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Abstract

We give a short proof of the following theorem due to Jon H. Folkman (1969):
The chromatic number of any graph is at most 2 plus the maximum over all subgraphs
of the difference between the number of vertices and twice the independence number.
Mathematics Subject Classifications: 05C15

1 Introduction

Independent sets in a graph count among the most studied objects of graph theory, both for
their theoretical and practical appeal. An independent set in a graph is a set of vertices no
two of which are adjacent. This notion is at the heart of graph colouring, where one tries to
find a partition of the vertex set of a graph in the smallest possible number of independent
sets, this number being the chromatic number of the graph. It follows that every graph G
with chromatic number k has an independent set of size at least |V (G)|/k. We investigate
what kind of converse statement could be true. As is usual, we write χ(G) for the chromatic
number of G and α(G) for the independence number of G, that is, the size of a largest
independent set in G. Since we study the independence number of a graph in relation to
the number of its vertices, it is useful to define the independence ratio ir(G) of a graph G

(with at least one vertex) to be α(G)
|V (G)| , and the minimum independence ratio mir(G) to

be min {ir(H) : H induced subgraph of G with at least one vertex}. (The inverse of the
minimum independence ratio is sometimes called the Hall ratio.) Let us start with a
straightforward observation. Every graph with chromatic number greater than 2 contains
an induced odd cycle, and the independence number of an odd cycle is less than half the
number of its vertices. The contrapositive statement reads as follows.

Observation 1. If every induced subgraph H of a graph G has independence ratio at
least 1

2 , then G has chromatic number at most 2.

One could try to generalise Observation 1 in several ways. For instance, what about
replacing the constant 2 by some larger integer k? This would yield an incorrect statement,
as for each integer k > 3, there is a graph with chromatic number greater than k and
minimum independence ratio at least 1

k
. Indeed, let Mk be the kth Mycielski graph

(so M2 is a cycle of length 5). Then χ(Mk) = k + 1 and, as is well known, every proper
subgraph of Mk has chromatic number at most k, from which one infers that mir(Mk) > 1

k

whenever k > 3.
Let us point out here that the exact value of the minimum independence ratio of

Mycielski graphs seems to be unknown. In 2006, Cropper, Gyárfás and Lehel [CGL06]
proved that every triangle-free graph is an induced subgraph of a Mycielski graph and,
using results on Ramsey numbers [AKS80, Kim95] and on the fractional chromatic number
of Mycieslki graphs [LPU95], they inferred the existence of two positive real numbers c1
and c2 such that for every integer m > 3,

c1 ·
√

logm
m

6 mir(Ms) 6 c2 ·
logm
m

.
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Here s is one less than the Ramsey number R(3,m), which is the largest integer n such that
there exists an n-vertex triangle-free graph with independence number less than m. As is
well known, R(3,m) = Θ(m2/ logm) (the lower bound was established by Kim [Kim95]
in 1995, while the upper bound had been proved fifteen years before by Ajtai, Komlós and
Szemerédi [AKS80]; simpler proofs for the lower bound along with improvements of the
multiplicative constant were found subsequently [AKS81, Gri83, She91]).

Another way is to look for approximate generalisations of Observation 1. Let us say
that a graph is half-stable if its independence ratio is at least one half.

Question 2. Let k be a non-negative integer and G a graph. Assume that for every
induced subgraph H of G, there exists a set Y ⊆ V (H) of at most k vertices such
that H − Y is half-stable. Is it true that there exists a subset X ⊆ V (G) of at most k
vertices such that G−X is bipartite?

Again this turns out to be false: for k = 1, consider the graph obtained from the
cycle v1v2v3v4v5v6 of length 6 by adding the triangle v1v3v5 (see Figure 1).

Figure 1: A negative answer to Question 2 for k = 1.

A more careful question was raised by Erdős and Hajnal. A graph satisfying the
hypothesis of Question 2 has been called k-near-bipartite in the literature [Ree99]. Erdős
and Hajnal conjectured (see [Gyá97]) the existence of a function g : N → N such that
every k-near-bipartite graph G contains a set X of at most g(k) vertices such that G−X
is bipartite. This conjecture was confirmed by Reed [Ree99] in 1999.

