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Flag-transitive non-symmetric 2-designs with (r, A) = 1
and exceptional groups of Lie type
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Abstract

This paper determined all pairs (D, G) where D is a non-symmetric 2-(v, k, \)
design with (r,A\) = 1 and G is the almost simple flag-transitive automorphism group
of D with an exceptional socle of Lie type. We prove that if 7' < G < Aut(T') where
T is an exceptional group of Lie type, then T" must be the Ree group or Suzuki group,
and there just five non-isomorphic designs D.
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1 Introduction

A 2-(v,k, \) design D is a pair (P,B), where P is a set of v points and B is a set of
k-subsets of P called blocks, such that any 2 points are contained in exactly A blocks. A
flag is an incident point-block pair («, B). An automorphism of D is a permutation of P
which leaves B invariant. The design is non-trivial if 2 < £ < v — 1 and non-symmetric
if v < b. All automorphisms of the design D form a group called the full automorphism
group of D, denoted by Aut(D). Let G < Aut(D), the design D is called point (block, flag)-
transitive if G acts transitively on the set of points (blocks, flags), and point-primitive if G
acts primitively on P. Note that a finite primitive group is almost simple if it is isomorphic

to a group G for which 7' = Inn(T) < G < Aut(T') for some non-abelian simple group 7.
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Let G < Aut(D), and r be the number of blocks incident with a given point. In [6],
P. Dembowski proved that if G is a flag-transitive automorphism group of a 2-design D
with (r,A\) = 1, then G is point-primitive. In 1988, P. H. Zieschang [32] proved that if D
is a 2-design with (r,\) = 1 and G < Aut(D) is flag transitive, then G must be of almost
simple or affine type. Such 2-designs have been studied in [1I, 2, 29| [31], where the socle of
(G is a sporadic, an alternating group or elementary abelian p-group, respectively. In this
paper, we continue to study the case that the socle of G is an exceptional simple group of

Lie type. We get the following:

Theorem 1 Let D = (P, B) be a non-symmetric 2-(v, k, \) design with (r,\) = 1 and G
an almost simple flag-transitive automorphism group of D with the exceptional socle T of

Lie type in characteristic p and q = p°. Let B be a block of D. Then one of the following
holds:

(1) T =2Gs(q) with ¢ = 3*"*1 > 27, and D is one of the following:

(i) a Ree unital with Gp = Za X Ls(q);

)
(ii) a2-(¢*+1,q,q— 1) design with Gg = Q1 : K;

(iii) a2-(¢*+1,q,q — 1) design with Gp = Q5 : K ;

(iv) a2-(¢* +1,¢% ¢* — 1) design with Gg = Q' : K,

where @ € Syls(T), and the definitions of Q1, Qo and K refer to Section 3.

(2) T = 2By(q) with ¢ = 2*"*1 > 8, and D is a 2-(¢* + 1,q,q — 1) design with G =
Z(Q) : K, where Q € Syly(T) and K =Z,y = F;,.

q

2 Preliminary results

We first give some preliminary results about designs and almost simple groups.

Lemma 2.1 ([29] Lemma 2.2]) For a 2-(v, k, \) design D, it is well known that
(1) bk =or;

(2) Mv—=1)=r(k-1);



(3) v< v <r?;

(4) if G < Aut(D) is flag-transitive and (r,\) = 1, then r | (|Gal,v — 1) and r | d, for

any non-trivial subdegree d of G.

Lemma 2.2 Assume that G and D satisfy the hypothesis of Theorem[1. Let o € P and
B € B. Then

(1) G=TG, and |G| = f|T| where f is a divisor of |Out(T)|;
(2) |G:T|=|Ga:To| = f;
(3) |Gpl| divides f|Tp|, and |Gap| divides f|Tup| for any flag (o, B).

Proof. Note that G is an almost simple primitive group by [5]. So (1) holds and (2)
follows from (1). Since <G, then |BT| divides |BY| and |(c, B)T| divides |(«, B)“|, hence
|Gp : Tg| divides f, and |Gap : Top| divides f, (3) holds. O

Lemma 2.3 ([0, 2.2.5]) Let D be a 2-(v, k, \) design. If D satisfiesr =k + X and A < 2,
then D is embedded in a symmetric 2-(v + k + X\, k + A\, \) design.

Lemma 2.4 ([6, 2.3.8]) Let D be a 2-(v,k, \) design and G < Aut(D). If G is 2-transitive
on points and (r,\) = 1, then G is flag transitive.

Lemma 2.5 Let A, B, C be subgroups of group G. If B < A, then
|A:B| > [(ANC): (BNC)|.

Lemma 2.6 ([I7]) Suppose that T is a simple group of Lie type in characteristic p and
acts on the set of cosets of a mazximal parabolic subgroup. Then T has a unique subdegree
which is a power of p except T is Lq(q), Q4.,(q) (m is odd) or Eg(q).

Lemma 2.7 [26] 1.6](Tits Lemma) If T is a simple group of Lie type in characteristic p,

then any proper subgroup of index prime to p is contained in a parabolic subgroup of T'.

In the following, for a positive integer n, n, denotes the p-part of n and n,y denotes the

p-part of n, i.e., n, = p' where p' | n but p'™ { n, and n, = n/n,.



