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Abstract

Consider a finite set E. Assume that each e ∈ E has a “weight” w (e) ∈ R
assigned to it, and any two distinct e, f ∈ E have a “distance” d (e, f) = d (f, e) ∈ R
assigned to them, such that the distances satisfy the ultrametric triangle inequality
d(a, b) 6 max {d(a, c), d(b, c)}. We look for a subset of E of given size with maximum
perimeter (where the perimeter is defined by summing the weights of all elements
and their pairwise distances). We show that any such subset can be found by a
greedy algorithm (which starts with the empty set, and then adds new elements one
by one, maximizing the perimeter at each step). We use this to define numerical
invariants, and also to show that the maximum-perimeter subsets of all sizes are
the feasible sets of a strong greedoid, and the maximum-perimeter subsets of any
given size are the bases of a matroid. This essentially generalizes the “P -orderings”
constructed by Bhargava in order to define his generalized factorials, and is also
similar to the strong greedoid of maximum diversity subsets in phylogenetic trees
studied by Moulton, Semple and Steel.

We further discuss some numerical invariants of E,w, d stemming from this
construction, as well as an analogue where maximum-perimeter subsets are replaced
by maximum-perimeter tuples (i.e., elements can appear multiple times).

Mathematics Subject Classifications: 05B35, 90C27, 92B10
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1 Introduction

In this paper, we study a combinatorial setting consisting of a finite set E with a “weight
function” w : E → R and a (symmetric) “distance function” d : E × E → R (where
E × E = {(e, f) ∈ E × E | e 6= f}) satisfying the ultrametric triangle inequality. This
generalizes the notion of an ultrametric space. Given any finite subset A of E, we can
define the perimeter of A to be the sum of the weights and of the pairwise distances of the

the electronic journal of combinatorics 28(3) (2021), #P3.6 2



elements of A. Given an integer k > 0 and a finite subset C of E, we show (Theorem 21)
that if we want to construct a k-element subset of C having maximum perimeter, we can
do so by a greedy algorithm (i.e., by starting with the empty set and repeatedly adding
new elements that increase the perimeter as much as possible), and that every maximum-
perimeter k-element subset of C can be constructed through this algorithm (Theorem 22).
We furthermore show that these maximum-perimeter k-element subsets are the bases of
a matroid (when k is fixed) and the feasible sets of a strong greedoid (when k ranges over
all nonnegative integers). In a followup paper [8], this strong greedoid is studied from an
algebraic viewpoint, which also addresses questions of its (linear) representability.

Our greedy construction of maximum-perimeter subsets is inspired by Manjul Bhar-
gava’s concept of a P -ordering ([2, Section 2]), which laid the foundation for his theory
of generalized factorials (see [3, Section 4] and [4, Section 2]); we connect the two notions
(in Section 9) and obtain new proofs of two results from [2, Section 2].

A similar problem – also leading to a strong greedoid – has appeared in the mathemat-
ical biology literature: Given a phylogenetic tree T and an integer k, the problem asks to
find a set of k leaves of T having maximum “phylogenetic diversity” (i.e., the total weight
of the edges of the subtree that connects these k leaves). In [11], Moulton, Semple and
Steel show that such diversity-maximizing k-element sets form a strong greedoid, just as
our maximum-perimeter subsets do. The similarity does not end here: Phylogenetic trees
are close relatives of ultra triples (and can be translated to and from the latter without
much loss of information). However, the strong greedoid of Moulton, Semple and Steel is
not the same as ours, since perimeter (when restated in terms of the phylogenetic tree)
is not the same as phylogenetic diversity1. It is an interesting question to what extent
these two problems can be reconciled, and perhaps a more general class of optimization
problems on phylogenetic trees (or ultra triples) can be shown to lead to a strong greedoid.

2 The setup

2.1 Defining ultra triples

Let E be a set. We shall use E as our ground set throughout this paper.
We shall refer to the elements of E as points .
For a nonnegative integer m, an m-set means a subset A of E which consists of |A| = m

elements. If B ⊆ E is any subset and m is a nonnegative integer, then an m-subset of B
means an m-element subset of B.

Define the set E × E by

E × E = {(e, f) ∈ E × E | e 6= f} .

Thus, E × E is the set of all ordered pairs (e, f) of two distinct elements of E.

1Roughly speaking, in a star-shaped phylogenetic tree with 1 internal vertex and p leaves, the perimeter
of a k-leaf set is quadratic in k, while its phylogenetic diversity is linear in k. Also, our Lemma 28, while
being an analogue of [11, Lemma 3.1], differs from the latter in that it requires |B| = |A|+ 1 rather than
|B| > |A| (and indeed, the latter requirement would not suffice).
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Assume that we are given a function w : E → R. In other words, each point a ∈ E
has a real-valued weight w (a) assigned to it.

Assume further that we are given a function d : E × E → R, which we will call the
distance function. Thus, any two distinct points a, b ∈ E have a real-valued distance
d (a, b). We assume that this distance function has the following properties:

• It is symmetric: that is, d (a, b) = d (b, a) for any two distinct a, b ∈ E.

• It satisfies the following inequality:

d(a, b) 6 max {d(a, c), d(b, c)} (1)

for any three distinct a, b, c ∈ E.

(The inequality (1) is commonly known as the ultrametric triangle inequality2; but unlike
the distance function of an ultrametric space, our d can take negative values. The values
of w are completely unrestrained.)

Such a structure (E,w, d) will be called an ultra triple.
From now on, we shall always be considering an ultra triple (E,w, d) (unless stated

otherwise).

2.2 Examples

We shall now provide a few examples of ultra triples. In each case, the proof that our
triple is indeed an ultra triple is easy and left to the reader.

Example 1. For this example, we let E be an arbitrary set, and we define the distances
d (a, b) as follows:

d (a, b) = 1 for all (a, b) ∈ E × E.
We define the weights w (a) arbitrarily. Then, (E,w, d) is an ultra triple.

Example 2. For this example, we let E = {1, 2, 3, 4, 5}, and we define the distances
d (a, b) as follows:

d (a, b) =

{
1, if a ≡ b mod 2;

2, if a 6≡ b mod 2
for all (a, b) ∈ E × E.

We define the weights w (a) arbitrarily. Then, (E,w, d) is an ultra triple.

Example 3. For this example, we fix two reals ε and α with ε 6 α. Furthermore, we fix
an integer m and a subset E of Z. We define the distance function d : E × E → R by
setting

d (a, b) =

{
ε, if a ≡ b mod m;

α, if a 6≡ b mod m
for all (a, b) ∈ E × E.

We define the weights w (a) arbitrarily. Then, (E,w, d) is an ultra triple.

2It can be restated as “the longest two sides of a triangle are always equal in length”. (Here, a triangle
means a 3-subset of E; its sides are its 2-subsets; the length of a side {u, v} is d (u, v).)
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Note that Example 2 is the particular case of Example 3 obtained by setting ε = 1,
α = 2, m = 2 and E = {1, 2, 3, 4, 5}.

Example 4. For this example, we fix a prime number p and a subset E of Z, and we
define the distances d (a, b) as follows:

d (a, b) = p−vp(a−b) for all (a, b) ∈ E × E.

Here, for any nonzero integer m, we let vp (m) denote the p-adic valuation of m (that is,
the largest nonnegative integer k such that pk | m). The distance function d : E×E → R
is called the p-adic metric. We define the weights w (a) arbitrarily. Then, (E,w, d) is an
ultra triple.

Example 5. For this example, we fix a prime number p and a subset E of Z.
For any nonzero integer m, we define vp (m) as in Example 4. We define a map

d′ : E × E → R by setting

d′ (a, b) = −vp (a− b) for all (a, b) ∈ E × E.

We define the weights w (a) arbitrarily. Then, (E,w, d′) is an ultra triple.

Most of the examples above are particular cases of a more general construction:

Example 6. Let N = {0, 1, 2, . . .}. Let c : N→ R be a weakly decreasing function.
Fix a sequence r = (r0, r1, r2, . . .) of integers such that r0 | r1 | r2 | · · · .
For each x ∈ Z, define an element vr (x) ∈ N by

vr (x) = max {i ∈ N such that ri | x} ,

assuming that this maximum exists. (Otherwise, leave vr (x) undefined.)
Let E be a subset of Z. Define a distance function d : E × E → R by setting

d (a, b) = c (vr (a− b)) for all (a, b) ∈ E × E.

Assume that this is well-defined (i.e., the values vr (a− b) are well-defined for all (a, b) ∈
E × E). We define the weights w (a) arbitrarily. Then, (E,w, d) is an ultra triple.

Example 3 is obtained from Example 6 by setting r0 = 1 and r1 = m and r2 = r3 =
r4 = · · · = 0 and c (0) = α and c (1) = ε (defining the remaining values of c arbitrarily
to be weakly decreasing). Example 4 is obtained from Example 6 by setting ri = pi and
c (n) = p−n (indeed, if we set ri = pi, then vr (m) = vp (m) for each nonzero m ∈ Z).
Likewise, Example 5 is obtained from Example 6 by setting ri = pi and c (n) = −n.

An even more general (and simpler) example of an ultra triple (more precisely, of a
distance function satisfying (1)) can be obtained from a hierarchy of equivalence relations:
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Example 7. Let E be a set. Let ∼
0
,∼

1
,∼

2
, . . . be equivalence relations on E. Assume

that:3

(A) Every e, f ∈ E satisfy e ∼
0
f .

(B) If some e, f ∈ E and i > 0 satisfy e ∼
i
f , then e ∼

i−1
f .

(C) If e, f ∈ E are distinct, then there exists some i > 0 such that we don’t have e ∼
i
f .

Let c : N→ R be a weakly decreasing function.
Define a distance function d : E × E → R by

d (e, f) = c
(

max
{
i > 0 | e ∼

i
f
})

for all (e, f) ∈ E × E.

We define the weights w (a) arbitrarily. Then, (E,w, d) is an ultra triple.

We can obtain Example 6 from Example 7 by defining the relation ∼
i

to be congruence

modulo ri. (The assumption that the vr (a− b) are well-defined in Example 6 ensures that
assumptions (A), (B) and (C) of Example 7 are satisfied.)

Hierarchical taxonomies can be viewed as sets E equipped with sequences ∼
0
,∼

1
,∼

2
, . . .

of equivalence relations (usually finite, however) satisfying assumptions (A), (B) and (C)
of Example 7. For example:

Example 8. Let E be the set of all living organisms. Define equivalence relations ∼
0
,∼

1

,∼
2
, . . . on E as follows:(

e ∼
0
f
)

always holds;(
e ∼

1
f
)
⇐⇒ (e and f belong to the same domain) ;(

e ∼
2
f
)
⇐⇒ (e and f belong to the same kingdom) ;

...(
e ∼

7
f
)
⇐⇒ (e and f belong to the same genus) ;(

e ∼
8
f
)
⇐⇒ (e and f belong to the same species) ;

3These three assumptions can be restated in terms of the partition lattice on E, which is the lattice of
all set partitions of E (see, e.g., [13, Section 1.7]). Indeed, it is well-known that the equivalence relations
on E are in bijection with the set partitions of E. Our sequence ∼

0
,∼
1
,∼
2
, . . . of equivalence relations thus

corresponds to a sequence P0, P1, P2, . . . of set partitions of E. The three assumptions below thus say
that P0 is the trivial partition; that we have P0 > P1 > P2 > · · · (meaning that each partition Pi refines
Pi−1); and that the meet

∧∞
i=0 Pi is the partition of E into singletons.

the electronic journal of combinatorics 28(3) (2021), #P3.6 6



(
e ∼

i
f
)
⇐⇒ (e = f) for all i > 9

(following the taxonomic ranks of biology). Then, assumptions (A), (B) and (C) of
Example 7 are satisfied.

