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Abstract

In arXiv:1709.07504 Aguiar and Ardila give a Hopf monoid structure on hyper-
graphs as well as a general construction of polynomial invariants on Hopf monoids.
Using these results, we define in this paper a new polynomial invariant on hyper-
graphs. We give a combinatorial interpretation of this invariant on negative integers
which leads to a reciprocity theorem on hypergraphs. Finally, we use this invariant
to recover well-known invariants on other combinatorial objects (graphs, simplicial
complexes, building sets, etc) as well as the associated reciprocity theorems.

Mathematics Subject Classifications: 05E99, 05C15, 05C65

1 Introduction

In combinatorics, Hopf structures give an algebraic framework to deal with operations of
merging (product) and splitting (co-product) combinatorial objects. The notion of Hopf
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algebra is well known and used in combinatorics for over 30 years, and has proved its great
strength in answering various questions (see for example [11]). More recently, Aguiar and
Mahajan defined a notion of Hopf monoid [3],[4] akin to the notion of Hopf algebra and
built on Joyal’s theory of species [13]. Such as in the case of Hopf algebras, a useful
application of Hopf monoids is to define and compute polynomial invariants (see [2], [6],
[10] or [14] for various examples), as was put to light by the recent and extensive paper of
Aguiar and Ardila [1]. In particular they give a theorem to generate various polynomial
invariants and use it to recover the chromatic polynomial of graphs, the Billera-Jia-Reiner
polynomial of matroids and the strict order polynomial of posets. Furthermore they
also give a way to compute these polynomial invariants on negative integers hence also
recovering the different reciprocity theorems associated to these combinatorial objects.

In this paper, we apply Aguiar and Ardila’s theorem to the Hopf monoid of hyper-
graphs defined in [1]. This Hopf structure is different than the one defined and studied in
[7] (the respective co-products are different). We obtain a combinatorial description for
the (basic) invariant χI(H)(n) in terms of colorings of hypergraphs (Theorem 18). We
then use another approach (rather technical) than the method of [1] to get a reciprocity
theorem for hypergraphs (Theorem 24). Finally, we use these results to obtain polynomial
invariants on sub-monoids of the Hopf monoid of hypergraphs.

This paper is an extended version of the extended abstract for FPSAC 2019 [5].

2 Definitions and reminders

2.1 Hopf monoids

We recall here basic definitions on Hopf monoids. The interested reader may refer to [4]
and to [1] for more information on this topic. In this paper, k is a field and all vector
spaces are over k.

Definition 1. A vector species P consists of the following data:

• for each finite set I, a vector space P [I],

• for each bijection of finite sets σ : I → J , a linear map P [σ] : P [I] → P [J ]. These
maps should be such that P [σ ◦ τ ] = P [σ] ◦ P [τ ] and P [id] = id.

A sub-species of a vector species P is a vector species Q such that for each finite set I,
Q[I] is a sub-space of P [I] and for each bijection of finite sets σ : I → J , Q[σ] = P [σ]|Q[I].

For P and Q two vector species, a morphism f : P → Q between P and Q is a
collection of linear maps fI : P [I] → Q[I] satisfying the naturality axiom: for each
bijection σ : I → J , fJ ◦ P [σ] = Q[σ] ◦ fI .

Definition 2. A connected Hopf monoid in vector species is a vector species M with
M [∅] = k that is equipped with product and co-product linear maps

µS,T : M [S]⊗M [T ]→M [S t T ], ∆S,T : M [S t T ]→M [S]⊗M [T ],

with S and T disjoint sets, and subject to the following axioms.
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• Naturality. For each pair of disjoint sets S, T , each bijection σ with domain S t T ,
we have M [σ] ◦ µS,T = µσ(S),σ(T ) ◦M [σ|S] ⊗M [σ|T ] and M [σ|S] ⊗M [σ|T ] ◦ ∆S,T =
∆σ(S),σ(T ) ◦M [σ].

• Unitality. For each set I, µI,∅, µ∅,I , ∆I,∅ and ∆∅,I are given by the canonical
isomorphisms M [I]⊗ k ∼= k ∼= k⊗M [I].

• Associativity. For each triplet of pairwise disjoint sets R,S, T , we have: µR,StT ◦
id⊗µS,T = µRtS,T ◦ µR,S ⊗ id.

• Co-associativity. For each triplet of pairwise disjoint sets R,S, T , we have: ∆R,S ⊗
id ◦∆RtS,T = id⊗∆S,T ◦∆R,StT .

• Compatibility. For each pair of disjoint sets A, B, each pair of disjoint sets C, D,we
have the following commutative diagram, where τ maps x⊗ y to y ⊗ x:

P [S]⊗ P [T ] P [I] P [S ′]⊗ P [T ′]

P [A]⊗ P [B]⊗ P [C]⊗ P [D] P [A]⊗ P [C]⊗ P [B]⊗ P [D]

∆A,B⊗∆C,D

µS,T ∆S′,T ′

id⊗τ⊗id

µA,C⊗µB,D

A sub-monoid of a Hopf monoid M is a sub-species of M stable under the product
and co-product maps.

The co-opposite Hopf monoid M cop of M is the Hopf monoid with opposite co-product:
∆Mcop

S,T = ∆M
T,S.

A morphism of Hopf monoids in vector species is a morphism of vector species which
preserves the products, co-products (compatibility axiom) and the unity (unitality axiom).

Remark 3. Readers more familiar with Hopf algebras can see connected Hopf monoids in
vector species as a way to refine the coproduct of connected graded Hopf algebras. In
fact there exists a functor F called the Fock functor from the category of Hopf monoids
into the category of graded Hopf algebras. This functor is such that for a Hopf monoid
M , the elements of size n of F (M) are the elements of M [[n]] quotiented by the action of
the symmetric group: F (M)n = M [[n]]Sn . The coproduct on F (M)n is then of the form
∆n = f ◦

∑
StT=[n] ∆S,T ◦ i with i and f well chosen maps.

We will use the term Hopf monoid for connected Hopf monoid in vector species. A
sub-monoid of a Hopf monoid M is itself a Hopf monoid when equipped with the product
and co-product maps of M . We consider this to always be the case.

A decomposition of a finite set I is a sequence of pairwise disjoint subsets S =
(S1, . . . , Sl) such that I = tli=1Si. A composition of a finite set I is a decomposition
of I without empty parts. We will write S ` I for S a decomposition of I, S � I if S is a
composition, l(S) = l the length of a decomposition and |S| = |I| the number of elements
in the decomposition.
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Definition 4. Let M a be a Hopf monoid. The antipode of M is the collection of maps
SI : M [I]→M [I] given by S∅ = id and

SI =
∑

(S1,...Sk)�I
k>1

(−1)kµS1,...,Sk
◦∆S1,...Sk

,

for any non empty finite set I.

This expression of the antipode is known as Takeuchi’s formula.

Definition 5. A character on a Hopf monoid M is a collection of linear maps ζI : M [I]→
k subject to the following axioms.

• Naturality. For each bijection σ : I → J , we have ζJ ◦M [σ] = ζI .