Lemma 2.8 Assume that G and D satisfy the hypothesis of Theorem[l. Then |G| < |G4|?
and if G4 is a non-parabolic mazimal subgroup of G, then |G| < |Go||Gal2 and |T| <
|Out(T)]?| T ol

Proof. From Lemma 2.1] since r divides every non-trivial subdegree of G, then r divides
|G, |, and so |G| < |G,]>. If G, is not parabolic, then p divides v = |G : G,| by Lemma
2.7 Since r divides v — 1, (r,p) = 1 and so r divides |G,|y. It follows that r < |Galy,
and hence |G| < |G4||Gql5 by Lemma 21 Now by Lemma 2.2(2), we have that |T| <
Out(T)PIT I T2 0

Lemma 2.9 (|20, Theorem 2, Table II1]) IfT is a finite simple exceptional group of Lie type
such that T < G < Aut(T), and G, is a mazimal subgroup of G such that Ty = Soc(G,,)

1s not simple, then one of the following holds:
(1) G, is parabolic;
(2) G4 is of mazximal rank;
(3) Go = Ng(E), where E is an elementary abelian group given in [4, Theorem 1 (II)];
(4) T = Eg(q) with p > 5, and Ty is either As x Ag or As X La(q);

(5) To is as in Table[d

Table 1
T To
Fi(q) La(q) x Ga(q)(p > 2,9 > 3)
E§(q) Ls(q) x Ga(q), Us(q) x Ga(q)(q > 2)
Er(q) La(q) x La(q)(p > 3), La(q) x G2(q)(p > 2,q > 3),
La(q) x Fi(q)(q > 3),G2(q) x Sps(q)
Es(q) La(q) x L5(q)(p > 3), La(q) x Ga(q) x G2(q)(p > 2,9 > 3),
Ga(q) x Fi(q), La(q) x Ga(¢*)(p > 2,9 > 3)

Lemma 2.10 ([I9, Theorem 3]) Let T' be a finite simple exceptional group of Lie type,
with T < G < Aut(T). Assume G, is a mazimal subgroup of G and Soc(G,) = Ty(q) is a
simple group of Lie type over Fy(q > 2) such that Srank(T) < rank(Ty); assume also that
(T, Tp) is not (Eg,?As(5)) or (Eg,2Ds(3)). Then one of the following holds:
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(1) Ga is a subgroup of maximal rank;
(2) Ty is a subfield or twisted subgroup;
(3) T = Es(q) and Ty = C4(q)(q odd) or Fy(q).

Lemma 2.11 ([22] Theorem 1.2]) Let T' be a finite simple exceptional group of Lie type
such that T < G < Aut(T), and G, a mazimal subgroup of G with socle Ty = To(q) a
simple group of Lie type in characteristic p. Then if rank(Ty) < %rank(T), we have the

following bounds:
(1) if T = Fy(q), then |Gq| < 4¢* log, ¢;
(2) if T = Eg(q), then |G| < 4¢®log, q;
(3) if T = Ex(q), then |G| < 4¢*log, q;
(4) if T = Es(q), then |G| < 12¢° log, q.
In all cases, |Go| < 12|G|T log, q.

The following lemma gives a method to check the existence of the design with the

possible parameters.

Lemma 2.12 For the given parameters (v,b,r, k, ) and the group G, the conditions that
there exists a design D with such parameters satisfying G- which is flag-transitive and point
primitive is equivalent to the following four steps holding for some subgroup H of G with

index b and its orbit of size k:
(1) G has at least one subgroup H of order |G|/b;
(2) H has at least one orbit O of length k;
(3) the size of O% is b;

(4) the number of blocks incident with any two points is a constant.



When we run through all possibilities of H and its orbits with size k, then we found
all designs with such parameters and admitting G < Aut(D) is flag-transitive and point
primitive. This is the essentially strategy adopted in [29].

We now give some information about the Ree group 2Gs(q) with ¢ = 32! and its
subgroups, which from [8, [11], [I5] and would be used later.

Set m = 3" and so m? = 3¢q. The Ree group 2Gs(q) is generated by Q, K and T,
where @ is Sylow 3-subgroup of 2Gs(q), K = {diag(t™, t!=™ t?m=1 1 ¢1=2m ¢m=1 4=m) | ¢ €
F*} & Zg—1 and 72 = 1 such that 7 inverts K, and |*G2(q)| = (¢* + 1)¢*(¢ — 1).

Lemma 2.13 (1) ([I5]) 2Ga(q) is 2-transitive of degree ¢ + 1.
(2) ([7, p.252]) The stabilizer of one point is Q : K, and N2g,)(Q) = Q : K.

(3) ([MI, p.292]) The stabilizer K of two points is cyclic of order ¢ — 1 and the stabilizer

of three points is of order2.
(4) ([I1, p.292]) The Sylow 2-subgroup of 2Ga(q) is elementary abelian with order 8.

