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Abstract

In 1996 Goulden and Jackson introduced a family of coefficients (cλπ,σ) indexed
by triples of partitions which arise in the power sum expansion of some Cauchy sum
for Jack symmetric functions (J (α)

π ). The coefficients cλπ,σ can be viewed as an inter-
polation between the structure constants of the class algebra and the double coset
algebra. Goulden and Jackson suggested that the coefficients cλπ,σ are polynomials
in the variable β := α − 1 with non-negative integer coefficients and that there is
a combinatorics of matching hidden behind them. This Matchings-Jack Conjecture
remains open. Dołęga and Féray showed the polynomiality of connection coefficients
cλπ,σ and gave an upper bound on the degrees. We show a dual approach to this
problem and investigate Jack characters and their connection coefficients. We give
a necessary and sufficient condition for the polynomial cλπ,σ to achieve this bound.
We show that the leading coefficient of cλπ,σ is a positive integer and we present it
in the context of Matchings-Jack Conjecture of Goulden and Jackson.
Mathematics Subject Classifications: 05C10, 05C30, 05E05, 20C30

1 Introduction

1.1 Jack polynomials.

Jack polynomials
(
J (α)
π

)
are a family of symmetric functions that depend on a parameter

α > 0 and is indexed by an integer partition π. They were introduced by Henry Jack
in his seminal paper [Jac71]. For certain values of α, Jack polynomials coincide with
various well-known symmetric polynomials. For instance, up to multiplicative constants,
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Jack polynomials coincide with Schur polynomials for α = 1; with the zonal polynomials,
for α = 2; with the symplectic zonal polynomials, for α = 1/2; with the elementary
symmetric functions, for α = 0; and in some sense with the monomial symmetric functions,
for α = ∞. Since it has been shown that several results concerning Schur and zonal
polynomials can be generalized in a rather natural way to Jack polynomials [Mac15,
Section (VI.10)], Jack polynomials can be viewed as a natural interpolation between
several interesting families of symmetric functions.

Connections of Jack polynomials with various fields of mathematics and physics were
established: it turned out that they play a crucial role in understanding Ewens random
permutations model [DH92], generalized β-ensembles and some statistical mechanics mod-
els [OO97], Selberg-type integrals [Kan93], certain random partition models [Ker00], and
some problems of the algebraic geometry [Nak96, Oko03], among many others. Better
understanding of Jack polynomials is also very desirable in the context of generalized
β-ensembles and their discrete counterpart model [OO97]. Jack polynomials are a special
case of the Macdonald polynomials [Sta89, Mac15].

1.2 Connection coefficients for Jack symmetric functions.

Goulden and Jackson [GJ96] defined two families of coefficients
(
cλπ,σ

)
and

(
hλπ,σ

)
depend-

ing implicitly on the deformation parameter α and indexed by triples of integer partitions
π, σ, λ ` n of the same integer n. These coefficients are given by expansions of the
left-hand sides in terms of the power-sum symmetric functions:

∑
θ∈P

1
〈Jθ, Jθ〉α

J
(α)
θ (x)J (α)

θ (y)J (α)
θ (z)t|θ| =

∑
n>1

tn
∑

λ,π,σ`n

cλπ,σ
α`(λ) z

−1
λ pπ(x)pσ(y)pλ(z), (1)

and

αt
∂

∂t
log

∑
θ∈P

1
〈Jθ, Jθ〉α

J
(α)
θ (x)J (α)

θ (y)J (α)
θ (z)t|θ|

 =
∑
n>1

tn
∑

λ,π,σ`n
hλπ,σpπ(x)pσ(y)pλ(z), (2)

see Section 2.2 for details of the notation.
Dołęga and Féray showed that the connection coefficients (cλπ,σ) are polynomials in the

variable β := α − 1 with rational coefficients and proved the following upper bound on
the degrees of these polynomials [DF16, Proposition B.2.]:

degβ cλπ,σ 6 d (π, σ;λ) , (3)

where
d (π, σ;λ) :=

(
|π| − `(π)

)
+
(
|σ| − `(σ)

)
−
(
|λ| − `(λ)

)
. (4)

One may wonder of the use of the new variable β, but this shift seems to be the adequate
one in order to look at the connection coefficients from the combinatorial point of view.

the electronic journal of combinatorics 28(2) (2021), #P2.15 2



1.3 Jack characters

We expand Jack polynomial in the basis of power-sum symmetric functions:

J
(α)
λ =

∑
µ

θ(α)
µ (λ) pµ. (5)

The above sum runs over partitions µ such that |µ| = |λ|. The coefficient θ(α)
µ (λ) is called

unnormalized Jack character.
Jack characters θ(α)

µ provide a kind of dual information about the Jack polynomials.
This kind of approach may be traced back to the work of Kerov and Olshanski [KO94]. For
a fixed conjugacy class µ they considered characters of the symmetric group evaluated on
µ. This is opposite to the usual way of viewing the characters of the symmetric groups,
namely to fix the representation λ and to consider the character as a function of the
conjugacy class µ. Lassalle [Las08, Las09] adapted Kerov’s and Olshanski’s idea to the
framework of Jack characters.

As Jack symmetric functions
(
J

(α)
λ

)
λ
form a basis of the symmetric functions, the

functions
(
θ(α)
µ

)
µ`n

form a basis of the algebra of functions on Young diagrams with n

boxes [Fér12, Proposition 4.1]. Dołęga and Féray [DF16, Appendix B.2] showed that
the coefficients appearing in the expansion of a pointwise product of two unnormalized
Jack characters in the unnormalized Jack character basis coincide with the connection
coefficients from (1), namely

θ(α)
π · θ(α)

σ =
∑
µ`n

cµπ,σθ
(α)
µ .

for all triples of partitions π, σ, µ ` n. This observation encourages us to look more closely
into the field of connection coefficients via the context of Jack characters.

Better understanding of the combinatorics of Jack characters leads to a better under-
standing of Jack polynomials themselves. In particular, we found the form of the leading
coefficient of cµπ,σ be investigating properties of Jack characters.

1.4 Matchings.

We present the well established terminology of matchings given in [GJ96]. For a given
integer n we consider the following set

Nn =
{

1, 1̂, . . . , n, n̂
}
.

We denote by Fn the set of all matchings (partitions into two-element sets) on Nn. For
matchings δ1, δ2, . . . ∈ Fn we denote by G(δ1, δ2, . . .) the multi-graph with the vertex
set Nn whose edges are formed by the pairs in δ1, δ2, . . .. For given matchings δ1, δ2 the
corresponding graph G(δ1, δ2) consists of disjoint even cycles, since each vertex has degree
2 and around each cycle the edges alternate between δ1 and δ2. Denote by Λ(δ1, δ2) the
partition of n which specifies halves the lengths of the cycles in G(δ1, δ2). More generally,
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λ = (4, 2, 2)

δλ :=
{
{1, 2̂}, {2, 3̂}, {3, 4̂}, {4, 1̂}︸ ︷︷ ︸

λ1=4

, {5, 6̂}, {6, 5̂}︸ ︷︷ ︸
λ2=2

, {7, 8̂}, {8, 7̂}︸ ︷︷ ︸
λ3=2

}

Figure 1 – An example of bipartite matchings ε (dotted line) and δλ (continuous line)
associated with λ = (4, 2, 2). Notice that Λ(ε, δλ) = λ.

denote by Λ(δ1, . . . , δs) the partition of n which specifies halves of the number of vertices
in each connected component of G(δ1, δ2, . . .) (it is an easy observation that such numbers
form a partition of n).

We call the sets {1, . . . , n} and {1̂, . . . , n̂} classes of Nn. A pair in a matching is called
a between-class pair if it contains elements of different classes. A matching δ in which
every pair is a between-class pair is called a bipartite matching (in this case G(δ) is a
bipartite graph on the vertex-sets given by the two classes of Nn).

We introduce the following specific bipartite matchings in the set Fn. Firstly, let
ε :=

{
{1, 1̂}, . . . , {n, n̂}

}
;

secondly, for a given partition λ ` n, let

δλ :=
{
{1, 2̂}, {2, 3̂}, . . . , {λ1 − 1, λ̂1}, {λ1, 1̂},

{λ1 + 1, ˆλ1 + 2}, . . . , {λ1 + λ1 − 1, ˆλ1 + λ1}, {λ1 + λ1, ˆλ1 + 1}, . . .
}
,

see Figure 1. Observe that both matchings ε and δλ are bipartite and Λ(ε, δλ) = λ.

