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Abstract

Let t > 0 be a real number and G be a graph. We say G is t-tough if for every
cutset S of G, the ratio of |S| to the number of components of G− S is at least t.
Determining toughness is an NP-hard problem for arbitrary graphs. The Toughness
Conjecture of Chvátal, stating that there exists a constant t0 such that every t0-
tough graph with at least three vertices is hamiltonian, is still open in general. A
graph is called (P2∪P3)-free if it does not contain any induced subgraph isomorphic
to P2 ∪ P3, the union of two vertex-disjoint paths of order 2 and 3, respectively. In
this paper, we show that every 15-tough (P2 ∪ P3)-free graph with at least three
vertices is hamiltonian.

Mathematics Subject Classifications: 05C38

1 Introduction

Graphs considered in this paper are simple, undirected, and finite. Let G be a graph.
Denote by V (G) and E(G) the vertex set and edge set of G, respectively. For v ∈ V (G),
NG(v) denotes the set of neighbors of v in G. For S ⊆ V (G) and x ∈ V (G), define
degG(x, S) = |NG(x)∩ S|. If H ⊆ G, we simply write degG(x,H) for degG(x, V (H)). We
skip the subscript G if the graph in consideration is clear from the context. Let S ⊆ V (G).
Then the subgraph induced on V (G) \ S is denoted by G− S. For notational simplicity,
we write G− x for G− {x}. If uv ∈ E(G) is an edge, we write u ∼ v. Let V1, V2 ⊆ V (G)
be two disjoint vertex sets. Then EG(V1, V2) is the set of edges of G with one end in V1
and the other end in V2.

The number of components of G is denoted by c(G). Let t > 0 be a real number. The
graph G is said to be t-tough if |S| > t·c(G−S) for each S ⊆ V (G) with c(G−S) > 2. The
toughness τ(G) is the largest real number t for which G is t-tough, or is∞ if G is complete.
This concept, a measure of graph connectivity and “resilience” under removal of vertices,
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was introduced by Chvátal [7] in 1973. It is easy to see that if G has a hamiltonian cycle
then G is 1-tough. Conversely, Chvátal [7] conjectured that there exists a constant t0
such that every t0-tough graph is hamiltonian (Chvátal’s toughness conjecture). Bauer,
Broersma and Veldman [2] have constructed t-tough graphs that are not hamiltonian for
all t < 9

4
, so t0 must be at least 9

4
. It is not difficult to see that a non-complete t-tough

graph is 2dte-connected.
There are many papers on Chvátal’s toughness conjecture, and it has been verified

when restricted to a number of graph classes [3], including planar graphs, claw-free graphs,
co-comparability graphs, and chordal graphs. A graph G is called 2K2-free if it does
not contain two independent edges as an induced subgraph. In 2014, Broersma, Patel
and Pyatkin [5] proved that every 25-tough 2K2-free graph on at least three vertices is
hamiltonian, and the author of this paper improved the required toughness in this result
from 25 to 3 [13].

Let P` denote a path on `-vertices. A graph is (P2 ∪ P3)-free if it does not contain
any induced copy of P2 ∪ P3, the disjoint union of P2 and P3. In this paper, we confirm
Chvátal’s toughness conjecture for the class of (P2 ∪P3)-free graphs, a superclass of 2K2-
free graphs.

Theorem 1. Let G be a 15-tough (P2 ∪ P3)-free graph with at least three vertices. Then
G is hamiltonian.

In [10] it was shown that every 3/2-tough split graph on at least three vertices is
hamiltonian. And the authors constructed a sequence {Gn}∞n=1 of split graphs (graphs
whose vertices can be partitioned into a clique and an independent set) with no 2-factor
and τ(Gn)↗ 3/2. So 3/2 is the best possible toughness for split graphs to be hamiltonian.
Since split graphs are (P2 ∪ P3)-free, we cannot decrease the bound in Theorem 1 below
3/2. Although it is certain that 15-tough is not optimal, we are not sure about the best
possible toughness for giving a hamiltonian cycle in a (P2 ∪ P3)-free graph.

The class of 2K2-free graphs is well studied, for instance, see [5, 6, 8, 9, 11, 12]. It is
a superclass of split graphs. One can also easily check that every cochordal graph (i.e., a
graph that is the complement of a chordal graph) is 2K2-free and so the class of 2K2-free
graphs is at least as rich as the class of chordal graphs. By the definition, the class of
(P2 ∪ P3)-free graphs is a superclass of 2K2-free graphs but with much more complicated
structures than graphs that are 2K2-free. The proof techniques used in [5] and [13] for
showing that certain tough 2K2-free graphs are hamiltonian do not seem to be applicable
for (P2 ∪ P3)-free graphs. The proof approach used in this paper for showing Theorem 1
is new and more general and reveals some structural properties of (P2 ∪ P3)-free graphs.

2 Proof of Theorem 1

We start this section with some definitions. Let G be a graph and S ⊆ V (G) a cutset of
G, and let D be a component of G − S. For a vertex x ∈ S, we say that x is adjacent
to D if x is adjacent in G to a vertex of D. We call D a clique component of G − S if
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V (D) is a clique in G. We call D a trivial component of G− S if D has only one vertex,
otherwise D is nontrivial .

A star-matching is a set of vertex-disjoint copies of stars. The vertices of degree at
least 2 in a star-matching are called the centers of the star-matching. In particular, if all
the stars in a star-matching are isomorphic to K1,t, where t > 1 is an integer, we call the
star-matching a K1,t-matching . For a star-matching M , we denote by V (M) the set of
vertices covered by M .

