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Abstract

Consider a graph G with a coloring of its edge set E(G) from a set Q =
{c1, c2, . . . , cq}. Let Qi be the set of all edges colored with ci. Recently, Frieze
defined a notion of the perfect matching color profile denoted by mcp(G), which
is the set of vectors (m1,m2, . . . ,mq) such that there exists a perfect matching M
in G with |Qi ∩M | = mi for all i. Let α1, α2, . . . , αq be positive constants such
that

∑q
i=1 αi = 1. Let G be the random bipartite graph Gn,n,p. Suppose the edges

of G are independently colored with color ci with probability αi. We determine
the threshold for the event mcp(G) = {(m1, . . . ,mq) ∈ [0, n]q : m1 + · · ·+mq = n},
answering a question posed by Frieze. We further extend our methods to find the
threshold for the same event in a randomly colored random graph Gn,p.

Mathematics Subject Classifications: 05C80

1 Introduction

Randomly colored random graphs have been extensively studied in various contexts
throughout the last two decades. A few examples include (i) rainbow spanning graphs
such as matchings and Hamilton cycles, see e.g., [2], [8], [10], [11], [14]; (ii) rainbow con-
nection, see e.g., [4], [13], [15], [16]; (iii) pattern colored Hamilton cycles, see e.g., [1],
[5], [12]; (iv) packing problems, see e.g., [9]. Continuing the research in this line, Frieze
defined an elegant notion of a color profile in [6] and gave bounds on the matching color
profile for randomly colored random bipartite graphs.

Throughout this paper, we have the following setting: We are given a graph G, and
positive constants α1, α2, . . . , αq with

∑q
i=1 αi = 1. Suppose each of the edges of G
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are independently colored with a random color from the set Q = {c1, c2, . . . , cq} with
probability P (c(e) = ci) = αi, where c(e) denotes the color of the edge e ∈ E(G). Define
the color class Qi = {e ∈ E(G) : c(e) = ci}. The perfect matching color profile mcp(G) is
defined to be the set of vectors (m1,m2, . . . ,mq) such that there exists a perfect matching
M in G with |Qi ∩M | = mi for all i.

We first consider G to be the random bipartite graph Gn,n,p. For an event En, we say
that En occurs with high probability (in short, w.h.p.) if P(En) → 1 as n → ∞. Erdős
and Rényi [3] proved that Gn,n,p has a perfect matching w.h.p. when p = logn+ω

n
for any

ω = ω(n)→∞. Moreover, for the same value of p, Frieze [6] proved that if the edges of
G = Gn,n,p are independently colored with q colors with constant probabilities, then most
of the elements (m1,m2 . . .mq) ∈ [0, n]q such that

∑q
i=1mi = n are present in mcp(G)

w.h.p.

Theorem 1 (Frieze). Let α1, α2, . . . , αq, β be positive constants such that α1 +α2 + · · ·+
αq = 1 and β < 1/q. Let G be the random bipartite graph Gn,n,p where p = logn+ω

n
, ω =

ω(n) → ∞. Suppose that the edges of G are independently colored with colors from
Q = {c1, c2, . . . , cq} where P(c(e) = ci) = αi for e ∈ E(G), i ∈ [q]. Let m1,m2, . . . ,mq

satisfy: (i) m1 + · · ·+mq = n and (ii) mi > βn, i ∈ [q]. Then w.h.p., there exists a perfect
matching M in which exactly mi edges are colored with ci, i = 1, 2, . . . , q.

It is not hard to check that w.h.p. (n, 0, . . . , 0) /∈ mcp(G), in view of the fact that the
bipartite graph induced by the first color is distributed as Gn,n,α1p and has isolated vertices
w.h.p. Frieze posed the natural problem of determining the threshold for mcp(G) =
{(m1, . . . ,mq) ∈ [0, n]q : m1 + · · ·+mq = n}. In this paper, we determine that threshold.

Theorem 2. Let α1, α2, . . . , αq be positive constants such that α1 +α2 + · · ·+αq = 1. Let

αmin = min {αi : i ∈ [q]} .

Let G be the random bipartite graph Gn,n,p where p = logn+ω
αminn

, ω = ω(n) → ∞. Suppose
that the edges of G are independently colored with colors from C = {c1, c2, . . . , cq} where
P(c(e) = ci) = αi for e ∈ E(G), i ∈ [q]. Then, w.h.p. for each m1,m2, . . . ,mq satisfying
m1+ · · ·+mq = n, there exists a perfect matching M in which exactly mi edges are colored
with ci, i = 1, 2, . . . , q. In other words,

mcp(G) = {(m1, . . . ,mq) ∈ [0, n]q : m1 + · · ·+mq = n} .