1.5 Matchings-Jack Conjecture.

Definition 1.1. For given three partitions π, σ, λ ` n, we denote by Gλπ,σ the set of all
matchings δ ∈ Fn, for which Λ(δ, ε) = π and Λ(δ, δλ) = σ.

Goulden and Jackson observed [GJ96, Proposition 4.1] that the specializations of
cλπ,σ(β) for β ∈ {0, 1} may be expressed in terms of matchings, namely

cλπ,σ(0) =
∣∣∣∣{δ ∈ Gλπ,σ : δ is bipartite

}∣∣∣∣,
cλπ,σ(1) =

∣∣∣∣{δ ∈ Gλπ,σ}∣∣∣∣.
the electronic journal of combinatorics 28(2) (2021), #P2.15 4



In fact, those specialisations coincide with the connection coefficients of two commutative
subalgebras of the group algebra of the symmetric group: the class algebra and the double
coset algebra (β = 0 and β = 1 respectively) [HSS92].

Based on this observation Goulden and Jackson conjectured that the family
(
cλπ,σ

)
of

polynomials may have a combinatorial interpretation. The conjecture is known as the
Matchings-Jack Conjecture.
Conjecture 1.2 (Matchings-Jack Conjecture). For any partitions π, σ, λ ` n the quantity
cλπ,σ can be expressed as

cλπ,σ(β) =
∑

δ∈Gλπ,σ

βwtλ(δ),

where wtλ : Gλπ,σ −→ N is some hypothetical combinatorial statistic, which vanishes if and
only if δ is bipartite.

Clearly, it seems that the statistic wtλ should be a marker of non-bipartiteness for
matchings. Matchings-Jack Conjecture remains still open in the general case, however
some special cases have been settled. Goulden and Jackson constructed some statistics
wtλ for λ = [1n] and λ = [2, 1n−1] and proved the conjecture in those cases [GJ96].
Later on, the Matchings-Jack Conjecture has been proved by Kanunnikov and Vassiliveva
[KV16] in the case π = σ = (n) of the partitions with exactly one part. Recently, in a joint
paper with Promyslov [KVP17], they proved a variation of this conjecture, which involves
additional labellings on matchings, in the special case when one of the three partitions is
equal to (n). They made use of the measure of non-orientability θ defined by La Croix in
his PhD thesis [La 09]. The measure of non-orientability θ is a statistic defined on a class
of rooted maps. In some special cases it may be translated into the field of matchings,
however generally significant difficulties appear. We also shall use the same statistic.

1.6 The main result.

In the current paper we give a necessary and sufficient condition for the polynomial cλπ,σ to
achieve the maximal degree given by (3). Moreover, we show that the leading coefficient
of cλπ,σ of this maximal degree is a non-negative integer and we present it in the context
of Matchings-Jack Conjecture.
Definition 1.3. Consider two integer partitions λ and µ of the same integer n, let k = `(λ)
and m = `(µ) be the lengths of the partitions. We say that λ is a sub-partition of µ
(denoted λ � µ) if there exists a set-partition ν of [k], such that

µi =
∑
j∈νi

λj

for any i ∈ [m], see Figure 2. We denote λ ≺ µ if λ � µ and λ 6= µ.
In addition, consider the third partition π of the same integer n of the length l = `(π).

We say that λ and π are joint sub-partitions of µ if there exist set-partitions ν of [k] and
τ of [l] such that

µi =
∑
j∈νi

λj =
∑
j∈τi

πj,
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Figure 2 – A pair of partitions λ = (4, 3, 1, 1) and µ = (5, 3, 1) presented as Young
diagrams. Partition λ is sub-partition of µ; indeed, each part of µ is given as a sum of
different parts of λ.

and moreover
|νi|+ |τi| 6 µi + 1,

for all i ∈ [m].

Definition 1.4. For given partitions π, σ, λ, µ ` n, we denote by Gλ;µ
π,σ the set of all matchings

δ ∈ Gλπ,σ which are µ-connected, i.e. Λ(δ, ε, δλ) = µ.
The class Gλπ,σ splits naturally into the classes Gλ;µ

π,σ , namely

Gλπ,σ =
⊔

µ:λ�µ
Gλ;µ
π,σ .

Contrary to previous works on the Matchings-Jack Conjecture we do not attempt to
define the statistic wtλ on Gλπ,σ for a particular class of partitions λ, π or σ. We define
the statistic "stat" on the class Gλ;λ

π,σ .
Theorem 1.5 (The main result). For any triple of partitions π, σ, λ ` n the corresponding
polynomial cλπ,σ(β) achieves the upper bound on the degree given in (3) if and only if π
and σ are joint sub-partitions of µ. For such partitions, the leading coefficient of cλπ,σ(β)
may be expressed in two different manners:

[
βd(π,σ;λ)

]
cλπ,σ =

∣∣∣∣δ ∈ Gλ;λ
π,σ : δ is unhandled

∣∣∣∣ =∑
ν:ν�λ

zλ
zν

∣∣∣∣δ ∈ Gν;λ
π,σ : δ is bipartite

∣∣∣∣,
for notion of unhandled matchings see Definition 5.11, scaling factors zλ, zν are defined in
Section 2. Moreover, there exists a statistic stat : Gλ;λ

π,σ −→ N0, which satisfies[
βd(π,σ;λ)

]
cλπ,σ =

[
βd(π,σ;λ)

] ∑
δ∈Gλ;λ

π,σ

βstat(δ)

and for δ ∈ Gλ;λ
π,σ the statistic stat(δ) vanishes if and only if δ is bipartite.
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1.7 Organisation of the paper.

In Section 3, we introduce the terminology of maps and we investigate relations between
maps and matchings. We made use of this terminology in Section 4, where we define
normalized Jack characters and their structure constants. Structure constants play a
central role in our paper. In particular, in Section 4 we provide an explicit formula for the
top-degree part of structure constants of Jack characters, see Theorem 4.3. Only after, in
Section 6 we show the relation between the structure constants for Jack characters and
the connection coefficients for Jack symmetric functions. We translate obtained results
for the top-degree part of structure constants into the language of connection coefficients
there. In Section 5 we present a measure of non-orientability in the context of the b-
Conjecture. We present a problem of transferring it into the satisfactory statistic which
measures non-bipartitness of a matching. We discuss the recent result of Dołęga [Doł17]
about the top-degree part in the b-Conjecture. Our result and the result of Dołęga are
in some sense equivalent, see Section A, however, the methods used in both papers are
different.

2 Preliminaries

2.1 Partitions.

A partition λ of an integer n (denoted by λ ` n) is a non-increasing list (λ1, . . . , λl) of
positive integers of sum equal to n. Number n is called the size of λ and is denoted by
|λ|, the number l is the length of the partition, denoted by ` (λ). Finally,

mi(λ) :=
∣∣∣{k : λk = i}

∣∣∣,
is the multiplicity of i > 1 in the partition λ.

There are many orders on the set of partitions. Beside the one shown in Definition 1.3
we introduce the dominance order. We say that λ 6 µ if and only if∑

i6j

λi 6
∑
i6j

µi

holds for any positive integer j.
For given two partitions λ and µ we construct their concatenation (denoted λ∪ µ) by

merging all parts from λ and µ and ordering them in a decreasing fashion.

2.2 Jack polynomials.

Let us consider the vector space ΛQ(α) of the symmetric functions [Mac15] over the field
of rational functions Q(α) and its basis (pλ)λ of power-sum symmetric functions, i.e. the
symmetric functions given by

pλ(x) =
∏
i

pλi(x), pk(x) = xk1 + xk2 + · · · .
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The following scalar product on ΛQ(α) is defined on the power-sum basis by the formula

〈pλ, pµ〉α := α`(λ)zλδλ,µ,

where
zλ =

∏
i

imi(λ) mi(λ)!

and further extended by bilinearity. This is a classical deformation of the Hall inner
product, which corresponds to α =1 [Jac71].