Let C be an oriented cycle. For x ∈ V (C), denote the immediate successor of x on C

by x+ and the immediate predecessor of x on C by x−. For u, v ∈ V (C), u
⇀

Cv denotes
the segment of C starting at u, following C in the orientation, and ending at v. Likewise,

u
↼

Cv is the opposite segment of C with endpoints as u and v. We assume all cycles in
consideration afterwards are oriented. A path P connecting two vertices u and v is called
a (u, v)-path, and we write uPv or vPu in specifying the two endvertices of P . Let uPv
and xQy be two paths. If vx is an edge, we write uPvxQy as the concatenation of P and
Q through the edge vx.

Lemma 2 ([1], Theorem 2.10). Let G be a bipartite graph with partite sets X and Y , and
let f be a function from X to the set of positive integers. If for every S ⊆ X, it holds
that |NG(S)| >

∑
x∈S

f(x), then G has a subgraph H such that X ⊆ V (H), dH(x) = f(x)

for every x ∈ X, and dH(y) = 1 for every y ∈ Y ∩ V (H).

We will apply the following consequences of Lemma 2 in our proof.

Corollary 3. Let G be a graph and X ⊆ V (G) be an independent set in G. If G does
not have a subgraph H such that X ⊆ V (H), dH(x) = 2 for every x ∈ X, and dH(y) = 1
for every y ∈ Y ∩ V (H), where Y ⊆ V (G) \ X, then there exists X1 ⊆ X such that
|NG(X1) ∩ Y | < 2|X1|.

Proof. Let R[X, Y ] be the bipartite graph with bipartition X and Y and with E(R)
being the set of edges in G between X and Y . Let f be a function on X such that
f(x) = 2 for each x ∈ X. The assumption that G does not have a subgraph H with the
requirements implies that R does not have such a subgraph also. Applying Lemma 2,
we find X1 ⊆ X such that |NR(X1)| < 2|X1|. Since X is an independent set in G,
NR(X1) = NG(X1) ∩ Y . Therefore there exists X1 ⊆ X such that |NG(X1) ∩ Y | < 2|X1|,
as desired.

Corollary 4. Let G be a 2-tough graph with at least three vertices and X ⊆ V (G) be an
independent set in G. Then G has a subgraph H such that X ⊆ V (H), dH(x) = 2 for
every x ∈ X, and dH(y) = 1 for every y ∈ (V (G) \X) ∩ V (H).

Proof. Let Y = V (G) \X, and R[X, Y ] be the bipartite graph with bipartition X and
Y and with E(R) being the set of edges in G between X and Y . Let f be a function on X
such that f(x) = 2 for each x ∈ X. Let S ⊆ X. If |S| 6 1, then since G is 4-connected,
|NR(S)| = |NG(S)| > 2|S|. Thus, |S| > 2. Note that c(G − NG(S)) > |S| > 2. By the
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toughness of G, |NR(S)| = |NG(S)| > 2|S|. Therefore, by Lemma 2, R and so G has a
desired subgraph H such that X ⊆ V (H), dH(x) = 2 for every x ∈ X, and dH(y) = 1 for
every y ∈ (V (G) \X) ∩ V (H).

Lemma 5 (Bauer et al. [4]). Let t > 0 be real and G be a t-tough n-vertex graph (n > 3)
with δ(G) > n

t+1
− 1. Then G is hamiltonian.

Lemmas 6 and 7 below are consequences of (P2 ∪ P3)-freeness.

Lemma 6. Let G be a (P2 ∪ P3)-free graph and S ⊆ V (G) a cutset of G. If G− S has a
component that is not a clique component, then all other components of G−S are trivial.
Consequently, if G − S has at least two nontrivial components, then all components of
G− S are clique components.

Lemma 7. Let G be a (P2 ∪ P3)-free graph and S ⊆ V (G) a cutset of G, and let x ∈ S.
Suppose that x is adjacent to exactly one component D of G−S, and G−S has a nontrivial
component to which x is not adjacent, then x is adjacent in G to all vertices of D.

Lemma 8. Let G be a connected (P2 ∪ P3)-free graph and S ⊆ V (G) a cutset of G such
that each vertex in S is adjacent to at least two components of G − S. Then each of the
following statement holds.

(i) For every nontrivial clique component D ⊆ G− S and for every vertex x ∈ S, x is
adjacent to D.

(ii) For every nontrivial clique component D ⊆ G − S and for every vertex x ∈ S, if x
is adjacent in G to at least three components of G − S, then x is adjacent in G to
at least |V (D)| − 1 vertices of D.

(iii) Let D1 and D2 be two nontrivial clique components of G−S. Then for every vertex
x ∈ S, either x is adjacent in G to at least |V (Di)| − 1 vertices of each Di, or x is
adjacent in G to all vertices of one of Di, i = 1, 2.

Proof. Let w1 and w2 be two neighbors of x in G respectively from two distinct compo-
nents of G− S. Then w1xw2 is an induced P3. Now for every nontrivial component D, if
V (D)∩{w1, w2} 6= ∅, then x is already adjacent to D in G. So V (D)∩{w1, w2} = ∅. For
every edge uv ∈ E(D), x is adjacent to u or v by the assumption of G being (P2∪P3)-free.
This proves (i). For (ii), let x ∈ S and D be a nontrivial clique component of G−S. Since
x is adjacent in G to at least three components of G − S, there exists u,w, respectively
from two components of G − S that are distinct from D such that x ∼ u and x ∼ w
in G. Thus, uxw is an induced P3 in G. Furthermore, since u,w ∈ V (G) \ (S ∪ V (D)),
EG({u,w}, V (D)) = ∅. Thus, by the (P2 ∪ P3)-freeness assumption, for every edge in D,
x is adjacent to at least one endvertex of that edge. This, together with the fact that D
is a clique component of G − S, we know that x is adjacent in G to at least |V (D)| − 1
vertices of D. For (iii), assume to the contrary that the statement does not hold. By
symmetry, we assume that there exists uv ∈ E(D1) such that x 6∼ u, v in G, and there
exists w ∈ V (D2) such that x 6∼ w in G. Let y ∈ V (D2)∩NG(x) that exists by Lemma 8
(i). Then uv ∪ xyw is an induced P2 ∪ P3, giving a contradiction.

the electronic journal of combinatorics 28(1) (2021), #P1.36 4



Lemma 9. Let t > 0 and G be a non-complete n-vertex t-tough graph. Then |W | 6 1
t+1
n

holds for every independent set W in G.