Here is yet another way to weaken Question 2: it was raised by Erdős and Haj-
nal [EH68] and gave rise to a “deep theorem” (to quote Gyárfás [Gyá97]) demonstrated
by Folkman [Fol70] in 1969.

Theorem 3 (Folkman [Fol70]). Let k be a non-negative integer and G a graph. If for
every induced subgraph H of G, there exists a set Y ⊆ V (H) of at most k vertices such
that H − Y is half-stable, then χ(G) 6 k + 2.

The arguments developed by Folkman to demonstrate Theorem 3 are nice and inter-
esting. However, they are difficult to access and it seems they deserve more visibility.
The essence of Folkman’s argument is not obvious to see amongst the seventeen lemmas
composing its proof, which is witnessed by the fact that a simpler proof was asked for by
Claude Tardif at a workshop at the University of Illinois in 2008 [REG08]. Our goal is
to present a much more compact and shorter proof of Theorem 3, which still relies on
Folkman’s original idea, but with refined, factorised and sometimes generalised statements.
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We define the potential ρ(H) of a graph H to be |V (H)| − 2α(H) + 2. Note that if
a graph has potential k + 2 then one can remove k vertices (but not fewer) to obtain a
half-stable graph. Given a graph G, let f(G) be the maximum of ρ(H) over all induced
subgraphs H of G. Note that if an induced subgraph H satisfies the property mentioned in
Theorem 3, then ρ(H) 6 k+ 2, and hence Theorem 3 can be reformulated as χ(G) 6 f(G)
for every graph G. An induced subgraph H of G is a witness if ρ(H) = f(G). A k-colouring
of a graph G is a mapping ϕ : V (G) → {1, 2, . . . , k} such that no two adjacent vertices
have the same image under ϕ. If X is a subset of vertices of a graph G, then G[X] is the
subgraph of G induced by the vertices in X and G−X is the subgraph of G induced by
the vertices not in X.

To demonstrate Theorem 3, we use a simple, seemingly unrelated result, which is
a special case of a theorem proved by Hajnal [Haj65] in 1965. A proof is included for
completeness (the formulation and the argument are different from what is customary
seen).

Proposition 4 (Hajnal [Haj65]). If a graph G admits an independent set containing more
than half of the vertices, then there exists a vertex contained in all maximum independent
sets of G.

Proof. We proceed by induction on the number e of edges of G. The statement is true if e
is zero. Assume that e > 1 and the statement is true for graphs with fewer than e edges.
Note that the statement is true if G has an isolated vertex, and hence we may assume by
induction that G is connected. If there is an edge e such that α(G− e) = α(G), then by
induction a vertex v is contained in all maximum independent sets of G− e, and hence
also in all those of G since each of them is also a maximum independent set of G − e.
Thus it is enough to show that such an edge e exists. Arguing by contradiction, let us
assume that α(G− e) > α(G) for every edge e of G.

Let x be a vertex of G contained in the largest number of maximum independent sets
of G. Let G′ be the graph obtained from G by deleting x and all its neighbours. We
show that the induction hypothesis can be applied to G′. Notice that adding x to any
independent set of G′ yields an independent set of G, and hence α(G′) 6 α(G)−1. It follows
that α(G′) = α(G)−1 because x is contained in at least one maximum independent set of G.
Since G is connected and has more than one vertex, we know that |V (G′)| 6 |V (G)| − 2,
and therefore the induction hypothesis applies to G′, ensuring the existence of a vertex y
of G′ contained in every maximum independent set of G′. Consequently, y is contained in
every maximum independent set of G that contains x. The definition of x thus ensures
that a maximum independent of G contains x if and only if it contains y.

To conclude, let z be a neighbour of x. Since α(G − xz) > α(G), there exists a
maximum independent set Ix of G that contains x and such that the only neighbour of z
in Ix is x. However, this implies that (Ix \ {x}) ∪ {z} is a maximum independent set of G
containing y and not x, a contradiction. This concludes the proof.
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2 Proof of Theorem 3

We proceed by contradiction. Let G be a counter-example to Theorem 3 with the fewest
vertices. In particular, χ(G) > f(G) + 1. If f(G) = 2, Observation 1 implies that G is
bipartite, a contradiction. It follows that f(G) > 3, and hence χ(G) > 4.