The family of Jack polynomials
(
J (α)
π

)
is the unique family of symmetric functions

which satisfies the following three criteria:

1. J (α)
λ = ∑

µ6λ a
λ
µmµ, where aλµ ∈ Q[α],

2. [m1|λ| ] J
(α)
λ := aλ1|λ| = |λ|!,

3. 〈J (α)
λ , J (α)

µ 〉α = 0 for λ 6= µ,

where mλ denotes the monomial symmetric function associated with λ.

3 Matchings and maps

3.1 Maps.

In the literature a map [LZ04] is classically defined as a connected graph G (possibly, with
multiple edges) drawn on a surface Σ, i.e. a compact connected 2-dimensional manifold
without boundary. We assume that the collection of faces (i.e. Σ \ E) is homeomorphic
to the collection of open discs. A choice of an edge-side and one of its endpoints is called
a root of the map, see Figure 3. A map together with a choice of a root is called a rooted
map.

A vertex two-coloured map is called bipartite if each edge connects vertices of different
colors; for simplicity we set that there are white and black vertices, we denote by W (B)
the set of white (black) vertices. By convention, from a rooted bipartite map we require
that the root vertex is black. Figure 3 presents an example of a rooted bipartite map M .
With a given bipartite map M with n edges we associate two integer partitions of n:

ΛW (M) and ΛB (M) ,

given by the degrees of white/black vertices. For such a map we assign also the third
partition

ΛF (M)
of n, which describes the face structure of M ; it is specified by reading halves of the
numbers of edge-sides fencing each face (since the map M is bipartite, for each face there
is an even number of edges adjacent to the face). The partition ΛF (M) is called the
face-type of the map M , see Figure 3.
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Definition 3.1. For three given partitions π, σ, λ ` n we denote by M•
π,σ the set of all

bipartite, rooted mapsM with n edges, for which ΛW(M) = π and ΛB(M) = σ. Moreover
we denote by Mλ

π,σ the set of all such maps M which additionally have the face-type λ,
i.e. ΛF(M) = λ.

ΛF (M) = (4, 2, 2)
ΛW (M) = (6, 2)
ΛB (M) = (2, 2, 2, 2)

Figure 3 – Example of a rooted bipartite map M on the projective plane. The left side of
the square should be glued to the right side, as well as bottom to top, as indicated by the
arrows. We present also the face, white and black vertex distributions.

Due to the nature of our result we extend this definition slightly, namely we waive the
assumption of connectedness in the definition of a map. There are two natural ways to
generalize the notion of connected maps to non-connected ones: either we consider lists
of connected maps or we consider collections of them.

3.2 Lists and collections of maps.

Definition 3.2. Let µ = (µ1, . . . , µk) be a partition of an integer n. A list of maps
(M1, . . . ,Mk) is called a µ-list of maps if the map Mi has µi edges for each i ∈ [k].
We say that such a list is rooted, respectively bipartite if each map Mi is so. For a bi-
partite µ-list of maps we associate three partitions describing the black vertex, the white
vertex and the face structures

ΛW(M) :=
k⋃
i=1

ΛW(Mi), ΛB(M) :=
k⋃
i=1

ΛB(Mi), ΛF(M) :=
k⋃
i=1

ΛF(Mi),

where ⋃ denotes the concatenation of partitions.
Definition 3.3 (Extension of Definition 3.1). For given partitions π, σ, µ ` n, we denote
by M•;µ

π,σ the set of all bipartite rooted µ-lists of maps M which satisfy

ΛW(M) = π and ΛB(M) = σ,

see Figure 4. Moreover, for a given partition λ ` n we denote byMλ;µ
π,σ the set of all µ-lists

of maps M ∈M•;µ
π,σ which have face-type λ, i.e. ΛF(M) = λ.

Definition 3.4. Let µ = (µ1, . . . , µk) be a partition of an integer n. A multiset of maps
{M1, . . . ,Mk} is called a µ-collection of maps if the map Mi has µi edges for each i ∈ [k].

the electronic journal of combinatorics 28(2) (2021), #P2.15 9



µ = (4, 4)

ΛF (M) = (4, 2, 2)

ΛW (M) = (4, 4)

ΛB (M) = (2, 2, 2, 2)

µ1 = 4 µ2 = 421

Figure 4 – Example of a rooted, bipartite µ-list of maps for the partition µ = (4, 4). The
first map is drawn on the torus, the second one on the projective plane. We present also
the face, white vertices and black vertices distributions. By erasing the roots and the
numbering of the connected components we obtain a bipartite µ-collection of maps.

We say that such a collection is rooted or bipartite if each map Mi is so. For such a
collection of maps we associate three partitions describing black, white and face structures
as in Definition 3.2.

Roughly speaking, a µ-collection of maps could be created from a µ-list of maps by
erasing the numbering of the connected components, i.e. the order on the connected
components (see Figure 4).

3.3 Matchings and maps.

Matchings and maps are closely related notions. Roughly speaking, a bipartite matching
can be treated as a (possibly non-connected) bipartite map with rooted and numbered
faces. We shall discuss relations between matchings and rooted list of maps with the same
face, black vertices and white vertices distributions.
Definition 3.5. Consider two partitions λ, µ ` n. We say that a bipartite µ-collection
M of maps with the face distribution given by λ has rooted and numbered faces if all
faces of M are rooted (i.e. on each face there is one marked edge-side) and each face is
labelled by a distinct number i ∈ [`(λ)] in such way that it is surrounded by 2λi edges,
see Figure 5. The set of such collections of maps with the face, black vertices and white
vertices distributions given by the partitions λ, π, σ ` n is denoted by M

(
Gλ;µ
π,σ

)
.

Remark 3.6. Observe that rooting a face is nothing else but choosing one of the face
corners adjacent to some black vertex and orienting the face. Through a map (or a
list/a collection of maps) with rooted faces we can understand a map with oriented faces
and chosen black corners for each of the faces, see Figure 5. Similarly, rooting a map is
choosing one corner of a black vertex and orienting the face adjacent to this corner.

We consider four partitions: π, σ, λ, µ ` n. To a given matching δ ∈ Gλ;µ
π,σ we associate

a bipartite µ-collection Mδ ∈M
(
Gλ;µ
π,σ

)
given by the following procedure.

the electronic journal of combinatorics 28(2) (2021), #P2.15 10



Figure 5 – Example of a bipartite (4, 4)-collection of maps with rooted faces. By rooting
faces we understand choosing one edge-side of each face (drawn as a black half-arrow
going from a black vertex) or, equivalently, orienting each face (the rounded arrows) and
choosing one black vertex for each face (the red arrows).

1. The matchings ε and δλ determine the polygons with the vertices labelled by Nn, see
Figure 1. We take theirs duals, i.e. the polygons with the edges labelled by Nn, see
Figure 6. The consecutive polygons have 2λ1, 2λ2, . . . edges. Observe that the parts
of ε (respectively δλ) can be identified with the black (respectively white) vertices
as it is shown on Figure 6;

2. The matching δ determines the unique way of gluing the edges of the polygons in
such a way that black (white) vertices are glued with black (white) ones. Figure 7
presents such a gluing for the matching

δ =
{
{1̂, 6}, {1, 6̂}, {2̂, 7̂}, {2, 7}, {3̂, 8̂}, {3, 8}, {4̂, 5}, {4, 5̂}

}
.

Observe that the distribution of black (respectively white) vertices is given by Λ(δ, ε)
(respectively by Λ(δ, δλ)). Moreover, µ = Λ(δ, ε, δλ).

3. Each face is canonically numbered by an integer s related to the polygon λs, i.e.
the edge-sides of this face are labelled by the elements

s−1∑
i=1

λi + 1, . . . ,
s−1∑
i=1

λi + λs,
̂s−1∑

i=1
λi + 1, . . .

̂s−1∑
i=1

λi + λs.

Such a face is canonically rooted by selecting the edge-side labelled by the number∑s−1
i=1 λi + 1, see Figure 7.

4. We remove the labelling by the elements from Nn.

Corollary 3.7. The procedure described above gives a bijection δ 7→ Mδ between the set
of matchings Gλ;µ

π,σ and the set of collections of maps M
(
Gλ;µ
π,σ

)
.

We compare the terminologies of matchings and maps in the table below.
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1̂

2̂

3̂

4̂

1

2

3

4 5̂

6̂

5

6

7̂

8̂

7

8

Figure 6 – Duals of the polygons created by the matchings ε and δλ presented on Figure 1.
Black (respectively white) vertices of such polygons are labelled by the elements of ε
(respectively δλ), the edges by the elements from N8.