Proof. Since G is 2dte-connected, n > 2dte+ 1 > 2t+ 1 > t+ 1. Therefore, if |W | = 1,

then |W | 6 1
t+1
n. Suppose |W | > 2. Let S = V (G) \W and α = |W |

n
. Clearly |S| =

(1− α)n. Since c(G− S) = |W | > 2 and G is t-tough, we get

(1− α)n = |S| > t · c(G− S) = t|W | = tαn.

Therefore, we get (1− α)n > tαn, which yields α 6 1
t+1

and |W | 6 1
t+1
n.

Lemma 10. Let t > 1 and G be an n-vertex t-tough graph, and let C be a non-hamiltonian
cycle of G. If x ∈ V (G) \V (C) satisfies that deg(x,C) > n

t+1
, then G has a cycle C ′ such

that V (C ′) = V (C) ∪ {x}.

Proof. It is clear that if x is adjacent to two consecutive vertices u,w on C, then

C ′ = (C − {uw}) ∪ {ux, xw}

is a cycle with the desired property. So we assume that for any u,w ∈ NG(x) ∩ V (C),
uw 6∈ E(C). Let W = {u+ |u ∈ NG(x) ∩ V (C)} be the set of the successors of the
neighbors of x on C. Because there is a one-to-one correspondence between W and
NG(x) ∩ V (C), by the assumption that deg(x,C) > n

t+1
, we know that

|W | > n

t+ 1
. (1)

Thus, W is not an independent set in G by Lemma 9, and there exist u+, w+ ∈ W with
u,w ∈ NG(x) ∩ V (C) such that u+ ∼ w+ in G. Then

C ′ = u+
⇀

Cwxu
↼

Cw+u+

is a desired cycle.

Lemma 11. Let G be an n-vertex 15-tough (P2 ∪ P3)-free graph, and let C be a non-
hamiltonian cycle of G. Let P ⊆ G − V (C) be an (x, z)-path. If both x and z are
adjacent in G to more than 4.5n

16
vertices from V (C), then G has a cycle C ′ such that

V (C ′) = V (C) ∪ V (P ).

Proof. It is clear that if x is adjacent to a vertex u on C and z is adjacent to a vertex
w on C such that uw ∈ E(C), then

C ′ = (C − {uw}) ∪ {ux, zw} ∪ P

is a cycle with the desired property. So we assume that

for any u ∈ NG(x) ∩ V (C) and any w ∈ NG(z) ∩ V (C), uw 6∈ E(C). (2)
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Let

Wx = {u+ |u ∈ NG(x) ∩ V (C)},
Wz = {u+ |u ∈ NG(z) ∩ V (C)}.

Clearly,

|Wx| = |NG(x) ∩ V (C)| > 4.5n

16
, and |Wz| = |NG(z) ∩ V (C)| > 4.5n

16
. (3)

If there exist u+ ∈ Wx and w+ ∈ Wz with u ∈ NG(x)∩V (C) and w ∈ NG(z)∩V (C) such
that u+ ∼ w+ in G, then

C ′ = u+
⇀

CwzPxu
↼

Cw+u+

is a desired cycle. Therefore, we assume

EG(Wx,Wz) = ∅. (4)

We further claim that

no two vertices in NG(x) ∩ V (C) or NG(z) ∩ V (C) are consecutive on C. (5)

By symmetry, we only show that no two vertices in NG(x) ∩ V (C) are consecutive on C.
Assume to the contrary that there exists a path v1v2 · · · v` ⊆ C with ` > 2 such

that for each i with 1 6 i 6 `, vi ∈ NG(x) ∩ V (C), v−1 6∈ NG(x) ∩ V (C), and v+` 6∈
NG(x) ∩ V (C). Note that such vertices v1 and v` exist by the assumption in (2) and the
fact that NG(z) ∩ V (C) 6= ∅. By (3) and Lemma 9, Wz is not an independent set in G
and so there exist w1, w2 ∈ Wz such that w1 ∼ w2 in G.

Then xv`v
+
` is an induced P3 in G. Consider the edge w1w2. By the assumption in (2),

x 6∼ w1, w2 in G (otherwise, w−1 w1 ∈ E(C) or w−2 w2 ∈ E(C) with w−1 , w
−
2 ∈ NG(z)∩V (C)),

and by the assumption in (4), v+` 6∼ w1, w2 in G. Thus, v` ∼ w1 or v` ∼ w2 in G by the
(P2 ∪ P3)-freeness assumption. However, v` = v+`−1 ∈ Wx, showing a contradiction to (4).

Therefore, by (5),

(NG(x) ∩ V (C)) ∩Wx = ∅, and (NG(z) ∩ V (C)) ∩Wz = ∅. (6)

Also, by (2),

(NG(x) ∩ V (C)) ∩Wz = ∅, and (NG(z) ∩ V (C)) ∩Wx = ∅. (7)

Let
Wxz = Wx ∩Wz.

