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Flag-transitive non-symmetric 2-designs with (r, λ) = 1
and exceptional groups of Lie type
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Abstract

This paper determined all pairs (D, G) where D is a non-symmetric 2-(v, k, λ)
design with (r, λ) = 1 and G is the almost simple flag-transitive automorphism group
of D with an exceptional socle of Lie type. We prove that if T E G ≤ Aut(T ) where
T is an exceptional group of Lie type, then T must be the Ree group or Suzuki group,
and there just five non-isomorphic designs D.
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1 Introduction

A 2-(v, k, λ) design D is a pair (P,B), where P is a set of v points and B is a set of

k-subsets of P called blocks, such that any 2 points are contained in exactly λ blocks. A

flag is an incident point-block pair (α,B). An automorphism of D is a permutation of P
which leaves B invariant. The design is non-trivial if 2 < k < v − 1 and non-symmetric

if v < b. All automorphisms of the design D form a group called the full automorphism

group of D, denoted by Aut(D). Let G ≤ Aut(D), the design D is called point (block, flag)-

transitive if G acts transitively on the set of points (blocks, flags), and point-primitive if G

acts primitively on P. Note that a finite primitive group is almost simple if it is isomorphic

to a group G for which T ∼= Inn(T ) ≤ G ≤ Aut(T ) for some non-abelian simple group T .

∗Corresponding author. This work is supported by the National Natural Science Foundation of
China (Grant No.11871224) and the Natural Science Foundation of Guangdong Province (Grant No.
2017A030313001). slzhou@scut.edu.cn
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Let G ≤ Aut(D), and r be the number of blocks incident with a given point. In [6],

P. Dembowski proved that if G is a flag-transitive automorphism group of a 2-design D
with (r, λ) = 1, then G is point-primitive. In 1988, P. H. Zieschang [32] proved that if D
is a 2-design with (r, λ) = 1 and G ≤ Aut(D) is flag transitive, then G must be of almost

simple or affine type. Such 2-designs have been studied in [1, 2, 29, 31], where the socle of

G is a sporadic, an alternating group or elementary abelian p-group, respectively. In this

paper, we continue to study the case that the socle of G is an exceptional simple group of

Lie type. We get the following:

Theorem 1 Let D = (P,B) be a non-symmetric 2-(v, k, λ) design with (r, λ) = 1 and G

an almost simple flag-transitive automorphism group of D with the exceptional socle T of

Lie type in characteristic p and q = pe. Let B be a block of D. Then one of the following

holds:

(1) T = 2G2(q) with q = 32n+1 ≥ 27, and D is one of the following:

(i) a Ree unital with GB = Z2 × L2(q);

(ii) a 2-(q3 + 1, q, q − 1) design with GB = Q1 : K;

(iii) a 2-(q3 + 1, q, q − 1) design with GB = Q2 : K;

(iv) a 2-(q3 + 1, q2, q2 − 1) design with GB = Q′ : K,

where Q ∈ Syl3(T ), and the definitions of Q1, Q2 and K refer to Section 3.

(2) T = 2B2(q) with q = 22n+1 ≥ 8, and D is a 2-(q2 + 1, q, q − 1) design with GB =

Z(Q) : K, where Q ∈ Syl2(T ) and K = Zq−1
∼= F∗

q.

2 Preliminary results

We first give some preliminary results about designs and almost simple groups.

Lemma 2.1 ([29, Lemma 2.2]) For a 2-(v, k, λ) design D, it is well known that

(1) bk = vr;

(2) λ(v − 1) = r(k − 1);
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(3) v ≤ λv < r2;

(4) if G ≤ Aut(D) is flag-transitive and (r, λ) = 1, then r | (|Gα|, v − 1) and r | d, for
any non-trivial subdegree d of G.

Lemma 2.2 Assume that G and D satisfy the hypothesis of Theorem 1. Let α ∈ P and

B ∈ B. Then

(1) G = TGα and |G| = f |T | where f is a divisor of |Out(T )|;

(2) |G : T | = |Gα : Tα| = f ;

(3) |GB| divides f |TB|, and |GαB| divides f |TαB| for any flag (α,B).

Proof. Note that G is an almost simple primitive group by [5]. So (1) holds and (2)

follows from (1). Since T ✂G, then |BT | divides |BG| and |(α,B)T | divides |(α,B)G|, hence
|GB : TB| divides f , and |GαB : TαB| divides f , (3) holds. �

Lemma 2.3 ([6, 2.2.5]) Let D be a 2-(v, k, λ) design. If D satisfies r = k + λ and λ ≤ 2,

then D is embedded in a symmetric 2-(v + k + λ, k + λ, λ) design.

Lemma 2.4 ([6, 2.3.8]) Let D be a 2-(v, k, λ) design and G ≤ Aut(D). If G is 2-transitive

on points and (r, λ) = 1, then G is flag transitive.

Lemma 2.5 Let A, B, C be subgroups of group G. If B ≤ A, then

|A : B| ≥ |(A ∩ C) : (B ∩ C)|.

Lemma 2.6 ([17]) Suppose that T is a simple group of Lie type in characteristic p and

acts on the set of cosets of a maximal parabolic subgroup. Then T has a unique subdegree

which is a power of p except T is Ld(q), Ω
+
2m(q) (m is odd) or E6(q).

Lemma 2.7 [26, 1.6](Tits Lemma) If T is a simple group of Lie type in characteristic p,

then any proper subgroup of index prime to p is contained in a parabolic subgroup of T .

In the following, for a positive integer n, np denotes the p-part of n and np′ denotes the

p′-part of n, i.e., np = pt where pt | n but pt+1 ∤ n, and np′ = n/np.
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Lemma 2.8 Assume that G and D satisfy the hypothesis of Theorem 1. Then |G| < |Gα|3

and if Gα is a non-parabolic maximal subgroup of G, then |G| < |Gα||Gα|2p′ and |T | <
|Out(T )|2|Tα||Tα|2p′.