Example 8 yields not so much a genuine biological application of our theory as it does
a helpful mental model for it. A less naive (if still simplified) model of the interrelation of
organisms is provided by phylogenetic trees [11] – rooted trees (in the combinatorial sense)
whose vertices correspond to organisms or species, and whose edges signify relationships
of ancestry. Often the edges are equipped with weights (or, better, lengths) encoding the
evolutionary distance between parent and child vertices. This model, too, leads to an
ultra triple. At the mathematical heart of this construction is the following example:

Example 9. A tree is a connected finite undirected graph that has no cycles. (Thus, our
trees are unrooted and have no order-like structures assigned to them.)

Let T be a tree. For each edge e of T , let λ (e) be an nonnegative real. We shall call
this real the weight of e.

For any vertices u and v of T , let λ (u, v) denote the sum of the weights of all edges
on the (unique) path from u to v. Note that this λ (u, v) generalizes the usual (graph-
theoretical) distance between u and v; indeed, if λ (e) = 1 for each edge e of T , then
λ (u, v) is the distance between u and v (that is, the length of the unique path from u to
v).

A known result (the “four-point condition”) says that if x, y, z, w are four vertices of
T , then the two largest of the three numbers

λ (x, y) + λ (z, w) , λ (x, z) + λ (y, w) , and λ (x,w) + λ (y, z)

are equal. In the particular case when each edge of T has weight 1, this is a standard exer-
cise in graph theory (see, e.g., https://math.stackexchange.com/questions/2899278);
most of its solutions generalize to the case of arbitrary weights. We can use this to define
an ultra triple as follows:

Fix any vertex r of T . Let E be any subset of the vertex set of T . We define a map
w : E → R by setting

w (x) = λ (x, r) for each x ∈ E.

We define a map d : E × E → R by setting

d (x, y) = λ (x, y)− λ (x, r)− λ (y, r) for each (x, y) ∈ E × E.

Then, (E,w, d) is an ultra triple.
Note that our special choice of w was not necessary for this (any function w : E → R

would have worked), but it has the advantage that λ (x, y) = w (x)+w (y)+d (x, y) for any
distinct x, y ∈ E. The right hand side of this equality will later be called the perimeter
PER {x, y} of the set {x, y}.
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2.3 Projections

Let us now return to the setting of an arbitrary ultra triple (E,w, d).

Definition 10. Let C ⊆ E be a non-empty subset. Let v ∈ E be any point.
We define a subset projC (v) of C as follows:

• If v ∈ C, then we define projC (v) to be the one-element set {v}.

• If v /∈ C, then we define projC (v) to be the set of all c ∈ C that minimize the
distance d (v, c) 4.

The elements of projC (v) will be called the projections of v onto C.

The following is easy to see and will be used without explicit mention:

Proposition 11. Let C ⊆ E be a finite non-empty subset. Let v ∈ E be any point. Then,
there exists at least one projection of v onto C.

Example 12. Let (E,w, d) be as in Example 2. Then, the projections of 2 onto {1, 3}
are 1 and 3, while the only projection of 2 onto {1, 3, 4} is 4.

In Example 9, a projection of a v /∈ C onto a subset C is usually called a “closest
relative of v in C”.

The crucial property of projections if the following:

Lemma 13. Assume that C ⊆ E is a non-empty subset and v ∈ E is any point. Let u
be a projection of v onto C.

(a) If v ∈ C, then u = v.

(b) If x ∈ C satisfies x 6= u, then x 6= v.

(c) Let x ∈ C be such that x 6= u. Then, d(u, x) 6 d(v, x).

Proof. We have u ∈ projC (v) (since u is a projection of v onto C).
(a) follows from the definition. So does (b): if we had x = v, then we would have

v = x ∈ C and therefore u = v (by (a)).
(c) By (b), we have x 6= v. Hence, d (v, x) is well-defined. Also, d (u, x) is well-defined

(since x 6= u).
If u = v, then d (u, x) = d (v, x). Thus we WLOG assume that u 6= v. Hence, part

(a) entails v /∈ C. The points v, u, x are distinct, and so by (1) we have

d (u, x) 6 max (d (v, u) , d (v, x)) = d (v, x) .

(The last equality is equivalent to d (v, u) 6 d (v, x), which follows from the definition of
projection.)

4This distance d (v, c) is well-defined, since v 6= c (because v /∈ C and c ∈ C).
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3 Perimeters and greedy m-permutations

3.1 The perimeter of an m-set

For any finite subset A ⊆ E, we define its perimeter PER (A) by

PER (A) :=
∑
a∈A

w(a) +
∑

{a,b}⊆A;
a6=b

d(a, b).

The second sum here is taken over all unordered pairs a 6= b of distinct elements of A.
(This is well-defined, since d (a, b) = d (b, a) for any distinct a, b ∈ E.)

Example 14. Let (E,w, d) be as in Example 2. Then,

PER {1, 2, 3} = w (1) + w (2) + w (3) + d (1, 2)︸ ︷︷ ︸
=2

+ d (1, 3)︸ ︷︷ ︸
=1

+ d (2, 3)︸ ︷︷ ︸
=2

.

3.2 Defining greedy m-permutations

Definition 15. Let C ⊆ E be any subset, and let m be a nonnegative integer.
A greedy m-permutation of C is a list (c1, c2, . . . , cm) of m distinct elements of C such

that for each i ∈ {1, 2, . . . ,m} and each x ∈ C \ {c1, c2, . . . , ci−1}, we have

PER {c1, c2, . . . , ci} > PER {c1, c2, . . . , ci−1, x} . (2)

Thus, roughly speaking, a greedy m-permutation is an ordered sample of m distinct
elements of C such that at each step of the sampling procedure, the new element is chosen
in such a way as to maximize the perimeter of the sample. This procedure can be viewed
as a greedy algorithm to construct an m-subset of C that has maximum perimeter. As
we shall see in Theorem 21, this algorithm indeed succeeds at constructing such a subset.

3.3 Examples of greediness

Example 16. Let (E,w, d) be as in Example 2. Assume that w (a) = 0 for all a ∈ E.
Then, (1, 2), (2, 1) and (5, 4) (and several others) are greedy 2-permutations of E.

Actually, a pair (i, j) of elements of E is a greedy 2-permutation of E if and only if i 6≡ j
mod 2.

Also, (1, 3) is a greedy 2-permutation of {1, 3, 5}, but not of E (because we have
PER {1, 3} < PER {1, 2}).

Also, (1, 2, 3, 4, 5) is a greedy 5-permutation of E, but (1, 2, 3, 5, 4) is not (since we
have PER {1, 2, 3, 5} < PER {1, 2, 3, 4}).

Example 17. Let E be the set {1, 2, 3, 4, 5, 6}. Fix five reals α, λ, κ, ε, δ such that λ and
κ are both smaller than α and both larger than each of ε and δ. For any distinct a, b ∈ E,
we define the distance d (a, b) by the following rule:

• If a 6≡ b mod 2, then d (a, b) = α.
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• If a = 1 and b ∈ {3, 5}, then d (a, b) = λ.

• If a = 2 and b ∈ {4, 6}, then d (a, b) = κ.

• If a = 3 and b = 5, then d (a, b) = ε.

• If a = 4 and b = 6, then d (a, b) = δ.

• Otherwise, d (a, b) = d (b, a).

Set w (a) = 0 for all a ∈ E.
It is easy to check that (E,w, d) is an ultra triple.
The pair (1, 2) is always a greedy 2-permutation.
The 4-tuple (1, 2, 3, 4) is a greedy 4-permutation if and only if λ > κ. The 4-tuple

(1, 2, 4, 3) is a greedy 4-permutation if and only if κ > λ.
The 5-tuple (1, 2, 3, 4, 5) is a greedy 5-permutation if and only if λ > κ and λ+ε > κ+δ.
The 5-set {1, 2, 3, 4, 5} has maximum perimeter among all 5-sets if and only if λ+ ε >

κ+ δ.
This example illustrates that greedy permutations and maximum-perimeter sets de-

pend not just on the order relations between the distances of the points, but also on the
order relations between sums of these distances.

Example 18. For this example, we fix a prime number p and a nonnegative integer m.
We let E be any subset of Z that contains 1, 2, . . . ,m. We define d : E × E → R as in
Example 4. We define d′ : E ×E → R as in Example 5. We define w : E → R by setting
w (e) = 0 for all e ∈ E.

Then, (1, 2, . . . ,m) is a greedy m-permutation of E both for the ultra triple (E,w, d)
and for the ultra triple (E,w, d′).

We relegate the proof of this claim to Section 10, as we shall not use it.

Example 19. Example 18 might suggest that the ultra triples (E,w, d) and (E,w, d′)
(defined in that example) have the same greedy m-permutations in general. This is not
the case. For instance, set p = 2 and E = {0, 1, 2, 9, 17, 128}. Define d, d′ and w as in
Example 18.

Now it is easy to check that (2, 9, 17, 0, 1) is a greedy 5-permutation for (E,w, d′) but
not for (E,w, d), while (2, 9, 17, 0, 128) is a greedy 5-permutation for (E,w, d) but not for
(E,w, d′).

Moreover, the 5-set {2, 9, 17, 0, 1} has maximum perimeter for (E,w, d′) but not for
(E,w, d), while the 5-set {2, 9, 17, 0, 128} has maximum perimeter for (E,w, d) but not
for (E,w, d′).

3.4 Basic properties of greediness

We will use the following shorthand notations: If S is a subset of E, and if e ∈ E, then
S ∪ e and S \ e will stand for the subsets S ∪{e} and S \ {e}, respectively. Set operations
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like ∪ and \ shall be read in a left-associative way; thus, e.g., the expression “S ∪ e \ f”
shall be understood as (S ∪ e) \ f .

Let us observe some easy consequences of the definition of greedy permutations (which
will be later used without mention):

Proposition 20. Let C be a subset of E. Let m be a nonnegative integer.

(a) If a greedy m-permutation of C exists, then m 6 |C|.

(b) If (c1, c2, . . . , cm) is a greedy m-permutation of C, then {c1, c2, . . . , ck} is a k-subset
of C for each k ∈ {0, 1, . . . ,m}.

(c) If (c1, c2, . . . , cm) is a greedy m-permutation of C, then
{c1, c2, . . . , ck−1} = {c1, c2, . . . , ck} \ ck for each k ∈ {1, 2, . . . ,m}.

(d) If |C| = m, then any greedy m-permutation of C must be a list of all the m elements
of C.

(e) If C is finite and satisfies m 6 |C|, then there exists a greedy m-permutation of C.

(f) Assume that C is finite and satisfies m 6 |C|. Let n be an integer such that m >
n > 0.

If (c1, c2, . . . , cn) is a greedy n-permutation of C, then we can find m − n elements
cn+1, cn+2, . . . , cm of C such that (c1, c2, . . . , cm) is a greedy m-permutation of C.

(g) Let n be an integer such that m > n > 0.

If (c1, c2, . . . , cm) is a greedy m-permutation of C, then (c1, c2, . . . , cn) is a greedy
n-permutation of C.

Proof. Parts (a), (b), (c), (d) and (g) are straightforward.
(f) Assume that (c1, c2, . . . , cn) is a greedy n-permutation of C. Then, we construct

cn+1, cn+2, . . . , cm recursively as follows:

• For each i = n + 1, n + 2, . . . ,m, we assume that c1, c2, . . . , ci−1 have already been
defined; we then choose an element ci ∈ C \ {c1, c2, . . . , ci−1} that maximizes the
perimeter PER {c1, c2, . . . , ci}. (If there are several such elements, then we choose
any of them.)