Lemma 2.14 ([8, Lemma 3.3] ) Let M < 2Gs(q) and M be maximal in 2Go(q). Then
either M is conjugate to Mg = 2Gy(3%) for some divisor { of 2n + 1, or M is conjugate to
one of the subgroups M; in the following table:

Table 2: The maximal subgroups of 2G»(q)

Group Structure Remarks
M, Q: K the normalizer of Q in *G5(q)
M, Zs X Lo(q) the centralizer of an involution in 2Gy(q)
M;s  (Z3 X Digy1y)2) : Zs the normalizer of a four-subgroup
My Ligym+1 = Lg the normalizer of Zgyp, 41
M Lig—m+1 : Lg the normalizer of Z,_,, 11

Moreover, we see that from [8], the Sylow 3-subgroup ) can be identified with the group

consisting of all triples (a, £, 7) from F, with multiplication:

(a1, Bi,m)(az, B2, 72) = (a1 + ag, f1 + B — a1ay’, 11 + 72 — ool — a5y + a1a2m+1)-



It is easy to check that (0,0,7)(0,5,0) = (0,58,7). Set @1 = {(0,0,7)|y € F,} and

Q2 =1{(0,8,0)|3 € F,}, then Q; = Q, = Z3"™".
For a group @, Z(Q), ®(Q), Q" denote the center, Frattini subgroup, and the derived

subgroup of @, respectively. Then Q' = ®(Q) = Q1 X Q2, Z(Q) = @1, and @' is an
elementary abelian 3-group. For any (a, 8,7) € Q and k € K,

(@, B,7)" = (ka, EH™B, k).

Lemma 2.15 ([8, [15]) Let Q, M, Q2, My and K as above, then

(1) the normalizer of any subgroup of Q is contained in M;;

(2) for any g € 2Ga(q), either Q9 = Q or Q' NQ = 1;

(3) Qo is a Sylow 3-subgroup of My and Ny, (Q2) = 2 x (Qy : (k?)) with (k) = K.
Lemma 2.16 (8, Lemma 3.2]) The following hold for the cyclic subgroup K :

(1) K is transitive on Q1 \ {1} acting by conjugation;

(2) K has two orbits (0,1,0)%, (0,—1,0)% on Qs \ {1} acting by conjugation.

From above lemmas, we have the following properties of the subgroups of 2Gs(q).

Lemma 2.17 If H < M, and (¢ —1) | |H|, then K < H.

Proof. Let p be a prime divisor of ¢ — 1. If P € Syl,(M;), then since (p,3) = 1 and
QN K =1, we have P € Syl,(K). Note that K is cyclic, the Sylow p-subgroup of K is
unique, and so the Sylow p-subgroup of M; is unique. On the other hand, if P € Syl,(H),
since H < M, then Py = PN H. Moreover, |Fy| = |P| implies that P = Py, < H. Since p
is arbitrary, all Sylow subgroups of K are contained in H, and so K < H. O

Corollary 1 Let H < M, and |H| = q(¢ —1). Then H = A : K where A is the Sylow
3-subgroup of H.

Proof. Since Q < M;, we have A = HNQ and A< H. By Lemma 217, K < H. Now
ANK=1,andso H=A: K. O



Lemma 2.18 Let Q3 be a Sylow 3-subgroup of My and Hy := Ny, (Q2). If Q2 < Q and
My, = Q : K, then the following hold:

(1) H2 = Qg : K and H2 S Ml,'

(2) for any H < My satisfying |H| = q(q— 1), there exists ¢ € My such that H = H§ and
H< M.

Proof. Clearly, (1) holds by Lemma 2.I5(1) and Corollary Il Let H < M, and |H| =
q(q—1). Note that My = Zy x Ly(q). Since H S Zs X Lo(q) and Hy < Zo X Lo(q), then by
the list of maximal subgroups of Ly(q), we know that H = Hy = Zy x ([q] : Z%). Let o
be an automorphism from Hy to H. Then QF < H since Q3 I Hy. Moreover, since q | |H],
the Sylow 3-subgroup of H is conjugate to ()2 in My and so Q@ = Q5 < H for c € M,. It
follows that

H < Na,(Q3) = N, (Q2)° = H.

Therefore H = HS.

Note that if Q¢ # @, then from Q5 < Q° and Lemma 2T5(1), we get H = Ny, (Q5) <
M¢, and so (2) holds.

Now, we prove that Q¢ # Q. If Q° = @, then Q5 < @, and so H < M;. By Corollary[I],
we have H = Q5 : K and Hy = @3 : K. Since Q2 <Q’, Q5<1Q’. Recall that Q' = Q1 X Qs is
an elementary abelian 3-group, so Q5NQ; # 1 or Q5N Qs # 1. Now suppose that (0, 5,0) €
Q5 N Qy, since Q5 N Qo < @9, we have (0,3,0)71 = (0,—3,0) € Q5 N Q. This, together
with K < H and K < Hy, implies (0,3,0)% U (0,—8,0)% = Q,\ {1} = Q5 \ {1}. Hence
Q5 = @9, a contradiction. Similarly, if Q5 N Q1 # 1, we have Q5 = @1, a contradiction. [

Lemma 2.19 Suppose that H < 2G5(q) and |H| = q(q — 1). Then H 1is conjugate to
H =Q,: K or Hh = Q) : K, and there are only two conjugacy classes of subgroups of
order q(q — 1) in 2Gs(q).