Proof. From Lemma 2.1, since r divides every non-trivial subdegree of G, then r divides

|Gα|, and so |G| < |Gα|3. If Gα is not parabolic, then p divides v = |G : Gα| by Lemma

2.7. Since r divides v − 1, (r, p) = 1 and so r divides |Gα|p′. It follows that r < |Gα|p′,
and hence |G| < |Gα||Gα|2p′ by Lemma 2.1. Now by Lemma 2.2(2), we have that |T | <
|Out(T )|2|Tα||Tα|2p′. �

Lemma 2.9 ([20, Theorem 2, Table III]) If T is a finite simple exceptional group of Lie type

such that T ≤ G ≤ Aut(T ), and Gα is a maximal subgroup of G such that T0 = Soc(Gα)

is not simple, then one of the following holds:

(1) Gα is parabolic;

(2) Gα is of maximal rank;

(3) Gα = NG(E), where E is an elementary abelian group given in [4, Theorem 1 (II)];

(4) T = E8(q) with p > 5, and T0 is either A5 × A6 or A5 × L2(q);

(5) T0 is as in Table 1.

Table 1

T T0

F4(q) L2(q)×G2(q)(p > 2, q > 3)
Eǫ

6(q) L3(q)×G2(q), U3(q)×G2(q)(q > 2)
E7(q) L2(q)× L2(q)(p > 3), L2(q)×G2(q)(p > 2, q > 3),

L2(q)× F4(q)(q > 3), G2(q)× Sp6(q)
E8(q) L2(q)× Lǫ

3(q)(p > 3), L2(q)×G2(q)×G2(q)(p > 2, q > 3),
G2(q)× F4(q), L2(q)×G2(q

2)(p > 2, q > 3)

Lemma 2.10 ([19, Theorem 3]) Let T be a finite simple exceptional group of Lie type,

with T ≤ G ≤ Aut(T ). Assume Gα is a maximal subgroup of G and Soc(Gα) = T0(q) is a

simple group of Lie type over Fq(q > 2) such that 1
2
rank(T ) < rank(T0); assume also that

(T, T0) is not (E8,
2A5(5)) or (E8,

2D5(3)). Then one of the following holds:
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(1) Gα is a subgroup of maximal rank;

(2) T0 is a subfield or twisted subgroup;

(3) T = E6(q) and T0 = C4(q)(q odd) or F4(q).

Lemma 2.11 ([22, Theorem 1.2]) Let T be a finite simple exceptional group of Lie type

such that T ≤ G ≤ Aut(T ), and Gα a maximal subgroup of G with socle T0 = T0(q) a

simple group of Lie type in characteristic p. Then if rank(T0) ≤ 1
2
rank(T ), we have the

following bounds:

(1) if T = F4(q), then |Gα| < 4q20 logp q;

(2) if T = Eǫ
6(q), then |Gα| < 4q28 logp q;

(3) if T = E7(q), then |Gα| < 4q30 logp q;

(4) if T = E8(q), then |Gα| < 12q56 logp q.

In all cases, |Gα| < 12|G| 5

13 logp q.

The following lemma gives a method to check the existence of the design with the

possible parameters.

Lemma 2.12 For the given parameters (v, b, r, k, λ) and the group G, the conditions that

there exists a design D with such parameters satisfying G which is flag-transitive and point

primitive is equivalent to the following four steps holding for some subgroup H of G with

index b and its orbit of size k:

(1) G has at least one subgroup H of order |G|/b;

(2) H has at least one orbit O of length k;

(3) the size of OG is b;

(4) the number of blocks incident with any two points is a constant.
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When we run through all possibilities of H and its orbits with size k, then we found

all designs with such parameters and admitting G ≤ Aut(D) is flag-transitive and point

primitive. This is the essentially strategy adopted in [29].

We now give some information about the Ree group 2G2(q) with q = 32n+1 and its

subgroups, which from [8, 11, 15] and would be used later.

Set m = 3n+1, and so m2 = 3q. The Ree group 2G2(q) is generated by Q,K and τ ,

where Q is Sylow 3-subgroup of 2G2(q), K = {diag(tm, t1−m, t2m−1, 1, t1−2m, tm−1, t−m) | t ∈
F∗
q} ∼= Zq−1 and τ 2 = 1 such that τ inverts K, and |2G2(q)| = (q3 + 1)q3(q − 1).

Lemma 2.13 (1) ([15]) 2G2(q) is 2-transitive of degree q3 + 1.

(2) ([7, p.252]) The stabilizer of one point is Q : K, and N2G2(q)(Q) = Q : K.

(3) ([11, p.292]) The stabilizer K of two points is cyclic of order q − 1 and the stabilizer

of three points is of order2.

(4) ([11, p.292]) The Sylow 2-subgroup of 2G2(q) is elementary abelian with order 8.

Lemma 2.14 ([8, Lemma 3.3] ) Let M ≤ 2G2(q) and M be maximal in 2G2(q). Then

either M is conjugate to M6 :=
2G2(3

ℓ) for some divisor ℓ of 2n+ 1, or M is conjugate to

one of the subgroups Mi in the following table:

Table 2: The maximal subgroups of 2G2(q)

Group Structure Remarks

M1 Q : K the normalizer of Q in 2G2(q)
M2 Z2 × L2(q) the centralizer of an involution in 2G2(q)
M3 (Z2

2 ×D(q+1)/2) : Z3 the normalizer of a four-subgroup
M4 Zq+m+1 : Z6 the normalizer of Zq+m+1

M5 Zq−m+1 : Z6 the normalizer of Zq−m+1

Moreover, we see that from [8], the Sylow 3-subgroup Q can be identified with the group

consisting of all triples (α, β, γ) from Fq with multiplication:

(α1, β1, γ1)(α2, β2, γ2) = (α1 + α2, β1 + β2 − α1α
m
2 , γ1 + γ2 − αm

1 α
m
2 − α2β1 + α1α

m+1
2 ).
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It is easy to check that (0, 0, γ)(0, β, 0) = (0, β, γ). Set Q1 = {(0, 0, γ)|γ ∈ Fq} and

Q2 = {(0, β, 0)|β ∈ Fq}, then Q1
∼= Q2

∼= Z2n+1
3 .