This procedure can be carried out since C is finite and m 6 |C|. By construction, it
produces a greedy m-permutation (c1, c2, . . . , cm) of C. This proves part (f).

Part (e) is the particular case of part (f) for n = 0 (since the empty list is a greedy
0-permutation).

The procedure used in the proof of Proposition 20 (f) also works for infinite C as long
as the maxima exist.
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4 The main theorems

We now state two central theorems for this paper:

Theorem 21. Let C ⊆ E be any subset, and let m be a nonnegative integer.
Let (c1, c2, . . . , cm) be any greedy m-permutation of C.
Then, for each k ∈ {0, 1, . . . ,m}, the set {c1, c2, . . . , ck} has maximum perimeter

among all k-subsets of C.

Theorem 22. Let C ⊆ E be any finite subset, and let m be a nonnegative integer such
that |C| > m. Let k ∈ {0, 1, . . . ,m}.

Let A be a k-subset of C having maximum perimeter (among the k-subsets of C). Then,
there exists a greedy m-permutation (v1, v2, . . . , vm) of C such that A = {v1, v2, . . . , vk}.

Proof of Theorem 21. The points c1, c2, . . . , cm are distinct (by the definition of a greedy
m-permutation).

Fix k ∈ {0, 1, . . . ,m}. Then, {c1, c2, . . . , ck} is a k-subset of C (by Proposition 20 (b)).
It remains to prove that every k-subset A of C satisfies PER (A) 6 PER {c1, c2, . . . , ck}.

Let A be any k-subset of C. We shall show that PER (A) 6 PER {c1, c2, . . . , ck}. This
will clearly prove Theorem 21.

We define a list (v1, v2, . . . , vk) of k elements of A recursively as follows: For each
i = 1, 2, . . . , k, we let vi be a projection of ci onto A \ {v1, v2, . . . , vi−1} (assuming that
v1, v2, . . . , vi−1 have already been constructed).5 (These projections vi exist because of
Proposition 116; they may be non-unique, but any choice is fine.)

Thus, we get k elements v1, v2, . . . , vk of A. These k elements are distinct (since each
vi has been constructed to belong to A\{v1, v2, . . . , vi−1}). Since |A| = k, these k distinct
elements must cover the whole set A. Hence, (v1, v2, . . . , vk) is an enumeration of A (that
is, a list of distinct elements of A such that A = {v1, v2, . . . , vk}).

Let j ∈ {1, 2, . . . , k}. Then,

vj /∈ {c1, c2, . . . , cj−1} . (3)

[Proof of (3): Assume the contrary. Thus, vj ∈ {c1, c2, . . . , cj−1}, so that vj = ci for
some i < j. Consider this i. Hence, ci = vj ∈ {vi, vi+1, . . . , vk} = A \ {v1, v2, . . . , vi−1}
(since (v1, v2, . . . , vk) is an enumeration of A). But our recursive definition of vi shows
that vi is a projection of ci onto the set A \ {v1, v2, . . . , vi−1}. Hence, Lemma 13 (a)
(applied to A \ {v1, v2, . . . , vi−1}, ci and vi instead of C, v and u) yields vi = ci (since
ci ∈ A \ {v1, v2, . . . , vi−1}). Hence, vi = ci = vj, whence i = j (since v1, v2, . . . , vk are
distinct). But this contradicts i < j. This contradiction shows that our assumption was
false, and thus (3) is proven.]

5Thus, in particular, v1 is a projection of c1 onto A.
6In more detail: Let i ∈ {1, 2, . . . , k}, and assume that v1, v2, . . . , vi−1 have already been constructed;

we must prove that vi exists. We have |{v1, v2, . . . , vi−1}| 6 i − 1 < i 6 k = |A|; thus, the set A \
{v1, v2, . . . , vi−1} is nonempty. Since this set is furthermore finite, we thus conclude (by Proposition 11)
that there exists a projection of ci onto A \ {v1, v2, . . . , vi−1}. In other words, vi exists.
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Hence, vj ∈ A \ {c1, c2, . . . , cj−1} ⊆ C \ {c1, c2, . . . , cj−1} (since A ⊆ C) and there-
fore PER {c1, c2, . . . , cj−1, vj} 6 PER {c1, c2, . . . , cj} by the definition of a greedy m-
permutation (specifically, by (2)).

But c1, c2, . . . , cj−1, vj are distinct (since c1, c2, . . . , cm are distinct, and since vj /∈
{c1, c2, . . . , cj−1}), and thus

PER {c1, c2, . . . , cj−1}+ w(vj) +

j−1∑
i=1

d(ci, vj) = PER {c1, c2, . . . , cj−1, vj}

6 PER {c1, c2, . . . , cj} = PER {c1, c2, . . . , cj−1}+ w(cj) +

j−1∑
i=1

d(ci, cj)

(since c1, c2, . . . , cj are distinct). After cancelling equal terms, this rewrites as

w(vj) +

j−1∑
i=1

d(ci, vj) 6 w(cj) +

j−1∑
i=1

d(ci, cj). (4)

Furthermore, for each i ∈ {1, 2, . . . , j − 1}, we have j > i and thus

vj ∈ {vi, vi+1, . . . , vk} = A \ {v1, v2, . . . , vi−1}

(since (v1, v2, . . . , vk) is an enumeration of A) and vj 6= vi (since v1, v2, . . . , vk are distinct).
Hence, Lemma 13 (c) (applied to A \ {v1, v2, . . . , vi−1}, ci, vi and vj instead of C, v, u
and x) yields

d(vi, vj) 6 d(ci, vj) for each i ∈ {1, 2, . . . , j − 1} (5)

(since vi is a projection of ci onto the set A \ {v1, v2, . . . , vi−1}, whereas vj ∈ A \
{v1, v2, . . . , vi−1} and vj 6= vi).

Now, forget that we fixed j. We thus have proven (4) and (5) for each j ∈ {1, 2, . . . , k}.
But (v1, v2, . . . , vk) is an enumeration of A; thus,

PER (A) =
k∑

j=1

w(vj) +
∑

16i<j6k

d(vi, vj) =
k∑

j=1

(
w(vj) +

j−1∑
i=1

d(vi, vj)

)

6
k∑

j=1

(
w(vj) +

j−1∑
i=1

d(ci, vj)

)
(by (5))

6
k∑

j=1

(
w(cj) +

j−1∑
i=1

d(ci, cj)

)
(by (4))

=
k∑

j=1

w(cj) +
∑

16i<j6k

d(ci, cj) = PER {c1, c2, . . . , ck}

(since c1, c2, . . . , ck are distinct). This proves Theorem 21.
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Proof of Theorem 22. Proposition 20 (e) shows that there exists a greedy m-permutation
of C (since C is finite and since |C| > m). Choose such a greedy m-permutation
(c1, c2, . . . , cm) of C. Then, Theorem 21 shows that the set {c1, c2, . . . , ck} has maxi-
mum perimeter among all k-subsets of C. Hence, PER (A) = PER {c1, c2, . . . , ck} (since
the set A also has maximum perimeter among them).

Construct an enumeration (v1, v2, . . . , vk) of A as in the proof of Theorem 21 above.
In our above proof of Theorem 21, we have proven the inequalities (4) and (5) for all
j ∈ {1, 2, . . . , k}. But by adding together all these inequalities, we have obtained the
inequality PER (A) 6 PER {c1, c2, . . . , ck}, which must be an equality (since PER (A) =
PER {c1, c2, . . . , ck}). Thus, all the inequalities (4) and (5) must become equalities (be-
cause if adding together a bunch of inequalities produces an equality, then all the inequal-
ities must themselves be equalities).

Hence, for all j ∈ {1, 2, . . . , k}, we have

d(vi, vj) = d(ci, vj) for each i ∈ {1, 2, . . . , j − 1} (6)

(since (5) become equalities), and thus

w(vj) +

j−1∑
i=1

d(vi, vj) = w(vj) +

j−1∑
i=1

d(ci, vj)

= w(cj) +

j−1∑
i=1

d(ci, cj) (7)

(since (4) become equalities).
Now, fix p ∈ {1, 2, . . . , k}. Hence, p 6 k 6 m. The points c1, c2, . . . , cm are distinct

(since (c1, c2, . . . , cm) is a greedy m-permutation). Thus, the points c1, c2, . . . , cp are dis-
tinct. Also, the points v1, v2, . . . , vp are distinct (since v1, v2, . . . , vk are distinct); hence,
the definition of a perimeter yields

PER {v1, v2, . . . , vp} =

p∑
j=1

w (vj) +
∑

16i<j6p

d (vi, vj)

=

p∑
j=1

(
w (vj) +

j−1∑
i=1

d (vi, vj)

)

=

p∑
j=1

(
w(cj) +

j−1∑
i=1

d(ci, cj)

)
(by (7))

=

p∑
j=1

w (cj) +
∑

16i<j6p

d (ci, cj)

= PER {c1, c2, . . . , cp} (8)

(since the points c1, c2, . . . , cp are distinct).
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But Theorem 21 (applied to p instead of k) shows that the set {c1, c2, . . . , cp} has
maximum perimeter among all p-subsets of C. Hence, the set {v1, v2, . . . , vp} must also
have maximum perimeter among all p-subsets of C (because (8) shows that this latter set
has the same perimeter as the former set). Hence, for each x ∈ C \ {v1, v2, . . . , vp−1}, we
have PER {v1, v2, . . . , vp} > PER {v1, v2, . . . , vp−1, x}.

Now, forget that we fixed p. We thus have shown that for each p ∈ {1, 2, . . . , k} and
each x ∈ C \ {v1, v2, . . . , vp−1}, we have

PER {v1, v2, . . . , vp} > PER {v1, v2, . . . , vp−1, x} .

In other words, (v1, v2, . . . , vk) is a greedy k-permutation of C (since v1, v2, . . . , vk are
distinct). Hence, Proposition 20 (f) (applied to k and vi instead of n and ci) shows that
we can find m − k elements vk+1, vk+2, . . . , vm of C such that (v1, v2, . . . , vm) is a greedy
m-permutation of C. This proves Theorem 22 (since A = {v1, v2, . . . , vk}).

5 The ν◦
k (C) invariants

We shall next prove two corollaries of the above results that resemble (and, as we will
later see, generalize) [2, Theorem 1] and [2, Lemma 2].

Corollary 23. Let C ⊆ E be any subset. Let m be a nonnegative integer. Let k ∈
{1, 2, . . . ,m}. If (c1, c2, . . . , cm) is a greedy m-permutation of C, then the number

w (ck) +
k−1∑
i=1

d (ci, ck)

does not depend on the choice of this m-permutation (but only depends on k and on C).

Proof. Let (c1, c2, . . . , cm) be a greedy m-permutation of C. Theorem 21 shows that for
each j ∈ {0, 1, . . . ,m}, the set {c1, c2, . . . , cj} has maximum perimeter among all j-subsets
of C. In other words, F (j) := PER {c1, c2, . . . , cj} equals the maximum possible perimeter
of a j-subset of C. In particular, this number F (j) depends only on j and C. Thus, the
value

F (k)− F (k − 1) = w (ck) +
k−1∑
i=1

d (ci, ck)

depends only on k and C.