By the assumption in (4), Wxz is an independent set in G. By Lemma 9, |Wxz| 6 n
16

.
Therefore, |NG(x) ∩NG(z) ∩ V (C)| 6 n

16
. These, together with (3), (6) and (7), imply

n > |(NG(x) ∩ V (C)) ∪ (NG(z) ∩ V (C)) ∪Wx ∪Wz|

>
9n

16
+

9n

16
− |NG(x) ∩NG(z) ∩ V (C)| − |Wxz|

>
16n

16
= n,

showing a contradiction.
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Lemma 12. Let G be an n-vertex 15-tough (P2 ∪ P3)-free graph, and let S ⊆ V (G) be a
cutset of G with |S| 6 3n

4
. Assume that G−S has at least two nontrivial clique components,

and that for every edge uv ∈ E(G), d(u) + d(v) > |S|. Then G has a hamiltonian cycle.

Proof. By Lemma 6, every component of G − S is a clique component. If there exists
x ∈ S such that x is adjacent to exactly one component, say D of G−S, then we move x
from S into D. By Lemma 7, every component of G−(S \{x}) is still a clique component.
We move out all such vertex x from S iteratively and denote the remaining vertices in
S by S1. Note that S1 6= ∅, since G is a connected graph and S is a cutset of G. Also,
c(G− S) = c(G− S1) and G− S1 has at least two nontrivial components. By Lemma 6,
every component of G− S1 is a clique component. Let

S0 = {x ∈ S1 |x is not adjacent to any component of G− S1},
S2 = {x ∈ S1 |x is adjacent to at least two components of G− S1}.

Note that S2 = S1 − S0.
Since G− S1 has a nontrivial component that has no edge going to S0, the (P2 ∪ P3)-

freeness of G implies that G[S0] consists of vertex-disjoint complete subgraphs of G. Thus
S2 is a cutset of G with components consisting those from G − S1 and G[S0]. Also, all
components of G−S2 are clique components in which at least two of them are nontrivial.
By the toughness of G, |S2| > 15c(G− S2).

We will construct a hamiltonian cycle in G through two steps: (1) combing spanning
cycles from every clique component of G − S2 that has at least three vertices into a
single cycle C, and (2) inserting remaining vertices in V (G) \ V (C) into C to obtain a
hamiltonian cycle of G.

Suppose that G−S2 has exactly h clique components D1, D2, · · · , Dh with |V (D1)| >
|V (D2)| > · · · > |V (Dh)| > 1, and that the first t (0 6 t 6 h) of them are components
that contain at least three vertices. Since G− S2 has at least two nontrivial components,
both D1 and D2 are nontrivial.

Claim 1. The component D1 contains at least 5 vertices.

Proof: Since |S2| 6 |S| 6 3n
4

, n > 4|S2|
3

. Also, c(G − S2) 6
|S2|
15

by τ(G) > 15. Therefore,
a largest component of G− S2 contains at least

n− |S2|
c(G− S2)

>
4|S2|
3
− |S2|
|S2|
15

= 5

vertices. �
Let

Q1 = {x ∈ S2 |x is adjacent to a component distinct from D1 and D2},
Q2 = {x ∈ S2 |x is adjacent to less than |V (D1)|−1

2
vertices of D1},

Q3 = {x ∈ S2 |x is adjacent to less than |V (D2)|−1
2

vertices of D2}.

By Lemma 8 (i) and the definition of Q1, we know that if Q1 6= ∅, then every vertex
in Q1 is adjacent to at least three components of G − S2. By Lemma 8 (ii), we get the
following claim.
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Claim 2. Suppose that Q1 6= ∅. Then for every x ∈ Q1 and for every nontrivial
component D of G− S2, x is adjacent to at least |V (D)| − 1 vertices of D.

Claim 3. Suppose that Q2 6= ∅. Then for every x ∈ Q2, x is adjacent to all vertices of
D2 and Q2 is a clique in G.

Proof: Note that both D1 and D2 are nontrivial components of G − S2. Since D1 is a
nontrivial component, |V (D1)|+1

2
> 1. Hence, by the definition of Q2, D1 contains at least

two vertices that are not adjacent to x in G. Therefore, x is adjacent in G to all vertices
of D2 by Lemma 8 (iii). For the second part, suppose to the contrary that there exist
x, y ∈ Q2 such that x 6∼ y in G. Let w ∈ V (D2). Then w ∼ x and w ∼ y in G by the first
part of this claim. Thus, we find an induced P3 = xwy. Since EG({w}, V (D1)) = ∅, the
(P2 ∪P3)-freeness implies that for every edge in D1, at least one of x and y is adjacent to
at least one endpoint of the edge. Since D1 is complete, by Pigeonhole Principle, one of
x and y is adjacent to at least |V (D1)|−1

2
vertices of D1. This gives a contradiction to the

assumption that x, y ∈ Q2. �
Similarly, we have the following result.

Claim 4. Suppose that Q3 6= ∅. Then for every x ∈ Q3, x is adjacent to all vertices of
D1 and Q3 is a clique in G.

By Claims 2 to 4, we have that

Qi ∩Qj = ∅, i 6= j, i, j = 1, 2, 3. (8)

Define

W =
⋃

max{t+1,3}6i6h

V (Di).