• Multiplicativity. For each disjoint sets S, T , we have ζStT ◦ µS,T = µk ◦ ζS ⊗ ζT .

• Unitality. ζ∅(1) = 1.

Let us recall from [1] the results which we will use in the sequel.

Definition 6. Let M be a Hopf monoid and ζ a character on M . For x ∈ M [I] and n
an integer, we define:

χI(x)(n) =
∑

(S1,...Sn)`I

ζS1 ⊗ · · · ⊗ ζSn ◦∆S1,...Sn(x).

Theorem 7 (Proposition 16.1 and Proposition 16.2 in [1]). Let M be a Hopf monoid and
ζ a character on M and let χ be the collection of maps of Definition 6. Then χI(x) is a
polynomial invariant in n such that:

1. χI(x)(1) = ζ(x),

2. χ∅ = 1 and χStT (µ(x⊗ y)) = χS(x)χT (y),

3. χI(x)(−n) = χI(SI(x))(n).

LetM be a Hopf monoid. For I a set and x ∈M [I] we call x discrete if I = {i1, . . . , i|I|}
and x = µ{i1},...,{i|I|}x1 ⊗ · · · ⊗ x|I| for xj ∈ M [{ij}]. Then the maps that send discrete
elements onto 1 and other elements onto 0 give us a Hopf monoid character. Following
the terminology introduced in Section 17 of [1], we call the basic invariant of M the
polynomial invariant of Definition 6 with this character. We denote χM this polynomial
or just χ when this is clear from the context.

Example 8. As shown in Subsection 4.2, there exists a Hopf monoid structure on graphs
whose basic invariant is the chromatic polynomial.
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Proposition 9 (Proposition 16.3 in [1]). Let M and N be two Hopf monoids, ζM and ζN

characters on M and N and f : M → N a Hopf monoid morphism such that for every I:

ζNI ◦ fI = ζMI .

Denote by χ(ζM) and χ(ζN) the polynomial invariants of Definition 6 with M and ζM

and N and ζN . For every I, one then has:

χ(ζN)I ◦ fI = χ(ζM)I .

In particular, since Hopf monoid morphisms conserve discrete elements, for f : M → N
a Hopf monoid morphism and I a set, we have χNI ◦ fI = χMI .

2.2 A useful combinatorial identity

We recall here a classical result of combinatorics and a direct corollary which will be useful
in the following section. We only give a sketch of the proofs.

In all the following, given an integer n we will denote by [n] the set {1, . . . , n}.

Proposition 10. Let n and m be two integers. The number of surjections Sn,m from [m]
to [n] is given by:

Sn,m =
n∑
k=0

(−1)n−k
(
n

k

)
km.

Proof. This formula can be obtained by the inclusion-exclusion principle.

Corollary 11. For n and m two integers such that m < n, and P a polynomial of degree
at most m, we have:

n∑
k=0

(−1)n−k
(
n

k

)
P (k) = 0.

Proof. The statement above is a direct consequence of the fact that Sn,m = 0 for n <
m.

3 Basic invariant of hypergraphs

In all of the following, I always denotes a finite set.
Our goal is to express the basic invariant of the Hopf monoid of hypergraphs defined

in Section 20 of [1]. More specifically we intend to obtain a combinatorial interpretation
of χI(x)(n) and χI(x)(−n).

In this context, a hypergraph over I is a collection of (possibly repeated) subsets of
I, which we call edges1. The elements of I are then called vertices of H and HG[I]
denotes the free vector space of hypergraphs over I. Note that two hypergraphs over
different sets can never be equal, e.g {{1, 2, 3}, {2, 3, 4}} ∈ HG[[4]] is not the same as
{{1, 2, 3}, {2, 3, 4}} ∈ HG[[4] ∪ {a, b}]. This is illustrated in Figure 1.

1in some references, the terms hyperedge or multiedge is used.
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Figure 1: Two hypergraphs with the same edges but over different sets.

The product and co-product for I = S t T are given by,

µS,T : HG[S]⊗HG[T ]→ HG[I] ∆S,T : HG[I]→ HG[S]⊗HG[T ]

H1 ⊗H2 7→ H1 tH2 H 7→ H|S ⊗H/S

where H|S = {e ∈ H | e ⊆ S} is the restriction of H to S and H/S = {e∩T | e * S} is the
contraction of S from H. The discrete hypergraphs are then the hypergraphs with edges
of cardinality at most 1.

Example 12. For I = [5], S = {1, 2, 5} and T = {3, 4}, we have:

1 2 3

45

1

2

5

⊗ 3 4
∆S,T

In [1], Aguiar and Ardila propose a method to obtain a combinatorial interpretation
of any polynomial invariant given in Definition 6 on negative integers, assuming that
we have an interpretation of it on positive integers. Their method consists in using a
cancellation-free grouping-free formula for the antipode and point 3 of Theorem 7. Here
we use a different approach: we express the polynomial dependency of χI(x)(n) in n,
which we then use to calculate χI(x)(−n) and interpret the resulting formula.

Let us begin by giving a proposition which is needed to show the polynomial depen-
dency of χI(x)(n) in n. For t ∈ N∗ and a sequence of positive integers p1, p2, . . . , pt, we
define Fp1,...,pt as a function over the integers given by, for n ∈ N:

Fp1,...,pt(n) =
∑

06k1<···<kt6n−1

kp11 · · · k
pt
t .

Note that if t > n, then Fp1,...,pt(n) =
∑

∅ · · · = 0.

Proposition 13. Let p1, p2, . . . , pt be integers and define dk =
∑k

i=1 pi + k for 1 6 k 6 t.
Then Fp1,...,pt is a polynomial of degree dt whose constant coefficient is null and the (dt−i)-
th, (for i < dt) coefficient is given by

min(jt,dt−1−1)∑
jt−1=0

min(jt−1,dt−2−1)∑
jt−2

· · ·
min(j2,d1−1)∑

j1=0

t∏
k=1

(
dk − jk−1

jk − jk−1

)
Bjk−jk−1

dk − jk−1

,

where jt = i and j0 = 0, and the Bj numbers are the Bernoulli numbers with the conven-
tion B1 = −1/2.
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Proof. We show this by induction on t. For t = 1 the expression of the coefficients gives us
the well-known identity Fp(n) =

∑p
i=0

(
p+1
i

)
Bi

p+1
np+1−i. Hence the result is true for t = 1.