Note that every proper induced subgraph of G admits a (χ(G) − 1)-colouring. We
argue below that the graph satisfies a deeper critical property.

(A). For every subset X of vertices of G,

χ(G) > χ(G[X]) + χ(G−X)− 1.

In particular, (A) implies that removing a clique of size p in G results in a graph with
chromatic number either χ(G)− p or χ(G)− p+ 1.

Proof of (A). The statement holds trivially if X or G−X is empty. Therefore, both G1 :=
G[X] and G2 := G − X have fewer vertices than G. The minimality of G thus implies
that none of G1 and G2 is a counter-example to the statement of Theorem 3. For
each i ∈ {1, 2}, let Hi be a witness of Gi. We have ρ(Hi) = f(Gi) > χ(Gi). We observe
that f(G) > ρ(G[V (H1)∪V (H2)]) > ρ(H1)+ρ(H2)−2, and hence f(G) > χ(G1)+χ(G2)−2.
Since χ(G) > f(G) + 1 by assumption, the conclusion follows.

(B). The graph G has no induced even cycle.

Proof. We proceed by contradiction. Assume that C is an induced even cycle of G, and
let 2p be its length. Let A and B be the two maximum independent sets of C. We consider
the graph G′ obtained from G by merging all vertices of A in a single vertex a and all
vertices of B in a single vertex b, replacing every multi-edge that arises by a single edge
(see Figure 2).

Note that G′ has fewer vertices than G and thus satisfies the conclusion of Theorem 3.
It follows that

f(G′) > χ(G′) > χ(G) > f(G) + 1.

 
a b

Figure 2: An example of the reduction from G to G′ for (B).
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Let H ′ be a witness of G′, so ρ(H ′) > f(G) + 1. Let us consider the subgraph H of G
induced by (V (H ′) \ {a, b}) ∪ V (C). The potential ρ(H) of H can be bounded as follows.

f(G) > ρ(H)
> ρ(H ′) + |V (C)| − 2− 2(α(H)− α(H ′))
> f(G) + 2p− 1− 2(α(H)− α(H ′)). (1)

Clearly, α(H) − α(H ′) 6 α(C) = p. In fact, we must have α(H) − α(H ′) 6 p − 1,
as we now explain. Let I be a maximum independent set of H. If |I ∩ V (C)| 6 p − 1,
then I ∩ V (H ′) is an independent set of H ′ of size at least α(H) − (p − 1). Otherwise,
I∩V (C) ∈ {A,B}, and hence one of (I\V (C))∪{a} and (I\V (C))∪{b} is an independent
set of H of size at least α(H)− (p− 1).

Plugging the inequality α(H)− α(H ′) 6 p− 1 into (1) yields that

f(G) > f(G) + 2p− 1− 2(p− 1) > f(G),

which is the desired contradiction.

We call diamond the graph obtained from the complete graph on 4 vertices by deleting an
edge (see the graph induced by u, v, x, y in Figure 3).

(C). No induced subgraph of G is a diamond.

Proof. Let xy be an edge of G. Let A be the set of common neighbors of x and y, and
assume for a contradiction that A does not induce a clique. For every two distinct vertices u
and v in A such that uv 6∈ E(G), let Guv be the graph obtained from G−{x, y} by merging
the two vertices u and v into a vertex, once again replacing every multi-edge that arises
by a single edge (see Figure 3).

x y

vu
 

w

Figure 3: An example of the reduction from G to Guv for (C).

We prove the following statement.

(C1). For every two distinct vertices u and v in A that are not adjacent in G,

(1) χ(Guv) = χ(G)− 2; and

(2) in every (χ(G)− 2)-colouring of Guv, all colours appear on A.
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Proof. Let w be the vertex resulting from the identification of u and v. We first prove (1).
Let H be a witness of Guv. If H contains w, then we let H ′ be the subgraph of G
induced by (V (H) \ {w}) ∪ {u, v, x, y}. If H does not contain w, then we let H ′ be the
subgraph of G induced by V (H) ∪ {u, x, y}. In either case, we observe that ρ(H ′) > ρ(H)
because α(H ′) 6 α(H) + 1. Consequently, we derive that f(Guv) 6 f(G)− 1 6 χ(G)− 2.