For a group Q, Z(Q), Φ(Q), Q′ denote the center, Frattini subgroup, and the derived

subgroup of Q, respectively. Then Q′ = Φ(Q) = Q1 × Q2, Z(Q) = Q1, and Q′ is an

elementary abelian 3-group. For any (α, β, γ) ∈ Q and k ∈ K,

(α, β, γ)k = (kα, k1+mβ, k2+mγ).

Lemma 2.15 ([8, 15]) Let Q, M , Q2, M2 and K as above, then

(1) the normalizer of any subgroup of Q is contained in M1;

(2) for any g ∈ 2G2(q), either Qg = Q or Qg ∩Q = 1;

(3) Q2 is a Sylow 3-subgroup of M2 and NM2
(Q2) = 2× (Q2 : 〈k2〉) with 〈k〉 = K.

Lemma 2.16 ([8, Lemma 3.2]) The following hold for the cyclic subgroup K:

(1) K is transitive on Q1 \ {1} acting by conjugation;

(2) K has two orbits (0, 1, 0)K, (0,−1, 0)K on Q2 \ {1} acting by conjugation.

From above lemmas, we have the following properties of the subgroups of 2G2(q).

Lemma 2.17 If H ≤ M1 and (q − 1) | |H|, then K ≤ H.

Proof. Let p be a prime divisor of q − 1. If P ∈ Sylp(M1), then since (p, 3) = 1 and

Q ∩K = 1, we have P ∈ Sylp(K). Note that K is cyclic, the Sylow p-subgroup of K is

unique, and so the Sylow p-subgroup of M1 is unique. On the other hand, if P0 ∈ Sylp(H),

since H ≤ M1, then P0 = P ∩H . Moreover, |P0| = |P | implies that P = P0 ≤ H . Since p

is arbitrary, all Sylow subgroups of K are contained in H , and so K ≤ H . �

Corollary 1 Let H ≤ M1 and |H| = q(q − 1). Then H = A : K where A is the Sylow

3-subgroup of H.

Proof. Since Q ✂M1, we have A = H ∩ Q and A ✂ H . By Lemma 2.17, K ≤ H . Now

A ∩K = 1, and so H = A : K. �
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Lemma 2.18 Let Q2 be a Sylow 3-subgroup of M2 and H2 := NM2
(Q2). If Q2 ≤ Q and

M1 = Q : K, then the following hold:

(1) H2 = Q2 : K and H2 ≤ M1;

(2) for any H ≤ M2 satisfying |H| = q(q− 1), there exists c ∈ M2 such that H = Hc
2 and

H ≤ M c
1 .

Proof. Clearly, (1) holds by Lemma 2.15(1) and Corollary 1. Let H ≤ M2 and |H| =
q(q− 1). Note that M2

∼= Z2 ×L2(q). Since H . Z2 ×L2(q) and H2 . Z2 ×L2(q), then by

the list of maximal subgroups of L2(q), we know that H ∼= H2
∼= Z2 × ([q] : Z q−1

2

). Let σ

be an automorphism from H2 to H . Then Qσ
2 ✂H since Q2 ✂H2. Moreover, since q | |H|,

the Sylow 3-subgroup of H is conjugate to Q2 in M2 and so Qσ
2 = Qc

2 ✂H for c ∈ M2. It

follows that

H ≤ NM2
(Qc

2) = NM2
(Q2)

c = Hc
2.

Therefore H = Hc
2.

Note that if Qc 6= Q, then from Qc
2 ≤ Qc and Lemma 2.15(1), we get H = NM2

(Qc
2) ≤

M c
1 , and so (2) holds.

Now, we prove that Qc 6= Q. If Qc = Q, then Qc
2 ≤ Q, and so H ≤ M1. By Corollary 1,

we have H = Qc
2 : K and H2 = Q2 : K. Since Q2✂Q′, Qc

2✂Q′. Recall that Q′ = Q1×Q2 is

an elementary abelian 3-group, so Qc
2∩Q1 6= 1 or Qc

2∩Q2 6= 1. Now suppose that (0, β, 0) ∈
Qc

2 ∩ Q2, since Qc
2 ∩ Q2 ≤ Q2, we have (0, β, 0)−1 = (0,−β, 0) ∈ Qc

2 ∩ Q2. This, together

with K ≤ H and K ≤ H2, implies (0, β, 0)K ∪ (0,−β, 0)K = Q2 \ {1} = Qc
2 \ {1}. Hence

Qc
2 = Q2, a contradiction. Similarly, if Qc

2 ∩Q1 6= 1, we have Qc
2 = Q1, a contradiction. �

Lemma 2.19 Suppose that H ≤ 2G2(q) and |H| = q(q − 1). Then H is conjugate to

H1 = Q1 : K or H2 = Q2 : K, and there are only two conjugacy classes of subgroups of

order q(q − 1) in 2G2(q).