2̂

7
8̂

8 7̂

23̂

3

5̂
4̂

4
5

6
1̂

6̂
11̂

6

4
51

2

3

δ =
{
{1̂, 6}, {1, 6̂}, {2̂, 7̂}, {2, 7}, {3̂, 8̂}, {3, 8}, {4̂, 5̂}, {4, 5}

}
Figure 7 – Matching δ on the set N8 describes the way of gluing the sides of the polygons
from Figure 6. Labels from N8 determine the way of numbering and rooting faces of such
a map (in general it could be a collection of maps), the roots (presented as half-arrows)
correspond to the labels 1, 5, 7. Numbers of faces are presented in black circles.
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Matching δ µ-list of maps M
face-type λ ΛF(M)
distribution of black vertices Λ(δ, ε) ΛB(M)
distribution of white vertices Λ(δ, δλ) ΛW(M)
connected components Λ(δλ, ε, δ) µ

µ-collections of maps with given faces,
black and white vertices distribution
and with rooted and numbered faces

Gλ;µ
π,σ M

(
Gλ;µ
π,σ

)

3.4 Matchings and lists of rooted maps.

We showed that matchings are equivalent to collections of maps with rooted and numbered
faces. However, collections of maps with rooted and numbered connected components (i.e.
lists of rooted maps) are much more natural objects. We give a relation between those
two ways of numbering and rooting collections of maps. More precisely, we present a
relation between the set M

(
Gλ;µ
π,σ

)
and the set Mλ;µ

π,σ .
What is common for those two classes is the fact that by rooting and numbering faces

or connected components, the group of automorphisms becomes trivial.
Definition 3.8. For a given µ-collection of maps with rooted and numbered faces M ∈
M
(
Gλ;µ
π,σ

)
we define the set R(M) of all numberings of the connected components and

rooting each of them in such a way that with respect to themM becomes a µ-list of maps
from Mλ;µ

π,σ . We call R(M) the set of components-labellings of M . For a given r ∈ R(M)
we denote (M, r) ∈Mλ;µ

π,σ .
Similarly, for a given µ-list of mapsM ∈Mλ;µ

π,σ we define the set L(M) of all numberings
of the faces and rooting each of them in such a way that M becomes an element from
M
(
Gλ;µ
π,σ

)
. We call L(M) the set of faces-labellings ofM . For a given l ∈ L(M) we denote

(M, l) ∈M
(
Gλ;µ
π,σ

)
.

Observation 3.9. Let us fix partitions π, σ, µ, λ ` n. For each M1 ∈ M
(
Gλ;µ
π,σ

)
and M2 ∈

Mλ;µ
π,σ we have ∣∣∣∣R(M1)

∣∣∣∣ = 2`(µ)zµ and
∣∣∣∣L(M1)

∣∣∣∣ = 2`(λ)zλ.

Proof. Let us take M ∈M
(
Gλ;µ
π,σ

)
. There are ∏imi(µ)! ways of numbering the connected

components and ∏i

(
2i
)mi(µ)

ways of rooting each of them. We may carry out a similar
deduction for M ∈Mλ;µ

π,σ .

Observation 3.10. For given partitions π, σ, µ, λ ` n we have
∣∣∣∣Gλ;µ
π,σ

∣∣∣∣ =
∣∣∣∣M (
Gλ;µ
π,σ

) ∣∣∣∣ = zλ2`(λ)

zµ2`(µ)

∣∣∣∣Mλ;µ
π,σ

∣∣∣∣.
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Figure 8 – Example of a rooted orientable map M drawn as a graph on a torus (on the
left). There is the canonical orientation (grey arrows) given by the root. We are going to
present oriented maps in such a way that their orientation is consistent with the clockwise
orientation of the page (grey arrows) or, equivalently, the counter-clockwise orientation
around each vertex (red arrows). The distinction between chosen orientations of the page
and the vertices may seem awkward. However, it is more convenient for the purpose of
Section 5.2. With this convention we can present the root of a map (similarly roots of
lists of maps) by an arrow going out from a black vertex. Since M is oriented, it can be
recovered from a graphical representation on the plane as a graph with a fixed cyclic order
of outgoing edges around each vertex together with a choice of the root (on the right).

Proof. The first equation follows from Corollary 3.7. We investigate the second one.
Each collection of maps from M

(
Gλ;µ
π,σ

)
has rooted and numbered faces, each collection

of maps from Mλ;µ
π,σ has rooted and numbered components. From each of them we can

get a collection of maps which have rooted and numbered both: faces and components.
The number of ways of doing it is given in Observation 3.9. We use the double counting
method and conclude the second equation.

3.5 Orientable maps and bipartite matchings.

By an orientable map we understand a map which is drawn on an orientable surface. An
orientation of a map is given by orienting each face in such a way, that the two edge-sides
forming the same edge are oriented in the opposite way. We say that such an orientation
of faces is coherent. Orienting any face is equivalent to orienting a map. Observe that a
rooted map possesses the canonical orientation given by the root, see Remark 3.6. By a
rooted oriented map we understand an orientable map together with the orientation given
by the root, see Figure 8.
Definition 3.11. We use the following notation:

M̃λ;µ
π,σ :=

{
M ∈Mλ;µ

π,σ : M is orientable
}
,

M̃•;µ
π,σ :=

{
M ∈M•;µ

π,σ : M is orientable
}
,

G̃λ;µ
π,σ :=

{
δ ∈ Gλ;µ

π,σ : δ is bipartite
}
.
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The notion of bipartiteness of a matching is closely related to the notion of orientability.
Observation 3.12. For given partitions π, σ, µ, λ ` n, we have∣∣∣∣G̃λ;µ

π,σ

∣∣∣∣ = zλ
zµ

∣∣∣∣M̃λ;µ
π,σ

∣∣∣∣.
Proof. We identify a matching δ ∈ Gλ;µ

π,σ with a collection of maps Mδ ∈ M
(
Gλ;µ
π,σ

)
with

rooted and numbered faces by the procedure described in Section 3.3. Observe that a
bipartite matching corresponds to a collection of oriented maps. Indeed, the orientations
of faces given by the edge-sides: 1, λ1+1, . . . are coherent. Observation 3.10 gives a relation
between collections of maps with rooted and numbered faces and collections of maps with
rooted and numbered components (lists of maps). An analysis similar to the one given
in Observation 3.10 convinces us that the quantity 2`(µ)∏

i i
mi(λ) specifies the number of

manners of rooting the faces in a coherent way and ∏
imi(λ)! specifies the number of

manners of numbering the faces. On the other hand, the quantity zµ2`(µ) is relevant for
numbering and rooting the connected components. We use the double counting method
and conclude the statement.

4 The top-degree part of structure constants

In this section we introduce the normalized Jack characters Chπ and their structure con-
stants gµπ,σ. We present the formula for the top-degree part of structure constants. This
rest of the section is devoted to the proof of the aforementioned formula. Firstly, we
present some basic computations leading to the exact formulas for the top-degree part of
Jack characters. We present those formulas in terms of injective embeddings of partitions
into Young diagrams. Secondly, we consider a particular class of collections of bipartite
maps P µ

π,σ which constitute a good candidate for the top-degree parts of the structure con-
stants gµπ,σ. Finally, we prove that those candidates for the top-degree part of structure
constants gµπ,σ (see Proposition 4.14) are indeed them.

4.1 Normalized Jack characters

We define Jack characters Chπ by a choice of the normalization of θ(α)
π . We will use the

normalization introduced by Dołęga and Féray [DF16] which offers some advantages over
the original normalization of Lassalle. Therefore, with the right choice of the multiplicative
constant, the unnormalized Jack character θ(α)

λ (π) from (5) becomes the normalized Jack
character Ch(α)

π (λ), defined as follows.
Definition 4.1. For a given number α > 0 and a partition π, the normalized Jack character
Ch(α)

π (λ) is defined by:

Ch(α)
π (λ) :=


1√
α

|π|+`(π)(|λ| − |π|+m1(π)
m1(π)

)
zπ θ

(α)
π∪1|λ|−|π|(λ) if |λ| > |π|,

0 if |λ| < |π|,
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where zπ is the standard numerical factor, and ∪ denotes concatenation of two partitions,
see Section 2.1. The choice of an empty partition π = ∅ is acceptable; in this case
Ch(α)
∅ (λ) = 1 [Śn19, Theorem 10.3].