Let us first determine the lower bound on the threshold. Assume that αmin = αi.
To prove the lower bound, note that it is enough to show that the same threshold holds
even for the event that G contains a perfect matching in color ci. To see this, remember
that the bipartite graph induced by the color ci is distributed as Gn,n,αip. The claim
now follows from the known thresholds of the random bipartite graph to have a perfect
matching, see e.g., Theorem 6.1 of [7]. The general strategy to prove the upper bound
on the threshold in Theorem 2 is to do the following modification iteratively. For each
i 6= j, if G contains a perfect matching M using mi > n

q
edges with color ci, then we can
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find a perfect matching M ′ consisting of one fewer edge of color ci and one more edge of
color cj. Frieze [6] also suggested studying the same problem for the random graph Gn,p.
A simple extension of our techniques establishes the threshold for Gn,p as well.

Theorem 3. Let α1, α2, . . . , αq be positive constants such that α1 +α2 + · · ·+αq = 1. Let

αmin = min {αi : i ∈ [q]} .

Let G be the random graph Gn,p where p = logn+ω
αminn

, ω = ω(n)→∞. Suppose that the edges
of G are independently colored with colors from C = {c1, c2, . . . , cq} where P(c(e) = ci) =
αi for e ∈ E(G), i ∈ [q]. Then, w.h.p. for each m1,m2, . . . ,mq satisfying m1 + · · ·+mq =
bn
2
c, there exists a perfect matching M in which exactly mi edges are colored with ci, i =

1, 2, . . . , q. In other words, mcp(G) =
{

(m1, . . . ,mq) ∈ [0, n]q : m1 + · · ·+mq = bn
2
c
}
.

Similar to Theorem 2, the lower bound on the threshold for Theorem 3 follows from
the known thresholds of the random graph to have a perfect matching (see, e.g., Theorem
6.2 of [7]).

This short note is organized as follows. The next section is devoted to stating a few
simple structural lemmas about random bipartite graphs and random graphs. Section 3
contains the proof of Theorem 2 and Theorem 3. Finally, we finish with a few concluding
remarks.

2 Structural lemmas

Let αi, 1 6 i 6 q, and αmin be as in Theorems 2 and 3. Throughout this section, the graph
G will be either the random bipartite graph Gn,n,p or the random graph Gn,p, where the
probability p = logn+ω

αminn
, for some ω = ω(n) → ∞. The edges of G are randomly colored

as in Theorems 2 and 3.

Lemma 4. Let G be the random bipartite graph Gn,n,p with the vertex bipartition A ∪B.
Suppose that the edges of G are independently colored with colors from C = {c1, c2, . . . , cq}
where each edge is colored with ci by probability αi. Then, w.h.p. for each i ∈ [q], and any
X ⊆ A, Y ⊆ B with |X|, |Y | > n

4q
, there is an edge with color ci between X and Y in G.

Proof. Note that it is enough to prove this lemma with |X| = |Y | = n
4q

. Now by a simple
union bound, we have the following:

P(∃X, Y s.t. condition is not satisfied) 6

(
n

n/4q

)2 q∑
i=1

(1− pαi)
n2

16q2

6 q

(
ne

n/4q

)n/2q (
1− log n

n

) n2

16q2

6 q
(

(4eq)1/2q · e−
logn

16q2

)n
= o(1).
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Lemma 5. Let G be the random graph Gn,p. Suppose that the edges of G are colored in
the exact same way as in Lemma 4. Then, w.h.p. for each i ∈ [q], and any disjoint sets
X, Y ⊆ V (G) with |X|, |Y | > n

8q
, there is an edge with color ci between X and Y in G.

Proof. This follows very similarly to the proof of Lemma 4.

Lemma 6. Let G be the random bipartite graph Gn,n,p or the random graph Gn,p. Then,
w.h.p. for each i ∈ [q], the graph G contains a perfect matching in color ci.

Proof. This is an easy consequence of Theorems 6.1 and 6.2 of [7].

3 Proof of the main results

Proof of Theorem 2. Suppose that we are given a bipartite graph G for which
the high probability properties (Lemmas 4 and 6) of the random bipartite graph Gn,n,p

mentioned in the last section hold. The proof mainly consists of showing that the following
can be done. For each i 6= j, if G contains a perfect matching M with at least n

q
edges

with color ci, then G contains a perfect matching with the same color profile as M but
with one fewer edge of color ci and one more edge of color cj. We next show how we
can iteratively apply this modification to obtain a perfect matching with any given color
profile.