Proof. Let H ≤ 2G2(q) and |H| = q(q − 1). By Lemma 2.14, H must be contained in a

conjugacy of M1 or M2. Firstly, if Hg−1 ≤ M1, then by Corollary 1, Hg−1

= A : K where

A is a Sylow 3-subgroup of Hg−1

. We now show that A ≤ Q′. Assume that F is a maximal

subgroup of Q such that A ≤ F . If A ∩ Q′ = 1, then by Lemma 2.5 and the fact Q′ ≤ F ,

we have |F : A| ≥ |F ∩Q′ : A∩Q′| = q2, and so |F | ≥ q3, a contradiction. Therefore, there
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exists an element (0, β, γ) ∈ A∩Q′, which implies that A \ {1} = (0, β, γ)K ⊆ Q′ \ {1} and

hence A ≤ Q′. It follows that A ∩ Q1 6= 1 or A ∩ Q2 6= 1. Similar to the proof of Lemma

2.18, if A ∩Q1 6= 1, then A = Q1 and so Hg−1

= H1, and if A ∩Q2 6= 1, then A = Q2 and

so Hg−1

= H2. Secondly, if H contained in a conjugacy of M2, then H is conjugate to H2

by Lemma 2.18(2). �

Lemma 2.20 Let H ≤ 2G2(q) and |H| = q2(q − 1). Then H is conjugate to Q′ : K, and

there are only one conjugacy class of subgroups of order q2(q − 1) in 2G2(q).

Proof. Since Q′ char Q✂M1, so Q′ : K is a subgroup of M1 with order q2(q−1). Suppose

that H ≤ 2G2(q) and |H| = q2(q − 1). By Lemma 2.14, we have Hg−1 ≤ M1. Similarly

as the proof of Corollary 1, we get that Hg−1

has the structure A : K where A is the

Sylow 3-subgroup of Hg−1

. Let F be a maximal subgroup of Q satisfying A ≤ F . Since

|F : A| ≥ |F ∩ Qi : A ∩ Qi|, we have |A ∩ Qi| > 1, which implies Qi = QK
i ≤ AK = A for

i = 1, 2. So Q′ ≤ A, and it follows that Q′ = A and Hg−1

= Q′ : K in M1. �

Similarly, we have the following result on the Suzuki group 2B2(q) by [9] and [7, p.250].

Lemma 2.21 Suppose that Q is the Sylow 2-subgroup of 2B2(q) and M1 = Q : K is the

normalizer of Q. Let H ≤ 2B2(q) and |H| = q(q − 1). Then H is conjugate to Z(Q) : K.

There exists a unique conjugacy class of subgroups of order q(q − 1) in 2B2(q).

3 Proof of Theorem 1

3.1 T is the Ree group

Proposition 3.1 Suppose that G and D satisfy hypothesis of Theorem 1. Let B be a block.

If T = 2G2(q) with q = 32n+1, then D is the Ree unital or one of the following:

(1) D is a 2-(q3 + 1, q, q − 1) design with GB = Q1 : K or Q2 : K;

(2) D is a 2-(q3 + 1, q2, q2 − 1) with GB = Q′ : K.

This proposition will be proved into two steps. We first assume that there exists a design

satisfying the assumptions and obtain the possible parameters (v, b, r, k, λ) in Lemma 3.1,

then prove the existence of the designs using Lemma 2.12.
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Lemma 3.1 Suppose that G and D satisfy the hypothesis of Theorem 1. If T = 2G2(q) with

q = 32n+1, then (v, b, r, k, λ) = (q3+1, q2(q3+1), q3, q, q−1) or (q3+1, q(q3+1), q3, q2, q2−1)

or D is the Ree unital.

Proof. Let Tα := Gα∩T . Since G is primitive on P, then Tα is one of the cases in Lemma

2.14 by [13]. First, the cases that Tα = Z2
2 × D(q+1)/2 and Zq±m+1 : Z6 are impossible

by Lemma 2.8. If Tα = Z2 × L2(q), then v = q2(q2 − q + 1) and (|Gα ∩ T |, v − 1) =

(q(q2 − 1), q4 − q3 + q2 − 1) = q − 1. But since r divides f(|Gα ∩ T |, v − 1), which is too

small to satisfy v < r2. Similarly, Tα cannot be 2G2(3
ℓ).

We next assume that Tα = Q : K, and so v = q3 + 1. Moreover, from [7, p.252], T

is 2-transitive on P, so T is flag-transitive by Lemma 2.4. Hence we may assume that

G = T = 2G2(q). The equations in Lemma 2.1 show

b =
λv(v − 1)

k(k − 1)
=

λq3(q3 + 1)

k(k − 1)
,

then by the flag-transitivity of T , we have

|TB| =
|T |
b

=
(q − 1)k(k − 1)

λ
.

Let M be a maximal subgroup of T such that TB ≤ M . Then since |TB| | |M | and q ≥ 27,

M must be M1 or M2 shown in Lemma 2.14.

If TB ≤ M1, then k(k − 1) | λq3. Furthermore, since (r, λ) = 1 and so λ | (k − 1)

by Lemma 2.1(2). Therefore λ = k − 1, and it follows that r = v − 1 = q3 and k | q3.
Note that M1 is point stabilizer of T in this action. So there exists α such that M1 = Tα

and TB ≤ Tα. However, the flag-transitivity of T implies α /∈ B. For any point γ ∈ B,

TγB ≤ Tαγ . By Lemma 2.13, |Tαγ | = q− 1, and so |TγB| | (q− 1). On the other hand, from

|BTγ | = |Tγ : TγB| ≤ |BGγ | = |Gγ : GγB| = r = q3,

we have TγB = Tαγ and so BTαγ = B. Since the stabilizer of three points is of order 2

by Lemma 2.13, so the size of Tαγ-orbits acting on P \ {α, γ} is q − 1 or 1
2
(q − 1). This ,

together with BTαγ = B and α /∈ B, implies that k − 1 = a (q−1)
2

for an integer a. Recall

that k | q3 and k < r, we get k = q or k = q2. If k = q, then

b = q2(q3 + 1), r = q3, λ = q − 1.
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If k = q2, we have

b = q(q3 + 1), r = q3, λ = q2 − 1.