From now on, the number

w (ck) +
k−1∑
i=1

d (ci, ck)

in Corollary 23 will be denoted by ν◦k (C).
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Corollary 24. Let C ⊆ E be any subset. Let m be a nonnegative integer. Let k ∈
{1, 2, . . . ,m}. Let (c1, c2, . . . , cm) be a greedy m-permutation of C. Let j ∈ {1, 2, . . . , k}.
Then,

ν◦k (C) 6 w (cj) +
∑

i∈{1,2,...,k}\{j}

d (ci, cj) . (9)

Proof. Theorem 21 shows that the set {c1, c2, . . . , ck−1} has maximum perimeter among
all (k − 1)-subsets of C. Thus,7

PER {c1, c2, . . . , ck−1} > PER {c1, c2, . . . , ĉj, . . . , ck} .

Thus

ν◦k (C) = PER {c1, c2, . . . , ck} − PER {c1, c2, . . . , ck−1}
6 PER {c1, c2, . . . , ck} − PER {c1, c2, . . . , ĉj, . . . , ck}

= w (cj) +
∑

i∈{1,2,...,k}\{j}

d (ci, cj) .

6 The greedoid

Throughout this section, we assume that the set E is finite.

6.1 Defining greedoids and strong greedoids

We shall now recall the definition of a “greedoid”:
A collection8 F ⊆ 2E of subsets of a finite set E is said to be a greedoid9 (on the

ground set E) if it satisfies the following three axioms:

(i) We have ∅ ∈ F .

(ii) If B ∈ F satisfies |B| > 0, then there exists b ∈ B such that B \ b ∈ F .

(iii) If A,B ∈ F satisfy |B| = |A|+ 1, then there exists b ∈ B \ A such that A ∪ b ∈ F .

We refer to [10] for a book-length treatment of greedoids. Our above definition of a
greedoid appears implicitly in [10, Section IV.1] (indeed, our axioms (i) and (iii) corre-
spond to the conditions (1.4) and (1.6) in [10, Section IV.1], while our axioms (i) and (ii)
make (E,F) into what is called an accessible set system in [10]).

There are several classes of greedoids having additional properties besides the above
three axioms. (See [10] for an overview.) Let us define one of these classes – that of
“strong greedoids” (also known as “Gauss greedoids”):

A greedoid F on a ground set E is said to be a strong greedoid if it satisfies the
following axiom:

7Here, the hat over the cj signifies that cj is omitted from the list.
8The word “collection” just means “set”, but will be used exclusively for sets of sets.
9More precisely, the sets in the collection are said to be the feasible sets of a greedoid. We will,

however, just say that the collection is a greedoid.
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(iv) If A,B ∈ F satisfy |B| = |A| + 1, then there exists some x ∈ B \ A such that
A ∪ x ∈ F and B \ x ∈ F .

This definition of strong greedoids appears in [6] (where the above axiom (iv) appears
as property G(3)′). Note that axiom (iv) is clearly stronger than axiom (iii). The theorem
in Section 2 of [6] says that strong greedoids are the same as Gauss greedoids (one of the
classes of greedoids studied in [10]). See [10, Section IX.4] for further properties and
characterizations of Gauss greedoids.

6.2 The Bhargava greedoid

The following theorem shows that a greedoid can be obtained from any ultra triple
(E,w, d):

Theorem 25. Let F denote the collection of subsets A ⊆ E that have maximum perimeter
among all |A|-sets:

F = {A ⊆ E | PER (A) > PER (B) for all B ⊆ E satisfying |B| = |A|} .

Then F is a strong greedoid on the ground set E.

We call this F the Bhargava greedoid of the ultra triple (E,w, d).

Example 26. Let (E,w, d) be as in Example 2. Assume that w (a) = 0 for all a ∈ E.
Then, the collection F in Theorem 25 contains {1, 2, 3} and {1, 2, 3, 4, 5} but not

{1, 2, 3, 5}.
Theorem 25 says that this collection is a strong greedoid; hence, axiom (iii) in the

definition of a greedoid yields that for any A,B ∈ F satisfying |B| = |A|+ 1, there exists
b ∈ B \A such that A∪ b ∈ F . For example, if we pick A = {1, 2, 5} and B = {2, 3, 4, 5},
then this says that there exists b ∈ {3, 4} such that {1, 2, 5, b} ∈ F . And indeed, b = 4
works (though b = 3 does not).

Example 27. Let p = 3 and E = {0, 1, 2, 3, 4, 5, 6, 12}. Define the distance function
d : E × E → R as in Example 4. Set w (e) = 0 for all e ∈ E.

Then, the collection F in Theorem 25 contains {0, 1, 2} and {0, 1, 2, 3} and {0, 1, 2, 6}
and {0, 1, 2, 4, 5, 6, 12} but not {0, 1, 2, 3, 6} and not {0, 1, 2, 3, 4, 5, 12}.

For readers familiar with the alternative description of greedoids as hereditary lan-
guages (see, e.g., [10, Section IV.1]), we note in passing that the language corresponding
to the greedoid F in Theorem 25 is precisely the set of greedy m-permutations for m > 0.
This observation will not be used in what follows, but helps illuminate the proofs.

Our proof of Theorem 25 will rely on the following lemma (inspired by [11, Theorem
3.2]):

Lemma 28. Let A and B be two subsets of E such that |B| = |A|+ 1.
Then, there exists a u ∈ B \ A satisfying

PER (B \ u) + PER (A ∪ u) > PER (A) + PER (B) . (10)
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Proof of Lemma 28. Let k = |A|; thus, |B| = |A| + 1 = k + 1. Let (a1, a2, . . . , ak) be a
list of all k elements of A (with no repetitions).

We define a list (b1, b2, . . . , bk) of k elements of B recursively as follows: For each
i = 1, 2, . . . , k, we let bi be a projection of ai onto B \ {b1, b2, . . . , bi−1} (assuming that
b1, b2, . . . , bi−1 have already been constructed).10 Thus, b1, b2, . . . , bk are k distinct11 el-
ements of B. Thus, {b1, b2, . . . , bk} is a k-element subset of B. Hence, its complement
B\{b1, b2, . . . , bk} has size |B|−k = 1 (since |B| = k+1). In other words, there is a unique
element u ∈ B \ {b1, b2, . . . , bk}. Consider this u. Hence, B \ {b1, b2, . . . , bk} = {u}, so
that B \ u = {b1, b2, . . . , bk}. From u ∈ B \ {b1, b2, . . . , bk}, we obtain u /∈ {b1, b2, . . . , bk}.

We have u /∈ A.
[Proof: Assume the contrary. Thus, u ∈ A = {a1, a2, . . . , ak}. Hence, u = ai for some

i ∈ {1, 2, . . . , k}. Consider this i. But ai = u ∈ B \ {b1, b2, . . . , bk} ⊆ B \ {b1, b2, . . . , bi−1}.
Hence, Lemma 13 (a) (applied to B \ {b1, b2, . . . , bi−1}, ai and bi instead of C, v and
u) yields bi = ai (because bi is defined as a projection of ai onto B \ {b1, b2, . . . , bi−1}).
Hence, u = ai = bi, which contradicts u /∈ {b1, b2, . . . , bk}. This contradiction shows that
our assumption was false. Hence, u /∈ A is proven.]

Combining u ∈ B with u /∈ A, we find u ∈ B \ A.
For each i ∈ {1, 2, . . . , k}, we have

d (ai, u) > d (bi, u) . (11)

[Proof: Let i ∈ {1, 2, . . . , k}. Then, from u /∈ {b1, b2, . . . , bk}, we obtain u 6= bi.
Also, u ∈ B \ {b1, b2, . . . , bk} ⊆ B \ {b1, b2, . . . , bi−1}, whereas bi is a projection of ai onto
B \ {b1, b2, . . . , bi−1}. Hence, Lemma 13 (c) (applied to B \ {b1, b2, . . . , bi−1}, ai, bi and u
instead of C, v, u and x) shows that d (bi, u) 6 d (ai, u) (since u 6= bi). This proves (11).]

From u ∈ B, we obtain

PER (B \ u) = PER (B)− w (u)−
∑
b∈B\u

d (b, u)

= PER (B)− w (u)−
k∑

i=1

d (bi, u) (12)

(since B \ u = {b1, b2, . . . , bk} and since b1, b2, . . . , bk are distinct).
From u /∈ A, we obtain

PER (A ∪ u) = PER (A) + w (u) +
∑
a∈A

d (a, u)

= PER (A) + w (u) +
k∑

i=1

d (ai, u)

(since A = {a1, a2, . . . , ak}, and since a1, a2, . . . , ak are distinct)

10Thus, in particular, b1 is a projection of a1 onto B.
11The distinctness of b1, b2, . . . , bk follows from bi ∈ B \ {b1, b2, . . . , bi−1}.
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> PER (A) + w (u) +
k∑

i=1

d (bi, u) (by (11)) .

Adding this inequality to the equality (12), we obtain

PER (B \ u) + PER (A ∪ u) > PER (B) + PER (A)

= PER (A) + PER (B) .

This is precisely the inequality (10).
Thus, we have found a u ∈ B \A satisfying (10). Hence, such a u exists. This proves

Lemma 28.

Proof of Theorem 25. We only need to prove the two axioms (i) and (ii) from the defi-
nition of a greedoid and the axiom (iv) from the definition of a strong greedoid (because
axiom (iii) will follow from axiom (iv)).

Axiom (i) is obvious.
Next, let us prove axiom (iv). So let A,B ∈ F be such that |B| = |A|+ 1. We must

prove that there exists some x ∈ B \ A such that A ∪ x ∈ F and B \ x ∈ F .
Lemma 28 shows that there exists a u ∈ B \ A satisfying (10). Consider this u.
Let k = |A|; thus, |B| = |A| + 1 = k + 1. But u ∈ B \ A ⊆ B, so that |B \ u| =

|B| − 1 = k (since |B| = k + 1). Thus, B \ u is a k-set. But A is a k-set in F , and thus
has the largest perimeter among all k-sets. Hence, PER (A) > PER (B \ u).

Furthermore, u ∈ B \ A, thus u /∈ A, so that |A ∪ u| = |A|+ 1 = k + 1. Hence, A ∪ u
is a (k + 1)-set. But B is a (k + 1)-set in F , and thus has the largest perimeter among
all (k + 1)-sets. Hence, PER (B) > PER (A ∪ u). Adding this inequality to PER (A) >
PER (B \ u), we obtain

PER (A) + PER (B) > PER (B \ u) + PER (A ∪ u) .

Contrasting this inequality with the opposite inequality (10) (which, as we know, is sat-
isfied), we conclude that it must be an equality. Hence, both inequalities PER (A) >
PER (B \ u) and PER (B) > PER (A ∪ u) (which we added to obtain it) must be equal-
ities as well. In other words, PER (A) = PER (B \ u) and PER (B) = PER (A ∪ u).
Hence, B \ u is a k-set of maximum perimeter (since A is a k-set of maximum perimeter,
but PER (A) = PER (B \ u)), and thus belongs to F ; in other words, B\u ∈ F . Likewise,
from the other inequality, we obtain A∪ u ∈ F . Hence, there exists some x ∈ B \A such
that A ∪ x ∈ F and B \ x ∈ F (namely, x = u). Thus, axiom (iv) is proven.

Let us now prove axiom (ii). So let B ∈ F satisfy |B| > 0. Then, |B| − 1 ∈
{0, 1, . . . , |E|}. Hence, there exists at least one (|B| − 1)-subset of E. Since E is finite,
we can thus find a (|B| − 1)-subset of E having maximum perimeter (among all (|B| − 1)-
subsets of E). Choose such a subset, and denote it by A. Thus, A ∈ F (by the definition
of F , since A has maximum perimeter) and |B| = |A|+1 (since |A| is a (|B| − 1)-subset).
Hence, axiom (iv) (which we have already proved) shows that there exists some x ∈ B \A
such that A∪ x ∈ F and B \ x ∈ F . Consider this x. Thus, x ∈ B \A ⊆ B. Hence, there
exists b ∈ B such that B \ b ∈ F (namely, b = x). This proves axiom (ii).