Because Guv has fewer vertices than G, we have f(Guv) > χ(Guv), and hence χ(Guv) 6
χ(G) − 2. On the other hand, χ(Guv) > χ(G) − 2 also holds (from a χ(Guv)-colouring
of Guv, it suffices to keep the same colour on the vertices belonging to both graphs, assign
the colour of w to each of u and v, and the colours χ(Guv) + 1 and χ(Guv) + 2 to x and y,
respectively, to obtain a (χ(Guv) + 2)-colouring of G). Therefore, χ(Guv) = χ(G)− 2.

Let us now prove (2). Suppose, on the contrary, that there is a (χ(G)− 2)-colouring ϕ
of Guv contradicting (2), and let c ∈ ϕ(V (Guv)) \ ϕ(A). We derive from ϕ a (χ(G)− 1)-
colouring of G, which is a contradiction. Set c′ = χ(G)−1, so c′ /∈ ϕ(V (Guv)). We define φ
to be the colouring of G obtained from ϕ by colouring u and v with ϕ(w), colouring x with c
and y with c′, and changing the colour of every neighbour of x that belongs to ϕ−1({c})
to c′. As ϕ−1({c}) is an independent set disjoint from A, and all common neighbours of x
and y belong to A, we infer that φ is a proper (χ(G)− 1)-colouring of G. y

We now consider the graph G′ obtained from G − {x, y} by creating a vertex z
with neighbourhood A. We observe that the existence of a (χ(G) − 2)-colouring of G′
would contradict (C1). Indeed, (C1) implies that |A| > χ(G) − 1. It follows that
if ϕ is a (χ(G) − 2)-colouring of G′, then there exist two vertices u and v in A such
that ϕ(u) = ϕ(v). Consequently, u and v are not adjacent in G and thus ϕ readily yields
a (χ(G)− 2)-colouring of Guv such that one colour, namely ϕ(z), does not appear on A.
Therefore, χ(G′) > χ(G)− 1, and hence f(G′) > χ(G′) > f(G).

x y

vu
 

vu

z

Figure 4: An example of the reduction from G to G′ for (C).

Let H ′ be a witness of G′, so ρ(H ′) > f(G). If z ∈ V (H ′), then the potential
of the subgraph H0 of G induced by (V (H ′) \ {z}) ∪ {x, y} is larger than that of H ′
because α(H0) 6 α(H ′). This is a contradiction since f(G) 6 f(G′) = ρ(H ′). In
particular, H ′ is thus an induced subgraph of G − {x, y} and consequently we deduce
that f(G) = ρ(H ′). We also deduce that the potential of the subgraph of G′ induced
by V (H ′) ∪ {z} is less than that of H ′, so there exists a maximum independent set of H ′
that is disjoint from A. If there is a vertex w ∈ A \ V (H ′), then the potential of the
subgraph of G induced by V (H ′) ∪ {w, x, y} is larger than that of H ′, a contradiction.
Therefore A ⊆ V (H ′), and z 6∈ V (H ′).
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Let U = V (H ′) \ A. We note that |U | = |V (H ′)| − |A|. From (C1), we derive that
|A| > χ(G) − 1 > f(G) = ρ(H ′). Therefore, |U | 6 2α(H ′) − 2. Set GU = H ′ − A,
so GU is the subgraph of G induced by U . It follows from the previous paragraph
that α(GU) = α(H ′), which is greater than 1

2 · |U |. Proposition 4 therefore implies the
existence of a vertex w in U such that every independent set of GU that has size α(H ′)
contains w.

We consider the subgraph H of G induced by (V (H ′)\{w})∪{x, y}. Since its potential
is at most f(G), there is a maximum independent set I in H of size α(H ′) + 1. We observe
that I contains exactly one of {x, y}, say x without loss of generality. We derive that I \{x}
is disjoint from A, which is contained in the neighbourhood of x. We note that I \ {x} is
an independent set of size α(H ′) = α(GU) that is contained in U and does not contain w,
a contradiction.