Now we deal with the case that TB ≤ M2 by the similar method in [12, Theorem 3.2].

If TB is a solvable subgroup of M2
∼= Z2×L2(q), then TB must map into either Z2×A4,

Z2×Dq±1 or Z2× ([q] : Z q−1

2

). Obviously, the former two cases are impossible. For the last

case, TB . Z2 × ([q] : Z q−1

2

). Since TB ≤ M2, by Lemma 2.18, this can be reduced to the

case TB ≤ M1.

If TB is non-solvable, then it embeds in Z2 ×L2(q0) with qℓ0 = q = 32n+1. The condition

that |TB| divides |Z2×L2(q0)| forces q0 = q and so TB is isomorphic to Z2×L2(q) or L2(q).

If TB
∼= Z2 × L2(q), then TB = M2 and so b = q2(q2 − q + 1). Hence, from Lemma 2.1,

we have k | q(q+1), q2 | r and r | q3. Since k ≥ 3, then the fact that the stabilizer of three

points is of order 2 implies that TB cannot acting trivially on the block B. Moreover, since

q+1 is the smallest degree of any non-trivial action of L2(q), we have k = λ(v−1)
r

+1 ≥ q+1.

If the design D is a linear space, then D is the Ree unital (see [12]) with parameters

(v, b, r, k, λ) = (q3 + 1, q2(q2 − q + 1), q2, q + 1, 1)

and T is flag-transitive with the block stabilizer M2.

If λ > 1, we claim that λ = k− 1. Clearly, λ | (k− 1) as (r, λ) = 1 by Lemma 2.1(2). If

3 | (k − 1) and (k, 3) = 1, then since k | q(q + 1) and k ≥ q + 1, we have k = q + 1 and so

λ | q, which contradicts (r, λ) = 1 as q2 | r. Hence (k − 1, 3) = 1. Moreover, (k − 1) | λq3

implies that (k − 1) | λ. So we have λ = k − 1.

Let ∆1, ∆2,. . ., ∆t be the orbits of M2. Since M2 is the block stabilizer of the Ree

unital, it has an orbit of size q + 1. Without loss of generality, suppose that |∆1| = q + 1.

On the one hand, recall that k | q(q + 1) and T is flag transitive, TB = M2 has at least

one orbit with size less than q(q+ 1). On the other hand, we show that |∆i| > q(q+ 1) for

i 6= 1 in the following and we obtain the desired contradiction. Assume that δ ∈ P \∆1,

we claim that (M2)δ is a 2-group. Let p be a prime divisor of |(M2)δ| and P be a Sylow

p-subgroup of (M2)δ. If p 6= 2 and p 6= 3, then since (M2)δ ≤ Tδ, we have p | (q − 1).

Obviously, since ∆1 is an orbit of M2 and P ≤ (M2)δ, and so P acts invariantly on ∆1 and

P \∆1. Note that the length of a P -orbit is either 1 or divided by p, so P fixes at least two

points in ∆1. Moreover, P also fixes δ. Therefore P fixes at least three points of P, which

is impossible as the order of the stabilizer of three points is 2 by Lemma 2.13(3). If p = 3,
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since P fixes the point δ ∈ P \∆1 and |P \∆1| = q3−q, then P fixes at least three points in

P \∆1, which is also impossible. As a result, (M2)δ is a 2-group. The fact that the Sylow

2-subgroup of T is of order 8 implies that the sizes of the M2-orbits ∆i (i 6= 1) are at least
q(q2−1)

8
and hence larger than q(q + 1), which contradicts the fact k | q(q + 1). Therefore,

TB 6∼= Z2×L2(q). Similarly, TB 6∼= L2(q). Thus TB is not a non-solvable subgroup in M2. �

Proof of Proposition 3.1. We use Lemma 2.12 to prove the existence of the design

with parameters listed in Lemma 3.1.

Assume that (v, b, r, k, λ) = (q3 + 1, q2(q3 + 1), q3, q, q − 1). Then from Lemma 2.19 we

known that there are only two conjugacy classes of subgroups of order q(q − 1) in T and

H1 = Q1 : K ≤ Tα and H2 = Q2 : K ≤ Tα as representatives, respectively.

First, we consider the orbits of H1. Let γ 6= α be the point fixed by K. Since K ≤ H1,

then Kγ = K ≤ (H1)γ ≤ Tαγ = K, which implies (H1)γ = Tαγ and so |H1 : (H1)γ| =
|γH1| = q. It is easy to see that |δH1| 6= q for any point δ 6= α, γ. Therefore, H1 has only

one orbit of size q. Let B1 = γH1 .

Now we show that H1 = TB1
, which implies |BT

1 | = b. Since H1 ≤ TB1
and B1 = γH1 =

γTB1 , then |H1 : (H1)γ| = |TB : TγB1
| = q. If K = (H1)γ < TγB1

, then 3 divides |TγB1
: TδγB1

|
for any δ ∈ B1 \ {γ} by Lemma 2.13(3). It follows that 3 | (q − 1), a contradiction. As a

result, K = (H1)γ = TγB1
and so H1 = TB1

. Let B1 := BT
1 . Therefore |B1| = |T : H1| = b.

Let B1 be the set of blocks.

Finally, since T is 2-transitive on P, the number of blocks which incident with two

points is a constant. Hence D1 = (P,B1) is a 2-(q3 + 1, q, q − 1) design admitting T as a

flag transitive automorphism group by Lemma 2.12.

In a similar way, we get the design D2 satisfying all hypothesis when the subgroup is

H2 = Q2 : K. Furthermore, since H1 is not isomorphic to H2, so D1 is not isomorphic to

D2 by [6, 1.2.17].