Suppose now the result is true for t > 1 and let p1, p2, . . . , pt+1 be t+ 1 integers. Denote
by ai the dt − i coefficient of Fp1,...,pt(n). We then have:

Fp1,...,pt+1(n) =
∑

06k1<···<kt+16n−1

kp11 · · · k
pt+1

t+1 =
n−1∑

kt+1=0

k
pt+1

t+1

∑
06k1<···<kt6kt+1−1

kp11 · · · k
pt
t

=
n−1∑
k=0

kpt+1Fp1,...,pt(k)

=
n−1∑
k=0

kpt+1

dt−1∑
j=0

ajk
dt−j

=
dt−1∑
j=0

aj

n−1∑
k=0

kpt+1+dt−j =
dt−1∑
j=0

aj

n−1∑
k=0

kdt+1−1−j

=
dt−1∑
j=0

ajFdt+1−1−j(n)

=
dt−1∑
j=0

aj

dt+1−1−j∑
i=0

(
dt+1 − j

i

)
Bi

dt+1 − j
ndt+1−j−i

=
dt−1∑
j=0

dt+1−1−j∑
i=0

aj

(
dt+1 − j

i

)
Bi

dt+1 − j
ndt+1−j−i

=
dt−1∑
j=0

dt+1−1∑
i=j

aj

(
dt+1 − j
i− j

)
Bi−j

dt+1 − j
ndt+1−i

=

dt+1−1∑
i=0

min(i,dt−1)∑
j=0

aj

(
dt+1 − j
i− j

)
Bi−j

dt+1 − j

ndt+1−i.

This concludes this proof.

Before stating our results on χI(H)(n) we need to introduce some definitions. There
exists a canonical bijection between decompositions and functions with co-domain of the
form [n]. In the sequel, we will want to seamlessly pass from one notion to the other.
We hence give a few explanations on this bijection. Given an integer n, the canonical
bijection between decompositions of I of size n and functions from I to [n] is given by:

bI,n : {f : I → [n]} → {P ` I | l(P ) = n}
f 7→ (f−1(1), . . . , f−1(n)).

If it is clear from the context what are I and n, we will write b instead of bI,n. If P is a
partition we will also refer to b−1(P ) by P so that instead of writing “i such that v ∈ Pi”
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and “i and j such that v ∈ Pi, v′ ∈ Pj and i < j ” we can just write P (v) and P (v) < P (v′).
Similarly, if P is a function we will refer to b(P ) by P so that Pi = P−1(i). Also remark
that bI,n induces a bijection between compositions of I of size n and surjections from I
to [n].

Definition 14. Let H be a hypergraph over I and n be an integer. A coloring of H with
[n] is a function from I to [n] (or a decomposition of I of length n from what precedes
this) and in this context the elements of [n] are called colors.

Let S ` I be a coloring of H. For v ∈ e ∈ H, we say that v is a maximal vertex of e
(for S) if v is of maximal color in e and we call the maximal color of e (for S) the color
of a maximal vertex of e. We say that a vertex v is a maximal vertex (for S) if it is a
maximal vertex of an edge.

If J ⊆ I is a subset of vertices, the order of appearance of J (for S) is the composition
cano(S|J) where S|J = (S1 ∩ J, . . . , Sl(S) ∩ J). The map cano sends any decomposition to
the composition obtained by dropping the empty parts.

Example 15. We represent the coloring of a hypergraph on I = {a, b, c, d, e, f} with
{1(•),2(×),3(�),4(�)}:

e3

e4

e2

a b

e1

c

d

e
f

The maximal vertex of e1 is a and the maximal vertices of e3 are c and d. The maximal
color of e2 is 3. The order of appearance of {a, c, d, e} is ({e}, {c, d}, {a}).

Definition 16. Let H be a hypergraph over I. An orientation of H is a function f from
H to I such that f(e) ∈ e for every edge e. A directed cycle in an orientation f of H is
a sequence of distinct edges e1, . . . , ek such that f(e1) ∈ e2 \ f(e2), . . . , f(ek) ∈ e1 \ f(e1).
An orientation is acyclic if it does not have any directed cycle. Let AH be the set of
acyclic orientations of H.

An orientation f of H and a coloring S of H with [n] are said to be compatible if
S(f(e)) = max(S(e)) for every e ∈ H. They are said to be strictly compatible if f(e) is
the unique maximal vertex of e.

Example 17. The coloring given in Example 15 has two compatible acyclic orientations:
both send e1 on a, e2 on c and e4 on b, but one sends e3 on c and the other e3 on d.

For the color set {1(•),2(×)}, the following coloring has 4 compatible orientations but
only two are acyclic.

the electronic journal of combinatorics 27(1) (2020), #P1.34 8



Theorem 18. Let I be a set and H ∈ HG[I] a hypergraph over I. Then χI(H)(n) is
the number of colorings of H with [n] such that every edge has only one maximal vertex.
This is also the number of strictly compatible pairs of acyclic orientations and colorings
with [n]. Furthermore, defining PH,f = {P � f(H) | v ∈ e \ f(e)⇒ P (v) < P (f(e))}, for
every f ∈ AH , we have that

χI(H)(n) = n|JH |
∑
f∈AH

∑
P∈PH,f

Fp1,...,pl(P )
(n),

where JH ⊆ I is the set of isolated vertices of H (i.e vertices not in an edge) and for every

P ∈ PH,f , pi = |P̃i| and P̃i =
(⋃

e∈f−1(Pi)
e
)
∩ f(H)c

⋂
j<i P̃

c
j .

Proof. For S a decomposition of I of size n, let H1 ∈ HG[S1], . . . , Hn ∈ HG[Sn] be
hypergraphs such that H1 ⊗ · · · ⊗ Hn = ∆S1,...,Sn(H). Let S be a decomposition of I of
size n. Let e be an edge. We then have the equivalence:

e ∈ Hi ⇐⇒ e ∩ Si 6= ∅ ∧ ∀j > i, e ∩ Sj = ∅
⇐⇒ e ∩ Si is the set of maximal vertices of e

Hence, we have that

ζS1 ⊗ · · · ⊗ ζSn ◦∆S1,...,Sn(H) = 1 ⇐⇒ ∀e ∈ H, e ∈ Hi ⇒ |e ∩ Si| = 1

⇐⇒ each edge has only one maximal vertex.

The equivalence between the colorings such that every edge has only one maximal vertex
and the strictly compatible pairs of acyclic orientations and colorings is given by the
bijection S 7→ (e 7→ ve, S), where ve is the unique vertex in e such that S(ve) = max(S(e)).

The term n|JH | in the formula is trivially obtained, in the following we hence consider
that H has no isolated vertices.

Informally, the formula can be obtained by the following reasoning. To choose a col-
oring such that every edge has only one maximal vertex, one can proceed in the following
way:

1. choose the maximal vertex of each edge (f ∈ AH),

2. choose in which order those vertices appear (P ∈ PH,f ),

3. choose the color of those vertices (k1 + 1, . . . , kl(P ) + 1), (and notice that the set of
such choices is empty if l(P ) > n, which allows us not to add this non polynomial
dependency in n at the previous choice),

4. choose the colors of the yet uncolored vertices which are in the same edge than a

vertex of minimal color in f(H) (k
|P̃1|
1 ); then those in the same edge than a vertex

of second minimal color in f(H) (k
|P̃2|
2 ), etc.
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More formally, we show that there exists a bijection between the set of colorings such
that every edge has only one maximal vertex and the set⊔

f∈AH

⊔
P∈PH,f

⊔
06k1<k2<···<kl(P )6n−1

∏
16i6l(P )

[ki]
P̃i ,

where [ki]
P̃i is the set of maps from P̃i to [ki]. Let g be a coloring of interest and define:

• f : e 7→ v ∈ e such that g(v) = max(g(e)),

• P = h ◦ g(f(H)) where h is the increasing bijection from g(f(H)) to [|f(H)|],

• P̃i =
(⋃

e∈f−1(Pi)
e
)
∩ f(H)c

⋂
j<i P̃

c
j for 1 6 i 6 l(P ),

• ki = g(Pi)− 1 for 1 6 i 6 l(P ).