4.2 Structure constants

Jack characters functions Chµ span linearly, so-called, algebra of α-polynomial functions
[KO94, DF16]. Structure constants gµπ,σ of Jack characters are defined by expansion of
the pointwise product of two Jack characters in the basis of Jack characters:

Chπ ·Chσ =
∑
µ

gµπ,σ(δ) Chµ .

Explicit motivation for studying such quantities comes from a special choice of the
deformation parameter α = 1, when Jack polynomials coincide with Schur polynomials.
In this case, Frobenius duality ensures that the structure constants coincide with the
connection coefficients for the symmetric groups [IK99].

Dołęga and Féray proved [DF16, Theorem 1.4] that each structure constant gµπ,σ is a

polynomial in the variable δ :=
√
α− 1√

α
of degree bounded as follows:

degδ gµπ,σ 6 min
i=1,2,3

(
ni(π) + ni(σ)− ni(µ)

)
, (6)

where

n1(π) = |π|+ `(π),
n2(π) = |π| − `(π),
n3(π) = |π| − `(π) +m1(π).

For example, we have

Ch3 Ch2 =6δCh3 + Ch3,2 +6 Ch2,1 +6 Ch4,

Ch3 Ch3 =(6δ2 + 3) Ch3 +9δCh2,1 +18δCh4 +3 Ch1,1,1 +
+ 9 Ch3,1 +9 Ch2,2 +9 Ch5 + Ch3,3 .

The numerical computations, such as the ones above, suggest that the structure constants
of Jack characters might have some algebraic and combinatorial structure, which was
proposed by Śniady in the following conjecture [Śn19].
Conjecture 4.2 (Structure constants of Jack characters). For any partitions π, σ, µ, the
corresponding structure constant

gµπ,σ(δ) ∈ Q[δ]

is a polynomial with non-negative integer coefficients.
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4.3 The deformation parameters.

In order to avoid dealing with the square root of the variable α we introduce an indetermi-
nate A such that A2 := α. Jack characters are usually defined in terms of the deformation
parameter α. After the substitution α := A2, each Jack character becomes a function of
A. In order to keep the notation light, we will make this dependence implicit and we will
simply write Chπ(λ).

The algebra of Laurent polynomials in the indeterminate A variable will be denoted
by Q [A,A−1]. For an integer d we will say that a Laurent polynomial

f =
∑
k∈Z

fkA
k ∈ Q

[
A,A−1

]

is of degree at most d if fk = 0 holds for each integer k > d.
A special role will be played by the quantity

δ := A− 1
A
∈ Q

[
A,A−1

]
.

4.4 The top-degree part of structure constants.

We present an explicit formula for the top-degree part of structure constants of Jack
characters.

Let us recall that we present an oriented map as a graph on the plane with a fixed
cyclic order of outgoing edges together with a choice of the root, see Figure 8. Notice
that with such presentation edges of the graph might cross. By convention we fixed the
counter-clockwise orientation around vertices or, equivalently, the clockwise orientation
of the page, see Figure 8. Similarly, we will present a µ-collections of maps.

Let us recall that M̃•;µ
π,σ denotes the set of all µ-lists of bipartite rooted and oriented

maps which satisfy
ΛW(M) = π and ΛB(M) = σ,

see Figure 9.
Theorem 4.3. For any triple of partitions π, σ, µ, the corresponding polynomial gµπ,σ(δ)
achieves the upper bounds on the degree

d (π, σ;µ) :=
(
|π| − `(π)

)
+
(
|σ| − `(σ)

)
−
(
|µ| − `(µ)

)

if and only if |µ| > |π|, |σ|, and m1(π) + m1(σ) > m1(µ), and partitions π ∪ 1|µ|−|π| and
σ ∪ 1|µ|−|σ| are joint sub-partitions of µ according to Definition 1.3. For such partitions,
the leading coefficient of gµπ,σ(δ) is a positive integer expressed in the following way:

[
δd(π,σ;µ)

]
gµπ,σ = C(π, σ;µ) · zπzσ

zµ

∣∣∣∣M̃•;µ
π∪1|µ|−|π|,σ∪1|µ|−|σ|

∣∣∣∣,

the electronic journal of combinatorics 28(2) (2021), #P2.15 17



1

2

1

2

1

2

1

2

1

2

1

2

2

1

2

1

2

1

2

1

2

1

2

1

(a) All lists of maps in the set M̃•;µπ,σ∪1 for partitions π = (3, 3), σ = (3, 2), and µ = (3, 3). Those
lists of maps consist of two connected components which are numbered by 1 and 2, each has 3
edges. The vertex structure is given by π and σ.

(b) Maps from the set M̃•;(3)
(3),(3). Each of them can be

rooted in the unique way.

(c) Three rooted maps from the set M̃•;(3)
(3),(2,1). They are

all the same as unrooted maps.

Figure 9 – There are twelve lists of maps in a set M̃•;µ
π,σ∪1 for partitions π = (3, 3), σ = (3, 2),

and µ = (3, 3), see Figure 9a. Each of them consists of a map from M̃
•;(3)
(3),(3) and M̃

•;(3)
(3),(2,1)

presented on Figure 9b and Figure 9c respectively.

where

C(π, σ;µ) =
m1(µ)∑
k=0

(
m1(µ)
k

)(
m1(π) + |µ| − |π| −m1(µ)

m1(π)− k

)
·(

m1(σ) + |µ| − |σ| −m1(µ) + k

m1(σ)−m1(µ) + k

)
.

The remaining part of Section 4 is devoted to the proof of above theorem.
Example 4.4. Let us consider three partitions π = (3, 2), σ = (3, 3), and µ = (3, 3). In
Figure 9 we have shown that M̃•;µ

π,σ∪1 = 12. Using the theorem above, the d (π, σ;µ)-
coefficient is equal to [

δd(π,σ;µ)
]
gµπ,σ = 6 · 18

18

(
1
0

)(
0
0

)
12 = 72.

4.5 Embeddings of bicolored graphs

A bicolored graph G is a bipartite graph together with a choice of the colouring of its
vertex set V ; we denote by V• and V◦ respectively the sets of black and white vertices of G.
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e 1

e2
e3

e4
v•2

v•1

v◦4

v◦3

v◦2

v◦1

e3 e2 e1

e4

v◦3,v◦4 v◦2 v◦1

v•1

v•2

Figure 10 – The graph Gπ associated with the partition π = (3, 1). On the right, an
example of its injective embedding into the Young diagram λ = (4, 3).

Definition 4.5. An injective embedding F of a bicolored graph G to a Young diagram λ is
a function which maps V◦ to the set of columns of λ, maps V• to the set of rows of λ, and
maps injectively the set of edges E to the set of boxes of λ, see Figure 10. We also require
that F preserves the relation of incidence, i.e. each vertex v ∈ V should be mapped to a
row or a column F (v) which contains the box F (e), for every edge e ∈ E incident to v.
We denote by NG(λ) the number of such embeddings of G into λ.

It is also useful to consider injective embeddings of a graph G into a Young diagram
λ, with the roles of black and white vertices reversed (i.e. black vertices are mapped into
columns, white vertices into the rows). We refer to such embeddings as negative injective
embeddings and denote the number of such embeddings as NG(λ).
Definition 4.6. For any partition π = (π1, . . . , πr) we define the graph Gπ as the unique
bicoloured graph consisting of r black vertices of degrees π1, . . . , πr respectively and |π|
white vertices, each of degree one (see Figure 10). Similarly, we define Gπ as the unique
bicoloured graph consisting of r white vertices of degrees π1, . . . , πr respectively and |π|
black vertices, each of degree one.
Remark 4.7. The number NGπ (λ) of injective embeddings of the graph Gπ into the Young
diagram λ is equal to the number NGπ

(λ) of negative injective embeddings of the graph
Gπ into the Young diagram λ.