Equipped with all these properties, we may now finish the proof of Theorem 3. We
start by proving that G has no triangle. Choose a maximum clique K of G, and let ω
be its size. We let u1, u2, . . . , uω be the vertices of K and we set GK = G − K. For
every i ∈ {1, 2, . . . , ω}, we let Ni be the neighbourhood of ui in GK . By (C), and
because K is maximum, the sets (Ni)16i6ω are pairwise disjoint. Moreover, (B) implies
that they are pairwise non-adjacent, that is, if G has an edge with one end-vertex in Ni

and the other in Nj, then i = j.

u2 u1

u3

3

1

1

1

4

 2 1

3

3

1

1

1

4

 2 1

3

c

c

c

1

4

Figure 5: An example of the colouring extension when ω(G) > 3.

Suppose, for a contradiction, that ω > 3. We deduce from (A) that χ(GK) 6 χ(G)− 2.
Let ϕ be a (χ(G) − 2)-colouring of GK . We argue how to obtain from ϕ a (χ(G) − 1)-
colouring of G, which would be a contradiction. Set c = χ(G)−1, so c /∈ ϕ(V (GK)). Colour
every vertex v not in K with ϕ(v). For each i ∈ {1, 2, . . . , ω}, colour ui with colour i, and
next recolour every vertex in Ni ∩ ϕ−1({i}) with colour c. Since the sets (Ni)16i6ω are
pairwise non-adjacent and we recolour an independent set in each set Ni, we obtain a
proper colouring of G. And since χ(G)− 1 > ω, because χ(G) > f(G) > ω, this colouring
uses less than χ(G) colours, a contradiction. Therefore, the graph G contains no triangle.

Consider a shortest cycle C in G (there is one since χ(G) > f(G) > 2). By (B) and
the previous argument, we have |V (C)| = 2p+ 1 where p > 2. Let v1, v2, . . . , v2p+1 be the
vertices on C, consecutively. Let N ′i be the set of neighbours of vi not in C. Note that
every vertex not in C has at most one neighbour in C, for otherwise G would contain
either an odd cycle shorter than C or an induced even cycle, thereby contradicting (B).
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Consequently, the sets (N ′i)16i62p+1 are pairwise disjoint. It also follows from (B) that the
sets (N ′i)16i62p+1 are pairwise non-adjacent.

Let GC = G − C. By (A), we obtain a (χ(G) − 2)-colouring ϕ of GC . Similarly as
before, we argue how to deduce from ϕ a (χ(G)− 1)-colouring φ of G, hence obtaining the
final contradiction. Recall that χ(G) > 4. For i ∈ {1, 2, . . . , p}, we colour v2i with colour 1
and v2i−1 with colour 2. We colour v2p+1 with colour 3. Set c = χ(G)−1, so c /∈ ϕ(V (GC)).
For each i ∈ {1, 2, . . . , 2p+ 1}, every vertex in N ′i ∩ ϕ−1(φ(vi)) is coloured with colour c.
We define φ to be equal to ϕ on all the remaining vertices of G. Similarly as before, the
properties of the sets (N ′i)16i62p+1 ensure that φ is a proper (χ(G) − 1)-colouring of G.
This contradiction concludes the proof of the theorem.

3 Conclusion

With now a clear understanding of why Theorem 3 holds, it is tempting to look for a
strengthening of the theorem. We already discussed in Section 1 some natural generalisa-
tions of the statement that unfortunately do not hold. In this section, we conclude this
work with a discussion of other potential generalisations. Let us first restate Theorem 3 as
follows, where the notation H ⊆i G means that H is an induced subgraph of G.

Theorem 3 (Folkman [Fol70]). For every graph G,

χ(G) 6 max
H⊆iG

(|V (H)| − 2 · (α(H)− 1)). (2)

The parameter α(H) can be interpreted as “the size of the largest induced subgraph
of H with chromatic number 1”. This suggests a new approach for a generalisation. For
every positive integer p, define αp(H) as the size of a largest induced subgraph of H with
chromatic number at most p.

Question 5. Given a positive integer p, does there exist cp > 1 such that for every
graph G,

χ(G) 6 max
H⊆iG

(
|V (H)| − cp · (αp(H)− p)

)
?

