Flag-transitive non-symmetric 2-designs with $(r, \lambda) = 1$ and exceptional groups of Lie type

Yongli Zhang, Shenglin Zhou*

School of Mathematics, South China University of Technology, Guangzhou 510641, P.R. China

Abstract

This paper determined all pairs (\mathcal{D}, G) where \mathcal{D} is a non-symmetric 2- (v, k, λ) design with $(r, \lambda) = 1$ and G is the almost simple flag-transitive automorphism group of \mathcal{D} with an exceptional socle of Lie type. We prove that if $T \subseteq G \subseteq Aut(T)$ where T is an exceptional group of Lie type, then T must be the Ree group or Suzuki group, and there just five non-isomorphic designs \mathcal{D} .

Mathematics Subject Classification (2010): 05B05, 05B25, 20B25

Keywords: 2-design; flag-transitive; exceptional group of Lie type

1 Introduction

A 2- (v, k, λ) design \mathcal{D} is a pair $(\mathcal{P}, \mathcal{B})$, where \mathcal{P} is a set of v points and \mathcal{B} is a set of k-subsets of \mathcal{P} called blocks, such that any 2 points are contained in exactly λ blocks. A flag is an incident point-block pair (α, B) . An automorphism of \mathcal{D} is a permutation of \mathcal{P} which leaves \mathcal{B} invariant. The design is non-trivial if 2 < k < v - 1 and non-symmetric if v < b. All automorphisms of the design \mathcal{D} form a group called the full automorphism group of \mathcal{D} , denoted by $Aut(\mathcal{D})$. Let $G \leq Aut(\mathcal{D})$, the design \mathcal{D} is called point (block, flag)-transitive if G acts transitively on the set of points (blocks, flags), and point-primitive if G acts primitively on \mathcal{P} . Note that a finite primitive group is almost simple if it is isomorphic to a group G for which $T \cong Inn(T) \leq G \leq Aut(T)$ for some non-abelian simple group T.

^{*}Corresponding author. This work is supported by the National Natural Science Foundation of China (Grant No.11871224) and the Natural Science Foundation of Guangdong Province (Grant No. 2017A030313001). slzhou@scut.edu.cn

Let $G \leq Aut(\mathcal{D})$, and r be the number of blocks incident with a given point. In [6], P. Dembowski proved that if G is a flag-transitive automorphism group of a 2-design \mathcal{D} with $(r, \lambda) = 1$, then G is point-primitive. In 1988, P. H. Zieschang [32] proved that if \mathcal{D} is a 2-design with $(r, \lambda) = 1$ and $G \leq Aut(\mathcal{D})$ is flag transitive, then G must be of almost simple or affine type. Such 2-designs have been studied in [1, 2, 29, 31], where the socle of G is a sporadic, an alternating group or elementary abelian p-group, respectively. In this paper, we continue to study the case that the socle of G is an exceptional simple group of Lie type. We get the following:

Theorem 1 Let $\mathcal{D} = (\mathcal{P}, \mathcal{B})$ be a non-symmetric 2- (v, k, λ) design with $(r, \lambda) = 1$ and G an almost simple flag-transitive automorphism group of \mathcal{D} with the exceptional socle T of Lie type in characteristic p and $q = p^e$. Let B be a block of \mathcal{D} . Then one of the following holds:

- (1) $T = {}^2G_2(q)$ with $q = 3^{2n+1} \ge 27$, and \mathcal{D} is one of the following:
 - (i) a Ree unital with $G_B = \mathbb{Z}_2 \times L_2(q)$;
 - (ii) $a \ 2 (q^3 + 1, q, q 1) \ design \ with \ G_B = Q_1 : K;$
 - (iii) $a \ 2 (q^3 + 1, q, q 1)$ design with $G_B = Q_2 : K$;
 - (iv) $a \ 2 (q^3 + 1, q^2, q^2 1)$ design with $G_B = Q' : K$,

where $Q \in Syl_3(T)$, and the definitions of Q_1, Q_2 and K refer to Section 3.

(2) $T = {}^{2}B_{2}(q)$ with $q = 2^{2n+1} \geq 8$, and \mathcal{D} is a 2- $(q^{2} + 1, q, q - 1)$ design with $G_{B} = Z(Q) : K$, where $Q \in Syl_{2}(T)$ and $K = \mathbb{Z}_{q-1} \cong \mathbb{F}_{q}^{*}$.

2 Preliminary results

We first give some preliminary results about designs and almost simple groups.

Lemma 2.1 ([29, Lemma 2.2]) For a 2- (v, k, λ) design \mathcal{D} , it is well known that

- (1) bk = vr;
- (2) $\lambda(v-1) = r(k-1);$

- (3) $v \le \lambda v < r^2$;
- (4) if $G \leq Aut(\mathcal{D})$ is flag-transitive and $(r, \lambda) = 1$, then $r \mid (|G_{\alpha}|, v 1)$ and $r \mid d$, for any non-trivial subdegree d of G.

Lemma 2.2 Assume that G and \mathcal{D} satisfy the hypothesis of Theorem 1. Let $\alpha \in \mathcal{P}$ and $B \in \mathcal{B}$. Then

- (1) $G = TG_{\alpha}$ and |G| = f|T| where f is a divisor of |Out(T)|;
- (2) $|G:T| = |G_{\alpha}:T_{\alpha}| = f;$
- (3) $|G_B|$ divides $f|T_B|$, and $|G_{\alpha B}|$ divides $f|T_{\alpha B}|$ for any flag (α, B) .

Proof. Note that G is an almost simple primitive group by [5]. So (1) holds and (2) follows from (1). Since $T \subseteq G$, then $|B^T|$ divides $|B^G|$ and $|(\alpha, B)^T|$ divides $|(\alpha, B)^G|$, hence $|G_B: T_B|$ divides f, and $|G_{\alpha B}: T_{\alpha B}|$ divides f, (3) holds.

Lemma 2.3 ([6, 2.2.5]) Let \mathcal{D} be a 2-(v, k, λ) design. If \mathcal{D} satisfies $r = k + \lambda$ and $\lambda \leq 2$, then \mathcal{D} is embedded in a symmetric 2-($v + k + \lambda, k + \lambda, \lambda$) design.

Lemma 2.4 ([6, 2.3.8]) Let \mathcal{D} be a 2-(v, k, λ) design and $G \leq Aut(\mathcal{D})$. If G is 2-transitive on points and $(r, \lambda) = 1$, then G is flag transitive.

Lemma 2.5 Let A, B, C be subgroups of group G. If $B \leq A$, then

$$|A:B| \geq |(A \cap C):(B \cap C)|.$$

Lemma 2.6 ([17]) Suppose that T is a simple group of Lie type in characteristic p and acts on the set of cosets of a maximal parabolic subgroup. Then T has a unique subdegree which is a power of p except T is $L_d(q)$, $\Omega_{2m}^+(q)$ (m is odd) or $E_6(q)$.

Lemma 2.7 [26, 1.6] (Tits Lemma) If T is a simple group of Lie type in characteristic p, then any proper subgroup of index prime to p is contained in a parabolic subgroup of T.

In the following, for a positive integer n, n_p denotes the p-part of n and $n_{p'}$ denotes the p'-part of n, i.e., $n_p = p^t$ where $p^t \mid n$ but $p^{t+1} \nmid n$, and $n_{p'} = n/n_p$.

Lemma 2.8 Assume that G and \mathcal{D} satisfy the hypothesis of Theorem 1. Then $|G| < |G_{\alpha}|^3$ and if G_{α} is a non-parabolic maximal subgroup of G, then $|G| < |G_{\alpha}||G_{\alpha}||^2_{p'}$ and $|T| < |Out(T)|^2|T_{\alpha}||T_{\alpha}||^2_{p'}$.

Proof. From Lemma 2.1, since r divides every non-trivial subdegree of G, then r divides $|G_{\alpha}|$, and so $|G| < |G_{\alpha}|^3$. If G_{α} is not parabolic, then p divides $v = |G: G_{\alpha}|$ by Lemma 2.7. Since r divides v - 1, (r, p) = 1 and so r divides $|G_{\alpha}|_{p'}$. It follows that $r < |G_{\alpha}|_{p'}$, and hence $|G| < |G_{\alpha}||G_{\alpha}||_{p'}^2$ by Lemma 2.1. Now by Lemma 2.2(2), we have that $|T| < |Out(T)|^2 |T_{\alpha}||T_{\alpha}||_{p'}^2$.