This shows that F is a strong greedoid.
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We now know that the Bhargava greedoid F of an ultra triple is a strong greedoid.
It is natural to inquire which other known classes of greedoids F belongs to. However,
for many of these classes (including interval greedoids), the answer is negative, because
F is (in general) not a transposition greedoid. We refer to [10, Chapter X] for the
definition of transposition greedoids (and for why many classes of greedoids are subclasses
of transposition greedoids); let us merely remark that the Bhargava greedoid F fails to
be a transposition greedoid in Example 27, since the transposition property [10, (1.1) in
Section X.1] is violated for A = {0, 1, 2}, x = 3, y = 6 and B = {4, 5, 12}.

The Bhargava greedoid F also fails to be a transversal greedoid in the sense of [5]12.
Indeed, the ultra triple (E,w, d) constructed in Example 4 for p = 2 and E = {1, 2, 3, 4}
provides a counterexample13.

Another class of greedoids that the Bhargava greedoid F does not belong to is that
of twisted matroids ([10, Section IV.2.18]). Indeed, [9, Proposition 3.1] shows that every
twisted matroid is a ∆-matroid (see [9, Section 2.4] for a definition of the latter concept);
but F is not in general a ∆-matroid14.

In [8], it is shown that the Bhargava greedoid F is a Gaussian elimination greedoid
(see [10, Sections IV.2 and IX.4] for this concept).

Question 29. Is F a linking greedoid? (This is yet another subclass of Gauss greedoids,
and can in some sense be understood as “Gaussian elimination greedoids over the field
with one element”; see again [10, Sections IV.2 and IX.4].)

7 The matroid

Throughout this section, we assume that the set E is finite.

7.1 Defining matroids

We shall now recall one of the many definitions of a matroid. Namely, if E is a finite set,
k is a nonnegative integer, and B is a collection of k-subsets of E, then we say that B is
the collection of bases of a matroid if and only if B is nonempty and satisfies the following
axiom:15

• For any two k-subsets B1, B2 ∈ B and any x ∈ B1 \ B2, there exists a y ∈ B2 \ B1

such that B1 ∪ y \ x ∈ B.

12Transversal greedoids are the same as medieval marriage greedoids in the sense of [10, Section IV.2.14].
13The easiest way to check this is to observe that it violates the condition (M3)† from [5, Theorem 2.1].

(Note that there is a typo in [5, Theorem 2.1]: In Condition (M3)†, replace “Z 6= ∅” by “X 6= ∅”.)
14For an example, use the ultra triple (E,w, d) constructed in Example 4 for p = 2 and E = {1, 2, 4, 8}.

Here, the axiom defining a ∆-matroid fails for X = {1, 2, 4, 8}, Y = ∅ and x = 1.
15This axiom is condition (1.4) in [10, Section II.1]. See [10, Theorem II.1.1] for a proof of its equivalence

to other definitions of a matroid. See also [13] for much more about matroids.
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7.2 Matroids from strong greedoids

We now get to the main result of this section:

Theorem 30. The Bhargava greedoid F has the following property: Fix a nonnegative
integer k 6 |E|. All sets A ∈ F having size k form the collection of bases of a matroid.

Not all greedoids enjoy this property. For example, if {a, b, c, d} is a poset with two
inequalities a < b and c < d, then the greedoid of lower ideals of this poset contains the
subsets {a, b} and {c, d}, but a in the set {a, b} cannot be replaced by any of c and d.

However, all strong greedoids (i.e., Gauss greedoids) enjoy this property:

Theorem 31. Let F be a strong greedoid on the ground set E. Let B1 ∈ F and B2 ∈ F
satisfy |B1| = |B2|. Let x ∈ B1 \ B2. Then, there exists some y ∈ B2 \ B1 such that
B1 ∪ y \ x ∈ F .

Theorem 31 is (implicitly) proven in the third paragraph of [6, Proof of the Theorem].
For the sake of completeness, we shall present this proof in a slightly modified form below.
First, we need two lemmas about greedoids:

Lemma 32. Let F be a greedoid on the ground set E. Let A,B ∈ F satisfy |B| > |A|.
Then, there exists some b ∈ B \ A such that A ∪ b ∈ F .

Proof of Lemma 32. A nice set will mean a subset C of B such that |C| > |A| and C ∈ F .
There exists at least one nice set (namely, B is a nice set). Thus, there exists a nice set of
smallest possible size. Let D be such a set. Thus, D is a subset of B such that |D| > |A|
and D ∈ F (since D is a nice set). Hence, |D| > |A| > 0. Thus, axiom (ii) in the
definition of a greedoid (applied to D instead of B) shows that there exists a b ∈ D such
that D \ b ∈ F . Pick such a b and denote it by d. Thus, d ∈ D and D \ d ∈ F . Note that
D\d is a subset of B (since D is), and has smaller size than D (since d ∈ D). Hence, if we
had |D \ d| > |A|, then D \ d would be a nice set of smaller size than D; but this would
contradict the fact that D is a nice set of smallest possible size. Thus, we must have
|D \ d| 6 |A|. Since d ∈ D, we have |D \ d| = |D| − 1, so that |D| − 1 = |D \ d| 6 |A|,
and therefore |D| 6 |A| + 1. Combining this with |D| > |A|, we obtain |D| = |A| + 1.
Hence, axiom (iii) in the definition of a greedoid (applied to D instead of B) shows that
there exists a b ∈ D \A such that A∪ b ∈ F . Consider this b. We have b ∈ D \A ⊆ B \A
(since D ⊆ B). Thus, we have found a b ∈ B \ A such that A ∪ b ∈ F . This proves
Lemma 32.

Lemma 33. Let F be a strong greedoid on the ground set E. Let D be a subset of E,
and let x, y, z be three elements of E \ D. Assume that D ∪ {x, z} ∈ F and D ∪ y ∈ F
and D ∪ z /∈ F . Then, we have D ∪ {y, z} ∈ F .

Proof of Lemma 33. We have D ∪ {x, z} 6= D ∪ z (since D ∪ {x, z} ∈ F but D ∪ z /∈ F).
Hence, x 6= z. Furthermore, none of the elements x, y, z belongs to D (since they all
belong to E \D). Hence, |D ∪ {x, z}| = |D ∪ y| + 1 (since x 6= z). Consequently, axiom
(iv) in the definition of a strong greedoid (applied to A = D ∪ y and B = D ∪ {x, z})
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yields that there exists some t ∈ (D ∪ {x, z}) \ (D ∪ y) such that (D ∪ y) ∪ t ∈ F and
(D ∪ {x, z}) \ t ∈ F . Consider this t.

Combining x 6= z with x /∈ D, we obtain x /∈ D ∪ z. If we had t = x, then we
would have (D ∪ {x, z})︸ ︷︷ ︸

=(D∪z)∪x

\ t︸︷︷︸
=x

= (D ∪ z) ∪ x \ x = D ∪ z (since x /∈ D ∪ z) and therefore

D ∪ z = (D ∪ {x, z}) \ t ∈ F , which would contradict D ∪ z /∈ F . Hence, we must have
t 6= x.

We have t ∈ (D ∪ {x, z})\ (D ∪ y) ⊆ {x, z}, so that either t = x or t = z. Thus, t = z
(since t 6= x). Hence, z = t, so that D ∪ {y, z} = (D ∪ y) ∪ z︸︷︷︸

=t

= (D ∪ y) ∪ t ∈ F .

Proof of Theorem 31. From x ∈ B1 \B2, we obtain x ∈ B1 and x /∈ B2. Hence, |B1 \ x| =
|B1| − 1.

A free set will mean a subset A of B1 \ x such that A ∈ F . Clearly, a free set exists
(indeed, ∅ is a free set, since axiom (i) in the definition of a greedoid yields ∅ ∈ F).
Hence, there exists a free set of largest size. Pick such a free set, and denote it by A.
Thus, A is a subset of B1 \x and satisfies A ∈ F (since A is a free set). Since A is a subset
of B1 \ x, we have |A| 6 |B1 \ x| = |B1| − 1 < |B1| = |B2|. Thus, Lemma 32 (applied to
B = B2) yields that there exists some b ∈ B2 \ A such that A ∪ b ∈ F . Consider this b,
and denote it by y. Thus, y ∈ B2 \ A and A ∪ y ∈ F .

Next, we claim that A ∪ x ∈ F .
[Proof: Assume the contrary. Thus, A ∪ x /∈ F . Recall that |A| < |B1|. Thus,

Lemma 32 (applied to B = B1) yields that there exists some b ∈ B1 \ A such that
A ∪ b ∈ F . Consider this b. Clearly, b /∈ A. We have A ∪ b 6= A ∪ x (since A ∪ b ∈ F
but A ∪ x /∈ F), and thus b 6= x. Hence, b ∈ B1 \ x (since b ∈ B1 \ A ⊆ B1). Clearly,
the set A ∪ b has larger size than A (since b /∈ A). Now, A ∪ b is a subset of B1 \ x (since
A ⊆ B1 \ x and b ∈ B1 \ x), and thus is a free set (since A ∪ b ∈ F) of larger size than
A. This contradicts the fact that A is a free set of largest size. This contradiction shows
that our assumption was wrong. Hence, we have shown that A ∪ x ∈ F .]

From y ∈ B2 \ A, we obtain y ∈ B2 and y /∈ A. Hence, the set A ∪ y has larger size
than A (since y /∈ A). If we had y ∈ B1 \ x, then A∪ y would be a subset of B1 \ x (since
A ⊆ B1 \ x), and therefore A∪ y would be a free set (since A∪ y ∈ F) of larger size than
A; this would contradict the fact that A is a free set of largest size. Hence, y /∈ B1 \ x.
Since y 6= x (because y ∈ B2 but x /∈ B2), we thus obtain y /∈ B1. Hence, y ∈ B2 \ B1

(since y ∈ B2).
Thus, if B1∪y\x ∈ F , then Theorem 31 is proven. Hence, for the sake of contradiction,

we assume that B1 ∪ y \ x /∈ F .
A useful set will mean a set C ⊆ E such that A ⊆ C ⊆ B1 \ x and C ∪ x ∈ F and

C∪y ∈ F . The set A is a useful set (since A ⊆ A ⊆ B1 \x and A∪x ∈ F and A∪y ∈ F).
Hence, there exists a useful set. Thus, there exists a useful set of maximum size. Let D
be such a set. Thus, D is a useful set; that is, D ⊆ E and A ⊆ D ⊆ B1 \x and D∪x ∈ F
and D ∪ y ∈ F .

We have y 6= x and thus (B1 \ x) ∪ y = B1 ∪ y \ x /∈ F . Hence, the set B1 \ x is not
a useful set. Thus, D 6= B1 \ x (since D is a useful set). Therefore, D is a proper subset
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of B1 \ x (since D ⊆ B1 \ x). Hence, |D| < |B1 \ x| = |B1| − 1 (since x ∈ B1). Thus,
|D|+ 1 < |B1|, so that |D ∪ x| 6 |D|+ 1 < |B1|.

The two sets D ∪ x and B1 belong to F and satisfy |D ∪ x| < |B1|. Hence, Lemma 32
(applied to D∪x and B1 instead of A and B) yields that there exists some b ∈ B1\(D ∪ x)
such that D ∪ x∪ b ∈ F . Consider this b, and denote it by z. Thus, z ∈ B1 \ (D ∪ x) and
D∪x∪z ∈ F . Hence, D∪{x, z} = D∪x∪z ∈ F . Furthermore, x /∈ D (since D ⊆ B1 \x)
and y /∈ D (since y /∈ B1 but D ⊆ B1 \ x ⊆ B1) and z /∈ D (since z ∈ B1 \ (D ∪ x) and
thus z /∈ D ∪ x, so that z /∈ D). Hence, all of x, y, z are elements of E \D.