Proof. Let H < 2Gy(q) and |H| = q(¢ — 1). By Lemma 214 H must be contained in a
conjugacy of M; or M,. Firstly, if H9 ' < M, then by Corollary @M, H9 ' = A : K where
A is a Sylow 3-subgroup of H9 '. We now show that A < Q'. Assume that F is a maximal
subgroup of @ such that A < F. If AN @’ = 1, then by Lemma and the fact Q' < F,

we have |F : Al > |[FNQ' : ANQ'| = ¢3, and so |F| > ¢3, a contradiction. Therefore, there



exists an element (0, 8,7) € ANQ’, which implies that A\ {1} = (0, 3,7)* C Q"\ {1} and
hence A < Q'. It follows that ANQy # 1 or AN @y # 1. Similar to the proof of Lemma
I8, if ANQ, # 1, then A= Q, andso HY ' = Hy, and if ANQ, # 1, then A = Q5 and
so H ' = H,. Secondly, if H contained in a conjugacy of M,, then H is conjugate to Hy
by Lemma 2.18(2). O

Lemma 2.20 Let H < 2Go(q) and |H| = ¢*(q — 1). Then H is conjugate to Q' : K, and

there are only one conjugacy class of subgroups of order ¢*(q — 1) in 2Gs(q).

Proof. Since Q' char Q <M, so Q' : K is a subgroup of M, with order ¢*(¢—1). Suppose
that H < 2G(q) and |H| = ¢2(¢ — 1). By Lemma 214 we have H9 ' < M;. Similarly
as the proof of Corollary [ we get that H9 ' has the structure A : K where A is the
Sylow 3-subgroup of H9 '. Let F be a maximal subgroup of @ satisfying A < F. Since
|F: Al > |[FNQ;: ANQ|, we have |[AN Q;] > 1, which implies Q; = QF < AKX = A for
i=1,2. So Q' < A, and it follows that Q' = A and HY ' = Q' : K in M. O

Similarly, we have the following result on the Suzuki group ?Bs(q) by [9] and [7], p.250].

Lemma 2.21 Suppose that Q is the Sylow 2-subgroup of ?Ba(q) and My, = Q : K is the
normalizer of Q. Let H < ?By(q) and |H| = q(q — 1). Then H is conjugate to Z(Q) : K.

There exists a unique conjugacy class of subgroups of order q(q — 1) in 2Bs(q).

3 Proof of Theorem 1

3.1 T is the Ree group

Proposition 3.1 Suppose that G and D satisfy hypothesis of Theorem!d. Let B be a block.
If T =2Gy(q) with q = 3?", then D is the Ree unital or one of the following:

(1) Dis a2-(¢* +1,q,q— 1) design with Gg = Q1 : K or Q: K;
(2) Disa2-(*+1,¢*,¢*—1) withGg =Q'" : K.

This proposition will be proved into two steps. We first assume that there exists a design
satisfying the assumptions and obtain the possible parameters (v, b, r, k, A) in Lemma [3.1]

then prove the existence of the designs using Lemma 2.121



Lemma 3.1 Suppose that G and D satisfy the hypothesis of Theorem[D. If T = 2Gs(q) with
q= 3" then (v,b,1,k,A) = (°+1,¢*(¢*+1),¢%, ¢.q—1) or (¢’ +1,4(¢’+1),¢°, ¢°, ¢°—1)

or D is the Ree unital.

Proof. Let T, := G,NT. Since G is primitive on P, then T, is one of the cases in Lemma
214 by [13]. First, the cases that T, = Z3 X D(g41y2 and Zgimi1 : Zg are impossible
by Lemma 28 If T, = Zy x Ly(q), then v = ¢*(¢> — ¢+ 1) and (|Go N T|,v — 1) =
(q(¢®> = 1),¢* — ¢+ ¢* — 1) = ¢ — 1. But since r divides f(|G, N T|,v — 1), which is too
small to satisfy v < 72, Similarly, T, cannot be 2G4 (3).

We next assume that 7, = Q : K, and so v = ¢ + 1. Moreover, from [7, p.252], T
is 2-transitive on P, so T is flag-transitive by Lemma 2.4l Hence we may assume that
G =T =2G5(q). The equations in Lemma 2.1 show

b Av(v —1) _ AE(P+1)
RE—1)  kE—1)

then by the flag-transitivity of T', we have

T —Dk(k—1

iy = T = D=y

Let M be a maximal subgroup of 7" such that T < M. Then since || | |M| and ¢ > 27,
M must be M; or M, shown in Lemma [2.14]

If T < My, then k(k — 1) | A¢®>. Furthermore, since (r,\) = 1 and so A | (k — 1)
by Lemma 2.1)(2). Therefore A = k — 1, and it follows that r = v — 1 = ¢ and k | ¢>.
Note that M; is point stabilizer of 7" in this action. So there exists o such that M; = T,
and Tp < T,. However, the flag-transitivity of 7" implies & ¢ B. For any point v € B,

Typ < Toy. By Lemma 213 [T5,[ = ¢ —1, and so [T5| | (¢ —1). On the other hand, from
|BTV| = |T’y : T’yB| < |BG7| = |G-y : G’YB| =r = q3’

we have T,p = T, and so BTsv = B. Since the stabilizer of three points is of order 2
by Lemma 13| so the size of T,,-orbits acting on P\ {a, 7} is ¢ — 1 or (¢ — 1). This,
together with B>y = B and o ¢ B, implies that k — 1 = a(q;;) for an integer a. Recall
that k| ¢® and k <7, we get k= q or k = ¢* If k = ¢, then

b:qz(q3+1),r:q3,)\:q—1.
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If k = ¢?, we have
b:q(q3+1),7’:q3,)\:q2—1.