Lemma 2.9 ([20, Theorem 2, Table III]) If T is a finite simple exceptional group of Lie type such that $T \leq G \leq Aut(T)$, and G_{α} is a maximal subgroup of G such that $T_0 = Soc(G_{\alpha})$ is not simple, then one of the following holds:

- (1) G_{α} is parabolic;
- (2) G_{α} is of maximal rank;
- (3) $G_{\alpha} = N_G(E)$, where E is an elementary abelian group given in [4, Theorem 1 (II)];
- (4) $T = E_8(q)$ with p > 5, and T_0 is either $A_5 \times A_6$ or $A_5 \times L_2(q)$;
- (5) T_0 is as in Table 1.

Table 1

\overline{T}	T_0
$F_4(q)$	$L_2(q) \times G_2(q) (p > 2, q > 3)$
$E_6^{\epsilon}(q)$	$L_3(q) \times G_2(q), U_3(q) \times G_2(q) (q > 2)$
$E_7(q)$	$L_2(q) \times L_2(q)(p > 3), L_2(q) \times G_2(q)(p > 2, q > 3),$
	$L_2(q) \times F_4(q)(q > 3), G_2(q) \times Sp_6(q)$
$E_8(q)$	$L_2(q) \times L_3^{\epsilon}(q)(p > 3), L_2(q) \times G_2(q) \times G_2(q)(p > 2, q > 3),$
	$G_2(q) \times F_4(q), L_2(q) \times G_2(q^2) (p > 2, q > 3)$

Lemma 2.10 ([19, Theorem 3]) Let T be a finite simple exceptional group of Lie type, with $T \leq G \leq Aut(T)$. Assume G_{α} is a maximal subgroup of G and $Soc(G_{\alpha}) = T_0(q)$ is a simple group of Lie type over $\mathbb{F}_q(q > 2)$ such that $\frac{1}{2}rank(T) < rank(T_0)$; assume also that (T, T_0) is not $(E_8, {}^2A_5(5))$ or $(E_8, {}^2D_5(3))$. Then one of the following holds:

- (1) G_{α} is a subgroup of maximal rank;
- (2) T_0 is a subfield or twisted subgroup;
- (3) $T = E_6(q)$ and $T_0 = C_4(q)(q \text{ odd})$ or $F_4(q)$.

Lemma 2.11 ([22, Theorem 1.2]) Let T be a finite simple exceptional group of Lie type such that $T \leq G \leq Aut(T)$, and G_{α} a maximal subgroup of G with socle $T_0 = T_0(q)$ a simple group of Lie type in characteristic p. Then if $rank(T_0) \leq \frac{1}{2}rank(T)$, we have the following bounds:

(1) if
$$T = F_4(q)$$
, then $|G_{\alpha}| < 4q^{20} \log_p q$;

(2) if
$$T = E_6^{\epsilon}(q)$$
, then $|G_{\alpha}| < 4q^{28} \log_p q$;

(3) if
$$T = E_7(q)$$
, then $|G_{\alpha}| < 4q^{30} \log_p q$;

(4) if
$$T = E_8(q)$$
, then $|G_{\alpha}| < 12q^{56} \log_p q$.

In all cases, $|G_{\alpha}| < 12|G|^{\frac{5}{13}} \log_p q$.

The following lemma gives a method to check the existence of the design with the possible parameters.

Lemma 2.12 For the given parameters (v, b, r, k, λ) and the group G, the conditions that there exists a design \mathcal{D} with such parameters satisfying G which is flag-transitive and point primitive is equivalent to the following four steps holding for some subgroup H of G with index b and its orbit of size k:

- (1) G has at least one subgroup H of order |G|/b;
- (2) H has at least one orbit O of length k;
- (3) the size of O^G is b;
- (4) the number of blocks incident with any two points is a constant.

When we run through all possibilities of H and its orbits with size k, then we found all designs with such parameters and admitting $G \leq Aut(\mathcal{D})$ is flag-transitive and point primitive. This is the essentially strategy adopted in [29].

We now give some information about the Ree group ${}^{2}G_{2}(q)$ with $q=3^{2n+1}$ and its subgroups, which from [8, 11, 15] and would be used later.

Set $m=3^{n+1}$, and so $m^2=3q$. The Ree group ${}^2G_2(q)$ is generated by Q,K and τ , where Q is Sylow 3-subgroup of ${}^2G_2(q)$, $K=\{diag(t^m,t^{1-m},t^{2m-1},1,t^{1-2m},t^{m-1},t^{-m}) \mid t \in \mathbb{F}_q^*\} \cong \mathbb{Z}_{q-1}$ and $\tau^2=1$ such that τ inverts K, and $|{}^2G_2(q)|=(q^3+1)q^3(q-1)$.

Lemma 2.13 (1) ([15]) ${}^{2}G_{2}(q)$ is 2-transitive of degree $q^{3} + 1$.

- (2) ([7, p.252]) The stabilizer of one point is Q: K, and $N_{2G_2(q)}(Q) = Q: K$.
- (3) ([11, p.292]) The stabilizer K of two points is cyclic of order q-1 and the stabilizer of three points is of order2.
- (4) ([11, p.292]) The Sylow 2-subgroup of ${}^{2}G_{2}(q)$ is elementary abelian with order 8.

Lemma 2.14 ([8, Lemma 3.3]) Let $M \leq {}^2G_2(q)$ and M be maximal in ${}^2G_2(q)$. Then either M is conjugate to $M_6 := {}^2G_2(3^{\ell})$ for some divisor ℓ of 2n + 1, or M is conjugate to one of the subgroups M_i in the following table:

Group	Structure	Remarks
$\overline{M_1}$	Q:K	the normalizer of Q in ${}^2G_2(q)$
M_2	$\mathbb{Z}_2 \times L_2(q)$	the centralizer of an involution in ${}^2G_2(q)$
M_3	$(\mathbb{Z}_2^2 \times D_{(q+1)/2}) : \mathbb{Z}_3$	the normalizer of a four-subgroup
M_4	$\mathbb{Z}_{q+m+1}:\mathbb{Z}_6$	the normalizer of \mathbb{Z}_{q+m+1}
M_5	$\mathbb{Z}_{q-m+1}:\mathbb{Z}_6$	the normalizer of \mathbb{Z}_{q-m+1}

Table 2: The maximal subgroups of ${}^{2}G_{2}(q)$

Moreover, we see that from [8], the Sylow 3-subgroup Q can be identified with the group consisting of all triples (α, β, γ) from \mathbb{F}_q with multiplication:

$$(\alpha_1, \beta_1, \gamma_1)(\alpha_2, \beta_2, \gamma_2) = (\alpha_1 + \alpha_2, \beta_1 + \beta_2 - \alpha_1 \alpha_2^m, \gamma_1 + \gamma_2 - \alpha_1^m \alpha_2^m - \alpha_2 \beta_1 + \alpha_1 \alpha_2^{m+1}).$$

It is easy to check that $(0,0,\gamma)(0,\beta,0)=(0,\beta,\gamma)$. Set $Q_1=\{(0,0,\gamma)|\gamma\in\mathbb{F}_q\}$ and $Q_2=\{(0,\beta,0)|\beta\in\mathbb{F}_q\}$, then $Q_1\cong Q_2\cong\mathbb{Z}_3^{2n+1}$.

For a group Q, Z(Q), $\Phi(Q)$, Q' denote the center, Frattini subgroup, and the derived subgroup of Q, respectively. Then $Q' = \Phi(Q) = Q_1 \times Q_2$, $Z(Q) = Q_1$, and Q' is an elementary abelian 3-group. For any $(\alpha, \beta, \gamma) \in Q$ and $k \in K$,

$$(\alpha, \beta, \gamma)^k = (k\alpha, k^{1+m}\beta, k^{2+m}\gamma).$$

Lemma 2.15 ([8, 15]) Let Q, M, Q_2 , M_2 and K as above, then

- (1) the normalizer of any subgroup of Q is contained in M_1 ;
- (2) for any $q \in {}^2G_2(q)$, either $Q^g = Q$ or $Q^g \cap Q = 1$;
- (3) Q_2 is a Sylow 3-subgroup of M_2 and $N_{M_2}(Q_2) = 2 \times (Q_2 : \langle k^2 \rangle)$ with $\langle k \rangle = K$.