Since |V (Di)| 6 2 for each i with t + 1 6 i 6 h, we have
∑h

i=t+1 |V (Di)| 6 2(h − t).
Moreover, since S2 is a cutset of G, the toughness of G yields |S2| > 15c(G− S2) = 15h.
Therefore, we have

|W | 6
h∑

i=t+1

|V (Di)| 6 2(h− t) 6 2|S2|
15
− 2t. (9)

If W 6= ∅, we claim that there is a K1,2-matching M between W and S2 such that
every vertex in W is the center of a K1,2-star. This is clearly true if |W | 6 2, as G is
non-complete and 15-tough and so is 30-connected. Thus, we assume that |W | > 3, and
suppose to the contrary that there is no K1,2-matching between W and S2. Let G∗ be
obtained from G by deleting all edges within W . Applying Corollary 3 on G∗ with W
and S2, there exists W1 ⊆ W such that 2|W1| > |NG∗(W1) ∩ S2|. Note that |W1| > 3
by the argument in the beginning of this paragraph. Let W ′

1 ⊆ W \W1 be the set of all
vertices that is adjacent in G to a vertex in W1. As each component in G[W ] is either K1

or K2, |W ′
1| 6 |W1|, and G− ((NG(W1)∩S2)∪W ′

1) has at least d|W1|/2e > 2 components.
Therefore,

|(NG(W1) ∩ S2) ∪W ′
1|

c(G− ((NG(W1) ∩ S2) ∪W ′
1))

<
3|W1|
|W1|/2

< 15.
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This gives a contradiction to the toughness.

Let M be a K1,2-matching between W and S2. (10)

Claim 5. It holds that NG(W )∩ S2 ⊆ Q1 and NG(W )∩ S2 = Q1 if t = 2. Consequently,
for every x ∈ NG(W ) ∩ S2 and every nontrivial component D of G− S2, x is adjacent in
G to at least |V (D)| − 1 vertices of D.

Proof: For the first part of the Claim, we may assume that NG(W ) ∩ S2 6= ∅. If G −
S2 has at least three nontrivial components, then every vertex of S2 is adjacent to all
those nontrivial components by Lemma 8 (i). Therefore, S2 = Q1 by the definition of
Q1. In particular, NG(W ) ∩ S2 ⊆ Q1. Hence, we assume that G − S2 has exactly two
nontrivial components, which are D1 and D2. This assumption implies that |V (D3)| 6 1.
Consequently, |V (D3)| = 1 since NG(W ) ∩ S2 6= ∅. Then for every x ∈ NG(W ) ∩ S2, x is
adjacent to both D1 and D2 by Lemma 8 (i), and also x is adjacent to a trivial component
of G − S2. Thus NG(W ) ∩ S2 ⊆ Q1. When t = 2, if Q1 6= ∅, then for every x ∈ Q1,
x ∈ NG(W ). Therefore, Q1 ⊆ NG(W ) ∩ S2. Hence, NG(W ) ∩ S2 = Q1 when t = 2. The
second part of Claim 5 is a consequence of Claim 2. �

Claim 6. There is a cycle C in G− V (M) with at least 3n
20

vertices such that C contains
all vertices from every Di, i = 1, 2, · · · ,max{2, t}, and Q2 ∪Q3 ⊆ V (C).

Proof: Suppose first that G− S2 has at least three nontrivial components, that is, t > 3.
Then by Lemma 8 (i), every vertex of S2 is adjacent to all those nontrivial components
of G − S2. Consequently, S2 = Q1 and Q2 = Q3 = ∅. Therefore, for every x ∈ S2 and
every Di, x is adjacent to at least |V (Di)| − 1 vertices of Di by Claim 2.

Let x1, · · · , xt be t distinct vertices in S2 \ V (M). (By the toughness of G, |S2| >
15c(G− S2). Since |V (M) ∩ S2| 6 4c(G− S2), we have enough vertices in S2 \ V (M) to
pick.) Let Ci be a hamiltonian cycle of Di, and let ui, vi ∈ V (Ci) with uivi ∈ E(Ci) such
that for i = 1, 2, · · · , t− 1, xi ∼ vi, ui+1, and xt ∼ u1, vt in G. Then

C = u1
⇀

C1v1x1u2
⇀

C2v2 · · ·ut−1
⇀

Ct−1vt−1xt−1ut
⇀

Ctvtxtu1

is a cycle that contains all vertices from each Di and the vertices x1, · · · , xt from S2\V (M).
Also Q2 ∪Q3 ⊆ V (C) trivially as Q2 = Q3 = ∅.

So we assume that G−S2 has exactly two nontrivial clique components, which are D1

and D2, call this assumption (∗). Let

G1 = G[V (D1) ∪Q3] and G2 = G[V (D2) ∪Q2].

By Claims 3 and 4, we know that both G1 and G2 are complete subgraphs of G.
Suppose firstly that t = 1 and Q2 = ∅. Then D2 has exactly two vertices. Con-

sequently, Q3 = ∅ by Lemma 8 (i) and G1 = D1. Let V (D2) = {u, v}. By Lemma 8
(i), every vertex from S2 is adjacent in G to a vertex of D2. Since Q2 = ∅, every ver-

tex from S2 is adjacent in G to at least |V (D1)−1|
2

> 2 vertices of D1. Suppose there
exist distinct u1, v1 ∈ S2 \ V (M) such that u ∼ u1 and v ∼ v1. Let u2, v2 ∈ V (D1) be
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distinct such that u1 ∼ u2 and v1 ∼ v2. Let P be a hamiltonian (u2, v2)-path of D1.
Then C = u1u2Pv2v1vuu1 is a desired cycle. Thus, we assume, without loss of generality,
that for every x ∈ S2 \ V (M), x ∼ u and x 6∼ v. Since G is 15-tough, there exists
v′1 ∈ V (M) ∩ S2 such that v ∼ v′1. Let v′1wv1 ∈ M be the K1,2-star that contains the
vertex v′1, where v1, v

′
1 ∈ S2 and w ∈ W . Let u1 ∈ S2 \ V (M), and u2, v2 ∈ V (D1) be

distinct such that u1 ∼ u2 and v1 ∼ v2. Let P be a hamiltonian (u2, v2)-path of D1.
Then C = u1u2Pv2v1wv

′
1vuu1 is a desired cycle. (For the latter case, we still denote the

K1,2-matching M \ {v′1wv1} by M .)
Thus, we assume that t > 2 or Q2 6= ∅. By assumption (∗), we have either t = 2 or

t = 1 and Q2 = ∅. Since D1 has at least three vertices by Claim 1, G1 contains at least
three vertices. Note that |V (D2)| > 2 by the assumption that G − S2 has at least two
nontrivial components and D2 is one of them. Thus, G2 contains at least three vertices
either by t = 2 or Q2 6= ∅.