Now we deal with the case that Tz < M, by the similar method in [I2, Theorem 3.2].

If T is a solvable subgroup of My = Zs X Ls(q), then Tz must map into either Zs x Ay,
Zo % Dyyq or Zo % ([q] - Z =] ). Obviously, the former two cases are impossible. For the last
case, Tp < Zs X ([q] : Z%). Since T < My, by Lemma [2.18] this can be reduced to the
case Tp < M;.

If T is non-solvable, then it embeds in Zy x La(qy) with ¢f = ¢ = 3***1. The condition
that |Tz| divides |Zs x La(qo)| forces go = q and so T is isomorphic to Zy x Ly(q) or La(q).

If T = Zy X Ly(q), then Tg = My and so b = ¢*(¢*> — ¢ + 1). Hence, from Lemma 2.T]
we have k | g(q+1), ¢ | r and r | ¢3. Since k > 3, then the fact that the stabilizer of three
points is of order 2 implies that Tz cannot acting trivially on the block B. Moreover, since
g+ 1 is the smallest degree of any non-trivial action of Ls(q), we have k = @ +1>q+1.

If the design D is a linear space, then D is the Ree unital (see [12]) with parameters
(v.b,r K, A) = (¢* +1,¢°(¢" —q+1),¢° g+ 1,1)

and T is flag-transitive with the block stabilizer M.

If A > 1, we claim that A = k — 1. Clearly, A | (k—1) as (r,A\) = 1 by Lemma 2.1)(2). If
3| (k—1)and (k,3) =1, then since k | ¢(¢+ 1) and k£ > ¢+ 1, we have k = ¢ + 1 and so
A | ¢, which contradicts (r,\) = 1 as ¢* | r. Hence (k — 1,3) = 1. Moreover, (k — 1) | A\¢®
implies that (k —1) | A. So we have A =k — 1.

Let Ay, Asg,..., A; be the orbits of M,. Since M, is the block stabilizer of the Ree
unital, it has an orbit of size ¢ + 1. Without loss of generality, suppose that |A;| = ¢ + 1.
On the one hand, recall that k£ | g(¢ + 1) and T is flag transitive, Tp = M, has at least
one orbit with size less than ¢(qg + 1). On the other hand, we show that |A;| > ¢(¢+ 1) for
i # 1 in the following and we obtain the desired contradiction. Assume that § € P\ Ay,
we claim that (Ms)s is a 2-group. Let p be a prime divisor of |(Ms)s| and P be a Sylow
p-subgroup of (Ms)s. If p # 2 and p # 3, then since (Ms)s < Ty, we have p | (¢ — 1).
Obviously, since A is an orbit of My and P < (Ms)s, and so P acts invariantly on A; and
P\ A;. Note that the length of a P-orbit is either 1 or divided by p, so P fixes at least two
points in A;. Moreover, P also fixes §. Therefore P fixes at least three points of P, which
is impossible as the order of the stabilizer of three points is 2 by Lemma 2.13(3). If p = 3,
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since P fixes the point 6 € P\ A; and [P\ A;| = ¢ —¢, then P fixes at least three points in
P\ Ay, which is also impossible. As a result, (Ms)s is a 2-group. The fact that the Sylow
2-subgroup of T' is of order 8 implies that the sizes of the Msy-orbits A; (i # 1) are at least
@ and hence larger than ¢(q + 1), which contradicts the fact k£ | g(¢ + 1). Therefore,
T % Zo X Lo(q). Similarly, Tg 2 Ls(q). Thus T is not a non-solvable subgroup in M,. [J

Proof of Proposition 3.1. We use Lemma to prove the existence of the design
with parameters listed in Lemma 3.1

Assume that (v,b,7,k,A) = (¢*+1,¢*(¢* +1),¢%,¢,q — 1). Then from Lemma we
known that there are only two conjugacy classes of subgroups of order ¢(¢ — 1) in T and
H =Q,: K<T, and Hy = )5 : K < T, as representatives, respectively.

First, we consider the orbits of H;. Let v # « be the point fixed by K. Since K < Hy,
then K, = K < (H;), < T,, = K, which implies (H;), = T, and so [H; : (H1),| =
|vH1| = ¢. Tt is easy to see that |§71| # ¢ for any point & # «,~. Therefore, H; has only
one orbit of size q. Let By = 1.

Now we show that H; = Tj,, which implies |Bf| = b. Since H; < T, and By = vt =
yTB1 then |Hy : (Hy),| = [T : Typ,| = ¢. If K = (Hy), < T.,p,, then 3 divides |T,, : T,z |
for any 6 € By \ {7y} by Lemma 2.13|(3). It follows that 3 | (¢ — 1), a contradiction. As a
result, K = (H;), = T,p, and so H; = Tj,. Let By := B]. Therefore |B;| = |T : H,| = b.
Let B; be the set of blocks.

Finally, since T is 2-transitive on P, the number of blocks which incident with two
points is a constant. Hence D; = (P, By) is a 2-(¢* + 1,¢,q — 1) design admitting T as a
flag transitive automorphism group by Lemma 212

In a similar way, we get the design D, satisfying all hypothesis when the subgroup is
Hy; = @)y : K. Furthermore, since H; is not isomorphic to Hs, so D; is not isomorphic to
D, by 6, 1.2.17].

