. In particular, $N_{G}(W) \cap S_{2} \subseteq Q_{1}$. Hence, we assume that $G-S_{2}$ has exactly two nontrivial components, which are D_{1} and D_{2}. This assumption implies that $\left|V\left(D_{3}\right)\right| \leqslant 1$. Consequently, $\left|V\left(D_{3}\right)\right|=1$ since $N_{G}(W) \cap S_{2} \neq \varnothing$. Then for every $x \in N_{G}(W) \cap S_{2}, x$ is adjacent to both D_{1} and D_{2} by Lemma 8 (i), and also x is adjacent to a trivial component of $G-S_{2}$. Thus $N_{G}(W) \cap S_{2} \subseteq Q_{1}$. When $t=2$, if $Q_{1} \neq \varnothing$, then for every $x \in Q_{1}$, $x \in N_{G}(W)$. Therefore, $Q_{1} \subseteq N_{G}(W) \cap S_{2}$. Hence, $N_{G}(W) \cap S_{2}=Q_{1}$ when $t=2$. The second part of Claim 5 is a consequence of Claim 2.
Claim 6. There is a cycle C in $G-V(M)$ with at least $\frac{3 n}{20}$ vertices such that C contains all vertices from every $D_{i}, i=1,2, \cdots, \max \{2, t\}$, and $Q_{2} \cup Q_{3} \subseteq V(C)$.
Proof: Suppose first that $G-S_{2}$ has at least three nontrivial components, that is, $t \geqslant 3$. Then by Lemma 8 (i), every vertex of S_{2} is adjacent to all those nontrivial components of $G-S_{2}$. Consequently, $S_{2}=Q_{1}$ and $Q_{2}=Q_{3}=\varnothing$. Therefore, for every $x \in S_{2}$ and every D_{i}, x is adjacent to at least $\left|V\left(D_{i}\right)\right|-1$ vertices of D_{i} by Claim 2.

Let x_{1}, \cdots, x_{t} be t distinct vertices in $S_{2} \backslash V(M)$. (By the toughness of $G,\left|S_{2}\right| \geqslant$ $15 c\left(G-S_{2}\right)$. Since $\left|V(M) \cap S_{2}\right| \leqslant 4 c\left(G-S_{2}\right)$, we have enough vertices in $S_{2} \backslash V(M)$ to pick.) Let C_{i} be a hamiltonian cycle of D_{i}, and let $u_{i}, v_{i} \in V\left(C_{i}\right)$ with $u_{i} v_{i} \in E\left(C_{i}\right)$ such that for $i=1,2, \cdots, t-1, x_{i} \sim v_{i}, u_{i+1}$, and $x_{t} \sim u_{1}, v_{t}$ in G. Then

$$
C=u_{1} \stackrel{\rightharpoonup}{C}_{1} v_{1} x_{1} u_{2} \stackrel{\rightharpoonup}{C}_{2} v_{2} \cdots u_{t-1} \stackrel{\rightharpoonup}{C}_{t-1} v_{t-1} x_{t-1} u_{t} \stackrel{\rightharpoonup}{C}_{t} v_{t} x_{t} u_{1}
$$

is a cycle that contains all vertices from each D_{i} and the vertices x_{1}, \cdots, x_{t} from $S_{2} \backslash V(M)$. Also $Q_{2} \cup Q_{3} \subseteq V(C)$ trivially as $Q_{2}=Q_{3}=\varnothing$.

So we assume that $G-S_{2}$ has exactly two nontrivial clique components, which are D_{1} and D_{2}, call this assumption (*). Let

$$
G_{1}=G\left[V\left(D_{1}\right) \cup Q_{3}\right] \quad \text { and } \quad G_{2}=G\left[V\left(D_{2}\right) \cup Q_{2}\right] .
$$