The set D ∪ z has larger size than D (since z /∈ D), and thus has larger size than A
(since A ⊆ D entails |A| 6 |D|). Combining D ⊆ B1 \x and z ∈ B1 \(D ∪ x) ⊆ B1 \x, we
obtain D∪z ⊆ B1\x. Hence, if we had D∪z ∈ F , then D∪z would be a free set of larger
size than A. This would contradict the fact that A is a free set of largest size. Hence,
D ∪ z /∈ F . Thus, Lemma 33 shows that D ∪ {y, z} ∈ F . Now, the set D ∪ z has larger
size than D and satisfies A ⊆ D ∪ z ⊆ B1 \ x (since A ⊆ D ⊆ D ∪ z and D ∪ z ⊆ B1 \ x)
and (D ∪ z) ∪ x = D ∪ {x, z} ∈ F and (D ∪ z) ∪ y = D ∪ {y, z} ∈ F . Hence, D ∪ z
is a useful set of larger size than D. This contradicts the fact that D is a useful set of
maximum size. This contradiction shows that our assumption (that B1 ∪ y \ x /∈ F) was
wrong. Hence, B1 ∪ y \ x ∈ F . This proves Theorem 31.

We note that the condition “|B1| = |B2|” in Theorem 31 could be replaced by the
weaker condition “|B1| 6 |B2|”. Indeed, our proof of Theorem 31 only used the latter
condition.

Proof of Theorem 30. The assumption k 6 |E| shows that there exist k-sets. Some of
them have maximum perimeter (since E is finite). Hence, the collection of all sets A ∈ F
having size k is nonempty.

Theorem 25 shows that F is a strong greedoid. Hence, Theorem 31 shows that for
any two sets B1 ∈ F and B2 ∈ F satisfying |B1| = |B2| and for any x ∈ B1 \ B2, there
exists some y ∈ B2 \B1 such that B1 ∪ y \ x ∈ F . This yields that all sets A ∈ F having
size k form the collection of bases of a matroid (because if B1 and B2 are two sets of size
k, and if x ∈ B1 \ B2 and y ∈ B2 \ B1, then B1 ∪ y \ x is a set of size k as well). This is
precisely the claim of Theorem 30.

8 Greedy subsequences

We shall now study a slight variation of the notion of greedy m-permutations, in which
we allow picking the same point multiple times. This requires us to consider distances of
the form d (a, a), which our definition of ultra triple does not support. Thus, we begin by
introducing a somewhat stronger concept, that of “full ultra triples”.

8.1 Full ultra triples

Consider again a set E.
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As before, we assume that a function w : E → R is given, which assigns a weight w (a)
to each point a ∈ E.

Assume further that we are given a function d : E × E → R, which we will call the
distance function. Thus, any two points a, b ∈ E have a real-valued distance d (a, b). We
assume that this distance function has the following properties:

• It is symmetric: that is, d (a, b) = d (b, a) for any a, b ∈ E.

• It satisfies the following inequality:

d(a, b) 6 max {d(a, c), d(b, c)} (13)

for any a, b, c ∈ E.

(Again, (13) is just the ultrametric triangle inequality; but keep in mind that d (a, a) can
be nonzero and even negative, unlike in a metric space.)

Such a structure (E,w, d) will be called a full ultra triple. Thus, the notion of a full
ultra triple differs from that of an ultra triple in that the distance function d is defined on
E ×E rather than on E ×E (so that the distances d (a, b) are defined for a = b as well).

Example 34. Consider the situation of Example 9, but now define a map d : E×E → R
by the same formula that was used to define the map d : E×E → R in Example 9. Then,
(E,w, d) is a full ultra triple.

It is immediately clear that if (E,w, d) is a full ultra triple, then (E,w, d) is an ultra
triple, where d : E×E → R is the restriction of d to the subset E×E of E×E. In other
words, any full ultra triple (E,w, d) becomes an ultra triple if we restrict the distance
function d to E × E (that is, if we forget the distances d (a, a) between each point and
itself). Thus, any concept that was defined for ultra triples (e.g., the concept of a greedy
m-permutation) is automatically defined for any full ultra triple (E,w, d) as well (just
apply it to (E,w, d)), and any proposition that has been proven for all ultra triples can
be applied to all full ultra triples.

Conversely, we can often – but not always – transform an ultra triple into a full ultra
triple as follows:

Remark 35. Let (E,w, d) be an ultra triple.
Fix an N ∈ R with the property that

N 6 d (a, b) for all (a, b) ∈ E × E. (14)

(Such an N always exists when E is finite.)
Define a map d : E × E → R by setting

d (a, b) =

{
d (a, b) , if a 6= b;

N, if a = b
for all a, b ∈ E.

Then,
(
E,w, d

)
is a full ultra triple. This full ultra triple extends the original ultra triple

(E,w, d) (in the sense that the distance function d of the latter is a restriction of d).
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The proof of Remark 35 is a refreshing (if very simple) exercise that we leave to the
reader.

Example 36. For this example, we fix a prime number p and a subset E of Z. Define an
ultra triple (E,w, d) as in Example 4.

Then, 0 6 d (a, b) for all (a, b) ∈ E × E. Hence, we can define a map d : E × E → R
as in Remark 35 (by setting N = 0), and obtain a full ultra triple

(
E,w, d

)
that extends

our ultra triple (E,w, d).

Example 37. Let us see an example where the construction in Remark 35 does not work.
For this example, we fix a prime number p and a subset E of Z. Define an ultra triple

(E,w, d′) as in Example 5.
If E is infinite, then there exists no N ∈ R with the property that N 6 d′ (a, b) for all

(a, b) ∈ E × E. (Indeed, for each m ∈ N, there exist two distinct elements a and b of E
satisfying a ≡ b mod pm and therefore d′ (a, b) 6 −m.) Hence, we cannot define d as in
Remark 35.16

It is tempting to try fixing this issue by setting d′ (a, a) = −∞ for all a ∈ E. However,
this would require a generalization of the notion of a full ultra triple, allowing distances
to be −∞; this, in turn, would cause some complications in our proofs17. Thus we are
not making this generalization.

Note that every full ultra triple (E,w, d) satisfies

d(a, a) 6 d(a, c) for all a, c ∈ E. (15)

In fact, this follows by substituting b = a in (13).

8.2 Further definitions

For the rest of Section 8, we shall fix a full ultra triple (E,w, d).
If B ⊆ E and if m is a nonnegative integer, then an m-subsequence of B shall mean

an m-tuple of elements of B (not necessarily distinct).
If a = (a1, a2, . . . , am) ∈ Em is any m-tuple, then we define its perimeter PER (a) as

PER (a) :=
m∑
k=1

w (ak) +
∑

16i<j6m

d (ai, aj) .

This generalizes the perimeter of an m-set; in fact, if the entries of the m-tuple a =
(a1, a2, . . . , am) ∈ Em are distinct, then PER (a) = PER {a1, a2, . . . , am}.

If an m-tuple a ∈ Em is a permutation of an m-tuple b ∈ Em, then PER (a) =
PER (b). (This follows from the requirement d (a, b) = d (b, a) on our distance function.)

16This does not mean that the ultra triple (E,w, d′) cannot be obtained by restricting a full ultra
triple. Sometimes it can (for example, when E =

{
p0, p1, p2, . . .

}
); sometimes it cannot (for example,

when E = Z).
17In our proofs, we used the fact that if a sum of finitely many inequalities between real numbers is

an equality, then each of the inequalities being summed must itself be an equality. (In other words: If
(ai)i∈I and (bi)i∈I are two finite families of reals satisfying ai > bi for all i ∈ I and

∑
i∈I ai =

∑
i∈I bi,

then ai = bi for all i ∈ I.) This is no longer true if we allow −∞ as an addend.
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Definition 38. Let C ⊆ E be any subset, and let m be a nonnegative integer.
A greedy m-subsequence of C is an m-subsequence (c1, c2, . . . , cm) of C such that for

each i ∈ {1, 2, . . . ,m} and each x ∈ C, we have

PER (c1, c2, . . . , ci) > PER (c1, c2, . . . , ci−1, x) . (16)

Thus, this notion differs from the notion of a greedy m-permutation in two aspects:
A greedy m-subsequence is allowed to have equal entries, and the inequality (16) is re-
quired to hold for all x ∈ C (rather than only for x ∈ C \ {c1, c2, . . . , ci−1}). Thus,
greedy m-subsequences are like greedy m-permutations except that we are sampling with
replacement.

8.3 Main analogues

We can now state the following analogues of Theorem 21, Theorem 22, Corollary 23 and
Corollary 24, respectively:

Theorem 39. Let C ⊆ E be any subset, and let m be a nonnegative integer.
Let (c1, c2, . . . , cm) be any greedy m-subsequence of C.
Then, for each k ∈ {0, 1, . . . ,m}, the k-subsequence (c1, c2, . . . , ck) has maximum

perimeter among all k-subsequences of C.

Theorem 40. Let C ⊆ E be any finite nonempty subset, and let m be a nonnegative
integer. Let k ∈ {0, 1, . . . ,m}.

Let a be any k-subsequence of C with maximum perimeter. Then, there exists a
greedy m-subsequence (c1, c2, . . . , cm) of C such that a is a permutation of the k-tuple
(c1, c2, . . . , ck).

Corollary 41. Let C ⊆ E be any subset. Let m be a nonnegative integer. Let k ∈
{1, 2, . . . ,m}. If (c1, c2, . . . , cm) is a greedy m-subsequence of C, then the number

w (ck) +
k−1∑
i=1

d (ci, ck)

does not depend on the choice of this m-subsequence (but only depends on k and on C).

From now on, the number

w (ck) +
k−1∑
i=1

d (ci, ck)

in Corollary 41 will be denoted by νk (C).

Corollary 42. Let C ⊆ E be any subset. Let m be a nonnegative integer. Let k ∈
{1, 2, . . . ,m}. Let (c1, c2, . . . , cm) be a greedy m-subsequence of C. Let j ∈ {1, 2, . . . , k}.
Then,

νk (C) 6 w (cj) +
∑

i∈{1,2,...,k}\{j}

d (ci, cj) . (17)

Note that Corollary 41 (in the particular case when w (e) = 0 for all e ∈ E) is [7,
Conjecture 1], while Theorem 39 (in the same particular case) is [7, Conjecture 2].
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8.4 The clone construction

We shall prove Theorem 39, Theorem 40, Corollary 41 and Corollary 42 by deriving them
from the corresponding facts we have already proven about greedy m-permutations and
maximum-perimeter subsets. This derivation will rely on constructing a larger full ultra

triple
(
Ê, ŵ, d̂

)
whose ground set Ê will contain a sufficiently large number of “clones” of

each element of E. These “clones” will allow us to transform any m-tuple of elements of
E into an m-tuple of distinct elements of Ê without disturbing properties like greediness
and perimeter.

We construct the new full ultra triple
(
Ê, ŵ, d̂

)
as follows:

• We fix a positive integer N . (For now, N can be arbitrary, but later N will be
assumed large enough.)

• We let [N ] be the set {1, 2, . . . , N}.

• We define Ê to be the set E × [N ]. It consists of all pairs (e, i) with e ∈ E and
i ∈ [N ].

• We define a function ŵ : Ê → R by setting

ŵ (e, i) = w (e) for each (e, i) ∈ Ê.