Lemma 2.16 ([8, Lemma 3.2]) The following hold for the cyclic subgroup K:

- (1) K is transitive on $Q_1 \setminus \{1\}$ acting by conjugation;
- (2) K has two orbits $(0,1,0)^K$, $(0,-1,0)^K$ on $Q_2 \setminus \{1\}$ acting by conjugation.

From above lemmas, we have the following properties of the subgroups of ${}^{2}G_{2}(q)$.

Lemma 2.17 If $H \leq M_1$ and (q-1) | |H|, then $K \leq H$.

Proof. Let p be a prime divisor of q-1. If $P \in Syl_p(M_1)$, then since (p,3)=1 and $Q \cap K=1$, we have $P \in Syl_p(K)$. Note that K is cyclic, the Sylow p-subgroup of K is unique, and so the Sylow p-subgroup of M_1 is unique. On the other hand, if $P_0 \in Syl_p(H)$, since $H \leq M_1$, then $P_0 = P \cap H$. Moreover, $|P_0| = |P|$ implies that $P = P_0 \leq H$. Since p is arbitrary, all Sylow subgroups of K are contained in H, and so $K \leq H$.

Corollary 1 Let $H \leq M_1$ and |H| = q(q-1). Then H = A : K where A is the Sylow 3-subgroup of H.

Proof. Since $Q \subseteq M_1$, we have $A = H \cap Q$ and $A \subseteq H$. By Lemma 2.17, $K \subseteq H$. Now $A \cap K = 1$, and so H = A : K.

Lemma 2.18 Let Q_2 be a Sylow 3-subgroup of M_2 and $H_2 := N_{M_2}(Q_2)$. If $Q_2 \le Q$ and $M_1 = Q : K$, then the following hold:

- (1) $H_2 = Q_2 : K \text{ and } H_2 \leq M_1;$
- (2) for any $H \leq M_2$ satisfying |H| = q(q-1), there exists $c \in M_2$ such that $H = H_2^c$ and $H \leq M_1^c$.

Proof. Clearly, (1) holds by Lemma 2.15(1) and Corollary 1. Let $H \leq M_2$ and |H| = q(q-1). Note that $M_2 \cong \mathbb{Z}_2 \times L_2(q)$. Since $H \lesssim \mathbb{Z}_2 \times L_2(q)$ and $H_2 \lesssim \mathbb{Z}_2 \times L_2(q)$, then by the list of maximal subgroups of $L_2(q)$, we know that $H \cong H_2 \cong \mathbb{Z}_2 \times ([q] : Z_{\frac{q-1}{2}})$. Let σ be an automorphism from H_2 to H. Then $Q_2^{\sigma} \subseteq H$ since $Q_2 \subseteq H_2$. Moreover, since $q \mid |H|$, the Sylow 3-subgroup of H is conjugate to Q_2 in M_2 and so $Q_2^{\sigma} = Q_2^{c} \subseteq H$ for $c \in M_2$. It follows that

$$H \le N_{M_2}(Q_2^c) = N_{M_2}(Q_2)^c = H_2^c.$$

Therefore $H = H_2^c$.

Note that if $Q^c \neq Q$, then from $Q_2^c \leq Q^c$ and Lemma 2.15(1), we get $H = N_{M_2}(Q_2^c) \leq M_1^c$, and so (2) holds.

Now, we prove that $Q^c \neq Q$. If $Q^c = Q$, then $Q_2^c \leq Q$, and so $H \leq M_1$. By Corollary 1, we have $H = Q_2^c : K$ and $H_2 = Q_2 : K$. Since $Q_2 \leq Q'$, $Q_2^c \leq Q'$. Recall that $Q' = Q_1 \times Q_2$ is an elementary abelian 3-group, so $Q_2^c \cap Q_1 \neq 1$ or $Q_2^c \cap Q_2 \neq 1$. Now suppose that $(0, \beta, 0) \in Q_2^c \cap Q_2$, since $Q_2^c \cap Q_2 \leq Q_2$, we have $(0, \beta, 0)^{-1} = (0, -\beta, 0) \in Q_2^c \cap Q_2$. This, together with $K \leq H$ and $K \leq H_2$, implies $(0, \beta, 0)^K \cup (0, -\beta, 0)^K = Q_2 \setminus \{1\} = Q_2^c \setminus \{1\}$. Hence $Q_2^c = Q_2$, a contradiction. Similarly, if $Q_2^c \cap Q_1 \neq 1$, we have $Q_2^c = Q_1$, a contradiction. \square

Lemma 2.19 Suppose that $H \leq {}^2G_2(q)$ and |H| = q(q-1). Then H is conjugate to $H_1 = Q_1 : K$ or $H_2 = Q_2 : K$, and there are only two conjugacy classes of subgroups of order q(q-1) in ${}^2G_2(q)$.

Proof. Let $H leq {}^2G_2(q)$ and |H| = q(q-1). By Lemma 2.14, H must be contained in a conjugacy of M_1 or M_2 . Firstly, if $H^{g^{-1}} leq M_1$, then by Corollary 1, $H^{g^{-1}} = A : K$ where A is a Sylow 3-subgroup of $H^{g^{-1}}$. We now show that A leq Q'. Assume that F is a maximal subgroup of Q such that A leq F. If $A \cap Q' = 1$, then by Lemma 2.5 and the fact Q' leq F, we have $|F:A| leq |F \cap Q': A \cap Q'| = q^2$, and so $|F| leq q^3$, a contradiction. Therefore, there

exists an element $(0, \beta, \gamma) \in A \cap Q'$, which implies that $A \setminus \{1\} = (0, \beta, \gamma)^K \subseteq Q' \setminus \{1\}$ and hence $A \leq Q'$. It follows that $A \cap Q_1 \neq 1$ or $A \cap Q_2 \neq 1$. Similar to the proof of Lemma 2.18, if $A \cap Q_1 \neq 1$, then $A = Q_1$ and so $H^{g^{-1}} = H_1$, and if $A \cap Q_2 \neq 1$, then $A = Q_2$ and so $H^{g^{-1}} = H_2$. Secondly, if H contained in a conjugacy of M_2 , then H is conjugate to H_2 by Lemma 2.18(2).

Lemma 2.20 Let $H \leq {}^2G_2(q)$ and $|H| = q^2(q-1)$. Then H is conjugate to Q': K, and there are only one conjugacy class of subgroups of order $q^2(q-1)$ in ${}^2G_2(q)$.

Proof. Since Q' char $Q \subseteq M_1$, so Q' : K is a subgroup of M_1 with order $q^2(q-1)$. Suppose that $H \subseteq {}^2G_2(q)$ and $|H| = q^2(q-1)$. By Lemma 2.14, we have $H^{g^{-1}} \subseteq M_1$. Similarly as the proof of Corollary 1, we get that $H^{g^{-1}}$ has the structure A : K where A is the Sylow 3-subgroup of $H^{g^{-1}}$. Let F be a maximal subgroup of Q satisfying $A \subseteq F$. Since $|F : A| \ge |F \cap Q_i : A \cap Q_i|$, we have $|A \cap Q_i| > 1$, which implies $Q_i = Q_i^K \subseteq A^K = A$ for i = 1, 2. So $Q' \subseteq A$, and it follows that Q' = A and $H^{g^{-1}} = Q' : K$ in M_1 .

Similarly, we have the following result on the Suzuki group ${}^{2}B_{2}(q)$ by [9] and [7, p.250].

Lemma 2.21 Suppose that Q is the Sylow 2-subgroup of ${}^{2}B_{2}(q)$ and $M_{1} = Q : K$ is the normalizer of Q. Let $H \leq {}^{2}B_{2}(q)$ and |H| = q(q-1). Then H is conjugate to Z(Q) : K. There exists a unique conjugacy class of subgroups of order q(q-1) in ${}^{2}B_{2}(q)$.