Similarly , if (v, b, r, k, λ) = (q3+1, q(q3+1), q3, q2, q2− 1), we can construct the design

with these parameters. �

3.2 T is the Suzuki group

Proposition 3.2 Suppose that G and D satisfy hypothesis of Theorem 1. If T = 2B2(q)

with q = 22n+1, then D is a 2-(q2+1, q, q−1) design with GB = Z(Q) : K where Q ∈ Syl2(T )

and K = Zq−1.
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Proof. Suppose that T = 2B2(q) with order (q2+1)q2(q−1). Then |G| = f(q2+1)q2(q−1)

where f divides |Out(T )|. By [9] or [27], the order of Gα is one of the following:

(1) fq2(q − 1);

(2) 2f(q − 1);

(3) 4f(q ±√
2q + 1);

(4) f(q20 + 1)q20(q0 − 1) with qℓ0 = q.

Since |G| < |Gα|3, we first have that |Gα| 6= 2f(q− 1). If |Gα| = 4f(q±√
2q+1), from

the inequality |G| < |Gα|3, we get f(q2+1)q2(q−1) < (4f)3(2q)3, and so q2+q+1 ≤ 43f 223.

Since f ≤ |Out(T )| = e and q = pe, hence q+1 < 4323 and q = 27, 25 or 23. If q = 27, then

|G| = f214(214 − 1)(27 − 1) > f 343(27 +24 +1)3 = |Gα|3 where f = 7 or 1, a contradiction.

If q = 25, then v = 198400 or 325376 for |Gα| = 4f(q +
√
2q + 1) or 4f(q − √

2q + 1)

respectively. By calculating (|Gα|, v − 1), since r divides (|Gα|, v − 1), we know that r is

too small. Similarly, we get q 6= 23.

If |Gα| = f(q20 + 1)q20(q0 − 1) with qℓ0 = q, then the inequality |G| < |Gα||Gα|2p′ forces
m = 3. So v = (q40 − q20 +1)q40(q

2
0 + q0+1). Since r divides (|Gα|p′, v−1), then r ≤ |Gα|p′ ≤

fq30 < q
9/2
0 . From v < r2, we get (q40 − q20 +1)q40(q

2
0 + q0 +1) < r2 < q90, which is impossible.

Now assume that |Gα| = fq2(q−1). Then v = q2+1 and T is 2-transitive by [7, p.250].

Hence, T is flag-transitive by Lemma 2.4. Similarly, we have |TB| = |T |
b

= k(k−1)(q−1)
λ

. Let

M be the maximal subgroup of T such that TB ≤ M as in Lemma 3.1. The fact that |TB|
divides |M | implies that |M | = q2(q − 1) and k(k − 1) divides λq2. Similar to the proof of

Lemma 3.1, we have TγB = Tαγ with the order q − 1. Furthermore, we get

(v, b, r, k, λ) = (q2 + 1, q(q2 + 1), q2, q, q − 1).

Next we prove the existence of the design with above parameters by Lemma 2.12.

Firstly, from Lemma 2.21 we know that the Suzuki group has a unique conjugacy class of

subgroups of order q(q − 1), let H := Z(Q) : K ≤ Tα as the representative.

Note that K is the stabilizers of two points in 2B2(q) by [11, p.187]. Let γ 6= α be

the point fixed by K and B = γH . Then similar as the proof of Proposition 3.1 we get

that B is the only H-orbit of length q and H = TB. Let B = BT be the set of blocks.

Finally, since T is 2-transitive on P, the number of blocks which incident with two points is
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a constant. Hence D = (P,B) is a 2-(q2+1, q, q−1) design admitting T be a flag transitive

automorphism group by Lemma 2.12. �

3.3 T is one of the remaining families

In this subsection, let

T = {2F4(q),
3D4(q), G2(q), F4(q), E

ǫ
6(q), E7(q), E8(q)},

we will prove that there are no new design arise when T ∈ T .

First, we show that Gα cannot be a parabolic subgroup of G for any T ∈ T .

Lemma 3.2 Suppose that G and D satisfy hypothesis of Theorem 1. If T ∈ T , then Gα

cannot be a parabolic subgroup of G.

Proof. By Lemma 2.6, for all cases that T ∈ T \E6(q), there is a unique subdegree which

is a power of p, so r is a power of p by Lemma 2.1(4). We can easily check that r is too

small and the condition r2 > v cannot be satisfied. Now, assume that T = E6(q). If G

contains a graph automorphism or Gα∩T is P2 or P4, then there is also a unique subdegree

which is a power of p and so r is too small again. If Gα ∩ T is P3 with type A1A4, then

v =
(q3 + 1)(q4 + 1)(q9 − 1)(q6 + 1)(q4 + q2 + 1)

(q − 1)
.

Since r divides (|Gα|, v − 1), we have r | eq(q − 1)5(q5 − 1) and so r is too small to satisfy

r2 > v. If Gα ∩ T is P1 with type D5, then

v =
(q8 + q4 + 1)(q9 − 1)

q − 1
.

From [16], we know that there exists two non-trivial subdegrees:

d =
q(q3 + 1)(q8 − 1)

(q − 1)
and d′ =

q8(q4 + 1)(q5 − 1)

(q − 1)
.

Since (d, d′) = q(q4 + 1), we have r | q(q4 + 1) by Lemma 2.1(4), which contradicts with

r2 > v. �

Let T1 = {F4(q), E
ǫ
6(q), E7(q), E8(q)}.