The function f not being in AH would imply that there exists a vertex v such that
g(v) < g(v). This is not possible, hence f ∈ AH . We also have that P ∈ PH,f because
by definition of g, v ∈ e \ f(e) implies g(v) < g(f(e)) and h is increasing. It is also clear
that 0 6 k1 < · · · < kl(P ) 6 n − 1. The image of g is then (g|P̃1

, . . . , g|P̃l(P )
) which is in∏

16i6l(P )[ki]
P̃i since for every v ∈ P̃i we must have g(v) < g(Pi) by definition. Let us now

consider f ∈ AH , P ∈ PH,f , 1 6 k1 < · · · < kl(P ) and (g1, . . . gl(P )) ∈
∏

16i6l(P )[ki]
P̃i . Let

h be the increasing bijection from [l(P )] to {k1 + 1, . . . , kl(P ) + 1} and define g : I → [n]

by g|P̃i
= gi and g|f(H) = h ◦ P (it is sufficient since (P̃1, . . . P̃l(P ), f(H)) is a partition of

I). Let us show that g is a coloring of interest. Let be v ∈ e \ f(e),

• if v ∈ f(H) then P (v) < P (f(e)) by definition and so g(v) < g(f(e)), since h is
increasing,

• if v 6∈ f(H) then v ∈ P̃i with i 6 P (f(e)) and so g(v) = gi(v) 6 ki < ki + 1 6
kP (f(e)) + 1 = g(f(e)).

We conclude the proof by remarking that the two defined transformations are inverse
functions.

Example 19. The coloring given in Example 15 is not counted in χI(H)(4) since e3 has
two maximal vertices. However by changing the color of d to 2 we do obtain a coloring
where every edge has only one maximal vertex.

LetH be the hypergraph {{1, 2, 3}, {2, 3, 4}} ∈ HG[[4]] represented in Figure 1. Then we
have χ[4](H)(n) = n4− 8

3
n3 + 5

2
n2− 5

6
n and we do verify that, for example, χ[4](H)(2) = 3.

We are now interested in the value of (−1)|I|χI(H)(−n). Let us first state two lemmas.
The first lemma justifies the use of the Fp (with p a finite sequence of integers) polynomials
to express the basic invariant: they have a good expression on negative integers. The
second lemma is a result which can be interpreted on graphs and partitions as we do, but
also on posets and linear extensions. It is the crux of the proof of Theorem 24.
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A decomposition of an integer n is a sequence p = (p1, . . . , pt) of positive integers such
that n =

∑t
i=1 pi. We denote this by p ` n. If p = (p1,1, . . . , p1,k1 , p2,1, . . . , p2,k2 , . . . , pl,kl)

and q = (q1, . . . , ql) are two decompositions of the same integer, we say that q coarsens p
or p refines q and write p ≺ q if (pi,1, . . . , pi,ki) is a decomposition of qi for 1 6 i 6 l.

Example 20. The sequences p1 = (4, 2, 3, 3), p2 = (3, 1, 2, 2, 1, 1, 1, 1), p3 = (4, 3, 1, 1, 3)
are three decompositions of 12 such that p2 refines p1 and there is no relation of refinement
and coarsening between p3 and the two other sequences.

Lemma 21. Let p be a sequence of positive integers of length t. Then

Fp(−n) = (−1)dt
∑
p≺q

Fq(n+ 1).

Proof. Remark that
∑

p≺q Fq(n + 1) can also be written as
∑

06k16...6kt6n
kp11 · · · k

pt
t . We

now proceed by induction on t. For t = 1, we have

Fp(−n) =

p∑
i=0

(
p+ 1

i

)
Bi

p+ 1
(−n)p+1−i

=
(−1)p+1

p+ 1
np+1 − 1

2
(−1)pnp + (−1)p+1

p∑
i=2

(
p+ 1

i

)
Bi

p+ 1
np+1−i

= (−1)p+1

(
1

p+ 1
np+1 +

1

2
np +

p∑
i=2

(
p+ 1

i

)
Bi

p+ 1
np+1−i

)
= (−1)p+1(Fp(n) + np) = (−1)p+1Fp(n+ 1),

where the second equality comes from the fact that Bi = 0 when i is an odd number
different from 1. Suppose now our proposition is true up to t. In the proof of Proposition
2 we showed that Fp1,...,pt+1(n) =

∑dt−1
j=0 ajFdt+1−1−j(n) where aj is the dt− j coefficient of

Fp1,...,pt(n). This gives

Fp1,...,pt+1(−n) =
dt−1∑
j=0

aj(−1)dt+1−j
n∑
k=0

kdt+1−1−j = −
dt−1∑
j=0

aj

n∑
k=0

(−k)pt+1+dt−j

= −
n∑
k=0

(−k)pt+1

dt−1∑
j=0

aj(−k)dt−j = (−1)pt+1+1

n∑
k=0

kpt+1Fp1,...,pt(−k)

= (−1)pt+1+1

n∑
kt+1=0

k
pt+1

t+1 (−1)dt
∑

06k16...6kt6kt+1

kp11 · · · k
pt
t

= (−1)dt+1

∑
06k16...6kt+16n

kp11 · · · k
pt+1

t+1

= (−1)dt+1

∑
p≺q

Fq(n+ 1),

where the fifth equality is our induction hypothesis.
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Definition 22. Let I and J be two disjoint sets and P = (P1, . . . , Pl) � I and Q =
(Q1, . . . , Qk) � J be two compositions. The product of P and Q is the composition
P · Q = (P1, . . . , Pl, Q1, . . . Qk). The shuffle product of P and Q is the set sh(P,Q) =
{R � I t J |P = cano(R|I), Q = cano(R|J)}.

Let P ′ = (P1,1, . . . , P1,k1 , P2,1, . . . , P2,k2 , . . . , Pl,kl) be another composition of I. We say

that P ′ refines P and write P ′ ≺ P if Pi =
⋃ki
j=1 Pi,j for 1 6 i 6 l.

Recall that compositions can be seen as surjections and that for a decomposition P � I
and an element v ∈ I, we denote by P (v) the index i such that v ∈ Pi.

Lemma 23. Let I be a set and P � I a composition of I. We have the identity:∑
Q≺P

(−1)l(Q) = (−1)|P |.

Furthermore let G be a directed acyclic graph on I and consider the constrained set
C(G,P ) = {Q ≺ P | ∀(v, v′) ∈ G,Q(v) < Q(v′)}. We have the more general identity:∑

Q∈C(G,P )

(−1)l(Q) =

{
0 if there exists (v, v′) ∈ G such that P (v′) < P (v),

(−1)|P | if not.