3 Proof of Theorem 1

3.1 T is the Ree group

Proposition 3.1 Suppose that G and \mathcal{D} satisfy hypothesis of Theorem 1. Let B be a block. If $T = {}^2G_2(q)$ with $q = 3^{2n+1}$, then \mathcal{D} is the Ree unital or one of the following:

- (1) \mathcal{D} is a 2- $(q^3 + 1, q, q 1)$ design with $G_B = Q_1 : K$ or $Q_2 : K$;
- (2) \mathcal{D} is a 2- (q^3+1, q^2, q^2-1) with $G_B=Q': K$.

This proposition will be proved into two steps. We first assume that there exists a design satisfying the assumptions and obtain the possible parameters (v, b, r, k, λ) in Lemma 3.1, then prove the existence of the designs using Lemma 2.12.

Lemma 3.1 Suppose that G and \mathcal{D} satisfy the hypothesis of Theorem 1. If $T = {}^2G_2(q)$ with $q = 3^{2n+1}$, then $(v, b, r, k, \lambda) = (q^3+1, q^2(q^3+1), q^3, q, q-1)$ or $(q^3+1, q(q^3+1), q^3, q^2, q^2-1)$ or \mathcal{D} is the Ree unital.

Proof. Let $T_{\alpha} := G_{\alpha} \cap T$. Since G is primitive on \mathcal{P} , then T_{α} is one of the cases in Lemma 2.14 by [13]. First, the cases that $T_{\alpha} = \mathbb{Z}_2^2 \times D_{(q+1)/2}$ and $\mathbb{Z}_{q\pm m+1} : \mathbb{Z}_6$ are impossible by Lemma 2.8. If $T_{\alpha} = \mathbb{Z}_2 \times L_2(q)$, then $v = q^2(q^2 - q + 1)$ and $(|G_{\alpha} \cap T|, v - 1) = (q(q^2 - 1), q^4 - q^3 + q^2 - 1) = q - 1$. But since r divides $f(|G_{\alpha} \cap T|, v - 1)$, which is too small to satisfy $v < r^2$. Similarly, T_{α} cannot be ${}^2G_2(3^{\ell})$.

We next assume that $T_{\alpha} = Q : K$, and so $v = q^3 + 1$. Moreover, from [7, p.252], T is 2-transitive on \mathcal{P} , so T is flag-transitive by Lemma 2.4. Hence we may assume that $G = T = {}^2G_2(q)$. The equations in Lemma 2.1 show

$$b = \frac{\lambda v(v-1)}{k(k-1)} = \frac{\lambda q^3(q^3+1)}{k(k-1)},$$

then by the flag-transitivity of T, we have

$$|T_B| = \frac{|T|}{b} = \frac{(q-1)k(k-1)}{\lambda}.$$

Let M be a maximal subgroup of T such that $T_B \leq M$. Then since $|T_B| \mid |M|$ and $q \geq 27$, M must be M_1 or M_2 shown in Lemma 2.14.

If $T_B \leq M_1$, then $k(k-1) \mid \lambda q^3$. Furthermore, since $(r,\lambda) = 1$ and so $\lambda \mid (k-1)$ by Lemma 2.1(2). Therefore $\lambda = k-1$, and it follows that $r = v-1 = q^3$ and $k \mid q^3$. Note that M_1 is point stabilizer of T in this action. So there exists α such that $M_1 = T_{\alpha}$ and $T_B \leq T_{\alpha}$. However, the flag-transitivity of T implies $\alpha \notin B$. For any point $\gamma \in B$, $T_{\gamma B} \leq T_{\alpha \gamma}$. By Lemma 2.13, $|T_{\alpha \gamma}| = q-1$, and so $|T_{\gamma B}| \mid (q-1)$. On the other hand, from

$$|B^{T_{\gamma}}| = |T_{\gamma}: T_{\gamma B}| \le |B^{G_{\gamma}}| = |G_{\gamma}: G_{\gamma B}| = r = q^3,$$

we have $T_{\gamma B} = T_{\alpha \gamma}$ and so $B^{T_{\alpha \gamma}} = B$. Since the stabilizer of three points is of order 2 by Lemma 2.13, so the size of $T_{\alpha \gamma}$ -orbits acting on $\mathcal{P} \setminus \{\alpha, \gamma\}$ is q - 1 or $\frac{1}{2}(q - 1)$. This, together with $B^{T_{\alpha \gamma}} = B$ and $\alpha \notin B$, implies that $k - 1 = a \frac{(q-1)}{2}$ for an integer a. Recall that $k \mid q^3$ and k < r, we get k = q or $k = q^2$. If k = q, then

$$b = q^2(q^3 + 1), r = q^3, \lambda = q - 1.$$

If $k = q^2$, we have

$$b = q(q^3 + 1), r = q^3, \lambda = q^2 - 1.$$

Now we deal with the case that $T_B \leq M_2$ by the similar method in [12, Theorem 3.2]. If T_B is a solvable subgroup of $M_2 \cong \mathbb{Z}_2 \times L_2(q)$, then T_B must map into either $\mathbb{Z}_2 \times A_4$, $\mathbb{Z}_2 \times D_{q\pm 1}$ or $\mathbb{Z}_2 \times ([q]:\mathbb{Z}_{\frac{q-1}{2}})$. Obviously, the former two cases are impossible. For the last case, $T_B \lesssim \mathbb{Z}_2 \times ([q]:\mathbb{Z}_{\frac{q-1}{2}})$. Since $T_B \leq M_2$, by Lemma 2.18, this can be reduced to the case $T_B \leq M_1$.

If T_B is non-solvable, then it embeds in $\mathbb{Z}_2 \times L_2(q_0)$ with $q_0^{\ell} = q = 3^{2n+1}$. The condition that $|T_B|$ divides $|\mathbb{Z}_2 \times L_2(q_0)|$ forces $q_0 = q$ and so T_B is isomorphic to $\mathbb{Z}_2 \times L_2(q)$ or $L_2(q)$.

If $T_B \cong \mathbb{Z}_2 \times L_2(q)$, then $T_B = M_2$ and so $b = q^2(q^2 - q + 1)$. Hence, from Lemma 2.1, we have $k \mid q(q+1), q^2 \mid r$ and $r \mid q^3$. Since $k \geq 3$, then the fact that the stabilizer of three points is of order 2 implies that T_B cannot acting trivially on the block B. Moreover, since q+1 is the smallest degree of any non-trivial action of $L_2(q)$, we have $k = \frac{\lambda(v-1)}{r} + 1 \geq q+1$.

If the design \mathcal{D} is a linear space, then \mathcal{D} is the Ree unital (see [12]) with parameters

$$(v, b, r, k, \lambda) = (q^3 + 1, q^2(q^2 - q + 1), q^2, q + 1, 1)$$

and T is flag-transitive with the block stabilizer M_2 .

If $\lambda > 1$, we claim that $\lambda = k - 1$. Clearly, $\lambda \mid (k - 1)$ as $(r, \lambda) = 1$ by Lemma 2.1(2). If $3 \mid (k - 1)$ and (k, 3) = 1, then since $k \mid q(q + 1)$ and $k \geq q + 1$, we have k = q + 1 and so $\lambda \mid q$, which contradicts $(r, \lambda) = 1$ as $q^2 \mid r$. Hence (k - 1, 3) = 1. Moreover, $(k - 1) \mid \lambda q^3$ implies that $(k - 1) \mid \lambda$. So we have $\lambda = k - 1$.