By Claims 3 and 4, we know that both G_{1} and G_{2} are complete subgraphs of G.
Suppose firstly that $t=1$ and $Q_{2}=\varnothing$. Then D_{2} has exactly two vertices. Consequently, $Q_{3}=\varnothing$ by Lemma 8 (i) and $G_{1}=D_{1}$. Let $V\left(D_{2}\right)=\{u, v\}$. By Lemma 8 (i), every vertex from S_{2} is adjacent in G to a vertex of D_{2}. Since $Q_{2}=\varnothing$, every vertex from S_{2} is adjacent in G to at least $\frac{\left|V\left(D_{1}\right)-1\right|}{2} \geqslant 2$ vertices of D_{1}. Suppose there exist distinct $u_{1}, v_{1} \in S_{2} \backslash V(M)$ such that $u \sim u_{1}$ and $v \sim v_{1}$. Let $u_{2}, v_{2} \in V\left(D_{1}\right)$ be
distinct such that $u_{1} \sim u_{2}$ and $v_{1} \sim v_{2}$. Let P be a hamiltonian $\left(u_{2}, v_{2}\right)$-path of D_{1}. Then $C=u_{1} u_{2} P v_{2} v_{1} v u u_{1}$ is a desired cycle. Thus, we assume, without loss of generality, that for every $x \in S_{2} \backslash V(M), x \sim u$ and $x \nsim v$. Since G is 15 -tough, there exists $v_{1}^{\prime} \in V(M) \cap S_{2}$ such that $v \sim v_{1}^{\prime}$. Let $v_{1}^{\prime} w v_{1} \in M$ be the $K_{1,2}$-star that contains the vertex v_{1}^{\prime}, where $v_{1}, v_{1}^{\prime} \in S_{2}$ and $w \in W$. Let $u_{1} \in S_{2} \backslash V(M)$, and $u_{2}, v_{2} \in V\left(D_{1}\right)$ be distinct such that $u_{1} \sim u_{2}$ and $v_{1} \sim v_{2}$. Let P be a hamiltonian $\left(u_{2}, v_{2}\right)$-path of D_{1}. Then $C=u_{1} u_{2} P v_{2} v_{1} w v_{1}^{\prime} v u u_{1}$ is a desired cycle. (For the latter case, we still denote the $K_{1,2}$-matching $M \backslash\left\{v_{1}^{\prime} w v_{1}\right\}$ by M.)

Thus, we assume that $t \geqslant 2$ or $Q_{2} \neq \varnothing$. By assumption ($*$), we have either $t=2$ or $t=1$ and $Q_{2}=\varnothing$. Since D_{1} has at least three vertices by Claim $1, G_{1}$ contains at least three vertices. Note that $\left|V\left(D_{2}\right)\right| \geqslant 2$ by the assumption that $G-S_{2}$ has at least two nontrivial components and D_{2} is one of them. Thus, G_{2} contains at least three vertices either by $t=2$ or $Q_{2} \neq \varnothing$.

If there are two disjoint edges between G_{1} and G_{2}, then $G\left[V\left(G_{1}\right) \cup V\left(G_{2}\right)\right]$ has a hamiltonian cycle C. Thus, we may assume, without loss of generality, that there is either no edge between G_{1} and G_{2} or all edges between G_{1} and G_{2} are incident to only a single vertex, say in G_{1}.

If $c\left(G-S_{2}\right)=2$, then $M=\varnothing$ by the definitions of W and M. Since G is 15 -tough and thus is 2 -connected, there are vertex-disjoint paths P_{1} and P_{2} connecting G_{1} and G_{2} in G such that each P_{i} only has exactly one of its endvertices in G_{1} and G_{2}. Let $V\left(P_{i}\right) \cap V\left(G_{1}\right)=\left\{x_{i}\right\}$ and $V\left(P_{i}\right) \cap V\left(G_{2}\right)=\left\{y_{i}\right\}, i=1,2$. Let C_{1} be a hamiltonian cycle in G_{1} such that $x_{1} x_{2} \in E\left(C_{1}\right)$, and C_{2} be a hamiltonian cycle in G_{2} such that $y_{1} y_{2} \in E\left(C_{2}\right)$. Then

$$
C=x_{1} P_{1} y_{1} \stackrel{\rightharpoonup}{C}_{2} y_{2} P_{2} x_{2} \stackrel{\llcorner }{C}_{1} x_{1}
$$

is a cycle that contains all vertices in clique components of $G-S_{2}$ that contain at least three vertices and the vertices from P_{1} and P_{2}. Also $Q_{2} \cup Q_{3} \subseteq V(C)$ by the construction of C.