4.6 Exact formulas for top-degree part of Jack characters

Śniady proved [Śn19, Proposition 5.5] that each Jack character is a function on the set Y
of Young diagrams

Y 3 λ 7−→ Chπ(λ) ∈ Q
[
A,A−1

]
|π|−`(π)

with values in the set Q [A,A−1]|π|−`(π) of Laurent polynomials in the variable A of degree
at most |π| − `(π). We denote by[

Atop
]

Chπ (λ) :=
[
A|π|−`(π)

]
Chπ (λ)
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the leading part of this Laurent polynomial. We shall express this quantity in terms of
injective embeddings of Gπ into λ.
Proposition 4.8. For any Young diagram λ ∈ Y and partition π, we have that[

Atop
]

Chπ (λ) = NGπ (λ) .

That is, the leading part of Chπ(λ) is equal to the number of injective embeddings of the
graph Gπ into the Young diagram λ.
Example 4.9. Let us consider the partition π = (3, 1) and the Young diagram λ = (λ1, λ2).
We have [

Atop
]

Ch(3,1) (λ1, λ2) = NGπ (λ) = λ1
4 + λ1

3 · λ2
1

+ λ1
1 · λ2

3 + λ2
4,

where xk := x(x−1) · · · (x−k+1) denotes the falling factorial. One of embeddings which
contributes to NGπ(λ) is presented on Figure 10.

Before proving Proposition 4.8 we introduce the notion of α-shifted symmetric func-
tions (see more in [Las08, Section 2.2] or [AF17, Definition 2.2]) and present Jack char-
acters in this context.
Definition 4.10. An α-shifted symmetric function F = (FN)N>1 is a sequence of polyno-
mials FN such that

• for each N > 1, FN is a polynomial in N variables x1, . . . , xN with coefficients in
the field of rational functions Q(α) in some indeterminate α that is symmetric in
the variables

ξ1 := x1 −
1
α
, ξ2 := x2 −

2
α
, . . . , ξN := xN −

N

α
,

• for each N > 1, FN+1(x1, . . . , xN , 0) = FN(x1, . . . , xN) (the stability property),

• supN>1 deg(FN) <∞.

The degree of a shifted-symmetric function F is defined as maximum of the degrees of the
corresponding polynomials FN(x1, . . . , xN). For an α-shifted symmetric function F and a
Young diagram λ = (λ1, . . . , λr), we introduce the notation

F (λ) := Fr(λ1, . . . , λr).

Śniady and Féray gave some abstract characterizations of Jack characters [Śn15, The-
orem 1.7, Theorem A.2]. We present the one given by Féray, which can be traced back to
the earlier work of Knop and Sahi [KS96].
Theorem 4.11. [Śn15, Theorem A.2] Let π be a partition and A be a complex number
such that − 1

α
= − 1

A2 is not a positive integer. There exists a unique α-shifted symmetric
function F such that:
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(J1) F is a α-shifted symmetric function of degree |π|, and its top-degree homogeneous
part is equal to

A|π|−`(π) pπ(λ1, . . . , λm),
where pπ is the power-sum symmetric polynomial given by the formula

pπ (λ) =
∏
r

∑
i

λπri .

(J2) F (λ) = 0 holds for each Young diagram λ such that |λ| < |π| (the vanishing prop-
erty).

Moreover, if α is a positive real number, the function F = (FN)N>1 satisfies Chπ(λ) =
Fr(λ1, . . . , λr) for each Young diagram λ = (λ1, . . . , λr).

To keep notation short, we introduce the following symmetric function

p̂π (λ) :=∗
r

∑
i

λ
πr
i ,

where

λ
li
i ∗ λ

lj

j =
λ

li+lj
i if i = j,

λ
li
i · λ

lj

j otherwise,
and

λl = λ · (λ− 1) · · · (λ− l + 1)︸ ︷︷ ︸
l factors

.

Proof of Proposition 4.8. Observe that

p̂π (λ) = NGπ (λ) .

We will show that [
Atop

]
Chπ (λ) = p̂π (λ) .

Let F be an α-shifted symmetric function associated to Chπ by Theorem 4.11. Let
us choose a sufficiently large integer N , e.g. N > |π|. Let us treat the coefficients of the
polynomial FN as variables. The equality

FN(λ) = Chπ(λ) ∈ Q
[
A,A−1

]
|π|−`(π)

,

which holds for each λ ∈ Y such that `(λ) 6 N , becomes a system of equations with coef-
ficients in N>0. This system is invertible [KS96], hence we conclude that each coefficient
of a polynomial FN is a linear combination of the quantities Chπ(λ) over Q. Therefore
FN is a polynomial in N variables with coefficients in Q [A,A−1]|π|−`(π).

Notice that formally we have equality for all α > 0. However, the rational function
from Q(α) is uniquely determined by its values for α > 0.
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Since FN is a shifted-symmetric function with coefficients in the set Q [A,A−1]|π|−`(π),
its A-top degree [

Atop
]
FN (λ1, . . . , λN) :=

[
A|π|−`(π)

]
FN (λ1, . . . , λN)

is a symmetric function in the variables λ1, . . . , λN . Indeed, for each permutation σ of
[N ] we have[

Atop
]
FN (x1, . . . , xN) =

[
Atop

]
FN

(
x1 −

1
A2 , . . . , xN −

N

A2

)
=

[
Atop

]
FN

(
xσ(1) −

σ(1)
A2 , . . . , xσ(N) −

σ(N)
A2

)
=[

Atop
]
FN

(
xσ(1), . . . , xσ(N)

)
.

Since FN is of a degree |π|, the polynomial [Atop]FN has the same bound of the degree.
Observe that the homogeneous top-degree part of p̂π (λ) is equal to pπ (λ) and so does
the homogeneous top-degree part of [Atop]FN . Polynomials p̂π (λ) and [Atop]FN are both
symmetric, hence [

Atop
]
FN − p̂π

is a symmetric polynomial in variables (λ1, . . . , λN) of a degree at most |π| − 1.
We use the following notation:

Y0 :=
{

(λ1, . . . , λN) ∈ ZN : λ1 > . . . > λN > 0 and λ1 + . . .+ λN < |π|
}
.

By the vanishing property we have[
Atop

]
FN (λ) =

[
Atop

]
Chπ (λ) = 0

for all elements λ ∈ Y0. Since there are no injective embeddings of Gπ into a Young
diagram with the number of boxes smaller then the number of edges in Gπ, we have

p̂π (λ) = NGπ (λ) = 0

for all elements λ ∈ Y0. From that we deduce that Y0 is a set of zeros of the polynomial
[Atop]FN − p̂π. The appropriate set of zeros of a polynomial of sufficiently small degree
determines the vanishing of the polynomial. Indeed, the symmetric polynomial

W (x1, . . . , xN) :=
( [
Atop

]
FN − p̂π

)
(x1 − 1, . . . , xN − 1),

is of a degree at most |π| − 1 and by the vanishing property, W (x1, . . . , xN) vanishes for
all integers x1, . . . , xN > 1 such that

x1 + . . .+ xN < |π|+N.

Now, we can use the characterisation given by Śniady [Śn19, Lemma 7.6] to conclude that
the polynomial W (x1, . . . , xN) vanishes. Hence we conclude that[

Atop
]
FN = p̂π

which finishes the proof.
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4.7 Hands-shaking procedure

Let
π = (π1, . . . , πn) , σ = (σ1, . . . , σl)

be two partitions. We define a class of collections of maps by the following procedure:

Step 1. For each i ∈ [n] we assign a white vertex with πi outgoing half-edges. We
label this vertex by the number i and we root it, i.e. we choose one of the
outgoing half-edges and decorate it. Similarly, for each j ∈ [l] we assign a
black vertex with σj outgoing half-edges and we root it.

Step 2. We match some of the half-edges going out from the white vertices with
some of those going out from black vertices.

Step 3. We close each of the non-closed half-edges by a white or a black vertex so
that the graph remains bipartite.

We call the procedure described above the “hands-shaking procedure”. The name
provenance could be explained as follows: there are white and black vertices with hands;
the number of hands is given by the partitions π and σ. They shake theirs hands in any
way they like, but only black-white connections are allowed. On Figure 11 we present an
example of applying this procedure.
Definition 4.12. For a given triple of partitions π, σ, µ we denote by P µ

π,σ the set of all
µ-collections of maps (additionally with some vertices labelled and rooted) such that
they may be obtained as an outcome of performing the above presented “hands-shaking
procedure”.