Let $\Delta_1, \ \Delta_2, \ldots, \ \Delta_t$ be the orbits of M_2 . Since M_2 is the block stabilizer of the Ree unital, it has an orbit of size q+1. Without loss of generality, suppose that $|\Delta_1|=q+1$. On the one hand, recall that $k \mid q(q+1)$ and T is flag transitive, $T_B = M_2$ has at least one orbit with size less than q(q+1). On the other hand, we show that $|\Delta_i| > q(q+1)$ for $i \neq 1$ in the following and we obtain the desired contradiction. Assume that $\delta \in \mathcal{P} \setminus \Delta_1$, we claim that $(M_2)_{\delta}$ is a 2-group. Let p be a prime divisor of $|(M_2)_{\delta}|$ and P be a Sylow p-subgroup of $(M_2)_{\delta}$. If $p \neq 2$ and $p \neq 3$, then since $(M_2)_{\delta} \leq T_{\delta}$, we have $p \mid (q-1)$. Obviously, since Δ_1 is an orbit of M_2 and $P \leq (M_2)_{\delta}$, and so P acts invariantly on Δ_1 and $\mathcal{P} \setminus \Delta_1$. Note that the length of a P-orbit is either 1 or divided by p, so P fixes at least two points in Δ_1 . Moreover, P also fixes δ . Therefore P fixes at least three points of \mathcal{P} , which is impossible as the order of the stabilizer of three points is 2 by Lemma 2.13(3). If p = 3,

since P fixes the point $\delta \in \mathcal{P} \setminus \Delta_1$ and $|\mathcal{P} \setminus \Delta_1| = q^3 - q$, then P fixes at least three points in $\mathcal{P} \setminus \Delta_1$, which is also impossible. As a result, $(M_2)_{\delta}$ is a 2-group. The fact that the Sylow 2-subgroup of T is of order 8 implies that the sizes of the M_2 -orbits Δ_i $(i \neq 1)$ are at least $\frac{q(q^2-1)}{8}$ and hence larger than q(q+1), which contradicts the fact $k \mid q(q+1)$. Therefore, $T_B \not\cong \mathbb{Z}_2 \times L_2(q)$. Similarly, $T_B \not\cong L_2(q)$. Thus T_B is not a non-solvable subgroup in M_2 . \square

Proof of Proposition 3.1. We use Lemma 2.12 to prove the existence of the design with parameters listed in Lemma 3.1.

Assume that $(v, b, r, k, \lambda) = (q^3 + 1, q^2(q^3 + 1), q^3, q, q - 1)$. Then from Lemma 2.19 we known that there are only two conjugacy classes of subgroups of order q(q - 1) in T and $H_1 = Q_1 : K \leq T_{\alpha}$ and $H_2 = Q_2 : K \leq T_{\alpha}$ as representatives, respectively.

First, we consider the orbits of H_1 . Let $\gamma \neq \alpha$ be the point fixed by K. Since $K \leq H_1$, then $K_{\gamma} = K \leq (H_1)_{\gamma} \leq T_{\alpha\gamma} = K$, which implies $(H_1)_{\gamma} = T_{\alpha\gamma}$ and so $|H_1: (H_1)_{\gamma}| = |\gamma^{H_1}| = q$. It is easy to see that $|\delta^{H_1}| \neq q$ for any point $\delta \neq \alpha, \gamma$. Therefore, H_1 has only one orbit of size q. Let $B_1 = \gamma^{H_1}$.

Now we show that $H_1 = T_{B_1}$, which implies $|B_1^T| = b$. Since $H_1 \leq T_{B_1}$ and $B_1 = \gamma^{H_1} = \gamma^{T_{B_1}}$, then $|H_1: (H_1)_{\gamma}| = |T_B: T_{\gamma B_1}| = q$. If $K = (H_1)_{\gamma} < T_{\gamma B_1}$, then 3 divides $|T_{\gamma B_1}: T_{\delta \gamma B_1}|$ for any $\delta \in B_1 \setminus \{\gamma\}$ by Lemma 2.13(3). It follows that $3 \mid (q-1)$, a contradiction. As a result, $K = (H_1)_{\gamma} = T_{\gamma B_1}$ and so $H_1 = T_{B_1}$. Let $\mathcal{B}_1 := B_1^T$. Therefore $|\mathcal{B}_1| = |T: H_1| = b$. Let \mathcal{B}_1 be the set of blocks.

Finally, since T is 2-transitive on \mathcal{P} , the number of blocks which incident with two points is a constant. Hence $\mathcal{D}_1 = (\mathcal{P}, \mathcal{B}_1)$ is a 2- $(q^3 + 1, q, q - 1)$ design admitting T as a flag transitive automorphism group by Lemma 2.12.

In a similar way, we get the design \mathcal{D}_2 satisfying all hypothesis when the subgroup is $H_2 = Q_2 : K$. Furthermore, since H_1 is not isomorphic to H_2 , so \mathcal{D}_1 is not isomorphic to \mathcal{D}_2 by [6, 1.2.17].

Similarly , if $(v, b, r, k, \lambda) = (q^3 + 1, q(q^3 + 1), q^3, q^2, q^2 - 1)$, we can construct the design with these parameters.

3.2 T is the Suzuki group

Proposition 3.2 Suppose that G and \mathcal{D} satisfy hypothesis of Theorem 1. If $T = {}^{2}B_{2}(q)$ with $q = 2^{2n+1}$, then \mathcal{D} is a 2- $(q^{2}+1, q, q-1)$ design with $G_{B} = Z(Q) : K$ where $Q \in Syl_{2}(T)$ and $K = Z_{q-1}$.

Proof. Suppose that $T = {}^{2}B_{2}(q)$ with order $(q^{2}+1)q^{2}(q-1)$. Then $|G| = f(q^{2}+1)q^{2}(q-1)$ where f divides |Out(T)|. By [9] or [27], the order of G_{α} is one of the following:

- (1) $fq^2(q-1)$;
- (2) 2f(q-1);
- (3) $4f(q \pm \sqrt{2q} + 1);$
- (4) $f(q_0^2+1)q_0^2(q_0-1)$ with $q_0^\ell=q$.

Since $|G| < |G_{\alpha}|^3$, we first have that $|G_{\alpha}| \neq 2f(q-1)$. If $|G_{\alpha}| = 4f(q \pm \sqrt{2q} + 1)$, from the inequality $|G| < |G_{\alpha}|^3$, we get $f(q^2+1)q^2(q-1) < (4f)^3(2q)^3$, and so $q^2+q+1 \leq 4^3f^22^3$. Since $f \leq |Out(T)| = e$ and $q = p^e$, hence $q+1 < 4^32^3$ and $q = 2^7$, 2^5 or 2^3 . If $q = 2^7$, then $|G| = f2^{14}(2^{14}-1)(2^7-1) > f^34^3(2^7+2^4+1)^3 = |G_{\alpha}|^3$ where f = 7 or 1, a contradiction. If $q = 2^5$, then v = 198400 or 325376 for $|G_{\alpha}| = 4f(q + \sqrt{2q} + 1)$ or $4f(q - \sqrt{2q} + 1)$ respectively. By calculating $(|G_{\alpha}|, v - 1)$, since r divides $(|G_{\alpha}|, v - 1)$, we know that r is too small. Similarly, we get $q \neq 2^3$.

If $|G_{\alpha}| = f(q_0^2 + 1)q_0^2(q_0 - 1)$ with $q_0^{\ell} = q$, then the inequality $|G| < |G_{\alpha}||G_{\alpha}||_{p'}^2$ forces m = 3. So $v = (q_0^4 - q_0^2 + 1)q_0^4(q_0^2 + q_0 + 1)$. Since r divides $(|G_{\alpha}|_{p'}, v - 1)$, then $r \le |G_{\alpha}|_{p'} \le fq_0^3 < q_0^{9/2}$. From $v < r^2$, we get $(q_0^4 - q_0^2 + 1)q_0^4(q_0^2 + q_0 + 1) < r^2 < q_0^9$, which is impossible.

Now assume that $|G_{\alpha}| = fq^2(q-1)$. Then $v = q^2 + 1$ and T is 2-transitive by [7, p.250]. Hence, T is flag-transitive by Lemma 2.4. Similarly, we have $|T_B| = \frac{|T|}{b} = \frac{k(k-1)(q-1)}{\lambda}$. Let M be the maximal subgroup of T such that $T_B \leq M$ as in Lemma 3.1. The fact that $|T_B|$ divides |M| implies that $|M| = q^2(q-1)$ and k(k-1) divides λq^2 . Similar to the proof of Lemma 3.1, we have $T_{\gamma B} = T_{\alpha \gamma}$ with the order q-1. Furthermore, we get

$$(v, b, r, k, \lambda) = (q^2 + 1, q(q^2 + 1), q^2, q, q - 1).$$

Next we prove the existence of the design with above parameters by Lemma 2.12. Firstly, from Lemma 2.21 we know that the Suzuki group has a unique conjugacy class of subgroups of order q(q-1), let $H:=Z(Q): K \leq T_{\alpha}$ as the representative.