If there are two disjoint edges between G1 and G2, then G[V (G1) ∪ V (G2)] has a
hamiltonian cycle C. Thus, we may assume, without loss of generality, that there is
either no edge between G1 and G2 or all edges between G1 and G2 are incident to only a
single vertex, say in G1.

If c(G − S2) = 2, then M = ∅ by the definitions of W and M . Since G is 15-tough
and thus is 2-connected, there are vertex-disjoint paths P1 and P2 connecting G1 and
G2 in G such that each Pi only has exactly one of its endvertices in G1 and G2. Let
V (Pi) ∩ V (G1) = {xi} and V (Pi) ∩ V (G2) = {yi}, i = 1, 2. Let C1 be a hamiltonian
cycle in G1 such that x1x2 ∈ E(C1), and C2 be a hamiltonian cycle in G2 such that
y1y2 ∈ E(C2). Then

C = x1P1y1
⇀

C2y2P2x2
↼

C1x1

is a cycle that contains all vertices in clique components of G − S2 that contain at least
three vertices and the vertices from P1 and P2. Also Q2 ∪Q3 ⊆ V (C) by the construction
of C.

So we assume that c(G−S2) > 3. By Claims 2 to 4, Q1, Q2 andQ3 are pairwise disjoint.
Now, by the definition of Q1, D3, . . . , Dh are all components of G−Q1. Moreover, there
exits a component of G − Q1 which contains D1. This together with h = c(G − S2) > 3
yields c(G − Q1) > h − 1 > 2. Hence we have |Q1| > 15(h − 1) and |Q1 \ V (M)| >
15(h − 1) − 2(h − 2) = 13h − 11 > 28 since each component Di with i ∈ {t + 1, . . . , h}
is a trivial component and so uses exactly two vertices from S2 ∩ V (M). Hence, we can
find two vertices x, y ∈ Q1 \ V (M) ⊆ S2 \ (Q2 ∪Q3 ∪ V (M)) such that both x and y are
adjacent to at least |V (D1)| − 1 vertices of D1, and at least |V (D2)| − 1 vertices of D2

by Claim 5. We claim that x is adjacent to at least two vertices of G2. This is clear if
x is adjacent to at least two vertices of D2. So we assume |NG(x) ∩ V (D2)| 6 1. Then
since |NG(x) ∩ V (D2)| > |V (D2)| − 1 and D2 is a nontrivial component, |V (D2)| = 2
and |NG(x) ∩ V (D2)| = 1. This means t = 1 by Claim 1 and hence Q2 6= ∅. Let
V (D2) = {w,w1} and NG(x)∩V (D2) = {w}. Also, since Q2 6= ∅, we can take w2 ∈ Q2. If
x ∼ w2, we get |NG(x)∩V (G2)| > 2. Thus, we may assume x 6∼ w2. Therefore, x 6∼ w1, w2

in G. Note that w1 is not adjacent to any vertex of D1, and w2 is adjacent to less than
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|V (D1)|−1
2

vertices of D1. Therefore, we can find a vertex w∗ ∈ V (D1) such that w1, w2 6∼ w∗

inG and x ∼ w∗ inG. By the choice of x, there is a vertex w′ ∈ V (G)\(S2∪V (D1)∪V (D2))
such that x ∼ w′ in G. However, w1w2 ∪ w∗xw′ is an induced P2 ∪ P3. This gives a
contradiction. Since D1 has at least 5 vertices, both x and y have at least four neighbors
in D1. Thus we can select distinct vertices x1, y1 ∈ V (G1) and x2, y2 ∈ V (G2) such that
x ∼ x1, x2 and y ∼ y1, y2 in G.

Let C1 be a hamiltonian cycle of G1 such that x1y1 ∈ E(C1), and let C2 be a hamil-
tonian cycle of G2 such that x2y2 ∈ E(C2). Then

C = x1xx2
⇀

C2y2yy1
↼

C1x1

is a cycle that contains all vertices in nontrivial clique components D1 and D2 of G− S2

and the vertices x and y. Furthermore, Q2 ∪Q3 ⊆ V (C).
Since for each i, 1 6 i 6 max{2, t}, V (Di) ⊆ V (C) and

⋃
16i6t V (Di) ⊆ V (G) \ (S2 ∪

W ), we have

|V (C)| > n− |S2| − |W | > n− |S2| − 2c(G− S2)

> n− |S2| −
2|S2|
15
> n− 17

15
· 3n

4
=

3n

20
.

�

Claim 7. Let C be the cycle defined in Claim 6. For any x ∈ S2 \ V (C), x has more
than n

16
neighbors on C.