So we assume that $c\left(G-S_{2}\right) \geqslant 3$. By Claims 2 to $4, Q_{1}, Q_{2}$ and Q_{3} are pairwise disjoint. Now, by the definition of $Q_{1}, D_{3}, \ldots, D_{h}$ are all components of $G-Q_{1}$. Moreover, there exits a component of $G-Q_{1}$ which contains D_{1}. This together with $h=c\left(G-S_{2}\right) \geqslant 3$ yields $c\left(G-Q_{1}\right) \geqslant h-1 \geqslant 2$. Hence we have $\left|Q_{1}\right| \geqslant 15(h-1)$ and $\left|Q_{1} \backslash V(M)\right| \geqslant$ $15(h-1)-2(h-2)=13 h-11 \geqslant 28$ since each component D_{i} with $i \in\{t+1, \ldots, h\}$ is a trivial component and so uses exactly two vertices from $S_{2} \cap V(M)$. Hence, we can find two vertices $x, y \in Q_{1} \backslash V(M) \subseteq S_{2} \backslash\left(Q_{2} \cup Q_{3} \cup V(M)\right)$ such that both x and y are adjacent to at least $\left|V\left(D_{1}\right)\right|-1$ vertices of D_{1}, and at least $\left|V\left(D_{2}\right)\right|-1$ vertices of D_{2} by Claim 5. We claim that x is adjacent to at least two vertices of G_{2}. This is clear if x is adjacent to at least two vertices of D_{2}. So we assume $\left|N_{G}(x) \cap V\left(D_{2}\right)\right| \leqslant 1$. Then since $\left|N_{G}(x) \cap V\left(D_{2}\right)\right| \geqslant\left|V\left(D_{2}\right)\right|-1$ and D_{2} is a nontrivial component, $\left|V\left(D_{2}\right)\right|=2$ and $\left|N_{G}(x) \cap V\left(D_{2}\right)\right|=1$. This means $t=1$ by Claim 1 and hence $Q_{2} \neq \varnothing$. Let $V\left(D_{2}\right)=\left\{w, w_{1}\right\}$ and $N_{G}(x) \cap V\left(D_{2}\right)=\{w\}$. Also, since $Q_{2} \neq \varnothing$, we can take $w_{2} \in Q_{2}$. If $x \sim w_{2}$, we get $\left|N_{G}(x) \cap V\left(G_{2}\right)\right| \geqslant 2$. Thus, we may assume $x \nsim w_{2}$. Therefore, $x \nsim w_{1}, w_{2}$ in G. Note that w_{1} is not adjacent to any vertex of D_{1}, and w_{2} is adjacent to less than
$\frac{\left|V\left(D_{1}\right)\right|-1}{2}$ vertices of D_{1}. Therefore, we can find a vertex $w^{*} \in V\left(D_{1}\right)$ such that $w_{1}, w_{2} \nsim w^{*}$ in G and $x \sim w^{*}$ in G. By the choice of x, there is a vertex $w^{\prime} \in V(G) \backslash\left(S_{2} \cup V\left(D_{1}\right) \cup V\left(D_{2}\right)\right)$ such that $x \sim w^{\prime}$ in G. However, $w_{1} w_{2} \cup w^{*} x w^{\prime}$ is an induced $P_{2} \cup P_{3}$. This gives a contradiction. Since D_{1} has at least 5 vertices, both x and y have at least four neighbors in D_{1}. Thus we can select distinct vertices $x_{1}, y_{1} \in V\left(G_{1}\right)$ and $x_{2}, y_{2} \in V\left(G_{2}\right)$ such that $x \sim x_{1}, x_{2}$ and $y \sim y_{1}, y_{2}$ in G.

Let C_{1} be a hamiltonian cycle of G_{1} such that $x_{1} y_{1} \in E\left(C_{1}\right)$, and let C_{2} be a hamiltonian cycle of G_{2} such that $x_{2} y_{2} \in E\left(C_{2}\right)$. Then

$$
C=x_{1} x x_{2} \stackrel{\rightharpoonup}{C}_{2} y_{2} y y_{1} \stackrel{\llcorner }{C}_{1} x_{1}
$$

is a cycle that contains all vertices in nontrivial clique components D_{1} and D_{2} of $G-S_{2}$ and the vertices x and y. Furthermore, $Q_{2} \cup Q_{3} \subseteq V(C)$.

Since for each $i, 1 \leqslant i \leqslant \max \{2, t\}, V\left(D_{i}\right) \subseteq V(C)$ and $\bigcup_{1 \leqslant i \leqslant t} V\left(D_{i}\right) \subseteq V(G) \backslash\left(S_{2} \cup\right.$ W), we have

$$
\begin{aligned}
|V(C)| & \geqslant n-\left|S_{2}\right|-|W| \geqslant n-\left|S_{2}\right|-2 c\left(G-S_{2}\right) \\
& \geqslant n-\left|S_{2}\right|-\frac{2\left|S_{2}\right|}{15} \geqslant n-\frac{17}{15} \cdot \frac{3 n}{4}=\frac{3 n}{20} .
\end{aligned}
$$