• We define a function d̂ : Ê × Ê → R by setting

d̂ ((e, i) , (f, j)) = d (e, f) for each (e, i) ∈ Ê and (f, j) ∈ Ê.

It is easy to see that
(
Ê, ŵ, d̂

)
is again a full ultra triple. The intuitive meaning of

the construction of this full ultra triple is that we have replaced each element e of E by
N “clones” (e, 1) , (e, 2) , . . . , (e,N) ∈ Ê; the weights and the mutual distances of these
clones are copied over from their originals in E. From this point of view, the following
lemma should not be surprising:

Lemma 43. Let C be a subset of E. Let Ĉ be the subset C × [N ] of Ê. Let m be a
nonnegative integer. Let c1, c2, . . . , cm be any m elements of C. Let r1, r2, . . . , rm be any
m elements of [N ]. Then:

(a) We have

PER ((c1, r1) , (c2, r2) , . . . , (cm, rm)) = PER (c1, c2, . . . , cm) .

(Here, the perimeter on the left hand side is computed with respect to the full ultra

triple
(
Ê, ŵ, d̂

)
, whereas that on the right hand side is computed with respect to the

full ultra triple (E,w, d).)
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From now on, assume that r1, r2, . . . , rm are distinct.

(b) We have

PER {(c1, r1) , (c2, r2) , . . . , (cm, rm)} = PER (c1, c2, . . . , cm) .

(c) The m-tuple (c1, c2, . . . , cm) is a greedy m-subsequence of C if and only if the m-tuple

((c1, r1) , (c2, r2) , . . . , (cm, rm)) is a greedy m-permutation of Ĉ.

(d) The m-tuple (c1, c2, . . . , cm) has maximum perimeter among all m-subsequences of C
if and only if the set {(c1, r1) , (c2, r2) , . . . , (cm, rm)} has maximum perimeter among

all m-subsets of Ĉ.

We omit the proof of this lemma, as it is just bookkeeping.

8.5 Proofs of the analogues

We are now ready to prove the results promised:

Proof of Theorem 39. Let k ∈ {0, 1, . . . ,m}.
Pick any positive integer N such that N > m. Define [N ], Ê, ŵ and d̂ as in Subsec-

tion 8.4. Pick any m distinct elements r1, r2, . . . , rm of [N ]. (These exist because N > m;

for example, we can just set ri = i.) Let Ĉ be the subset C × [N ] of Ê.
Lemma 43 (c) (specifically, its “=⇒” direction) shows that the m-tuple

((c1, r1) , (c2, r2) , . . . , (cm, rm)) is a greedy m-permutation of Ĉ. Thus, Theorem 21 (ap-

plied to
(
Ê, ŵ, d̂

)
, Ĉ and (ci, ri) instead of (E,w, d), C and ci) shows that the set

{(c1, r1) , (c2, r2) , . . . , (ck, rk)} has maximum perimeter among all k-subsets of Ĉ. Hence,
the “⇐=” direction of Lemma 43 (d) (applied to k instead of m) shows that the k-
tuple (c1, c2, . . . , ck) has maximum perimeter among all k-subsequences of C. This proves
Theorem 39.

Our next task is to prove Theorem 40. Before we can do this, let us state a straight-
forward analogue of Proposition 20 (f) for greedy k-subsequences instead of greedy k-
permutations:

Proposition 44. Let m and n be integers such that m > n > 0. Let C be a finite
nonempty subset of E.

If (c1, c2, . . . , cn) is a greedy n-subsequence of C, then we can find m − n elements
cn+1, cn+2, . . . , cm of C such that (c1, c2, . . . , cm) is a greedy m-subsequence of C.

Proof of Proposition 44. Analogous to the proof of Proposition 20 (f). The main differ-
ence is that instead of choosing ci ∈ C \ {c1, c2, . . . , ci−1} that maximizes the perimeter
PER {c1, c2, . . . , ci} (in the recursive procedure), we now have to choose ci ∈ C that
maximizes the perimeter PER (c1, c2, . . . , ci).
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Proof of Theorem 40. Pick any positive integer N such that N > m. Define [N ], Ê, ŵ

and d̂ as in Subsection 8.4. Pick any m distinct elements r1, r2, . . . , rm of [N ]. (These

exist because N > m; for example, we can just set ri = i.) Let Ĉ be the subset C × [N ]

of Ê. Thus,
∣∣∣Ĉ∣∣∣ = |C × [N ]| = |C|︸︷︷︸

>1

· |[N ]|︸︷︷︸
=N

> N > m > k.

Recall that a is a k-subsequence of C with maximum perimeter. Write this k-
subsequence a in the form (a1, a2, . . . , ak). Therefore, the “=⇒” direction of Lemma 43 (d)
(applied to k and ai instead of m and ci) shows that the set {(a1, r1) , (a2, r2) , . . . , (ak, rk)}
has maximum perimeter among all k-subsets of Ĉ. Let us denote this set by A. There-

fore, Theorem 22 (applied to
(
Ê, ŵ, d̂

)
, Ĉ and k instead of (E,w, d), C and m) shows

that there exists a greedy k-permutation ((c1, q1) , (c2, q2) , . . . , (ck, qk)) of Ĉ such that
A = {(c1, q1) , (c2, q2) , . . . , (ck, qk)}. Consider this greedy k-permutation. Hence,

{(c1, q1) , (c2, q2) , . . . , (ck, qk)} = A = {(a1, r1) , (a2, r2) , . . . , (ak, rk)}

(by the definition of A). From this, we quickly obtain that the k-tuple (a1, a2, . . . , ak)
must be a permutation of the k-tuple (c1, c2, . . . , ck) (because r1, r2, . . . , rk are distinct).
In other words, the k-tuple a is a permutation of the k-tuple (c1, c2, . . . , ck) (since a =
(a1, a2, . . . , ak)).

Recall again that

{(c1, q1) , (c2, q2) , . . . , (ck, qk)} = {(a1, r1) , (a2, r2) , . . . , (ak, rk)} .

Hence, q1, q2, . . . , qk are distinct (since r1, r2, . . . , rk are distinct). Therefore, the “⇐=” di-
rection of Lemma 43 (c) (applied to k and qi instead of m and ri) shows that (c1, c2, . . . , ck)
is a greedy k-subsequence of C (since ((c1, q1) , (c2, q2) , . . . , (ck, qk)) is a greedy

k-permutation of Ĉ). Since k 6 m, we can extend this greedy k-subsequence to a greedy
m-subsequence (c1, c2, . . . , cm) of C (by Proposition 44, applied to n = k). Hence, we
have found a greedy m-subsequence (c1, c2, . . . , cm) of C such that a is a permutation of
the k-tuple (c1, c2, . . . , ck). This proves Theorem 40.

Proof of Corollary 41. Pick any positive integer N such that N > k. Define [N ], Ê, ŵ

and d̂ as in Subsection 8.4. Let Ĉ be the subset C × [N ] of Ê.
Let (c1, c2, . . . , cm) be a greedy m-subsequence of C. Then, (c1, c2, . . . , ck) is a greedy

k-subsequence of C (since the first k entries of any greedy m-subsequence form a greedy
k-subsequence).

Recall the number ν◦k (C) we defined just after Corollary 23. Now, consider the number

ν◦k

(
Ĉ
)

defined in the same fashion, but with respect to the ultra triple
(
Ê, ŵ, d̂

)
. We

claim that

w (ck) +
k−1∑
i=1

d (ci, ck) = ν◦k

(
Ĉ
)
. (18)
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Clearly, proving this will yield Corollary 41.
Pick any k distinct elements r1, r2, . . . , rk of [N ]. (These exist because N > k; for

example, we can just set ri = i.)
Recall that the k-tuple (c1, c2, . . . , ck) is a greedy k-subsequence of C. Hence, the k-

tuple ((c1, r1) , (c2, r2) , . . . , (ck, rk)) is a greedy k-permutation of Ĉ (by the “=⇒” direction

of Lemma 43 (c), applied to k instead of m). Hence, the definition of ν◦k

(
Ĉ
)

yields

ν◦k

(
Ĉ
)

= ŵ (ck, rk)︸ ︷︷ ︸
=w(ck)

(by the definition of ŵ)

+
k−1∑
i=1

d̂ ((ci, ri) , (ck, rk))︸ ︷︷ ︸
=d(ci,ck)

(by the definition of d̂)

= w (ck) +
k−1∑
i=1

d (ci, ck) .

This proves (18). Hence, Corollary 41 is proven.

Proof of Corollary 42. This is similar to the above proof of Corollary 41, but now also

requires applying Corollary 24 to
(
Ê, ŵ, d̂

)
, Ĉ, k and (ci, ri) instead of (E,w, d), C, m

and ci. We leave the details to the reader.

Remark 45. Lemma 43 (c) essentially says that, using the full ultra triple
(
Ê, ŵ, d̂

)
, we

can re-interpret greedy m-subsequences as (a certain subclass of) greedy m-permutations
(as long as N is chosen to satisfy N > m).

The reverse direction can also be done: We can re-interpret greedy m-permutations of
C as greedy m-subsequences, as long as C is finite and satisfies |C| > m. To do so, we fix
a real number R such that R > 2 |PER (D)| for every D ⊆ C. We define a new distance
function dR : E × E → R on E by setting

dR (e, f) =

{
d (e, f) +R, if e 6= f ;

d (e, f) , if e = f
for all e, f ∈ E.

It is easy to see that (E,w, dR) is again a full ultra triple. Moreover, it is easy to see
that any m-subsequence of C containing two equal entries has smaller perimeter with
respect to (E,w, dR) than any m-subset of C. Hence, the maximum perimeter of an m-
subsequence of C with respect to (E,w, dR) can only be achieved by an m-subsequence
with no equal entries. Hence, this maximum perimeter is the maximum perimeter of an
m-subset of C with respect to (E,w, dR). Meanwhile, the perimeter of an m-subset of
C with respect to (E,w, dR) equals its perimeter with respect to the original full ultra

triple (E,w, d) plus the constant

(
m

2

)
R. Hence, the m-subsets of C having maximum

perimeter with respect to (E,w, dR) are precisely the same that have maximum perimeter
with respect to (E,w, d). From this, it is easy to see that the greedy m-subsequences of
C with respect to (E,w, dR) are precisely the greedy m-permutations of C with respect
to (E,w, d).

When |C| < m, this reasoning no longer works, since everym-subsequence of C has two
equal entries (and there are no m-subsets of C). In this case, the greedy m-subsequences
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of C with respect to (E,w, dR) can be informally regarded as greedy m-subsequences of
C with respect to (E,w, d) that defer picking identical entries as long as they can (in a
sense).

9 Relation to Bhargava’s P -orderings

Let us now connect greedy m-permutations with the concept of P -orderings introduced
by Manjul Bhargava in [2, Section 2]. (The notions of p-orderings in [3, Section 4] and [4,
Section 2] are particular cases.) This connection was already noticed by Bhargava (see
the paragraph after the proof of Lemma 2 in [2]), who, however, never elaborated on it
or made any further inroads into the study of general ultra triples.

We fix a Dedekind ring18 R and a nonzero prime ideal P of R. For any nonzero a ∈ R,
we let vP (a) denote the highest19 k ∈ N that satisfies a ∈ P k. (Equivalently, vP (a) is the
exponent with which P appears in the factorization of the principal ideal aR into prime
ideals.20) We also set vP (0) = +∞. Thus, an element vP (a) ∈ N ∪ {+∞} is defined for
every a ∈ R. Moreover, the map vP : R→ N ∪ {+∞} satisfies

vP (ab) = vP (a) + vP (b) and vP (a+ b) 6 max {vP (a) , vP (b)}

for all a, b ∈ R.
The simplest example for this is when R = Z and P = pZ for some prime number p.