Proof: Note that every vertex in S2 is adjacent to at least two components of G− S2. If
G − S2 has at least three nontrivial clique components, then Lemma 8 (ii) implies that
for every x ∈ S2, and for every nontrivial clique component D of G− S2, x is adjacent to
at least |V (D)| − 1 vertices of D. By (9) that

∑h
i=t+1 |V (Di)| 6 2|S2|

15
− 2t, we get∣∣∣∣∣NG(x) ∩

( ⋃
16i6t

V (Di)

)∣∣∣∣∣ >
t∑
i=1

(|V (Di)| − 1) =
t∑
i=1

|V (Di)| − t

= (n− |S2| −
h∑

i=t+1

|V (Di)|)− t

> n− |S2| −
2|S2|
15

+ 2t− t

> n− 17|S2|
15

>
3n

20
>

n

16
,

since |S2| 6 |S| 6 3n
4

. Therefore, x has more than n
16

neighbors on C.
So we assume that G − S2 has exactly two nontrivial clique components. Since S2 \

V (C) ⊆ S2 \ (Q2 ∪ Q3) (recall that Q2 ∪ Q3 ⊆ V (C)), we know that x is adjacent to at

least |V (D1)|−1
2

vertices of D1, and is adjacent to at least |V (D2)|−1
2

vertices of D2. We show
that |V (D1)| + |V (D2)| is large. Since G is 15-tough, |S2| > 15c(G − S2) = 15h. On
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the other hand, since D1 and D2 are the only nontrivial components of G− S2, we have
n− |S2| = |V (D1)|+ |V (D2)|+ h− 2. Combining these inequalities, we have

|V (D1) + |V (D2)|| = n− |S2| − h+ 2 > n− |S2| −
|S2|
15

+ 2

> n− 16|S2|
15

> n− 16

15
· 3n

4
=
n

5
.

Since C contains all vertices from D1 ∪ D2, we conclude that x is adjacent to at least
n
10
− 1 > n

16
(by n > 31) neighbors on C. �

By Claim 7, and by applying Lemma 10 for C and vertices in S2 \ (V (C) ∪ V (M))
iteratively, we get a longer cycle C ′ such that V (C ′) = V (C) ∪

(
S2 \ (V (C) ∪ V (M))

)
.

Note also that

S2\V (C ′) = V (M)∩S2 ⊆ NG(W )∩S2 and V (G)\(S2∪V (C ′)) = V (M)∩(V (G)\S2) = W.

Recall that for every x ∈ S2 \V (C ′) = S2∩V (M), x is adjacent to at least |V (Di)|−1
vertices in each Di, i = 1, 2, · · · , t by Claim 5. Assume |S2| 6 7n

12
. Then by the same

argument as in the first case of proving Claim 7, we have

|NG(x) ∩ V (C ′)| >

∣∣∣∣∣NG(x) ∩

( ⋃
16i6t

V (Di)

)∣∣∣∣∣ > n− |S2| −
2|S2|
15

+ t

> n− 17

15
· 7

12
n =

61

180
n >

4.5

16
n.

Applying Lemma 11 for C ′ and every path in M iteratively, we obtain a hamiltonian cycle
in G. Hence we assume

|S2| >
7n

12
. (11)

Claim 8. For any two K1,2-stars x1u1y1, x2u2y2 ∈M , if u1u2 is a 2-vertex component of
G− S2 and |S2| > 7n

12
, then at least one of u1 and u2 has more than n

16
neighbors on C ′.

Proof: For otherwise, since ui is adjacent to exactly one vertex in V (M) ∩ (V (G) \ S2),

and |V (M) ∩ S2| 6 2|V (M) ∩ (V (G) \ S2)| = 2|W | 6 4|S2|
15

,

dG(u1) + dG(u2) 6 2
( n

16
+ 1 + |V (M) ∩ S2|

)
6 2

(
n

16
+ 1 +

4|S2|
15

)
< 2(

1

16
· 12

7
|S2|+ 1 +

4|S2|
15

) =
157

210
|S2|+ 2.

Since n > 31, we have |S2| > 7
12
· 31 > 18. Therefore, 157

210
|S2| + 2 < |S2| 6 |S|. This

contradicts the assumption that for every edge uv ∈ E(G), dG(u) + dG(v) > |S|. �

Let

M1 = {uwv ∈M | degG(w,C ′) >
n

16
}, M2 = M \M1.
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Take uwv ∈ M1, note that u, v ∈ S2 and w ∈ V (G) \ S2. By the definition of M1,
deg(w,C ′) > n

16
. By Claim 7, deg(u,C ′) > n

16
and deg(v, C ′) > n

16
. Now applying

Lemma 10 for C ′ and every path in M1 iteratively, we get a longer cycle C∗ such that
V (C∗) = V (C ′) ∪ V (M1).

By the toughness of G, G − S2 has at most |S2|
15

components in total. Particularly,

G− S2 has at most |S2|
15

components that have at most two vertices in total. By Claim 8,
we know that for every 2-vertex component uv of G − S2, at least one of u or v has
more than n

16
neighbors on C ′. Therefore, at least one of the two K1,2-stars centered,

respectively, at u and v is contained in M1. In other words, there is at most one K1,2-star
from M2 that centers at a vertex from a same component of G− S2. Therefore,

|V (M2)| 6
|S2|
15

+
2|S2|
15

=
|S2|
5
.

By the definition ofM2 and by the assumption that for any uv ∈ E(G), dG(u)+dG(v) >
|S|, we know that for any path xwy ∈ M2, where x, y ∈ S2 and w ∈ V (G) \ S2, we have
dG(x) + dG(w) > |S| > |S2|. Therefore, the number of neighbors that x has in G on C∗

is at least

|S2| − degG(x,G− V (C∗))− dG(w)

> |S2| − degG(x, V (M2))−
(

degG(w,C∗) + degG(w, S2 ∩ V (M2))
)

> |S2| −
|S2|
5
−
(
n

16
+

2|S2|
15

)
=

2|S2|
3
− n

16

>
2 · 7n
3 · 12

− n

16
=

47n

144
>

4.5n

16
.