Claim 7. Let C be the cycle defined in Claim 6. For any $x \in S_{2} \backslash V(C), x$ has more than $\frac{n}{16}$ neighbors on C.
Proof: Note that every vertex in S_{2} is adjacent to at least two components of $G-S_{2}$. If $G-S_{2}$ has at least three nontrivial clique components, then Lemma 8 (ii) implies that for every $x \in S_{2}$, and for every nontrivial clique component D of $G-S_{2}, x$ is adjacent to at least $|V(D)|-1$ vertices of D. By $(\mathbf{9})$ that $\sum_{i=t+1}^{h}\left|V\left(D_{i}\right)\right| \leqslant \frac{2\left|S_{2}\right|}{15}-2 t$, we get

$$
\begin{aligned}
\left|N_{G}(x) \cap\left(\bigcup_{1 \leqslant i \leqslant t} V\left(D_{i}\right)\right)\right| & \geqslant \sum_{i=1}^{t}\left(\left|V\left(D_{i}\right)\right|-1\right)=\sum_{i=1}^{t}\left|V\left(D_{i}\right)\right|-t \\
& =\left(n-\left|S_{2}\right|-\sum_{i=t+1}^{h}\left|V\left(D_{i}\right)\right|\right)-t \\
& \geqslant n-\left|S_{2}\right|-\frac{2\left|S_{2}\right|}{15}+2 t-t \\
& \geqslant n-\frac{17\left|S_{2}\right|}{15} \geqslant \frac{3 n}{20}>\frac{n}{16},
\end{aligned}
$$

since $\left|S_{2}\right| \leqslant|S| \leqslant \frac{3 n}{4}$. Therefore, x has more than $\frac{n}{16}$ neighbors on C.
So we assume that $G-S_{2}$ has exactly two nontrivial clique components. Since $S_{2} \backslash$ $V(C) \subseteq S_{2} \backslash\left(Q_{2} \cup Q_{3}\right)$ (recall that $Q_{2} \cup Q_{3} \subseteq V(C)$), we know that x is adjacent to at least $\frac{\left|V\left(D_{1}\right)\right|-1}{2}$ vertices of D_{1}, and is adjacent to at least $\frac{\left|V\left(D_{2}\right)\right|-1}{2}$ vertices of D_{2}. We show that $\left|V\left(D_{1}\right)\right|+\left|V\left(D_{2}\right)\right|$ is large. Since G is 15 -tough, $\left|S_{2}\right|^{2} \geqslant 15 c\left(G-S_{2}\right)=15 h$. On
the other hand, since D_{1} and D_{2} are the only nontrivial components of $G-S_{2}$, we have $n-\left|S_{2}\right|=\left|V\left(D_{1}\right)\right|+\left|V\left(D_{2}\right)\right|+h-2$. Combining these inequalities, we have

$$
\begin{aligned}
\left|V\left(D_{1}\right)+\left|V\left(D_{2}\right)\right|\right| & =n-\left|S_{2}\right|-h+2 \geqslant n-\left|S_{2}\right|-\frac{\left|S_{2}\right|}{15}+2 \\
& >n-\frac{16\left|S_{2}\right|}{15} \geqslant n-\frac{16}{15} \cdot \frac{3 n}{4}=\frac{n}{5} .
\end{aligned}
$$

Since C contains all vertices from $D_{1} \cup D_{2}$, we conclude that x is adjacent to at least $\frac{n}{10}-1>\frac{n}{16}($ by $n \geqslant 31)$ neighbors on C.

By Claim 7, and by applying Lemma 10 for C and vertices in $S_{2} \backslash(V(C) \cup V(M))$ iteratively, we get a longer cycle C^{\prime} such that $V\left(C^{\prime}\right)=V(C) \cup\left(S_{2} \backslash(V(C) \cup V(M))\right)$. Note also that
$S_{2} \backslash V\left(C^{\prime}\right)=V(M) \cap S_{2} \subseteq N_{G}(W) \cap S_{2}$ and $V(G) \backslash\left(S_{2} \cup V\left(C^{\prime}\right)\right)=V(M) \cap\left(V(G) \backslash S_{2}\right)=W$.
Recall that for every $x \in S_{2} \backslash V\left(C^{\prime}\right)=S_{2} \cap V(M), x$ is adjacent to at least $\left|V\left(D_{i}\right)\right|-1$ vertices in each $D_{i}, i=1,2, \cdots, t$ by Claim 5 . Assume $\left|S_{2}\right| \leqslant \frac{7 n}{12}$. Then by the same argument as in the first case of proving Claim 7, we have