In this case, vP (a) = vp (a), where vp (a) is defined as in Example 4. This particular case
is the one studied in [3, Section 4] and [4, Section 2].

Furthermore, we fix a nonempty subset E of R. (Bhargava denotes this subset by X
instead.) Now, Bhargava defines a P -ordering of E to be a sequence (a0, a1, a2, . . .) of
elements of E defined recursively as follows: For each k ∈ N, we define ak (assuming that
a0, a1, . . . , ak−1 are already defined) to be an element of E minimizing the quantity

vP ((ak − a0) (ak − a1) · · · (ak − ak−1)) . (19)

Note that the quantity (19) indeed attains its minimum at some (usually non-unique)
ak ∈ E, since it is an element of the well-ordered set N ∪ {+∞}.

We now claim that this notion of P -ordering is almost a particular case of the notion
of a greedy m-permutation for a certain ultra triple. Some amount of work is necessary
to bridge the technical discrepancies between these two notions:

18See [12, Chapter 1] or [1, Chapter 3] for an introduction to Dedekind rings. In a nutshell, a Dedekind
ring is an integral domain in which every nonzero ideal has a unique factorization into a product of prime
ideals. Other equivalent definitions of Dedekind rings exist. Dedekind rings are also known as Dedekind
domains.

For our purposes, it suffices to know that Z is a Dedekind ring; the examples it provides are sufficiently
rich in substance that greater generality is not strictly necessary.

19Here and in the following, we set N = {0, 1, 2, . . .}.
20The equivalence between these two definitions of vP (a) follows from [1, Corollary 3.3.3]; this also

proves that the first definition is valid (i.e., there exists a highest k ∈ N that satisfies a ∈ P k).
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First of all, P -orderings are infinite sequences, whereas greedy m-permutations are
m-tuples. To bring them closer together, we fix an m ∈ N, and we define an (P,m)-
ordering of E to be an m-tuple (a0, a1, . . . , am−1) of elements of E such that for each k ∈
{0, 1, . . . ,m− 1}, the element ak of E minimizes the quantity (19) (where a0, a1, . . . , ak−1

are considered fixed). Clearly, the first m entries of any P -ordering form a (P,m)-ordering,
and conversely, any (P,m)-ordering can be extended to a P -ordering. Thus, if we want
to study (finitary) properties of P -orderings, it suffices to understand (P,m)-orderings.
Thus we are back in the realm of finite sequences.

We furthermore notice something simple:

Lemma 46. Let C be a subset of E, and let m be a nonnegative integer such that |C| > m.
Then, any (P,m)-ordering of C is an m-tuple of distinct elements.

Proof of Lemma 46. Any (P,m)-ordering (a0, a1, . . . , am−1) of C can be constructed re-
cursively as follows: For each k ∈ {0, 1, . . . ,m− 1}, we define ak (assuming that the
elements a0, a1, . . . , ak−1 are already defined) to be an element of C minimizing the quan-
tity (19). But this quantity (19) is +∞ when ak equals one of a0, a1, . . . , ak−1, and
otherwise is a nonnegative integer. In order to minimize this quantity, we must thus pick
ak distinct from a0, a1, . . . , ak−1 (as long as such an ak exists; but it does exist, since
k 6 m− 1 < m 6 |C|). Hence, a0, a1, . . . , am−1 are distinct. This proves Lemma 46.

Next, we define an ultra triple (E,w, d′) as follows: We define the weight function
w : E → R by setting w (e) = 0 for all e ∈ E. We define a map d′ : E×E → R by setting

d′ (a, b) = −vP (a− b) for all (a, b) ∈ E × E.

(This generalizes the map d′ from Example 5.)
Now, (E,w, d′) is an ultra triple. Throughout this section, we shall always be using

this ultra triple (when we speak, e.g., of greedy m-permutations). We claim the following:

Proposition 47. Let C be a subset of E. Let m ∈ N. Let c1, c2, . . . , cm ∈ C be distinct.
Then, the m-tuple (c1, c2, . . . , cm) is a greedy m-permutation of C if and only if it is a
(P,m)-ordering of C.

Proof of Proposition 47. We have |C| > m (since C has at least the m distinct elements
c1, c2, . . . , cm).

The entries c1, c2, . . . , cm of the m-tuple (c1, c2, . . . , cm) are distinct. Hence, the defi-
nition of a greedy m-permutation yields the following:

Claim 1: The m-tuple (c1, c2, . . . , cm) is a greedy m-permutation of C if and
only if for each i ∈ {1, 2, . . . ,m} and each x ∈ C \ {c1, c2, . . . , ci−1}, the
inequality (2) holds.

On the other hand, the definition of a (P,m)-ordering shows that (c1, c2, . . . , cm) is a
(P,m)-ordering of C if and only if for each k ∈ {0, 1, . . . ,m− 1}, the element ck+1 of C
minimizes the quantity vP ((ck+1 − c1) (ck+1 − c2) · · · (ck+1 − ck)) (where c1, c2, . . . , ck are
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considered fixed). Substituting i− 1 for k in this statement, we obtain the following: The
m-tuple (c1, c2, . . . , cm) is a (P,m)-ordering of C if and only if for each i ∈ {1, 2, . . . ,m},
the element ci of C minimizes the quantity vP ((ci − c1) (ci − c2) · · · (ci − ci−1)) (where
c1, c2, . . . , ci−1 are considered fixed). We can restate this as follows:

Claim 2: The m-tuple (c1, c2, . . . , cm) is a (P,m)-ordering of C if and only if
for each i ∈ {1, 2, . . . ,m} and each x ∈ C, the inequality

vP ((ci − c1) (ci − c2) · · · (ci − ci−1))

6 vP ((x− c1) (x− c2) · · · (x− ci−1)) (20)

holds.

Note that if i ∈ {1, 2, . . . ,m} and x ∈ {c1, c2, . . . , ci−1}, then the inequality (20)
automatically holds21. Therefore, if i ∈ {1, 2, . . . ,m} is given, then the inequality (20)
holds for each x ∈ C if and only if it holds for each x ∈ C \ {c1, c2, . . . , ci−1}. Hence, in
Claim 2, we can replace “each x ∈ C” by “each x ∈ C \ {c1, c2, . . . , ci−1}”. Thus, Claim
2 rewrites as follows:

Claim 3: The m-tuple (c1, c2, . . . , cm) is a (P,m)-ordering of C if and only if
for each i ∈ {1, 2, . . . ,m} and each x ∈ C \ {c1, c2, . . . , ci−1}, the inequality
(20) holds.

For any i ∈ {1, 2, . . . ,m} and x ∈ C \ {c1, c2, . . . , ci−1}, we have the following chain of
logical equivalences:

(the inequality (2) holds)

⇐⇒ (PER {c1, c2, . . . , ci} > PER {c1, c2, . . . , ci−1, x})

⇐⇒

(
w (ci) +

i−1∑
j=1

d′ (ci, cj) > w (x) +
i−1∑
j=1

d′ (x, cj)

)
(

here, we have subtracted PER {c1, c2, . . . , ci−1}
from both sides of the inequality

)
⇐⇒

(
i−1∑
j=1

d′ (ci, cj) >
i−1∑
j=1

d′ (x, cj)

)
(since w (e) = 0 for all e ∈ E)

⇐⇒

(
i−1∑
j=1

vP (ci − cj) 6
i−1∑
j=1

vP (x− cj)

)
(by the definition of d′)

⇐⇒

(
vP

(
i−1∏
j=1

(ci − cj)

)
6 vP

(
i−1∏
j=1

(x− cj)

))
21because in this case, we have (x− c1) (x− c2) · · · (x− ci−1) = 0 and thus

vP ((x− c1) (x− c2) · · · (x− ci−1)) = vP (0) = +∞
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(
since

∑
j∈J vP (aj) = vP

(∏
j∈J aj

)
for any finite family (aj)j∈J of elements of R

)
⇐⇒ (the inequality (20) holds) (21)

(since
∏i−1

j=1 (ci − cj) = (ci − c1) (ci − c2) · · · (ci − ci−1) and∏i−1
j=1 (x− cj) = (x− c1) (x− c2) · · · (x− ci−1)).
Now, we have the following chain of logical equivalences:

((c1, c2, . . . , cm) is a greedy m-permutation of C)

⇐⇒ ((2) holds for each i ∈ {1, 2, . . . ,m}
and each x ∈ C \ {c1, c2, . . . , ci−1}) (by Claim 1)

⇐⇒ ((20) holds for each i ∈ {1, 2, . . . ,m}
and each x ∈ C \ {c1, c2, . . . , ci−1}) (by (21))

⇐⇒ ((c1, c2, . . . , cm) is a (P,m)-ordering of C) (by Claim 3) .

Hence, the m-tuple (c1, c2, . . . , cm) is a greedy m-permutation of C if and only if it is a
(P,m)-ordering of C. This proves Proposition 47.

Equipped with Proposition 47, we can now translate each result about greedy m-
permutations into the language of (P,m)-orderings as long as |C| > m (because Lemma 46
shows that any (P,m)-ordering consists of distinct entries in this case).22 In particular,
Corollary 23 becomes [2, Theorem 1], while Corollary 24 becomes [2, Lemma 2]. (More
precisely, we obtain the analogues of [2, Theorem 1] and [2, Lemma 2] for (P,m)-orderings
instead of P -orderings. But since the first m entries of any P -ordering form a (P,m)-
ordering, these analogues immediately yield [2, Theorem 1] and [2, Lemma 2].)

We note in passing that the “P -orderings of order h” defined in [4, Section 2.2] can also
be regarded as a particular case of greedy m-permutations (up to the already mentioned
technicalities); we only need to modify the distance function d′.

10 Appendix: Greediness of (1, 2, . . . ,m) for p-adic metrics

In this section, we shall prove the claim made in Example 18.
Actually we prove the following more general result

Proposition 48. Let N, c, r = (r0, r1, r2, . . .), vr (x), E and d be as in Example 6.
Assume that d (a, b) is well-defined for each (a, b) ∈ E × E. Assume furthermore that E
contains 1, 2, . . . ,m. We define w : E → R by setting w (e) = 0 for each e ∈ E.

Then, (1, 2, . . . ,m) is a greedy m-permutation of E.

22The case |C| < m is a degenerate case which can easily be reduced to the case |C| > m by focussing
only on the first |C| many entries of the (P,m)-ordering. (All the other entries merely repeat the first
|C| many entries, in an arbitrary way, so there is nothing of interest to say about them.)
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Proof. Let 1 (A) denote the truth value of any statement A. The weakly decreasing
function c : N→ R may be represented as

c(x) = α0 +
∞∑
i=1

αi1(x > i) (22)

with α0 = c(0) and nonpositive coefficients αi = c(i) − c(i − 1) for i > 1. (The sum in
(22) is eventually finite, thus well-defined, for every x ∈ N.) The Proposition claims that
for each k = 1, . . . ,m, the sum

PER {1, 2, . . . , k − 1, x} − PER {1, 2, . . . , k − 1} =
k−1∑
j=1

c(vr (x− j))

(where x varies on {k, k + 1, . . .}) is maximized for x = k. Due to representation (22), it
suffices to prove that for each i > 1 the sum

A(x) :=
k−1∑
j=1

1(vr (x− j) > i) =
k−1∑
j=1

1(ri divides x− j)

is minimized for x = k. This is clear: A(k) = b(k − 1)/ric, and A(x) > b(k − 1)/ric
for every integer x, since the set {x − 1, x − 2, . . . , x − (k − 1)} contains b(k − 1)/ric
disjoint intervals of ri consecutive integers each, and each such interval contains a number
divisible by ri.
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