Each µ-collection of maps M ∈ P µ
π,σ can be obtained in the unique way as an outcome

of the presented procedure. The uniqueness follows from the fact that the position of
each edge from M is uniquely determined by the labellings on the rooted vertices and the
order of the outgoing half-edges.
Observation 4.13. For given partitions π, σ, µ: |π|, |σ| 6 |µ| we have∣∣∣∣P µ

π,σ

∣∣∣∣ = C(π, σ;µ) · zπzσ
zµ

∣∣∣∣M̃•;µ
π∪1|µ|−|π|,σ∪1|µ|−|σ|

∣∣∣∣
where the coefficient

C(π, σ;µ) =
m1(µ)∑
k=0

(
m1(µ)
k

)(
m1(π) + |µ| − |π| −m1(µ)

m1(π)− k

)
·(

m1(σ) + |µ| − |σ| −m1(µ) + k

m1(σ)−m1(µ) + k

)
. (7)

is relevant to the choice of degree-one vertices which are rooted.
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Step 1. Black and white
vertices with outgoing
half-edges of degrees
(σi) and (πj) respec-
tively.

Step 2. Some of the out-
going half-edges were
matched. The crossing
of edges is not impor-
tant.

Step 3. The rest of
outgoing half-edges is
closed. The collection of
maps is bipartite.

As an outcome we obtain
the following collection of
two maps drawn on a pair
of spheres.

Figure 11 – The three steps of “hands-shaking procedure”. As an output we obtain the
(4, 2)-collection of bipartite maps. Vertices are labelled and rooted as as the “hands-
shaking procedure” describes.

Proof. Observe that the elements of P µ
π,σ are µ-collection of bipartite orientable maps

whose vertex set is given by

ΛW(M) = π ∪ 1|µ|−|π| and ΛB(M) = σ ∪ 1|µ|−|σ|.

Each such an element has the following labels and roots on the vertices and half-edges:

1. there are n white vertices of degrees π1, . . . , πn, each being labelled by a relevant
natural number from [n] and rooted, i.e. we choose one of the outgoing half-edges
and decorate it by an arrow,

2. there are l black vertices of degrees σ1, . . . , σl, each being labelled by a relevant
natural number from [l] and rooted.

Moreover, each connected component of an element from P µ
π,σ has at least one decorated

vertex.
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We use the double counting method as in Observation 3.10. For each M ∈ P µ
π,σ we

can root and number the connected components in zµ ways.
Let us choose M ∈ M̃•;µ

π∪1|µ|−|π|,σ∪1|µ|−|σ| . The procedure of labelling and rooting the
vertices is much more subtle. Firstly, we have to choose m1(π) white (respectively m1(σ)
black) vertices and label them by adequate numbers. At the first sight, we could do this
in (

m1(π) + |µ| − |π|
m1(π)

)(
m1(σ) + |µ| − |σ|

m1(σ)

)
zπzσ

ways (which is equal to zπzσ if π, σ, µ are partitions of the same integer). However, in the
definition of P µ

π,σ we required to contain at least one labelled vertex from each connected
component. This is trivially satisfied only if m1(µ) = 0.

Observe, that connected components inM which have more than one element, trivially
contain at least one labelled vertex. Indeed, they contain at least one vertex of degree
d > 2, hence being labelled by some number. There are m1(µ) one-element connected
components in M . Denote the set of such connected components by M1. Each connected
component in M1 consists of exactly two vertices: white and black. We can specify the
number k: 0 6 k 6 m1(µ) of white vertices in M1 which are labelled. For each integer
k, we can choose k white vertices in M1 which are labelled on exactly

(
m1(µ)
k

)
ways.

Moreover, we can choose the remaining m1(π) − k white labelled vertices on exactly(
m1(π)+|µ|−|π|−m1(µ)

m1(π)−k

)
ways. Indeed, the number of white vertices in M \M1 is equal to

m1(π) + |µ| − |π| −m1(µ). Observe, that in each connected component in M1 which has
no labelled white vertex, the black vertex has to be labelled. There are exactly m1(µ)−k
such vertices. Remaining m1(σ)− (m1(µ)−k) labelled black vertices might be chosen out
of m1(σ) + |µ| − |σ| − (m1(µ)− k) remaining degree-one black vertices, which contributes
to the last factor in (7). This analysis shows that the coefficient C(π, σ;µ) is relevant to
the number of ways of choosing labelled vertices in M . On the other hand, factors zπzσ
are relevant to the exact numbering among chosen black and white vertices. This finishes
the proof of Observation 4.13.

4.8 Proof of Theorem 4.3

We prove that candidates pµπ,σ := |P µ
π,σ| for top-degree part of structure constants gµπ,σ suit

well for that role.
Proposition 4.14. For any Young diagram λ ∈ Y, the following equality holds:[

Atop
]

Chπ (λ) ·
[
Atop

]
Chσ (λ) =

∑
µ

pµπ,σ
[
Atop

]
Chµ (λ) . (8)

Proof. According to Proposition 4.8, the two quantities[
Atop

]
Chσ (λ) = NGσ (λ) and

[
Atop

]
Chµ (λ) = NGµ (λ)

can be represented equivalently by the number of injective embeddings of Gσ and Gµ into
λ. Similarly, [

Atop
]

Chπ (λ) = NGπ
(λ)
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Figure 12 – Example of a collection of maps M ∈ P (3,1)
(2,1),(2,1) and an example of a bijection

fµM between the edges in M and the edges of the graph G(3,1).

is equal to the number of negative injective embeddings of Gπ into λ (see Remark 4.7).
For each M ∈ P µ

π,σ we choose some bijection fµM between the edges of M and the
edges of the graph Gµ (see Definition 4.6), which preserves the connected components,
see Figure 12.

We shall construct a bijection between:

• a pair
(
NGπ

(λ), NGσ (λ)
)
consisting of negative injective embeddings and injective

embeddings of Gσ and Gπ into λ respectively;

• a pair
(
P µ
π,σ, NGµ (λ)

)
consisting of collections of maps from the class P µ

π,σ and
injective embeddings of Gµ into λ.

The existence of such a bijection implies the statement of Proposition 4.14. We proceed
analogously as in the “hands-shaking procedure” described in Section 4.7.

For each i ∈ [n] we assign a white vertex with πi outgoing half-edges. We label this
vertex by a number i and root it, i.e. we choose one of outgoing half-edges and label it.
We can choose a bijection between such half-edges and the edges in Gπ which preserves
the connected components. Similarly, for each j ∈ [l] we assign a black vertex with σj
outgoing half-edges and we root it. Then we choose a bijection between such half-edges
and the edges in Gσ which preserves the connected components.

A reverse injective embedding of Gπ and an injective embedding of Gσ into λ transfer
into an injective embedding of above described half-edges going out from labelled and
rooted black and white vertices.

We use the procedure described in Section 4.7 to connect in the unique way those
outgoing half-edges which are embedded in the same box of Young diagram λ. We close
each of non-closed half-edges by a white or a black vertex so that the graph remains
bipartite.

In that way we obtain a list of maps M ∈ P µ
π,σ injectively embedded into the Young

diagram λ. Observe that all edges from any given connected component of M are embed-
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ded into the boxes of λ which are in the same row. Using the bijection fµM between the
edges of M and the edges of Gµ, we obtain the injective embedding of Gµ into λ.

The above procedure is reversible. Indeed, for a given collection of maps M ∈ P µ
π,σ

and an injective embedding of Gµ into diagram λ, we can easily construct the injective
embedding of the edges of M into the diagram λ, for which all edges from any given
connected component of M are embedded to the boxes from the same row. From such an
object we can recover the elements from NGσ (λ) and NGπ

(λ).

With Proposition 4.14 in hand, we are ready to present the proof of Theorem 4.3.

Proof of Theorem 4.3. The upper bound of a degree for polynomials gµπ,σ(δ) is given in

(6). Since δ = A− 1
A
, we have the following estimation

degA gµπ,σ = degδ gµπ,σ 6 d (π, σ;µ) .
Let us fix a Young diagram λ. Recall that the evaluation of Chπ on any Young diagram

λ is a Laurent polynomial in Q [A,A−1] of a degree at most n2(π) := |π| − `(π). We
investigate the n2(π) + n2(σ) degree part of the pointwise product of two Jack characters,
namely [

An2(π)+n2(σ)
]

Chπ (λ) · Chσ (λ) =
[
An2(π)+n2(σ)

]∑
µ

gµπ,σ Chµ (λ) .