Note that K is the stabilizers of two points in ${}^{2}B_{2}(q)$ by [11, p.187]. Let $\gamma \neq \alpha$ be the point fixed by K and $B = \gamma^{H}$. Then similar as the proof of Proposition 3.1 we get that B is the only H-orbit of length q and $H = T_{B}$. Let $\mathcal{B} = B^{T}$ be the set of blocks. Finally, since T is 2-transitive on \mathcal{P} , the number of blocks which incident with two points is

a constant. Hence $\mathcal{D} = (\mathcal{P}, \mathcal{B})$ is a 2- $(q^2 + 1, q, q - 1)$ design admitting T be a flag transitive automorphism group by Lemma 2.12.

3.3 T is one of the remaining families

In this subsection, let

$$\mathcal{T} = \{{}^{2}F_{4}(q), {}^{3}D_{4}(q), G_{2}(q), F_{4}(q), E_{6}(q), E_{7}(q), E_{8}(q)\},\$$

we will prove that there are no new design arise when $T \in \mathcal{T}$.

First, we show that G_{α} cannot be a parabolic subgroup of G for any $T \in \mathcal{T}$.

Lemma 3.2 Suppose that G and \mathcal{D} satisfy hypothesis of Theorem 1. If $T \in \mathcal{T}$, then G_{α} cannot be a parabolic subgroup of G.

Proof. By Lemma 2.6, for all cases that $T \in \mathcal{T} \setminus E_6(q)$, there is a unique subdegree which is a power of p, so r is a power of p by Lemma 2.1(4). We can easily check that r is too small and the condition $r^2 > v$ cannot be satisfied. Now, assume that $T = E_6(q)$. If G contains a graph automorphism or $G_\alpha \cap T$ is P_2 or P_4 , then there is also a unique subdegree which is a power of p and so r is too small again. If $G_\alpha \cap T$ is P_3 with type A_1A_4 , then

$$v = \frac{(q^3+1)(q^4+1)(q^9-1)(q^6+1)(q^4+q^2+1)}{(q-1)}.$$

Since r divides $(|G_{\alpha}|, v-1)$, we have $r \mid eq(q-1)^5(q^5-1)$ and so r is too small to satisfy $r^2 > v$. If $G_{\alpha} \cap T$ is P_1 with type D_5 , then

$$v = \frac{(q^8 + q^4 + 1)(q^9 - 1)}{q - 1}.$$

From [16], we know that there exists two non-trivial subdegrees:

$$d = \frac{q(q^3 + 1)(q^8 - 1)}{(q - 1)} \quad \text{and} \quad d' = \frac{q^8(q^4 + 1)(q^5 - 1)}{(q - 1)}.$$

Since $(d, d') = q(q^4 + 1)$, we have $r \mid q(q^4 + 1)$ by Lemma 2.1(4), which contradicts with $r^2 > v$.

Let
$$\mathcal{T}_1 = \{F_4(q), E_6^{\epsilon}(q), E_7(q), E_8(q)\}.$$

Lemma 3.3 Suppose that G and \mathcal{D} satisfy the hypothesis of Theorem 1. If $T \in \mathcal{T}_1$ and G_{α} is non-parabolic, then G_{α} cannot be a maximal subgroup of maximal rank.

Proof. If G_{α} is non-parabolic and of maximal rank, then for any $T \in \mathcal{T}_1$, we have a complete list of $T_{\alpha} := G_{\alpha} \cap T$ in [18, Tables 5.1-5.2]. All subgroups in [18, Table 5.2] and some cases in [18, Table 5.1] can be ruled out by the inequality $|T| < |Out(T)|^2 |T_{\alpha}| |T_{\alpha}|^2_{p'}$. Since r divides $(|G_{\alpha}|, v - 1)$, for the remaining cases we have that $r^2 < v$, a contradiction.

For example, if $T = F_4(q)$ with order $q^{24}(q^2 - 1)(q^6 - 1)(q^8 - 1)(q^{12} - 1)$. Then T_{α} is one of the following: (1) $2.(L_2(q) \times PSp_6(q)).2$ (q odd); (2) $d.\Omega_9(q)$; (3) $d^2.P\Omega_8^+(q).S_3$; (4) $^3D_4(q).3$; (5) $Sp_4(q^2).2$ (q even); (6) $(Sp_4(q) \times Sp_4(q)).2(q$ even); (7) $h.(L_3^{\epsilon}(q) \times L_3^{\epsilon}(q)).h.2$, with d = (2, q - 1) and $h = (3, q - \epsilon)$.

If $T_{\alpha} = 2.(L_2(q) \times PSp_6(q)).2$ with q odd, then

$$|T_{\alpha}| = q^{10}(q^2 - 1)^2(q^4 - 1)(q^6 - 1)$$
 and $v = q^{14}(q^4 + 1)(q^4 + q^2 + 1)(q^6 + 1)$.

Since $(q^2 + 1) \mid v$ and $(q^4 + q^2 + 1) \mid v$, then $(|G_{\alpha}|, v - 1) \mid |Out(T)|(q^2 - 1)^4$ and so $r^2 < q^9 < v$, a contradiction.

If $T_{\alpha} = 2.P\Omega_{9}(q)$ with q odd, then

$$|T_{\alpha}| = q^{16}(q^2 - 1)(q^4 - 1)(q^6 - 1)(q^8 - 1)$$
 and $v = q^8(q^8 + q^4 + 1)$.

Since $q \mid v$, $(q^4 + q^2 + 1) \mid v$, $v - 1 \equiv 2 \pmod{q^4 - 1}$, we get r divides $2^4 |Out(T)|(q^4 + 1)$ and so $r^2 < v$, a contradiction.

Cases (3)-(6) can be ruled out similarly, and Case (7) cannot occur because of $|T| < |Out(T)|^2 |T_{\alpha}| |T_{\alpha}|_{p'}^2$.

Lemma 3.4 Suppose that G and \mathcal{D} satisfy the hypothesis of Theorem 1. If $T \in \mathcal{T}_1$ and G_{α} is non-parabolic, then $T_0 = Soc(G_{\alpha} \cap T)$ is simple and $T_0 = T_0(q_0) \in Lie(p)$.

Proof. Assume that $T_0 = Soc(G_\alpha \cap T)$ is not simple. Then by Lemma 2.9 and Lemma 3.3, one of the following holds:

- (1) $G_{\alpha} = N_G(E)$, where E is an elementary abelian group given in [4, Theorem 1(II)];
- (2) $T = E_8(q)$ with p > 5, and T_0 is either $A_5 \times A_6$ or $A_5 \times L_2(q)$;
- (3) T_0 is as in Table 1.

From [4, Theorem 1(II)], we check that all subgroups in Case (1) are local and too small to satisfy $|T| < |Out(T)|^2 |T_{\alpha}| |T_{\alpha}|_{p'}^2$.

The order of subgroup in Case (2) is too small.

For Case (3), since G_{α} is not simple and not local by [4, Theorem 1], G_{α} is of maximal rank by [25, p.346], which has already been ruled out in Case (1). Therefore, T_0 is simple.