Note that the inequality holds for cp 6 1 by taking H = G. Theorem 3 answers the
case p = 1 of Question 5 in the affirmative, showing that c1 can even be taken as high
as 2. Before considering larger values of p, let us point out that c1 = 2 is best possible.
Indeed, suppose that c1 > 2 and take G to be the odd cycle C5. Because χ(C5) = 3
and c1 > 2, the maximum in the right side of (2) must be attained by H being the null
graph (that is, V (H) = ∅), implying that c1 > 3. However, the Mycielski graph Mc′

1
,

where c′1 = bc1c, now contradicts the desired inequality. Since χ(Mc′
1
) = c′1 + 1, taking H

to be the null graph is not sufficient to ensure the inequality. Moreover, as c′1 > 3
we know that mir(Mc′

1
) > 1

c′
1

(as mentioned in the introduction), and hence α(H) >
|V (H)|/c′1 whenever H is a non-null induced subgraph of Mc′

1
. It follows that, in this case,

|V (H)| − c1(α(H) − 1) 6 |V (H)| − c′1(α(H) − 1) 6 c′1 < χ(Mc′
1
), a contradiction. This

shows that c1 = 2 is best possible.
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For larger values of p, it turns out that the answer to Question 5 is always negative.
First note that since αp+1(H) > αp(H) + 1 in any graph H with chromatic number higher
than p, a negative answer for a positive integer p0 implies a negative answer for every
integer p > p0. We now explain why the answer is negative for p = 2.

For simplicity, we define f2(G) to be

max
H⊆iG

(
|V (H)| − c2 · (α2(H)− 2)

)
.

Let ` > 2. For k > 2, let M ′
k,` be obtained by applying k − 2 times the Mycielski

construction to the cycle on 2` + 1 vertices. Note that M ′
k,2 is the standard Mycielski

graph Mk.
Suppose by contradiction that c2 > 1. We prove by induction on k that for every k > 1,

we have c2 > k+1
2 . For k = 1, this is true by our assumption that c2 > 1. For k > 2, we

consider f2(M ′
k,`) for ` large enough in terms of k.

If the maximum in the definition of f2(M ′
k,`) is attained on the null graph, then we

obtain 2c2 > χ(M ′
k,`) = k + 1 as desired. Thus we may assume this is not the case. If the

maximum is attained on a proper non-null induced subgraph H, then H is k-colourable
and thus satisfies α2(H) > 2|V (H)|

k
. Since H gives a higher value than that given by the

null graph in the definition of f2(M ′
k,`), we deduce that

|V (H)| − c2 · (α2(H)− 2) > 2c2.

However, using that c2 > k
2 (by induction), we obtain α2(H) < 2|V (H)|

k
, a contradiction.

It follows that the maximum in the definition of f2(M ′
k,`) is attained by M ′

k,` itself.
Observe that |M ′

k,`| = (`+ 1) · 2k−1 − 1 and α2(M ′
k,`) = ` · 2k−1. Consequently,

f2(M ′
k,`) = (`+ 1) · 2k−1 − 1− c2 · (` · 2k−1 − 2) > χ(M ′

k,`) = k + 1,

which does not hold for ` large enough in terms of k, since c2 > 1. Therefore, this last
case cannot occur either, and c2 > k+1

2 holds, as announced.
In summary, we have shown that c2 > 1 implies that c2 > k+1

2 for every positive
integer k, and hence that c2 is unbounded, a contradiction. We conclude that c2 6 1 must
hold.

Given this state of affairs, it was suggested to one of the authors to try and replace α2(H)
with the maximum size of an induced subgraph of H isomorphic to a bipartite cograph.
However, the answer remains negative even when considering the maximum size of an
induced subgraph of H isomorphic either to a complete bipartite graph with one side of
size at most 2 or to P1 +P2, the graph on three vertices with only one edge. To see this, it
suffices to apply Mycielski’s construction once on a large clique, and to do the arithmetic
for various cases depending on the structure of a subgraph attaining maximum potential
(whether it contains more vertices of the clique than of the maximum stable set, and
whether it contains the unique vertex whose neighbourhood is a stable set). While this
supersedes the above argument that c2 6 1, the proof is decidedly non-illuminating, and
we refrain from including it here. Considering how restricted the replacement for α2(H) is
here, generalising Theorem 3 in this direction does not seem feasible either.
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Our original motivations for finding a short proof of Theorem 3 were to make sense of
the statement and understand what bigger truth it could be part of. With the new-found
insight, Theorem 3 seems all the more to be a truly isolated statement, almost a singularity
in the realm of graph colouring.
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