Lemma 3.3 Suppose that G and D satisfy the hypothesis of Theorem 1. If T ∈ T1 and Gα

is non-parabolic, then Gα cannot be a maximal subgroup of maximal rank.
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Proof. If Gα is non-parabolic and of maximal rank, then for any T ∈ T1, we have a

complete list of Tα := Gα ∩ T in [18, Tables 5.1-5.2]. All subgroups in [18, Table 5.2] and

some cases in [18, Table 5.1] can be ruled out by the inequality |T | < |Out(T )|2|Tα||Tα|2p′.
Since r divides (|Gα|, v − 1), for the remaining cases we have that r2 < v, a contradiction.

For example, if T = F4(q) with order q24(q2 − 1)(q6 − 1)(q8 − 1)(q12 − 1). Then Tα is

one of the following: (1) 2.(L2(q)× PSp6(q)).2 (q odd); (2) d.Ω9(q); (3) d
2.PΩ+

8 (q).S3; (4)
3D4(q).3; (5) Sp4(q

2).2 (q even); (6) (Sp4(q)×Sp4(q)).2(q even); (7) h.(Lǫ
3(q)×Lǫ

3(q)).h.2,

with d = (2, q − 1) and h = (3, q − ǫ).

If Tα = 2.(L2(q)× PSp6(q)).2 with q odd, then

|Tα| = q10(q2 − 1)2(q4 − 1)(q6 − 1) and v = q14(q4 + 1)(q4 + q2 + 1)(q6 + 1).

Since (q2 + 1) | v and (q4 + q2 + 1) | v, then (|Gα|, v − 1) | |Out(T )|(q2 − 1)4 and so

r2 < q9 < v, a contradiction.

If Tα = 2.PΩ9(q) with q odd, then

|Tα| = q16(q2 − 1)(q4 − 1)(q6 − 1)(q8 − 1) and v = q8(q8 + q4 + 1).

Since q | v, (q4 + q2 + 1) | v, v − 1 ≡ 2 (mod q4 − 1), we get r divides 24|Out(T )|(q4 + 1)

and so r2 < v, a contradiction.

Cases (3)-(6) can be ruled out similarly, and Case (7) cannot occur because of |T | <
|Out(T )|2|Tα||Tα|2p′. �

Lemma 3.4 Suppose that G and D satisfy the hypothesis of Theorem 1. If T ∈ T1 and Gα

is non-parabolic, then T0 = Soc(Gα ∩ T ) is simple and T0 = T0(q0) ∈ Lie(p).

Proof. Assume that T0 = Soc(Gα ∩ T ) is not simple. Then by Lemma 2.9 and Lemma

3.3, one of the following holds:

(1) Gα = NG(E), where E is an elementary abelian group given in [4, Theorem 1(II)];

(2) T = E8(q) with p > 5, and T0 is either A5 × A6 or A5 × L2(q);

(3) T0 is as in Table 1.

From [4, Theorem 1(II)], we check that all subgroups in Case (1) are local and too small

to satisfy |T | < |Out(T )|2|Tα||Tα|2p′.
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The order of subgroup in Case (2) is too small.

For Case (3), since Gα is not simple and not local by [4, Theorem 1], Gα is of maximal

rank by [25, p.346], which has already been ruled out in Case (1). Therefore, T0 is simple.

Now assume that T0 = T0(q0) 6∈ Lie(p). Then for all T , we find the possibilities of T0

in [21, Table 1]. Some cases can be ruled out by the inequality |T | < |Out(T )|2|Tα||Tα|2p′.
In each of the remaining cases, since r must divides (|Gα|, v − 1), r is too small to satisfy

v < r2. For example, assume that T = F4(q). If T0 6∈ Lie(p), then according to [21, Table

1], it is one of the following: A5−10, L2(7), L2(8), L2(13), L2(17), L2(25), L2(27), L3(3),

U3(3), U4(2), Sp6(2), Ω
+
8 (2),

3D4(2), J2, J2, A11(p = 11), L3(4)(p = 3), L4(3)(p = 2),
2B2(8)(p = 5), M11(p = 11). The possibilities of T0 such that |G| < |Gα|3 are A9(q = 2),

A10(q = 2), Sp6(2)(q = 2), Ω+
8 (2)(q = 2, 3), 3D4(2)(q = 2, 3), J2(q = 2), L4(3)(q = 2).

However, since r | (|Gα|, v−1), we have r2 < v for all these cases, which is a contradiction.�

Lemma 3.5 Suppose that G and D satisfy the hypothesis of Theorem 1. If T0 = T0(q0) is

a simple group of Lie type and Gα is non-parabolic, then T 6∈ T1.

Proof. First assume that T = F4(q). If rank(T0) >
1
2
rank(T ), then by Lemma 2.10 and

Lemma 3.3, the only possible cases of Gα ∩ T satisfying |G| < |Gα|3 are F4(q
1

2 ) and F4(q
1

3 )

when q0 > 2. If Gα ∩T = F4(q
1

2 ), then v = q12(q6+1)(q4+1)(q3+1)(q+1) > q26. Since q,

q+1, q2+1 and q3+1 are factors of v, then r | 2e(q−1)2(q3−1)2 by r | (|Gα|, v−1), which

implies that r2 < v, a contradiction. If Gα ∩ T = F4(q
1

3 ), since p | v, then r divides |Gα|p′ ,
which also implies r2 < v. When q0 = 2, the subgroups T0(2) with rank(T0) >

1
2
rank(T )

that satisfy |G| < |Gα|3 are Aǫ
4(2), B3(2), B4(2), C3(2), C4(2) or D

ǫ
4(2). But in each case,

r | (|Gα|, v − 1) forces r2 < v, a contradiction. If rank(T0) ≤ 1
2
rank(T ), then from Lemma

2.11, we have |Gα| < 4q20 logp q. Looking at the orders of groups of Lie type, we see that

if |Gα| < 4q20 logp q, then |Gα|p′ < q12, and so |Gα||Gα|2p′ < |G|, contrary to Lemma 2.8.