Now assume that $T_0 = T_0(q_0) \not\in Lie(p)$. Then for all T, we find the possibilities of T_0 in [21, Table 1]. Some cases can be ruled out by the inequality $|T| < |Out(T)|^2 |T_{\alpha}| |T_{\alpha}|_p^2$. In each of the remaining cases, since r must divides $(|G_{\alpha}|, v-1), r$ is too small to satisfy $v < r^2$. For example, assume that $T = F_4(q)$. If $T_0 \not\in Lie(p)$, then according to [21, Table 1], it is one of the following: A_{5-10} , $L_2(7)$, $L_2(8)$, $L_2(13)$, $L_2(17)$, $L_2(25)$, $L_2(27)$, $L_3(3)$, $U_3(3)$, $U_4(2)$, $Sp_6(2)$, $\Omega_8^+(2)$, $^3D_4(2)$, J_2 , J_2 , $A_{11}(p=11)$, $L_3(4)(p=3)$, $L_4(3)(p=2)$, $^2B_2(8)(p=5)$, $M_{11}(p=11)$. The possibilities of T_0 such that $|G| < |G_{\alpha}|^3$ are $A_9(q=2)$, $A_{10}(q=2)$, $Sp_6(2)(q=2)$, $\Omega_8^+(2)(q=2,3)$, $^3D_4(2)(q=2,3)$, $J_2(q=2)$, $L_4(3)(q=2)$. However, since $r \mid (|G_{\alpha}|, v-1)$, we have $r^2 < v$ for all these cases, which is a contradiction.

Lemma 3.5 Suppose that G and \mathcal{D} satisfy the hypothesis of Theorem 1. If $T_0 = T_0(q_0)$ is a simple group of Lie type and G_{α} is non-parabolic, then $T \notin \mathcal{T}_1$.

Proof. First assume that $T = F_4(q)$. If $\operatorname{rank}(T_0) > \frac{1}{2}\operatorname{rank}(T)$, then by Lemma 2.10 and Lemma 3.3, the only possible cases of $G_{\alpha} \cap T$ satisfying $|G| < |G_{\alpha}|^3$ are $F_4(q^{\frac{1}{2}})$ and $F_4(q^{\frac{1}{3}})$ when $q_0 > 2$. If $G_{\alpha} \cap T = F_4(q^{\frac{1}{2}})$, then $v = q^{12}(q^6 + 1)(q^4 + 1)(q^3 + 1)(q + 1) > q^{26}$. Since q, q+1, q^2+1 and q^3+1 are factors of v, then $r \mid 2e(q-1)^2(q^3-1)^2$ by $r \mid (|G_{\alpha}|, v-1)$, which implies that $r^2 < v$, a contradiction. If $G_{\alpha} \cap T = F_4(q^{\frac{1}{3}})$, since $p \mid v$, then r divides $|G_{\alpha}|_{p'}$, which also implies $r^2 < v$. When $q_0 = 2$, the subgroups $T_0(2)$ with $\operatorname{rank}(T_0) > \frac{1}{2}\operatorname{rank}(T)$ that satisfy $|G| < |G_{\alpha}|^3$ are $A_4^{\epsilon}(2)$, $B_3(2)$, $B_4(2)$, $C_3(2)$, $C_4(2)$ or $D_4^{\epsilon}(2)$. But in each case, $r \mid (|G_{\alpha}|, v-1)$ forces $r^2 < v$, a contradiction. If $\operatorname{rank}(T_0) \leq \frac{1}{2}\operatorname{rank}(T)$, then from Lemma 2.11, we have $|G_{\alpha}| < 4q^{20}\log_p q$. Looking at the orders of groups of Lie type, we see that if $|G_{\alpha}| < 4q^{20}\log_p q$, then $|G_{\alpha}|_{p'} < q^{12}$, and so $|G_{\alpha}||G_{\alpha}|_{p'}^2 < |G|$, contrary to Lemma 2.8.

For $T=E_6^{\epsilon}(q)$, if $\operatorname{rank}(T_0)>\frac{1}{2}\operatorname{rank}(T)$, then when $q_0>2$, by Lemma 2.10 the only possibilities are $E_6^{\epsilon}(q^{\frac{1}{2}})$, $E_6^{\epsilon}(q^{\frac{1}{3}})$, $C_4(q)$ and $F_4(q)$. In all these cases r are too small. When $q_0=2$, the possibilities $T_0(2)$ satisfying $|G|<|G_{\alpha}|^3$ with order dividing $|E_6^{\epsilon}(2)|$ are $A_5^{\epsilon}(2)$, $B_4(2)$, $C_4(2)$, $D_4^{\epsilon}(2)$ and $D_5^{\epsilon}(2)$. However, since $r\mid (|G_{\alpha}|, v-1)$, for all these cases we obtain $r^2< v$, a contradiction. If $\operatorname{rank}(T_0)\leq \frac{1}{2}\operatorname{rank}(T)$, then from Lemma 2.11, we have $|G_{\alpha}|<4q^{28}\log_p q$. By further check the orders of groups of Lie type, we see that $|G_{\alpha}|_{p'}< q^{17}$, and so $|G_{\alpha}||G_{\alpha}|_{p'}^2<|G|$, a contradiction.

Assume that $T = E_7(q)$. If $rank(T_0) \leq \frac{1}{2} rank(T)$, then by Lemma 2.11 $|G_{\alpha}|^3 \leq |G|$, a contradiction. If $rank(T_0) > \frac{1}{2} rank(T)$, then when $q_0 > 2$, B by Lemma 2.10, the only cases $T \cap G_{\alpha}$ satisfying $|G| < |G_{\alpha}|^3$ are $G_{\alpha} \cap T = E_7(q^{\frac{1}{s}})$, where s = 2 or 3. But in all cases we have $r^2 < v$. If $q_0 = 2$, then the possible subgroups such that $|G| < |G_{\alpha}|^3$ with order dividing $|E_7(2)|$ are $A_6^{\epsilon}(2)$, $A_7^{\epsilon}(2)$, $B_5(2)$, $C_5(2)$, $D_5^{\epsilon}(2)$ and $D_6^{\epsilon}(2)$. However in all of these cases, since $r \mid (|G_{\alpha}|, v - 1)$ we have $r^2 < v$, a contradiction.

Assume that $T = E_8(q)$. If $\operatorname{rank}(T_0) \leq \frac{1}{2}\operatorname{rank}(T)$, then by Lemma 2.11 we get $|G_{\alpha}|^3 < |G|$, a contradiction. Therefore, $\operatorname{rank}(T_0) > \frac{1}{2}\operatorname{rank}(T)$. If $q_0 > 2$, then Lemma 2.10 implies $G_{\alpha} \cap T = E_8(q^{\frac{1}{s}})$, with s = 2 or 3. However in both cases we get a small r with $r^2 < v$, a contradiction. If $q_0 = 2$, then $\operatorname{rank}(X_0) \geq 5$. All subgroups satisfying $|G_{\alpha}|^3 > |G|$ are $A_8^{\epsilon}(2)$, $B_7(2)$, $B_8(2)$, $C_7(2)$, $C_8(2)$, $D_8^{\epsilon}(2)$ and $D_7^{\epsilon}(2)$. But for all these cases we have $r^2 < v$.

Lemma 3.6 If $T = G_2(q)$ with $q = p^e > 2$, then G_{α} cannot be a non-parabolic maximal subgroup of G.

Proof. Suppose that $T = G_2(q)$ with q > 2 since $G_2(2)' = PSU_3(3)$. All maximal subgroups of G can be found in [13] for odd q and in [3] for even q.

Assume that G_{α} be a non-parabolic maximal subgroup of G. First we deal with the case where $G_{\alpha} \cap T = SL_3^{\epsilon}(q).2$ with $\epsilon = \pm$. Then we have $v = \frac{1}{2}q^3(q^3 + \epsilon 1)$. By Lemma 2.1 and [25, Section 8] we conclude that r divides $\frac{(q^3 - \epsilon 1)}{2}$ for odd q (cf. [25, Section 4, Case 1, i = 1]) and r divides $(q^3 - \epsilon 1)$ for even q (cf. [25, Section 3, Case 8]). The case that q odd is ruled out by $v < r^2$. If q is even, then $r = q^3 - \epsilon 1$. This, together with k < r, implies $k - 1 = \lambda \frac{q^3 + \epsilon 2}{2}$, and so $\lambda = 1$ or $\lambda = 2$. From the result of [25] we known that $\lambda \neq 1$. If $\lambda = 2$, then since k < r, we have $\epsilon = -$. It follows that $k = q^3 - 1$ and $r = q^3 + 1$. This is impossible by Lemma 2.3 and [24, Theorem 1].