Similarly , if (v, 0,7, k,A\) = (> +1,q¢(¢* + 1), ¢ ¢* ¢* — 1), we can construct the design

with these parameters. O

3.2 T is the Suzuki group

Proposition 3.2 Suppose that G and D satisfy hypothesis of Theorem . If T = ?By(q)
with ¢ = 22" then D is a 2-(¢*+1, q, q—1) design with Gg = Z(Q) : K where Q € Syly(T)
and K = Z,_,.
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Proof. Suppose that T' = 2By (q) with order (¢*41)¢*(¢—1). Then |G| = f(¢*+1)¢*(¢—1)
where f divides |Out(T")|. By [9] or [27], the order of G, is one of the following:

(1) fa*(q—1);

(2) 2f(q—1);

(3) 4f(g+v/2q +1);

(4) f(gg +1)g5(q0 — 1) with g5 = q.

Since |G| < |G, ]?, we first have that |G| # 2f(q—1). If |Ga| = 4f(q+ /2¢+ 1), from
the inequality |G| < |G|, we get f(¢*+1)¢*(q—1) < (4f)3(2¢)?, and so ¢*>+q+1 < 43 f223.
Since f < |Out(T)| = e and g = p°, hence g +1 < 4323 and ¢ = 27, 2° or 2%. If ¢ = 27, then
|G| = 2121 = 1)(27T = 1) > f343(2" + 2' +1)3 = |G| where f = 7 or 1, a contradiction.
If ¢ = 2% then v = 198400 or 325376 for |G,| = 4f(q +v/2q+ 1) or 4f(q — /2q + 1)
respectively. By calculating (|G,|,v — 1), since r divides (|G,|,v — 1), we know that r is
too small. Similarly, we get ¢ # 23.

If |G| = f(g5 +1)g5(q0 — 1) with gf = ¢, then the inequality |G| < |G4||Gal? forces
m=3. Sov=(q5—qs+1)qi(q2 +qo+1). Since r divides (|Gq|y,v—1), then r < |G|y <
Fad < q)* Fromv <12, we get (q¢ — 2 + 1)gt(i2 + qo + 1) < 7% < ¢, which is impossible.

Now assume that |G,| = f¢?(¢—1). Then v = ¢*+1 and T is 2-transitive by [7], p.250].
Hence, T is flag-transitive by Lemma 2.4l Similarly, we have |Tg| = |—T£‘ = w. Let
M be the maximal subgroup of T such that 75 < M as in Lemma B.Il The fact that |Tg|
divides |M| implies that |M| = ¢*(q¢ — 1) and k(k — 1) divides Ag®. Similar to the proof of

Lemma [3.1], we have T, 5 = T, with the order ¢ — 1. Furthermore, we get
(0,b,7,k,0) = (¢ +1,9(¢* + 1), ¢°, 4,0 — 1).

Next we prove the existence of the design with above parameters by Lemma 2121
Firstly, from Lemma 2.21] we know that the Suzuki group has a unique conjugacy class of
subgroups of order ¢(q — 1), let H := Z(Q) : K < T, as the representative.

Note that K is the stabilizers of two points in ?By(q) by [11, p.187]. Let v # a be
the point fixed by K and B = . Then similar as the proof of Proposition 3.1l we get
that B is the only H-orbit of length ¢ and H = Tg. Let B = BT be the set of blocks.

Finally, since T is 2-transitive on P, the number of blocks which incident with two points is

13



a constant. Hence D = (P, B) is a 2-(¢*+1,¢q,q— 1) design admitting T" be a flag transitive
automorphism group by Lemma [2.12] U

3.3 T is one of the remaining families

In this subsection, let

T = {*Fu(q).’D4(q), G2(q), Fi(q), E§(q), Ex(q), Es(q)},

we will prove that there are no new design arise when T € T.

First, we show that G, cannot be a parabolic subgroup of G for any T € T.

Lemma 3.2 Suppose that G and D satisfy hypothesis of Theorem[. If T € T, then G,

cannot be a parabolic subgroup of G.

Proof. By Lemma 2.0 for all cases that T' € T \ Eg(q), there is a unique subdegree which
is a power of p, so 7 is a power of p by Lemma 2.T[(4). We can easily check that r is too
small and the condition 7? > v cannot be satisfied. Now, assume that T = E4(q). If G
contains a graph automorphism or G,N7T is P, or Py, then there is also a unique subdegree
which is a power of p and so r is too small again. If G, NT is P3 with type A; Ay, then
(@ +D(¢" +1)(¢" — (¢ + 1)(¢" +¢° +1)
(¢—1)
Since r divides (|G4|,v — 1), we have r | eq(q — 1)°(¢° — 1) and so r is too small to satisfy
r?>v. If G, NT is P, with type Ds, then

(+q¢"+1)("—1)
g—1 ’

From [16], we know that there exists two non-trivial subdegrees:

3 8 _ 8( 4 5_

g+ -1 @+ -1)
(¢—1) (¢—1)

Since (d,d') = q(q¢* + 1), we have r | ¢(¢* + 1) by Lemma 2.T)(4), which contradicts with

r? > 0. O

Let T1 = {Fi(q), E§(q), Ex(q), Es(q)}-

Lemma 3.3 Suppose that G and D satisfy the hypothesis of Theorem[dl. If T € Ty and G,

is mon-parabolic, then G, cannot be a mazximal subgroup of maximal rank.
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Proof. If GG, is non-parabolic and of maximal rank, then for any 7" € 77, we have a
complete list of T, := G, NT in [18, Tables 5.1-5.2]. All subgroups in [18, Table 5.2] and
some cases in [I8, Table 5.1] can be ruled out by the inequality |T'| < |[Out(T)[*|Ta||Tal} -
Since r divides (|G4|,v — 1), for the remaining cases we have that 7? < v, a contradiction.