For T = Eǫ
6(q), if rank(T0) > 1

2
rank(T ), then when q0 > 2, by Lemma 2.10 the only

possibilities are Eǫ
6(q

1

2 ), Eǫ
6(q

1

3 ), C4(q) and F4(q). In all these cases r are too small. When

q0 = 2, the possibilities T0(2) satisfying |G| < |Gα|3 with order dividing |Eǫ
6(2)| are Aǫ

5(2),

B4(2), C4(2), D
ǫ
4(2) and Dǫ

5(2). However, since r | (|Gα|, v − 1), for all these cases we

obtain r2 < v, a contradiction. If rank(T0) ≤ 1
2
rank(T ), then from Lemma 2.11, we

have |Gα| < 4q28 logp q. By further check the orders of groups of Lie type, we see that

|Gα|p′ < q17, and so |Gα||Gα|2p′ < |G|, a contradiction.
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Assume that T = E7(q). If rank(T0) ≤ 1
2
rank(T ), then by Lemma 2.11 |Gα|3 ≤ |G|,

a contradiction. If rank(T0) > 1
2
rank(T ), then when q0 > 2, B by Lemma 2.10, the only

cases T ∩Gα satisfying |G| < |Gα|3 are Gα∩T = E7(q
1

s ), where s = 2 or 3. But in all cases

we have r2 < v. If q0 = 2, then the possible subgroups such that |G| < |Gα|3 with order

dividing |E7(2)| are Aǫ
6(2), A

ǫ
7(2), B5(2), C5(2), D

ǫ
5(2) and Dǫ

6(2). However in all of these

cases, since r | (|Gα|, v − 1) we have r2 < v, a contradiction.

Assume that T = E8(q). If rank(T0) ≤ 1
2
rank(T ), then by Lemma 2.11 we get |Gα|3 <

|G|, a contradiction. Therefore, rank(T0) >
1
2
rank(T ). If q0 > 2, then Lemma 2.10 implies

Gα ∩ T = E8(q
1

s ), with s = 2 or 3. However in both cases we get a small r with r2 < v,

a contradiction. If q0 = 2, then rank(X0) ≥ 5. All subgroups satisfying |Gα|3 > |G|
are Aǫ

8(2), B7(2), B8(2), C7(2), C8(2), D
ǫ
8(2) and Dǫ

7(2). But for all these cases we have

r2 < v. �

Lemma 3.6 If T = G2(q) with q = pe > 2, then Gα cannot be a non-parabolic maximal

subgroup of G.

Proof. Suppose that T = G2(q) with q > 2 since G2(2)
′ = PSU3(3). All maximal

subgroups of G can be found in [13] for odd q and in [3] for even q.

Assume that Gα be a non-parabolic maximal subgroup of G. First we deal with the

case where Gα ∩ T = SLǫ
3(q).2 with ǫ = ±. Then we have v = 1

2
q3(q3 + ǫ1). By Lemma 2.1

and [25, Section 8] we conclude that r divides (q3−ǫ1)
2

for odd q (cf. [25, Section 4, Case 1,

i = 1]) and r divides (q3 − ǫ1) for even q (cf. [25, Section 3, Case 8]). The case that q odd

is ruled out by v < r2. If q is even, then r = q3 − ǫ1. This, together with k < r, implies

k − 1 = λ q3+ǫ2
2

, and so λ = 1 or λ = 2. From the result of [25] we known that λ 6= 1. If

λ = 2, then since k < r, we have ǫ = −. It follows that k = q3 − 1 and r = q3 + 1. This is

impossible by Lemma 2.3 and [24, Theorem 1].

Now, if Gα ∩ T = 2G2(q) with q = 32n+1 ≥ 27, then v = q3(q + 1)(q3 − 1). Note that

q | v and (q2− 1, v− 1) = 1, we have (|Gα|, v− 1) | e(q2− q+1), and it follows that r2 < v,

a contradiction.

The cases that Gα ∩ T is G2(q0) or (SL2(q) ◦ SL2(q)) · 2 can be ruled out similarly.

Using the inequality |G| < |Gα|3 and the fact that r divides (|Gα|, v− 1), we find r too

small to satisfy r2 > v for every other maximal subgroup. �

Lemma 3.7 If T = 2F4(q), then Gα cannot be a non-parabolic maximal subgroup.
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Proof. Let T = 2F4(q) and Gα be a non-parabolic maximal subgroup of G. Then from

the list of the maximal subgroups of G in [23], there are no subgroups Gα satisfying |G| <
|Gα||Gα|2p′, except for the case q = 2. For the case q = 2, Gα ∩ T is L3(3).2 or L2(25).

However in each case, since r divides (|Gα|, v − 1), and so r is too small. �

Lemma 3.8 If T = 3D4(q), then Gα cannot be a non-parabolic maximal subgroup.

Proof. If T = 3D4(q) and Gα is a non-parabolic maximal subgroup of G, then all possibil-

ities of Gα ∩ T are listed in [14]. However, for all cases, the fact that r divide (|Gα|, v − 1)

give a small r which cannot satisfy the condition v < r2. For example, if Gα ∩ T is G2(q)

of order q6(q2 − 1)(q6 − 1), then v = q6(q8 + q4 + 1). Since q | v and (q4 + q2 + 1) | v, then
r | 3e(q2 − 1)2, which contradicts with v < r2. �

Lemma 3.9 Suppose that G and D satisfy the hypothesis of Theorem 1. If the socle T ∈ T ,

then Gα cannot be a non-parabolic maximal subgroup.

Proof. It is follows from Lemmas 3.3−3.8. �

Proof of Theorem 1. Now Theorem 1 is an immediate consequence of Propositions

3.1-3.2 and of Lemmas 3.2 and 3.9.
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