Proof. Since
∑

Q≺P (−1)l(Q) =
∏l(P )

i=1

∑
Q�Pi

(−1)l(Q) it is sufficient to show that we have∑
Q�I(−1)l(Q) = (−1)|I| in order to prove the first identity. Since the compositions of I of

size n and the surjections from I to [n] are in bijection, we have that:

∑
Q�I

(−1)l(Q) =

|I|∑
n=1

(−1)nS|I|,n =

|I|∑
n=1

(−1)n
n∑
k=1

(−1)n−k
(
n

k

)
k|I|

=

|I|∑
k=1

(−1)k

 |I|∑
n=k

(
n

k

) k|I| =

|I|∑
k=1

(−1)k
(
|I|+ 1

k + 1

)
k|I|

= (−1)|I|
|I|−1∑
k=0

(−1)k
(
|I|+ 1

k

)
(|I| − k)|I|

= (−1)|I|(1 +

|I|+1∑
k=0

(−1)k
(
|I|+ 1

k

)
(|I| − k)|I|)

= (−1)|I|.

Note that the last equality is a direct consequence of Corollary 11.
To show the second identity first remark that the case where the sum is null is straight-

forward: if there exists (v, v′) ∈ G such that P (v′) < P (v), then C(G,P ) = ∅ and so
the sum is null. From now on we only consider non empty summation sets. In this case
we have that

∑
Q∈C(G,P )(−1)l(Q) =

∏l(P )
i=1

∑
Q∈C(G∩Pi

2,(Pi))
(−1)l(Q) and we only need to
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show that
∑

P∈C(G)(−1)l(P ) = (−1)|I| where C(G) = C(G, (I)). Let S(G) denote the sum∑
P∈C(G)(−1)l(P ) from now on.

If G is not connected let I = JtK and G = HtH ′ where V (H) = J and V (H ′) = K.
Let P ∈ C(H) and Q ∈ C(H ′) and suppose without loss of generality that m = l(Q) <
l(P ) = M . To choose R in sh(P,Q) we can first choose its length; then which indices are
going to have a part of Q; and then which indices among them are also going to have a
part of P . This leads to:

∑
R∈sh(P,Q)

(−1)l(R) =
m+M∑
k=M

(−1)k
(
k

m

)(
m

M − (k −m)

)

=
m∑
k=0

(−1)k+M

(
M + k

m

)(
m

k −m

)
= (−1)M

m∑
k=0

(−1)m−k
(
M +m− k

m

)(
m

k

)
=

(−1)M

m!

m∑
k=0

(−1)m−k
(
m

k

)
(m+M − k)!

(M − k)!

=
(−1)M

m!

m∑
k=0

(−1)m−k
(
m

k

)
(−k)m

=
(−1)m+M

m!

m∑
k=0

(−1)m−k
(
m

k

)
km

=
(−1)m+M

m!
Sm,m = (−1)m+M = (−1)l(P )+l(Q),

where the fifth equality follows from Corollary 11. This shows that S(G) is multiplicative
(with the product being the disjoint union) and so we can restrict ourselves to showing
that S(G) = (−1)|I| for G a connected graph. We will do this by induction on the number
of edges of G.

Suppose now that G is connected. If G has no edges then G is reduced to a single
vertex and the result is trivial. Thus let be (v, v′) ∈ G. We say that (v, v′) is superfluous
if there exists v0, v1, . . . , vk+1 ∈ I such that v = v0, v′ = vk+1 and (vi, vi+1) ∈ G for
all i ∈ [k]. If (v, v′) is superfluous then C(G) = C(G(v, v′)) and so S(G) = S(G \
(v, v′)) = (−1)|I| by induction. Otherwise we have C(G \ (v, v′)) = C(G) +C(t(v,v′)(G)) +
C(G \ (v, v′)) ∩ {P � I |P (v) = P (v′)}, where t(v,v′) sends G on G \ (v, v′) ∪ (v′, v).
By induction, we know that S(G \ (v, v′)) = (−1)|I| and since C(G \ (v, v′)) ∩ {P �
I |P (v) = P (v′)} = C

(
G ∩ (I/v′)2 ∪

⋃
(w,v′)∈G\(v,v′)(w, v) ∪

⋃
(v′,w)∈G(v, w)

)
, we also have

by induction that
∑

P∈C(G\(v,v′))∩{P�I |P (v)=P (v′)}(−1)l(P ) = (−1)|I|−1. Hence, we have the

equivalence S(G) = (−1)|I| ⇐⇒ S(t(v,v′)(G)) = (−1)|I|.
Let e1, . . . , ek be a sequence of edges such that for every i, Gi = tei◦· · ·◦te1(G) does not

have a directed cycle. Then we have that S(G) = (−1)|I| if and only if S(Gk) = (−1)|I|.
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If G has a cycle then we can find a sequence such that Gk has a superfluous edge and
hence S(Gk) = (−1)|I|. If G does not have any cycle then every sequence of edges
satisfies the condition “Gi does not have a directed cycle” and so S(G) = (−1)I as long
as there exists a directed graph G′ with the same underlying non-oriented graph than
G such that S(G′) = (−1)|I|. Given a non-oriented connected graph H, we can always
find a directed graph G on it with only one vertex v such that for every w ∈ V (G),
(w, v) 6∈ G. Then we have that C(G) = ({v}) · C(G ∩ (V (G) − v)2) which gives us
S(G) = −S(G ∩ (V (G)− v)2) = (−1)|V (G)| by induction. This concludes the proof.

We can now state the main result of this section which is a direct generalization to
hypergraphs of the reciprocity theorem of Stanley on graphs [18].

Theorem 24 (Reciprocity theorem on hypergraphs). Let I be a set and H ∈ HG[I] a
hypergraph over I. Then (−1)|I|χI(H)(−n) is the number of compatible pairs of acyclic
orientations and colorings with [n] of H. In particular, (−1)|I|χI(H)(−1) = |AH | is the
number of acyclic orientations of H.

Proof. From Proposition 18 and Lemma 21 we have that

χI(H)(−n) = (−n)|JH |
∑
f∈AH

∑
P∈PH,f

(−1)
∑l(P )

i=1 pi+l(P )
∑

(p1,...,pl(P ))≺q

Fq(n+ 1).

Remark that:

•
∑l(P )

i=1 pi = |I \ JH | − |f(H)| (since (P̃1, . . . P̃l(P ), f(H)) is a partition of I \ JH),

• φ : {Q � f(H) |P ≺ Q} → {q ` (|I \ JH | − |f(H)|) | (p1, . . . , pl(P )) ≺ q} Q 7→
(|Q̃1|, . . . , |Q̃l(Q)|) is a bijection (where Q̃i is defined in the same way that P̃i in
Theorem 18).

This leads to:

(−1)|I|χI(H)(−n) = n|JH |
∑
f∈AH

(−1)|f(H)|
∑

P∈PH,f

(−1)l(P )
∑
P≺Q

Fφ(Q)(n+ 1)

= n|JH |
∑
f∈AH

(−1)|f(H)|
∑

Q�f(H)

 ∑
P≺Q
P∈PH,f

(−1)l(P )

Fφ(Q)(n+ 1).