For example, if T = Fy(q) with order ¢**(¢* — 1)(¢® — 1)(¢® — 1)(¢** — 1). Then T, is
one of the following: (1) 2.(La(q) x PSps(q)).2 (q odd); (2) d.Q(q); (3) d*.PQF (q).Ss; (4)

*Da(q)-3; (5) Spa(q®)-2 (q even); (6) (Spa(q) x Spa(q))-2(q even); (7) h.(Ls(q) x L§(q)).h.2,
with d = (2,¢—1) and h = (3,q — ).
If T, = 2.(L2(q) x PSps(q)).2 with ¢ odd, then

To) =q¢"(¢* = 1)%*(¢" = 1)(¢° = 1) and v=q¢"(¢"+1)(¢" + ¢+ 1)(¢° +1).

Since (¢ + 1) | v and (¢* 4+ ¢* + 1) | v, then (|G|, v — 1) | [Out(T)|(¢*> — 1)* and so
r? < ¢° < v, a contradiction.
If T, = 2.PQy(q) with ¢ odd, then

Tol =" (@ - 1)(¢* - 1)(* - 1)(¢*—1) and v=¢*(*+¢" +1).

Since ¢ | v, (¢* +¢*+1) |v,v—1=2 (mod ¢* — 1), we get r divides 2*|Out(T)|(¢* + 1)
and so r? < v, a contradiction.

Cases (3)-(6) can be ruled out similarly, and Case (7) cannot occur because of |T'| <
|Out(T) *| T || T3 - O

Lemma 3.4 Suppose that G and D satisfy the hypothesis of Theorem[d. If T € T; and G,
is non-parabolic, then Ty = Soc(G, N'T) is simple and Ty = Ty(qo) € Lie(p).

Proof. Assume that Ty = Soc(G, NT) is not simple. Then by Lemma 2.9 and Lemma
3.3l one of the following holds:

(1) Go = Ng(E), where E is an elementary abelian group given in [4, Theorem 1(II)];
(2) T = Eg(q) with p > 5, and Tj is either A5 x Ag or A5 x La(q);
(3) Tp is as in Table [

From [4, Theorem 1(II)], we check that all subgroups in Case (1) are local and too small
to satisty |T'| < |Out(T)[*|Ta||Tal? -
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The order of subgroup in Case (2) is too small.

For Case (3), since G, is not simple and not local by [4, Theorem 1], G, is of maximal
rank by [25, p.346], which has already been ruled out in Case (1). Therefore, Tj is simple.

Now assume that Ty = To(qo) € Lie(p). Then for all T') we find the possibilities of Tj
in [21, Table 1]. Some cases can be ruled out by the inequality |T| < [Out(T)[*|T,||Ta[> -
In each of the remaining cases, since r must divides (|G,|,v — 1), r is too small to satisfy
v < r?. For example, assume that T = Fy(q). If Ty & Lie(p), then according to [21, Table
1], it is one of the following: As_10, Lo(7), L2(8), La(13), Lo(17), L2(25), La(27), Ls(3),
Us(3), Us(2), Sps(2), % (2), *Da(2), Jo, Jo, Aui(p = 11), Ly(4)(p = 3), Li(3)(p = 2),
2By(8)(p = 5), My (p = 11). The possibilities of Ty such that |G| < |G,]* are Ag(q = 2),
Awl(g = 2), Sps(2)(q = 2), Q% (2)(q = 2,3), *Du(2)(q = 2,3), Jo(qg = 2), La(3)(q = 2).
However, since r | (|Gy|,v—1), we have r? < v for all these cases, which is a contradiction.[]

Lemma 3.5 Suppose that G and D satisfy the hypothesis of Theorem[D. If To = To(qo) is
a simple group of Lie type and G, is non-parabolic, then T & Ty.

Proof. First assume that T = Fy(q). If rank(7p) > irank(7), then by Lemma 210 and
Lemma 3.3, the only possible cases of G, NT satisfying |G| < |Ga|® are Fy(q2) and Fy(q3)
when ¢o > 2. If Go,NT = Fy(q2), then v = ¢*2(¢® + 1)(¢* + 1)(¢* + 1)(g+ 1) > ¢*. Since g,
q+1, ¢>+1 and ¢*+1 are factors of v, then r | 2e(q—1)*(¢* —1)* by r | (|Ga|,v—1), which
implies that 72 < v, a contradiction. If G, NT = F4(q%), since p | v, then r divides |G.|,,
which also implies 72 < v. When ¢y = 2, the subgroups Ty(2) with rank(T,) > jrank(T)
that satisfy |G| < |G.|* are A5(2), B3(2), Ba(2), C5(2), C4(2) or D5(2). But in each case,
| (|Gal,v — 1) forces r? < v, a contradiction. If rank(7Tp) < irank(T), then from Lemma
211, we have |G| < 4¢*° log, q. Looking at the orders of groups of Lie type, we see that
if |Go] < 4¢* log, q, then |G,|y < ¢'?, and so |G4]|Gal2 < |G|, contrary to Lemma 2.8