Similarly, the vertex y has in G at least 4.5n
16

neighbors on C∗. Now applying Lemma 11
for C∗ and every path in M2 iteratively gives a hamiltonian cycle in G.

Proof of Theorem 1. We may assume that G is not a complete graph. Since G is 15-tough,
it is 30-connected, and consequently, δ(G) > 30. By Lemma 5, we may assume that

n > (δ(G) + 1) · (τ(G) + 1) > 31 · 16, and δ(G) 6
n

16
− 1. (12)

We consider two cases to finish the proof.
Case 1: For every edge e = uv ∈ E(G), dG(u) + dG(v) > 3n

4
.

Denote by

V1 = {v ∈ V (G) | dG(v) 6
3n

8
}. (13)

By the assumption of Case 1, we know that V1 is an independent set in G. Therefore,

|V1| 6
n

16
, (14)

by Lemma 9.
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Since G is 15-tough, Corollary 4 implies that G has a K1,2-matching M with all vertices
in V1 as the centers of the K1,2-matching. Let V2 be the set of the vertices contained in
M . By (14), we have that

|V2| 6
3n

16
. (15)

Denote by G1 = G− V2. Then by the definitions of V1, V2 and (15), we get that

δ(G1) >
3n

8
− |V2| >

3n

16
, (16)

degG(x,G1) >
3n

8
− |V2| >

3n

16
, for any x ∈ V2 \ V1. (17)

We first assume that G1 has a hamiltonian cycle C. For every copy of K1,2, say
xyz ∈M , by (17),

degG(x,G1) >
3n

16
>

n

16
,

(18)

degG(z,G1) >
3n

16
>

n

16
.

Let

M1 = {uwv ∈M | degG(w,C) >
n

16
}, M2 = M \M1.

By (18), applying Lemma 10 with respect to C and every vertex in M1 iteratively, we get
a longer cycle C∗ such that V (C∗) = V (C) ∪ V (M1).

By the definition ofM2 and by the assumption that for any uv ∈ E(G), dG(u)+dG(v) >
3n
4

, we know that for any path xwy ∈ M2, where x, y ∈ V2 \ V1 and w ∈ V1, we have
dG(x) +dG(w) > 3n

4
. Therefore, the number of neighbors that x has in G on C∗ is at least

3n

4
− degG(x,G− V (C∗))− dG(w)

>
3n

4
− degG(x, V (M2))−

(
degG(w,C∗) + degG(w, V2)

)
>

3n

4
− |V2| −

( n
16

+ |V2 \ V1|
)

>
3n

4
− 3n

16
− n

16
− 2n

16

=
6n

16
>

4.5n

16
.

Similarly, the vertex y has in G at least 4.5n
16

neighbors on C∗. Now applying Lemma 11
for C∗ and every path in M2 iteratively gives a hamiltonian cycle in G.

Hence we assume that G1 does not have a hamiltonian cycle. By Lemma 5, we have
δ(G1) 6

|V (G1)|
τ(G1)+1

6 n
τ(G1)+1

. On the other hand, (16) yields δ(G1) >
3n
16

. Combining these
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inequalities, we have 3n
16
< n

τ(G1)+1
, which implies τ(G1) <

13
3
< 7. Therefore, there exists

S1 ⊆ V (G1) such that c(G1 − S1) > 2 and

|S1|/c(G1 − S1) < 7. (19)

Note c(G1 − S1) = c(G− (S1 ∪ V2)). If |S1| > 3n
16

, then we have c(G1 − S1) >
|S1|
7
> 3n

16·7 ,
and thus by (15),

|S1 ∪ V2|
c(G− (S1 ∪ V2))

=
|S1|

c(G1 − S1)
+

|V2|
c(G1 − S1)

< 7 +
3n/16

3n/(16 · 7)
= 14.

This contradicts τ(G) > 15. So we assume |S1| < 3n
16

. Thus |S1| 6 b3n16 c. As δ(G1) >
b3n
16
c+ 1 by (16), we know that each component of G1 contains at least

δ(G1)− |S1| > b
3n

16
c+ 1− b3n

16
c+ 1 = 2

vertices. By Lemma 6, we know that every component of G1 − S1 is a clique component.
Let S = S1 ∪ V2. We then see that all components of G − S are nontrivial. Also,
|S| < 6n

16
< 3n

4
since |S1| < 3n

16
and |V2| 6 3n

16
by (15). Furthermore, by the assumption

of Case 1, for every edge uv ∈ E(G), dG(u) + dG(v) > 3n
4
> |S|. Now we can apply

Lemma 12 on G and S to find a hamiltonian cycle in G.
Case 2: There exists an edge e = uv ∈ E(G) such that dG(u) + dG(v) 6

3n
4

.
Let

S = (NG(u) ∪NG(v)) \ {u, v},

such that dG(u) + dG(v) is smallest among all the degree sums of two adjacent vertices in
G.

By the assumption of this case and the choice of S, we know that

|S| 6 3n

4
− 2, and for any u′v′ ∈ E(G), d(u′) + d(v′) > |S|. (20)

By the definition of S, c(G − S) > 2 and uv is one of the components of G − S. Since

τ(G) > 15, and |V (G) \ (S ∪ {u, v})| = n − |S| − 2 > |S|
3

= 5|S|
15

, G − S − {u, v} has
a component with at least 5 vertices. This, together with the fact that uv is one of
the components of G − S, Lemma 6 implies that every component of G − S is a clique
component, and G− S has at least two nontrivial components. Again Lemma 12 implies
that G has a hamiltonian cycle.
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