Now, if $G_{\alpha} \cap T = {}^{2}G_{2}(q)$ with $q = 3^{2n+1} \geq 27$, then $v = q^{3}(q+1)(q^{3}-1)$. Note that $q \mid v$ and $(q^{2}-1, v-1) = 1$, we have $(|G_{\alpha}|, v-1) \mid e(q^{2}-q+1)$, and it follows that $r^{2} < v$, a contradiction.

The cases that $G_{\alpha} \cap T$ is $G_2(q_0)$ or $(SL_2(q) \circ SL_2(q)) \cdot 2$ can be ruled out similarly.

Using the inequality $|G| < |G_{\alpha}|^3$ and the fact that r divides $(|G_{\alpha}|, v-1)$, we find r too small to satisfy $r^2 > v$ for every other maximal subgroup.

Lemma 3.7 If $T = {}^{2}F_{4}(q)$, then G_{α} cannot be a non-parabolic maximal subgroup.

Proof. Let $T = {}^2F_4(q)$ and G_{α} be a non-parabolic maximal subgroup of G. Then from the list of the maximal subgroups of G in [23], there are no subgroups G_{α} satisfying $|G| < |G_{\alpha}||G_{\alpha}|_{p'}^2$, except for the case q = 2. For the case q = 2, $G_{\alpha} \cap T$ is $L_3(3).2$ or $L_2(25)$. However in each case, since r divides $(|G_{\alpha}|, v - 1)$, and so r is too small. \square

Lemma 3.8 If $T = {}^{3}D_{4}(q)$, then G_{α} cannot be a non-parabolic maximal subgroup.

Proof. If $T = {}^3D_4(q)$ and G_{α} is a non-parabolic maximal subgroup of G, then all possibilities of $G_{\alpha} \cap T$ are listed in [14]. However, for all cases, the fact that r divide $(|G_{\alpha}|, v-1)$ give a small r which cannot satisfy the condition $v < r^2$. For example, if $G_{\alpha} \cap T$ is $G_2(q)$ of order $q^6(q^2-1)(q^6-1)$, then $v = q^6(q^8+q^4+1)$. Since $q \mid v$ and $(q^4+q^2+1) \mid v$, then $r \mid 3e(q^2-1)^2$, which contradicts with $v < r^2$.

Lemma 3.9 Suppose that G and \mathcal{D} satisfy the hypothesis of Theorem 1. If the socle $T \in \mathcal{T}$, then G_{α} cannot be a non-parabolic maximal subgroup.

Proof. It is follows from Lemmas 3.3–3.8.

Proof of Theorem 1. Now Theorem 1 is an immediate consequence of Propositions 3.1-3.2 and of Lemmas 3.2 and 3.9.

References

- [1] M. Biliotti, E. Francot, A. Montinaro, 2- (v, k, λ) designs with $(r, \lambda) = 1$, admitting a non-solvable flag-transitive automorphism group of affine type, 2019, submitted.
- [2] M. Biliotti, A. Montinaro, P. Rizzo, 2- (v, k, λ) designs with $(r, \lambda) = 1$, admitting a solvable flag-transitive automorphism group of affine type, 2019, submitted.
- [3] B. N. Cooperstein, Maximal subgroups of $G_2(2^n)$, J. Algebra, 70(1981): 23-36.
- [4] A. M. Cohen, M. W. Liebeck, J. Saxl, G. M. Seitz, The local maximal subgroups of exceptional groups of Lie type, finite and algebraic, Proc. London Math. Soc. (3), 64(1992): 21-48.
- [5] H. Davies, Flag-transitivity and primitivity, Disc. Math., 63 (1987): 91-93.
- [6] P. Dembowski, Finite Geometries, Springer-Verlag, New York, 1968.

- [7] J. D. Dixon, B. Mortimer, Permutation Groups, Springer-Verlag, New York, 1996.
- [8] X. G. Fang, C. H. Li, The locally 2-arc transitive graphs admitting a Ree simple group, J. Algebra, 282(2004): 638-666.
- [9] X. G. Fang, C. E. Praeger, Finite two-arc transitive graphs admitting a Suzuki simple group, Comm. Algebra, 27(1999): 3727-3754.
- [10] X. G. Fang, C. E. Praeger, Finite two-arc transitive graphs admitting a Ree simple group, Comm. Algebra, 27(1999): 3755-3768.
- [11] B. Huppert, N. Blackburn, Finite Groups III, Spring-Verlag, New York, 1982.
- [12] P. B. Kleidman, The finite flag-transitive linear spaces with an exceptional automorphism group, Finite Geometries and Combinatorial Designs (Lincoln, NE, 1987), 117-136, Contemp. Math., 111, Amer. Math. Soc., Providence, RI, 1990.
- [13] P. B. Kleidman, The maximal subgroups of the Chevalley groups $G_2(q)$ with q odd, the Ree groups ${}^2G_2(q)$, and their automorphism groups, J. Algebra, 117(1998): 30-71.
- [14] P. B. Kleidman, The maximal subgroups of the Steinberg groups ${}^{3}D_{4}(q)$ and of their automorphism group, J. Algebra, 115(1988): 182-199.
- [15] V. M. Levchuk, Ya. N. Nuzhin, Structure of Ree groups, Algebra and Logic, 24(1985): 16-26.
- [16] M. W. Liebeck, J. Saxl, The finite primitive permutation groups of rank three, Bull. London Math. Soc., 18(1986): 165-172.
- [17] M. W. Liebeck, J. Saxl, G. M. Seitz, On the overgroups of irreducible subgroups of the finite classical groups, Proc. London Math. Soc., 55(1987): 507-537.
- [18] M. W. Liebeck, J. Saxl, G. M. Seitz, Subgroups of maximal rank in finite exceptional groups of Lie type, Proc. London Math. Soc. (3), 65(2)(1992): 297-325.
- [19] M. W. Liebeck, J. Saxl, D. M. Testerma, Simple subgroups of large rank in groups of Lie type, Proc. London Math. Soc. (3), 72(1996): 425-457.

- [20] M. W. Liebeck, G. M. Seitz, Maximal subgroups of exceptional groups of Lie type, finite and algebraic, Geom. Dedic., 35(1990): 353-387.
- [21] M. W. Liebeck, G. M. Seitz, On finite subgroups of exceptional algebraic groups, J. Reine Angew. Math., 515(1999): 25-72.
- [22] M. W. Liebeck, A. Shalev, The probability of generating a finite simple group, Geom. Dedic., 56(1995): 103-113.
- [23] G. Malle, The maximal subgroups of ${}^{2}F_{4}(q^{2})$, J. Algebra, 139(1991): 53-69.
- [24] E. O'Reilly. Regueiro, Biplanes with flag-transitive automorphism groups of almost simple type, with exceptional socle of Lie type, J. Algeb. Combin., 27(4)(2008): 479-491.
- [25] J. Saxl, On finite linear spaces with almost simple flag-transitive automorphism groups, J. Combin. Theory, Ser. A, 100(2)(2002): 322-348.
- [26] G. M. Seitz, Flag-transitive subgroups of Chevalley groups, Ann. Math., 97(1)(1973): 25-56.
- [27] M. Suzuki, On a class of doubly transitive groups, Ann. Math., 75(1962): 105-145.
- [28] Y. J. Wang, S. L. Zhou, Flag-transitivity point-primitive (v, k, 4) symmetric designs with exceptional socle of Lie type, Bull. Iran Math., 43(2015): 259-273.
- [29] X. Q. Zhan, S. L. Zhou, Flag-transitive non-symmetric designs with $(r, \lambda) = 1$ and sporadic socle, Des. Codes Crypt., 340(2017): 630-636.
- [30] S. L. Zhou, H. L. Dong, Exceptional groups of Lie type and flag-transitivity triplanes, Sci. China Math., 53(2)(2010): 447-456.
- [31] S. L. Zhou, Y. J. Wang, Flag-transitive non-symmetric designs with $(r, \lambda) = 1$ and alternating socle, Elec. J. Combin., 22(2015), P2.6.
- [32] P. H. Zieschang, Flag transitive automorphism groups of 2-designs with $(r, \lambda) = 1$, J. Algebra, 118 (1988): 265-275.