$$
\begin{aligned}
\left|N_{G}(x) \cap V\left(C^{\prime}\right)\right| & \geqslant\left|N_{G}(x) \cap\left(\bigcup_{1 \leqslant i \leqslant t} V\left(D_{i}\right)\right)\right| \geqslant n-\left|S_{2}\right|-\frac{2\left|S_{2}\right|}{15}+t \\
& \geqslant n-\frac{17}{15} \cdot \frac{7}{12} n=\frac{61}{180} n>\frac{4.5}{16} n
\end{aligned}
$$

Applying Lemma 11 for C^{\prime} and every path in M iteratively, we obtain a hamiltonian cycle in G. Hence we assume

$$
\begin{equation*}
\left|S_{2}\right|>\frac{7 n}{12} \tag{11}
\end{equation*}
$$

Claim 8. For any two $K_{1,2}$-stars $x_{1} u_{1} y_{1}, x_{2} u_{2} y_{2} \in M$, if $u_{1} u_{2}$ is a 2 -vertex component of $G-S_{2}$ and $\left|S_{2}\right|>\frac{7 n}{12}$, then at least one of u_{1} and u_{2} has more than $\frac{n}{16}$ neighbors on C^{\prime}. Proof: For otherwise, since u_{i} is adjacent to exactly one vertex in $V(M) \cap\left(V(G) \backslash S_{2}\right)$, and $\left|V(M) \cap S_{2}\right| \leqslant 2\left|V(M) \cap\left(V(G) \backslash S_{2}\right)\right|=2|W| \leqslant \frac{4\left|S_{2}\right|}{15}$,

$$
\begin{aligned}
d_{G}\left(u_{1}\right)+d_{G}\left(u_{2}\right) & \leqslant 2\left(\frac{n}{16}+1+\left|V(M) \cap S_{2}\right|\right) \leqslant 2\left(\frac{n}{16}+1+\frac{4\left|S_{2}\right|}{15}\right) \\
& <2\left(\frac{1}{16} \cdot \frac{12}{7}\left|S_{2}\right|+1+\frac{4\left|S_{2}\right|}{15}\right)=\frac{157}{210}\left|S_{2}\right|+2
\end{aligned}
$$

Since $n \geqslant 31$, we have $\left|S_{2}\right|>\frac{7}{12} \cdot 31>18$. Therefore, $\frac{157}{210}\left|S_{2}\right|+2<\left|S_{2}\right| \leqslant|S|$. This contradicts the assumption that for every edge $u v \in E(G), d_{G}(u)+d_{G}(v) \geqslant|S|$.

Let

$$
M_{1}=\left\{u w v \in M \left\lvert\, \operatorname{deg}_{G}\left(w, C^{\prime}\right)>\frac{n}{16}\right.\right\}, \quad M_{2}=M \backslash M_{1} .
$$

Take $u w v \in M_{1}$, note that $u, v \in S_{2}$ and $w \in V(G) \backslash S_{2}$. By the definition of M_{1}, $\operatorname{deg}\left(w, C^{\prime}\right)>\frac{n}{16}$. By Claim 7, $\operatorname{deg}\left(u, C^{\prime}\right)>\frac{n}{16}$ and $\operatorname{deg}\left(v, C^{\prime}\right)>\frac{n}{16}$. Now applying Lemma 10 for C^{\prime} and every path in M_{1} iteratively, we get a longer cycle C^{*} such that $V\left(C^{*}\right)=V\left(C^{\prime}\right) \cup V\left(M_{1}\right)$.

By the toughness of $G, G-S_{2}$ has at most $\frac{\left|S_{2}\right|}{15}$ components in total. Particularly, $G-S_{2}$ has at most $\frac{\left|S_{2}\right|}{15}$ components that have at most two vertices in total. By Claim 8, we know that for every 2 -vertex component $u v$ of $G-S_{2}$, at least one of u or v has more than $\frac{n}{16}$ neighbors on C^{\prime}. Therefore, at least one of the two $K_{1,2}$-stars centered, respectively, at u and v is contained in M_{1}. In other words, there is at most one $K_{1,2}$-star from M_{2} that centers at a vertex from a same component of $G-S_{2}$. Therefore,

$$
\left|V\left(M_{2}\right)\right| \leqslant \frac{\left|S_{2}\right|}{15}+\frac{2\left|S_{2}\right|}{15}=\frac{\left|S_{2}\right|}{5} .
$$