By definition of AH , G = {(v, f(e)) | v ∈ e \ f(e)} is a directed acyclic graph on f(H).
Hence, remarking that {P ≺ Q |P ∈ PH,f} = C(G,Q), Lemma 23 leads to:

(−1)|I|χI(H)(−n) = n|JH |
∑
f∈AH

(−1)|f(H)|
∑

P�f(H)
P (v)6P (v′)∀(v,v′)∈G

(−1)|f(H)|Fφ(P )(n+ 1)

= n|JH |
∑
f∈AH

∑
P∈P ′H,f

Fφ(P )(n+ 1)

= n|JH |
∑
f∈AH

∑
P∈P ′H,f

Fp1,...,pl(P )
(n+ 1),
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where P ′H,f = {P � f(H) |P (v ∈ e \ f(e) 6 P (f(e)}. To conclude, we now need to show
that the set of compatible pairs (acyclic orientation, coloring with n) is in bijection with⊔

f∈AH

⊔
P∈P ′H,f

⊔
06k1<···<kl(P )6n

[k1]Q1 × · · · × [kl(P )]
Ql(P ) .

This can be done in a way analogous to the one used in the proof of Theorem 18, the
only difference being that we choose (with the same terms used in the proof) g(Pi) = ki
instead of g(Pi) = ki + 1.

Example 25. For any I, any H ∈ HG[I] and n a positive integer, we have χI(H)(n) 6
(−1)|I|χI(H)(−n). This comes from the fact that any strictly compatible pair is compat-
ible. This is observed for H = {{1, 2, 3}, {2, 3, 4}} ∈ HG[[4]]:

χ[4](H)(n) = n4 − 8

3
n3 +

5

2
n2 − 5

6
n < n4 +

8

3
n3 +

5

2
n2 +

5

6
n = (−1)4χ[4](H)(−n).

We also verify that H does have χ[4](H)(−1) = 7 acyclic orientations (3× 3 orientations
minus the two cyclic orientations).

4 Application to other Hopf monoids

In this section we use Theorem 18 and Theorem 24 to obtain a combinatorial interpretation
of the basic invariants for the Hopf monoids presented in Sections 20 to 25 of [1].

The general method to do this will be to use the fact that these Hopf monoids can
be seen as sub-monoids of the Hopf monoid of simple hypergraphs, and then present an
interpretation of what is an acyclic orientation on these particular Hopf monoids.

The result from subsection 4.1 is new. The result from subsection 4.2 already appears
in [1]. The results of subsections 4.3 to 4.7 are new, but they can be derived from
more general results in previous papers (details are provided at the beginning of each
subsection). Note that however, we present here a uniform approach to obtain these
results.

In all the following, we denote by χ the basic invariant of the Hopf monoid of hyper-
graphs.

4.1 Simple hypergraphs

A hypergraph is simple if it has no repeated edges. The vector species SHG of simple
hypergraphs is not stable by the contraction defined on hypergraphs but it still admits a
Hopf monoid structure. The product and co-product are given by, for I = S t T :

µS,T : SHG[S]⊗ SHG[T ]→ SHG[I] ∆S,T : SHG[I]→ SHG[S]⊗ SHG[T ]

H1 ⊗H2 7→ H1 tH2 H 7→ H|S ⊗H/S,

where H|S = {e ∈ H | e ⊆ S} and H/S = {e ∩ T | e * S} ∪ {∅} but this time without
repetition, i.e H/S can also be defined as {B ⊆ | ∃A ⊆ S,A tB ∈ H}. A discrete simple
hypergraph is then a simple hypergraph with edges of cardinality at most one.
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Proposition 26. χSHG is the restriction of χ to the vector species of simple hypergraphs.

Proof. Let s : HG→ SHG be the Hopf monoid morphism which removes any repetition
of edges and let H be a simple hypergraph over I. Considering SHG as a sub-species of
HG and s as a morphism of vector species we have: χHGI (H) = χHGI (s(H)). Then using
the fact that s is a Hopf monoid morphism stable on the sub-species of discrete elements
we have that: χHGI (s(H)) = χSHGI (H). This concludes the proof.

4.2 Graphs

The result of this subsection has already been given in Section 18 of [1], but we give it
here as a consequence of our result in the previous section.

A graph can be seen as a hypergraph whose edges are all of cardinality 2. As for the
vector species of simple hypergraphs, the vector species G of graphs is not stable by the
contraction defined on hypergraphs, but it still admits a Hopf monoid structure. The
product and co-product are given by, for I = S t T :

µS,T : G[S]⊗G[T ]→ G[I] ∆S,T : G[I]→ G[S]⊗G[T ]

g1 ⊗ g2 7→ g1 t g2 g 7→ g|S ⊗ g/S,

where g|S is the sub-graph of g induced by S and g/S = g|T . A discrete graph is then a
graph with no edges.

A proper coloring of a graph is a coloring such that no edge has its two vertices of the
same color. The chromatic polynomial of a graph is the polynomial T such that T (n) is
the number of proper colorings with n colors.

Corollary 27 (Proposition 18.1 in [1]). The basic invariant of G is the chromatic poly-
nomial.

Proof. Let HG62 be the Hopf monoid of hypergraphs with edges of cardinality at most 2
and let s : HG62 → G be the Hopf monoid morphism which removes edges of cardinality
1. Since HG62 is a Hopf sub-monoid of HG we have that χHG62 is the restriction of χ to
HG62. Using the same reasoning than in the proof of Proposition 26, with G and HG62

instead of SHG and HG, we get that χG is the restriction of χ to G. Furthermore, for g
a graph and S a coloring of g, we have the equivalence between “each edge has a unique
maximal vertex” and “S is a proper coloring”. The result follows.

In particular, by evaluating χ on negative integers for a graph, we recover the classical
reciprocity theorem of Stanley [18].

4.3 Simplicial complexes

In [8] Benedetti, Hallam, and Machacek constructed a combinatorial Hopf algebra of
simplicial complexes and in particular they obtained results which generalise those given
in this subsection.
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An abstract simplicial complex, or simplicial complex, on I is a collection C of subsets
of I, called faces, such that any subset of a face is a face i.e J ∈ C and K ⊂ J implies
K ∈ C. By Proposition 21.1 of [1], the vector species SC of simplicial complexes is a
sub-monoid of the Hopf monoid of simple hypergraphs.

The 1-skeleton of a simplicial complex is the graph formed by its faces of cardinality
2.

Corollary 28. Let I be a set, C ∈ SC[I] and g its 1-skeleton. Then χSCI (C) is the
chromatic polynomial of g.

Proof. It is clear that any coloring of C such that each edge has a unique maximal vertex
induces a proper coloring of g. On the other hand if J is a face of C then it is also a
clique of g, and so any proper coloring of g must color all the vertices in J in different
colors. In particular there must be a unique maximal vertex in J .

4.4 Building sets

Building sets and graphical building sets have been studied in a Hopf algebraic context
by Grujić in [12] where he gave similar results to the ones obtained in this subsection and
the following one.

Building sets were independently introduced by De Concini and Procesi in [9] and by
Schmitt in [17]. A building set on I is collection B of subsets of I, called connected sets,
such that if J,K ∈ B and J ∩ K 6= ∅ then J ∪ K ∈ B and for all i ∈ I, {i} ∈ B. By
Proposition 22.3 of [1] the vector species BS of building sets is a sub-monoid of the Hopf
monoid of simple hypergraphs.