Fix (m1,m2, . . . ,mq) ∈ [0, n]q such that
∑q

i=1mi = n. Our goal is to show that G has
a perfect matching M such that |M ∩Qi| = mi for all i. Without loss of generality we can
assume that m1 = max {mi : i ∈ [q]}. This implies that m1 > n

q
. By Lemma 6, we know

that there is a perfect matching in the subgraph induced by color c1 in G. We proceed
in the following way: starting with a perfect matching with color profile (n, 0, . . . , 0), for
any fixed color cj with j 6= 1 we show the existence of a perfect matching with one fewer
edge in color c1 and one more edge in color cj. We keep doing this process until we get
a matching with mi edges with color ci for all i. Note that we need n − m1 steps to
reach a matching with the color profile (m1,m2, . . . ,mq), because in every step, we find
a matching with one fewer edge in color c1. So, it is enough to show that for any perfect
matching M in G with |M ∩Qi| = µi for each i ∈ [q] and µ1 > n

q
, there is a matching M ′

in G with |M ′ ∩Q1| = µ1 − 1, |M ′ ∩Q2| = µ2 + 1 and |M ′ ∩Qi| = µi for all other i.
We show the above statement by finding an appropriate alternating cycle. More

precisely, we find a cycle C with vertex sequence (x1 ∈ A, y1 ∈ B, x2 ∈ A, y2 ∈ B, . . . , x` ∈
A, y` ∈ B, x1) such that (i) (xi, yi) 6∈ M , (ii) (yi, xi+1) ∈ M , (iii) (x1, y1) ∈ Q2, and (iv)
E(C) \ {(x1, y1)} ⊆ Q1. For the convenience of writing the proof, we introduce some
notation. Label vertices so that the edges v+i v

−
i , i ∈ [n

q
], with v+i ∈ A and v−i ∈ B are

distinct edges with color c1 in M . Create a directed graph D on vertex set
{
v1, . . . , vn/q

}
,

where there is a directed edge vivj in D if there is an edge with color c1 between v−i and
v+j in G.

Note that if there is an edge with color c2 between v+i and v−j in G and a directed path
from vi to vj in D, then this gives exactly the alternating cycle C which we discussed in
the last paragraph. Moreover, by using Lemma 4, we have the following property in D.
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1. For each X, Y ⊆ V (D) with |X|, |Y | > n
4q

, there is an edge from X to Y in D.

For each v ∈ V (D), let B+(v) be the set of vertices reachable by a directed path from
v in D (including v), and let B−(v) be the set of vertices in V (D) from which you can

reach v in D with a directed path (including v). Let V1 =
{
v ∈ V (D) : |B+(v)| 6 n

4q

}
and V2 =

{
v ∈ V (D) : |B−(v)| 6 n

4q

}
.

Now, claim that |V1| 6 n
4q

. If not, then we can pick a minimal set V ′1 ⊆ V1 such that

|∪v∈V ′
1
B+(v)| > n

4q
, and note that |∪v∈V ′

1
B+(v)| 6 2n

4q
. There are no edges from ∪v∈V ′

1
B+(v)

into V (D)\
(
∪v∈V ′

1
B+(v)

)
, and the latter set has size at least |D|− 2n

4q
> n

4q
, contradicting

the property (1). Therefore, |V1| 6 n
4q

. Similarly, |V2| 6 n
4q

. Thus, |V (D)\ (V1∪V2)| > n
2q

.

By Lemma 4 there is an edge in G with color c2 between
{
v+i : vi ∈ V (D) \ (V1 ∪ V2)

}
and

{
v−i : vi ∈ V (D) \ (V1 ∪ V2)

}
. Say this is the edge v+i v

−
j and note that i 6= j. As

vi, vj ∈ V (D) \ (V1 ∪ V2), we have that |B+(vi)|, |B−(vj)| > n
4q

. Thus, there is an edge

from B+(vi) into B−(vj) in D by (1), and therefore there is a directed path from vi to vj
in D. This finishes the proof of Theorem 2. �

Proof of Theorem 3. The proof of Theorem 2 extends straightforwardly to a
proof of Theorem 3. By Lemma 6, we know that G = Gn,p has a perfect matching in each
color. Now, if a color profile (m1, . . . ,mq) is required (say m1 is the largest of these), then
start with a perfect matching in color c1, and split V (G) into A and B arbitrarily so that
M is a matching between A and B. The same arguments as in the proof of Theorem 2
can now be used due to Lemma 5, which is the replacement of Lemma 4 we used before.
More precisely, to modify a perfect matching M to another matching M ′ with the same
color profile but one fewer edge of color c1 and one more edge of color cj, we choose an
arbitrary bipartition V (G) = A ∪ B with M being a matching between A and B, and
then implement the exact same argument as before. �

Concluding remarks

In this short note, we consider the random bipartite graph G = Gn,n,p and the random
graph G = Gn,p, and determine the threshold on the parameter p for the event that
G contains perfect matchings of all color profiles. Some interesting directions of future
research would be to determine mcp(G) for Hamilton cycles, spanning trees etc. or to
consider deterministic host graphs (e.g., Dirac graphs) instead of random graphs.
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