By the definition of M_{2} and by the assumption that for any $u v \in E(G), d_{G}(u)+d_{G}(v) \geqslant$ $|S|$, we know that for any path $x w y \in M_{2}$, where $x, y \in S_{2}$ and $w \in V(G) \backslash S_{2}$, we have $d_{G}(x)+d_{G}(w) \geqslant|S| \geqslant\left|S_{2}\right|$. Therefore, the number of neighbors that x has in G on C^{*} is at least

$$
\begin{aligned}
& \left|S_{2}\right|-\operatorname{deg}_{G}\left(x, G-V\left(C^{*}\right)\right)-d_{G}(w) \\
\geqslant & \left|S_{2}\right|-\operatorname{deg}_{G}\left(x, V\left(M_{2}\right)\right)-\left(\operatorname{deg}_{G}\left(w, C^{*}\right)+\operatorname{deg}_{G}\left(w, S_{2} \cap V\left(M_{2}\right)\right)\right) \\
\geqslant & \left|S_{2}\right|-\frac{\left|S_{2}\right|}{5}-\left(\frac{n}{16}+\frac{2\left|S_{2}\right|}{15}\right)=\frac{2\left|S_{2}\right|}{3}-\frac{n}{16} \\
> & \frac{2 \cdot 7 n}{3 \cdot 12}-\frac{n}{16}=\frac{47 n}{144}>\frac{4.5 n}{16} .
\end{aligned}
$$

Similarly, the vertex y has in G at least $\frac{4.5 n}{16}$ neighbors on C^{*}. Now applying Lemma 11 for C^{*} and every path in M_{2} iteratively gives a hamiltonian cycle in G.

Proof of Theorem 1. We may assume that G is not a complete graph. Since G is 15 -tough, it is 30 -connected, and consequently, $\delta(G) \geqslant 30$. By Lemma 5 , we may assume that

$$
\begin{equation*}
n \geqslant(\delta(G)+1) \cdot(\tau(G)+1) \geqslant 31 \cdot 16, \quad \text { and } \quad \delta(G) \leqslant \frac{n}{16}-1 \tag{12}
\end{equation*}
$$

We consider two cases to finish the proof.
Case 1: For every edge $e=u v \in E(G), d_{G}(u)+d_{G}(v)>\frac{3 n}{4}$.
Denote by

$$
\begin{equation*}
V_{1}=\left\{v \in V(G) \left\lvert\, d_{G}(v) \leqslant \frac{3 n}{8}\right.\right\} \tag{13}
\end{equation*}
$$

By the assumption of Case 1, we know that V_{1} is an independent set in G. Therefore,

$$
\begin{equation*}
\left|V_{1}\right| \leqslant \frac{n}{16} \tag{14}
\end{equation*}
$$

by Lemma 9 .

Since G is 15 -tough, Corollary 4 implies that G has a $K_{1,2}$-matching M with all vertices in V_{1} as the centers of the $K_{1,2}$-matching. Let V_{2} be the set of the vertices contained in M. By (14), we have that

$$
\begin{equation*}
\left|V_{2}\right| \leqslant \frac{3 n}{16} \tag{15}
\end{equation*}
$$

Denote by $G_{1}=G-V_{2}$. Then by the definitions of V_{1}, V_{2} and (15), we get that

$$
\begin{align*}
\delta\left(G_{1}\right) & >\frac{3 n}{8}-\left|V_{2}\right| \geqslant \frac{3 n}{16}, \tag{16}\\
\operatorname{deg}_{G}\left(x, G_{1}\right) & >\frac{3 n}{8}-\left|V_{2}\right| \geqslant \frac{3 n}{16}, \quad \text { for any } x \in V_{2} \backslash V_{1} . \tag{17}
\end{align*}
$$

We first assume that G_{1} has a hamiltonian cycle C. For every copy of $K_{1,2}$, say $x y z \in M$, by (17),

$$
\begin{align*}
\operatorname{deg}_{G}\left(x, G_{1}\right) & >\frac{3 n}{16}>\frac{n}{16} \tag{18}\\
\operatorname{deg}_{G}\left(z, G_{1}\right) & >\frac{3 n}{16}>\frac{n}{16} .
\end{align*}
$$

Let

$$
M_{1}=\left\{u w v \in M \left\lvert\, \operatorname{deg}_{G}(w, C)>\frac{n}{16}\right.\right\}, \quad M_{2}=M \backslash M_{1} .
$$

By (18), applying Lemma 10 with respect to C and every vertex in M_{1} iteratively, we get a longer cycle C^{*} such that $V\left(C^{*}\right)=V(C) \cup V\left(M_{1}\right)$.