The maximal sets of a building set are called connected components.

Definition 29. Let B be a building set on I with only one connected component. We
define recursively a set of rooted trees which we call skeletons of B.

• If I = {r} is a singleton and B = {{r}} the sole skeleton of B is the rooted tree
reduced to its root r.

• If I is not a singleton let r be any element of I and let I1, . . . , Ik be the maximal
connected sets of B not containing r. Then for each i we associate to Ii the building
set Bi = {J | J ∈ B and J ⊆ Ii} on Ii. For each of these building sets, choose a
skeleton si and denote ri its root. Then the tree s = {(r, r1), . . . , (r, rk)}∪s1∪· · ·∪sk
with root r is a skeleton of B.

Let B a building set. Its skeletons are the disjoint unions of skeletons of its connected
component.

Remark 30. The skeletons are exactly the B-forests where all the vertices are singletons
as defined in Definition 22.6 of [1].
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A rooted forest can be seen as a forest with an orientation which sends each edge on
the parent vertex. Hence, one can define compatible and strictly compatible colorings of
a rooted forest. Moreover, these notions correspond to the notions of natural-T -partition
and strict-T -partition of [12].

Corollary 31. Let I be a set and B ∈ BS[I]. Then χBSI (B)(n) is the number of strictly
compatible pairs of skeletons and colorings with [n] and χBSI (B)(−n) is the number of
compatible pairs of skeletons and colorings with [n]. In particular, χBSI (B)(−1) is the
number of skeletons of B.

Proof. Since BS is a sub-monoid of SHG we know that χBS is the restriction of χ to BS.
Hence, we only need to show that there exists a bijection b which preserves compatibility
with colorings between the acyclic orientations of B seen as a hypergraph and its skeletons.
Furthermore, since the acyclic orientations of a disjoint union of hypergraphs are the
disjoint unions of their acyclic orientations and the skeletons of a disjoint union of building
sets are the disjoint unions of their skeletons, we only have to show this bijection for a
building set with one connected component.

We will do this by induction on the size of I. If I = {r} is a singleton and B = {{r}},
then the unique acyclic orientation of B is f : {r} 7→ r and the unique skeleton of B is
the rooted tree with only vertex r. These two elements are both compatible with all the
colorings hence the preserving bijection b : f 7→ {r}.

If I is not a singleton, let K be the connected component of B. Let f be an acyclic
orientation of B and r = f(K). Then necessarily all the connected sets of B containing
r are also sent on r by f because otherwise we would have a cycle (since these connected
sets are contained in K by definition). Let now I1, . . . Ik be the maximum connected sets
not containing r and B1, . . . , Bk their associated building sets. Then f|Ii is an acyclic
orientation of Bi and si = b(f|Ii) is a skeleton of Bi for 1 6 i 6 k. Let ri be the root of
si for 1 6 i 6 k. Then, by definition of a skeleton, the tree b(f) = {(r, r1), . . . , (r, rk)} ∪
s1 ∪ · · · ∪ sk rooted in r is a skeleton of B.

Let now s be a skeleton of B and r be its root. Let B0 be the set of connected sets
of B containing r and I0 be the set of vertices which are in a connected set containing
r which is not the connected component. Let I1, . . . , Ik be the maximal connected set of
B not containing r and B1, . . . , Bk be their associated building sets. Note that since B
is a building set, one has Ii ∩ Ij = ∅ for 1 6 i 6= j 6 k (or else Ii ( Ii ∪ Ij ∈ B is not
maximal).

By definition of a skeleton, s has exactly k sub-trees s1, . . . , sk such that si is a skeleton
of Bi for 1 6 i 6 k. Define fi = b−1(si) for 1 6 i 6 k and f0 the acyclic orientation of B0

which sends every connected set of B0 on r. Let f be the orientation of B which sends
a connected set K ∈ Bi on fi(K) for i such that K ∈ Bi. This orientation is everywhere
well defined because B0, B1, . . . , Bk is, by definition, a partition of B. Suppose f is not
acyclic and let e1, . . . el be a directed cycle. Then necessarily the connected sets e1, . . . el
can not all be in the same Bi because f|Ii = fi is acyclic. Without loss of generality, let
e1 ∈ Bi1 and e2 ∈ Bi2 with i1 6= i2.

the electronic journal of combinatorics 27(1) (2020), #P1.34 18



• Suppose i1 6= 0 and i2 6= 0. Then f(e1) ∈ e1 ∩ e2 ⊆ Ii1 ∩ Ii2 , which is not possible
by maximality of Ii1 .

• Suppose i1 = 0. Then r = f(e1) ∈ e1 ∩ e2 ⊆ Ii2 , which is not possible by definition
of Ii2 .

• Suppose i2 = 0. Then by the previous point e3 must also be in B0. An iteration
then implies that all the ei must be in B0. This contradicts the hypothesis i1 6= i2.

Hence f is an acyclic orientation.
The fact that in the two preceding constructions the root of the skeleton is the image

of the connected component along with the induction hypothesis enable us to conclude
that b is bijection that preserves compatibility with colorings.

4.5 Simple graphs, ripping and sewing

A simple graph is a simple hypergraph that is also a graph. The vector species W of
simple graphs admits a Hopf monoid structure, the product and co-product are given by,
for I = S t T :

µS,T : W [S]⊗W [T ]→ W [I] ∆S,T : W [I]→ W [S]⊗W [T ]

w1 ⊗ w2 7→ w1 t w2 w 7→ w|S ⊗ w/S

where w|S is the sub-graph of w induced by S and w/S is the simple graph on T with an
edge between u and v if there is a path from u to v in which all the vertices which are
not ends are in S. These two operations are respectively called ripping out T and sewing
through S. A discrete simple graph is then a simple graph with no edges.

Definition 32 (Definition 23.1 in [1]). Let be w ∈ W [I]. A tube is a subset J ⊆ I such
that w|J is connected. The set of tubes of w is a building set called graphical building set
of w and which we denote tubes(w).

By Proposition 23.3 of [1] we know that w 7→ tubes(w) is a Hopf monoid morphism
between W and BS.

Given a rooted tree we call its direct sub-trees the sub-trees with roots the children of
the root.

Definition 33. Let be w ∈ W [I] a connected simple graph. We define the set of parti-
tioning trees of w inductively by the following:

• if I = {v}, then the unique partitioning of w is the graph with {v} as only vertex,

• else choose v ∈ I and a partitioning tree for each connected component of w|I\{v}.
The tree with root v and direct sub-trees these partitioning trees is then a parti-
tioning tree of w.

If w is not connected anymore, a partitioning forest of w is the disjoint union of parti-
tioning trees of each connected component of w.
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Corollary 34. Let I be a set and w ∈ W [I]. Then χWI (w)(n) is the number of colorings
of w with [n] such that every path with ends of the same color has a vertex of color strictly
greater than the colors of the ends. It is also the number of strictly compatible pairs of
partitioning forests and colorings with [n]. χWI (w)(−n) is the number of compatible pairs
of partitioning forests and colorings with [n]. In particular, χWI (w)(−1) is the number of
partitioning trees of w.