For T' = E(q), if rank(Ty) > irank(7), then when gy > 2, by Lemma 210 the only
possibilities are ES(q2), ES(q7), Ci(q) and Fy(q). In all these cases r are too small. When
qo = 2, the possibilities Ty(2) satisfying |G| < |G,|* with order dividing |E§(2)| are A5(2),
B4(2), C4(2), D5(2) and Dg(2). However, since r | (|G4|,v — 1), for all these cases we
obtain 7* < v, a contradiction. If rank(7p) < jrank(7), then from Lemma 2Tl we
have |G| < 4¢* log, q. By further check the orders of groups of Lie type, we see that
|Galy < ¢'7, and so |G4||Gal2 < |G, a contradiction.
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Assume that T' = Ex(q). If rank(Ty) < grank(T), then by Lemma 211 |G, [* < |G,
a contradiction. If rank(Tp) > irank(T), then when gy > 2, B by Lemma 210, the only
cases T'N G, satisfying |G| < |G,|? are Go NT = Ez(q+), where s = 2 or 3. But in all cases
we have r? < v. If gy = 2, then the possible subgroups such that |G| < |G4|® with order
dividing |E,(2)| are A§(2), AS(2), Bs(2), C5(2), D5(2) and Dg(2). However in all of these
cases, since 7 | (|Gq4|,v — 1) we have 72 < v, a contradiction.

Assume that T = Eg(q). If rank(7Tp) < srank(T), then by Lemma 2T we get |G, [* <
|G|, a contradiction. Therefore, rank(7p) > srank(T). If gy > 2, then Lemma 210 implies
G, NT = Eg(qi), with s = 2 or 3. However in both cases we get a small r with 7? < v,
a contradiction. If gy = 2, then rank(Xy) > 5. All subgroups satisfying |G,|> > |G|
are A§(2), B7(2), Bs(2), C7(2), Cs(2), D§(2) and D5(2). But for all these cases we have
r? < w. O

Lemma 3.6 If T = Gy(q) with ¢ = p° > 2, then G, cannot be a non-parabolic mazximal
subgroup of G.

Proof. Suppose that T' = Ga(q) with ¢ > 2 since G2(2)" = PSU;(3). All maximal
subgroups of G can be found in [13] for odd ¢ and in [3] for even g.

Assume that G, be a non-parabolic maximal subgroup of G. First we deal with the
case where G, NT = SL§(q).2 with e = . Then we have v = $¢*(¢* + €1). By Lemma 2T
and 25 Section 8] we conclude that r divides (113%1) for odd ¢ (cf. [25] Section 4, Case 1,
i = 1]) and r divides (¢* — €1) for even ¢ (cf. [25, Section 3, Case 8]). The case that ¢ odd
is ruled out by v < r2. If ¢ is even, then r = ¢ — €l. This, together with k& < r, implies
k—1= )\qggd, and so A = 1 or A = 2. From the result of [25] we known that A # 1. If
A\ = 2, then since k < r, we have e = —. It follows that k = ¢ — 1 and » = ¢* + 1. This is
impossible by Lemma 23] and [24], Theorem 1].

Now, if G, N'T = 2Gy(q) with ¢ = 3>t > 27, then v = ¢3(q + 1)(¢*> — 1). Note that
q|vand (¢?—1,v—1) =1, we have (|G,|,v—1) | e(¢*> —q+1), and it follows that 7? < v,

a contradiction.
The cases that G, N T is Ga(qo) or (SLa(q) 0 SLa(q)) - 2 can be ruled out similarly.
Using the inequality |G| < |G4|® and the fact that r divides (|G4|,v — 1), we find r too

small to satisfy 72 > v for every other maximal subgroup. U
Lemma 3.7 If T =2Fy(q), then G, cannot be a non-parabolic maximal subgroup.
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Proof. Let T' = 2F,(q) and G, be a non-parabolic maximal subgroup of G. Then from
the list of the maximal subgroups of G in [23], there are no subgroups G,, satisfying |G| <
|Ga||Ga|12),, except for the case ¢ = 2. For the case ¢ = 2, G, NT is L3(3).2 or Ly(25).

However in each case, since r divides (|G|,v — 1), and so r is too small. O

Lemma 3.8 If T =3Dy,(q), then G, cannot be a non-parabolic maximal subgroup.

Proof. If T =3D4(q) and G, is a non-parabolic maximal subgroup of G, then all possibil-
ities of G, NT are listed in [I4]. However, for all cases, the fact that r divide (|G,|,v — 1)
give a small r which cannot satisfy the condition v < 2. For example, if G, NT is Ga(q)
of order ¢%(¢*> — 1)(¢% — 1), then v = ¢®(¢® + ¢* +1). Since ¢ | v and (¢* + ¢* + 1) | v, then
r | 3e(q* — 1)%, which contradicts with v < r2. O

Lemma 3.9 Suppose that G and D satisfy the hypothesis of Theoremdl. If the socle T € T,

then G, cannot be a non-parabolic mazximal subgroup.

Proof. It is follows from Lemmas B.3-3.8 O
Proof of Theorem [II Now Theorem [Ilis an immediate consequence of Propositions
3.IH3.2 and of Lemmas and 3.0
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