By the definition of M_{2} and by the assumption that for any $u v \in E(G), d_{G}(u)+d_{G}(v)>$ $\frac{3 n}{4}$, we know that for any path $x w y \in M_{2}$, where $x, y \in V_{2} \backslash V_{1}$ and $w \in V_{1}$, we have $d_{G}(x)+d_{G}(w)>\frac{3 n}{4}$. Therefore, the number of neighbors that x has in G on C^{*} is at least

$$
\begin{aligned}
& \frac{3 n}{4}-\operatorname{deg}_{G}\left(x, G-V\left(C^{*}\right)\right)-d_{G}(w) \\
\geqslant & \frac{3 n}{4}-\operatorname{deg}_{G}\left(x, V\left(M_{2}\right)\right)-\left(\operatorname{deg}_{G}\left(w, C^{*}\right)+\operatorname{deg}_{G}\left(w, V_{2}\right)\right) \\
\geqslant & \frac{3 n}{4}-\left|V_{2}\right|-\left(\frac{n}{16}+\left|V_{2} \backslash V_{1}\right|\right) \\
\geqslant & \frac{3 n}{4}-\frac{3 n}{16}-\frac{n}{16}-\frac{2 n}{16} \\
= & \frac{6 n}{16}>\frac{4.5 n}{16}
\end{aligned}
$$

Similarly, the vertex y has in G at least $\frac{4.5 n}{16}$ neighbors on C^{*}. Now applying Lemma 11 for C^{*} and every path in M_{2} iteratively gives a hamiltonian cycle in G.

Hence we assume that G_{1} does not have a hamiltonian cycle. By Lemma 5, we have $\delta\left(G_{1}\right) \leqslant \frac{\left|V\left(G_{1}\right)\right|}{\tau\left(G_{1}\right)+1} \leqslant \frac{n}{\tau\left(G_{1}\right)+1}$. On the other hand, (16) yields $\delta\left(G_{1}\right)>\frac{3 n}{16}$. Combining these
inequalities, we have $\frac{3 n}{16}<\frac{n}{\tau\left(G_{1}\right)+1}$, which implies $\tau\left(G_{1}\right)<\frac{13}{3}<7$. Therefore, there exists $S_{1} \subseteq V\left(G_{1}\right)$ such that $c\left(G_{1}-S_{1}\right) \geqslant 2$ and

$$
\begin{equation*}
\left|S_{1}\right| / c\left(G_{1}-S_{1}\right)<7 \tag{19}
\end{equation*}
$$

Note $c\left(G_{1}-S_{1}\right)=c\left(G-\left(S_{1} \cup V_{2}\right)\right)$. If $\left|S_{1}\right| \geqslant \frac{3 n}{16}$, then we have $c\left(G_{1}-S_{1}\right)>\frac{\left|S_{1}\right|}{7} \geqslant \frac{3 n}{16 \cdot 7}$, and thus by (15),

$$
\frac{\left|S_{1} \cup V_{2}\right|}{c\left(G-\left(S_{1} \cup V_{2}\right)\right)}=\frac{\left|S_{1}\right|}{c\left(G_{1}-S_{1}\right)}+\frac{\left|V_{2}\right|}{c\left(G_{1}-S_{1}\right)}<7+\frac{3 n / 16}{3 n /(16 \cdot 7)}=14
$$

This contradicts $\tau(G) \geqslant 15$. So we assume $\left|S_{1}\right|<\frac{3 n}{16}$. Thus $\left|S_{1}\right| \leqslant\left\lfloor\frac{3 n}{16}\right\rfloor$. As $\delta\left(G_{1}\right) \geqslant$ $\left\lfloor\frac{3 n}{16}\right\rfloor+1$ by (16), we know that each component of G_{1} contains at least

$$
\delta\left(G_{1}\right)-\left|S_{1}\right| \geqslant\left\lfloor\frac{3 n}{16}\right\rfloor+1-\left\lfloor\frac{3 n}{16}\right\rfloor+1=2
$$