Proof. Since w 7→ tubes(w) is a Hopf monoid morphism, we know from what follows
Proposition 9 that χWI (w) = χBSI (tubes(w)). Hence from Corollary 31, χWI (w)(n) is the
number of strictly compatible pairs of skeletons of tubes(w) and colorings with [n] and
χWI (w)(−n) is the number of compatible pairs of skeletons of tubes(w) and colorings with
[n].

Furthermore since χBS is the restriction of χ to BS we have χWI (w) = χI(tubes(w))
so χWI (w)(n) is also the number of colorings of tubes(w) such that all edges have a unique
maximal vertex.

Given these two facts we now only need to show the two following points:

• A coloring I → [n] is a coloring of tubes(w) such that all edges have a unique
maximal vertex if and only if it is a coloring of w such that every path with ends of
the same color has a vertex of color strictly greater than the colors of the ends.

• The partitioning forests of w are exactly the skeletons of tubes(w).

We begin by the first assertion. Let S be a coloring of tubes(w) of interest and
v1, . . . , vk a path of w such that S(v1) = S(vk). Then w|{v1,...,vk} is connected and so
{v1, . . . , vk} is an edge of tubes(w). Since v1 and vk are of the same color, their color
can not be the maximal color. Hence there exists an i such that S(vi) > S(v1) = S(vk)
and S is a coloring of w of interest. Let now S be a coloring of w of interest and e
an edge of tubes(w) with two vertices v1 and v2 of the same color. Then, since w|e is
connected by definition, there exists a path in e from v1 to v2 and hence v3 such that
S(v3) > S(v1) = S(v2). Thus there can only be one vertex of maximal color in e and S is
a coloring of tubes(w) of interest.

To show that partitioning forests and skeletons are the same objects, just remark
that given a vertex v ∈ J , where w|J is a connected component of w, the connected
components of w|J\{v} are exactly the maximal connected sets of tubes(w) included in J
but not containing v.

4.6 Set partitions

Proposition 24.4 of [1] states that there exists an isomorphism between the Hopf monoid of
permutahedra and the Hopf monoid of set partitions. Furthermore, Propositions 17.3 and
17.4 of [1] give a combinatorial interpretation of the basic invariant of the Hopf monoid of
generalized permutahedra GP . The Hopf monoid of permutahedra being a sub-monoid of
a quotient of GP , it should be possible to deduce the result presented in this subsection
from the aforementioned propositions.
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A partition of I is a subset of P(I)\{∅} such that all elements, which are called parts,
are disjoints and their union equals I. The vector species Π of partitions admits a Hopf
monoid structure, the product and co-product are given by, for I = S t T :

µS,T : Π[S]⊗ Π[T ]→ Π[I] ∆S,T : Π[I]→ Π[S]⊗ Π[T ]

π1 ⊗ π2 7→ π1 t π2 π 7→ π|S ⊗ π|T ,

where for π = {π1, . . . , πl}, π|S is the partition of S obtained by taking the intersection
with S of each part πi and forgetting the empty parts. A discrete partition is then a
partition where all parts are singletons.

A cliquey graph is a disjoint union of cliques. By Proposition 24.2 of [1] we know that
π 7→ c(π) is a Hopf monoid from Π to W , where c(π) is the cliquey graph with a clique
on each part of π.

Corollary 35. Let I be a set and π = {π1, . . . , πl} ∈ Π[I]. Then χΠ
I (π)(n) = Πl

i=1pi!
(
n
pi

)
where pi = |πi|.

Proof. Since χΠ is multiplicative and π 7→ c(π) is a Hopf monoid morphism, we only need
to show that χWI (w)(n) = |I|!

(
n
|I|

)
where w is the clique on I. A coloring S of w is such

that every path with ends of the same color has a vertex of color strictly greater than the
colors of the ends if and only if all vertices are of different colors (because for each pair
v1, v2 of vertices v1, v2 is a path in w). Hence the number of such colorings is the number
of injections from I to [n]. This concludes the proof.

4.7 Paths

As for the previous subsection, Proposition 25.7 of [1] states that the Hopf monoid of sets
of paths is isomorphic to the Hopf monoid of associahedra which is a sub-monoid of a
quotient of GP . Hence, it should also be possible to deduce the result of this subsection
from [1].

A word on I is a total ordering of I. The paths on I are the words on I quotiented
by the relation w1 . . . w|I| ∼ w|I| . . . w1. A set of paths α of I is a partition (I1, . . . , Il) of
I with a path si on each part Ii and we will write α = s1| . . . |sl. The vector species F of
sets of paths admits a Hopf monoid structure, the product and co-product are given by,
for I = S t T :

µS,T : F [S]⊗ F [T ]→ F [I] ∆S,T : F [I]→ F [S]⊗ F [T ]

α1 ⊗ α2 7→ α1 t α2 α 7→ α|S ⊗ α/S

where if α = s1| . . . |sl, α|S = s1 ∩ S| . . . |sl ∩ S forgetting the empty parts and α/S is
the set of paths obtained by replacing each occurrence of an element of S in α by the
separation symbol |. A discrete set of paths is then a set of paths where all paths have
only one element.

Example 36. For I = {a, b, c, d, e, f, g} and S = {b, c, e} and T = {a, d, f, g}, we have:

∆S,T (bfcg|aed) = bc|e⊗ f |g|a|d.
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By Proposition 25.1 of [1] we know that α 7→ l(α) is a morphism of Hopf monoids
from F to W cop; where l(s1| . . . |sl) is the simple graph whose connected components are
the paths induced by s1, . . . , sl.

Example 37. For I = {a, b, c, d, e, f, g} and α = bfcg|aed, l(α) is the following graph:

b f c g

a e d

Corollary 38. Let I be a set and α be a path on I. Then χFI (α)(n) is the number of strictly
compatible pairs of binary trees with |I| vertices and colorings with [n] and χFI (α)(−n) is
the number of compatible pairs of binary trees with |I| vertices and colorings with [n]. In
particular χFI (α)(−1) = C|I| where Cn = 1

n+1

(
2n
n

)
is the n-th Catalan number.

Proof. First remark that by definition, χW
cop

= χW and so χFI (α)(n) = χWI (l(α))(n). Fix
one of the two total orderings of I induced by α so that we can consider the left and the
right of a vertex v of l(α). Then each vertex of l(α) is totally characterised by the number
of vertices on its left (and on its right) and hence the partitioning trees of l(α) are exactly
the binary trees with |I| vertices.

Concluding remarks

Let us end this paper by presenting some perspectives for future work. We plan to
generalize the results of this paper to all characters on the Hopf monoid of hypergraphs.
While Theorem 18 does generalize easily for characters with value in {0, 1}, the conditions
on the characters are slighlty more involved for Theorem 24 to hold.

Finally, an open question that appears interesting to us is to recover Theorem 24 using
the antipode formula given in [1]. We refer the reader to [7] where this has been done for
a different Hopf structure on hypergraphs.
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