vertices. By Lemma 6, we know that every component of $G_{1}-S_{1}$ is a clique component. Let $S=S_{1} \cup V_{2}$. We then see that all components of $G-S$ are nontrivial. Also, $|S|<\frac{6 n}{16}<\frac{3 n}{4}$ since $\left|S_{1}\right|<\frac{3 n}{16}$ and $\left|V_{2}\right| \leqslant \frac{3 n}{16}$ by (15). Furthermore, by the assumption of Case 1, for every edge $u v \in E(G), d_{G}(u)+d_{G}(v)>\frac{3 n}{4}>|S|$. Now we can apply Lemma 12 on G and S to find a hamiltonian cycle in G.
Case 2: There exists an edge $e=u v \in E(G)$ such that $d_{G}(u)+d_{G}(v) \leqslant \frac{3 n}{4}$.
Let

$$
S=\left(N_{G}(u) \cup N_{G}(v)\right) \backslash\{u, v\}
$$

such that $d_{G}(u)+d_{G}(v)$ is smallest among all the degree sums of two adjacent vertices in G.

By the assumption of this case and the choice of S, we know that

$$
\begin{equation*}
|S| \leqslant \frac{3 n}{4}-2, \quad \text { and } \quad \text { for any } u^{\prime} v^{\prime} \in E(G), d\left(u^{\prime}\right)+d\left(v^{\prime}\right) \geqslant|S| \tag{20}
\end{equation*}
$$

By the definition of $S, c(G-S) \geqslant 2$ and $u v$ is one of the components of $G-S$. Since $\tau(G) \geqslant 15$, and $|V(G) \backslash(S \cup\{u, v\})|=n-|S|-2 \geqslant \frac{|S|}{3}=\frac{5|S|}{15}, G-S-\{u, v\}$ has a component with at least 5 vertices. This, together with the fact that $u v$ is one of the components of $G-S$, Lemma 6 implies that every component of $G-S$ is a clique component, and $G-S$ has at least two nontrivial components. Again Lemma 12 implies that G has a hamiltonian cycle.

Acknowledgments

The author is very graceful to the two anonymous referees for their careful reading and valuable comments. Particularly, one of the referees provided very detailed comments that not only improved the writing of this paper but helped the author's mathematical writing in general.

References

[1] J. Akiyama and M. Kano. Factors and factorizations of graphs, volume 2031 of Lecture Notes in Mathematics. Springer, Heidelberg, 2011. Proof techniques in factor theory.
[2] D. Bauer, H. J. Broersma, and H. J. Veldman. Not every 2-tough graph is Hamiltonian. In Proceedings of the 5th Twente Workshop on Graphs and Combinatorial Optimization (Enschede, 1997), volume 99, pages 317-321, 2000.
[3] D. Bauer, H.J. Broersma, and E. Schmeichel. Toughness in graphs - a survey. Graphs and Combinatorics, 22(1):1-35, 2006.
[4] D. Bauer, H. J. Broersma, J. van den Heuvel, and H. J. Veldman. Long cycles in graphs with prescribed toughness and minimum degree. Discrete Math., 141(1-3):110, 1995.
[5] H. Broersma, V. Patel, and A. Pyatkin. On toughness and Hamiltonicity of $2 K_{2}$-free graphs. J. Graph Theory, 75(3):244-255, 2014.
[6] F. R. K. Chung, A. Gyárfás, Z. Tuza, and W. T. Trotter. The maximum number of edges in $2 K_{2}$-free graphs of bounded degree. Discrete Math., 81(2):129-135, 1990.
[7] V. Chvátal. Tough graphs and Hamiltonian circuits. Discrete Math., 5:215-228, 1973.
[8] M. El-Zahar and P. Erdős. On the existence of two nonneighboring subgraphs in a graph. Combinatorica, 5(4):295-300, 1985.
[9] M. Gao and D. Pasechnik. On k-walks in $2 K_{2}$-free graphs. arXiv:1412.0514v2, 2014.
[10] D. Kratsch, J. Lehel, and H. Müller. Toughness, Hamiltonicity and split graphs. Discrete Math., 150(1-3):231-245, 1996. Selected papers in honour of Paul Erdős on the occasion of his 80th birthday (Keszthely, 1993).
[11] D. Meister. Two characterisations of minimal triangulations of $2 K_{2}$-free graphs. Discrete Math., 306(24):3327-3333, 2006.
[12] M. Paoli, G. W. Peck, W. T. Trotter, Jr., and D. B. West. Large regular graphs with no induced $2 K_{2}$. Graphs Combin., 8(2):165-197, 1992.
[13] S. Shan. Hamiltonian cycles in 3-tough $2 K_{2}$-free graphs. J. Graph Theory, 94(3): 349-363, 2020.