By the estimations on the upper bounds of the A-degrees of Laurent polynomials Chµ(λ)
and gµπ,σ we have[

Atop
]

Chπ (λ) ·
[
Atop

]
Chσ (λ) =

∑
µ

[
Ad(π,σ;µ)

]
gµπ,σ

[
Atop

]
Chµ (λ) .

We compare the above equation with Proposition 4.14 and we get∑
µ

[
Ad(π,σ;µ)

]
gµπ,σ

[
Atop

]
Chµ (λ) =

∑
µ

pµπ,σ
[
Atop

]
Chµ (λ) .

Recall that [Atop] Chµ(λ) = p̂µ(λ). We have∑
µ

[
Ad(π,σ;µ)

]
gµπ,σp̂µ (λ) =

∑
µ

pµπ,σp̂µ (λ) , (9)

The function p̂µ (λ) is symmetric and its homogeneous top-degree part coincides with
the power-sum symmetric polynomial pµ. This equality together with the fact that power-
sum symmetric functions form a basis of symmetric functions allows us to deduce that
functions p̂µ (λ) form also such a basis. We may look at (9) as an equality of symmetric
functions. Since the basis determines its coefficients in the unique way, we conclude that[

Ad(π,σ;µ)
]
gµπ,σ = pµπ,σ.

The d(π, σ;µ)-degree coefficients in variable A and δ of gµπ,σ are equal. We conclude[
δ(π,σ;µ)

]
gµπ,σ = pµπ,σ.

Observation 4.13 finishes the enumerative part of the proof. In Observation 4.16 and
Remark 4.17 we presents the necessary and sufficient condition for achieving the upper
bound by polynomials gµπ,σ(δ), which finishes the proof.
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4.9 Necessary and sufficient conditions for achieving the upper bound

We shall finish this section with a discussion when the upper bound for the top degree
part of gµπ,σ presented in Theorem 4.3 is achieved. As we showed, it is enumerated by
µ-collections of maps with some vertices rooted which may be obtained as an outcome of
performing the above presented “hands-shaking procedure”. Therefore, we analyze, when
the set of such collections P µ

π,σ is non-empty.
Observation 4.15. Consider partitions π, σ, µ. The following conditions are necessary for
the set P µ

π,σ being non-empty:

1. |π|, |σ| 6 |µ| 6 |π|+ |σ|,

2. both partitions π ∪ 1|µ|−|π| and σ ∪ 1|µ|−|σ| are sub-partitions of µ,

3. m1(π) +m1(σ) > m1(µ).

Proof. Observe that by performing “hands-shaking procedure”, in which we obtain a µ-
collection of map, the vertex set is given by

ΛW(M) = π ∪ 1|µ|−|π| and ΛB(M) = σ ∪ 1|µ|−|σ|.

The first inequality in the first condition follows immediately. Moreover the number of
edges in P µ

π,σ cannot exceed |π| + |σ|, hence the second inequality in the first condition
holds. Partitions describing white or black vertices distributions are sub-partitions of a
partition describing distribution of connected components. Hence the second condition
has to be satisfied. In the definition of P µ

π,σ we required to contain at least one labelled
vertex from each connected component. Hence the third condition has to be satisfied.

It is easy to see that conditions presented in Observation 4.15 are not sufficient for
P µ
π,σ being a non-empty set. Indeed, consider partitions π = σ = (1n), and the partition
µ = (n). In such a situation, P µ

π,σ consists of connected maps with all vertices of degree
one, which is an empty set for n > 2. The sufficient conditions are presented below.
Observation 4.16. Consider partitions π, σ, µ which satisfy |π|, |σ| 6 |µ| and m1(π) +
m1(σ) > m1(µ). The set P µ

π,σ is non-empty iff the partitions π ∪ 1|µ|−|π| and σ ∪ 1|µ|−|σ|
are joint sub-partitions of µ.

Proof. Consider firstly the case when µ = (n). We shall show that the set P (n)
π,σ is non-

empty iff the partitions π ∪ 1|µ|−|π| and σ ∪ 1|µ|−|σ| are joint sub-partitions of (n). This is
equivalent to the following inequality:

`(π ∪ 1n−|π|) + `(σ ∪ 1n−|σ|) 6 n+ 1. (10)

We shall prove the “if and only if” statement inductively. Notice that for n = 1, m1(µ) = 1
and since we assumed m1(π) + m1(σ) > m1(µ), one of the initial partitions π or σ is
non-empty. Observe that under this assumption P (1)

π,σ is non-empty, and (10) is trivially
satisfied. Suppose n > 1. Without loss of generality, we may assume that |π| = |σ| = |µ|.
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If m1(σ) = m1(π) = 0, the condition (10) is satisfied. On the other hand, one can
construct a map in P (n)

π,σ . Indeed, in Step 2. of the “hands-shaking procedure”, we may
connect iteratively not-connected before edges. Since all vertices are of degree at least
two, in some moment all vertices become connected. Other connections as well as labelling
and rooting vertices are arbitrary. Suppose now that m1(π) 6= 0 and choose the degree
one part πv. In order to construct a map in P (n)

π,σ , we shall connect the vertex πv with the
white vertex of degree at least two. Choose such a vertex σv. Consider two partitions: π̃
obtained from π by removing the part πv and σ̃ obtained from σ by replacing the part σv
by σv − 1. Partitions π̃, σ̃ ` n− 1 satisfies

`(π̃) + `(σ̃) < n,

hence the problem of non-emptiness of P (n)
π,σ reduces to the problem of non-emptiness of

P
(n−1)
π̃,σ̃

, which ends the inductive step.
Consider the general case, when µ is arbitrary. Firstly, suppose that partitions π ∪

1|µ|−|π| and σ ∪ 1|µ|−|σ| are joint sub-partitions of µ. This means that they might be
presented as the concatenations:

π ∪ 1|µ|−|π| = π1 t · · · t π`(µ),

σ ∪ 1|µ|−|σ| = σ1 · · · t σ`(µ),

which satisfy |πi| = |σi| = |µi| and

`(πi) + `(σi) 6 |µi|+ 1, (11)

for all indices i ∈ `(µ). Moreover, assuming m1(π) +m1(σ) > m1(µ), in any pair πi or σi
of the division there might be a part from original partition π or σ. Hence the condition
m1(πi)+m1(σi) > m1(µi) is satisfied for any i ∈ `(µ). Furthermore, assuming that (11) is
satisfied, for each pair πi, σi, we construct the map from P µi

πi,σi according to the previous
discussion. In such a way, we constructed the µ-collection of maps from P µ

π,σ.
Secondly, we show that presented constraints are also necessary for P µ

π,σ being non-
empty set. Suppose that P µ

π,σ is a non-empty set. According to Observation 4.15 |π|, |σ| 6
|µ| andm1(π)+m1(σ) > m1(µ) has to be satisfied. We shall show that (11) is also satisfied.
Indeed, consider arbitrary µ-collection of maps from P µ

π,σ. It imposes the division of
partitions π and σ into πi and σi according to the division into connected components.
Each map from the µ-collection satisfies (11) according to the previous discussion.

Remark 4.17. Notice that if µ, π, σ ` n are partitions of the same number, the set P µ
π,σ is

non-empty if π and σ are joint sub-partitions of µ.

5 Measures of non-orientability and non-bipartiteness

5.1 The b-Conjecture.

Equations (1) and (2) define two families of coefficients
(
cλπ,σ

)
and

(
hλπ,σ

)
. Goulden

and Jackson [GJ96] discussed some specialisations of the family
(
cλπ,σ

)
and hypothetical

the electronic journal of combinatorics 28(2) (2021), #P2.15 29



combinatorial interpretations of the polynomials cλπ,σ in terms of matchings known as
the Matchings-Jack Conjecture, see Section 1.5. In the same paper they observed that
specializations of hλπ,σ(β) for β = 0, 1 may be expressed in terms of rooted maps, namely

hλπ,σ(0) =
∣∣∣∣{M ∈Mλ

π,σ : M is orientable
}∣∣∣∣,

hλπ,σ(1) =
∣∣∣∣{M ∈Mλ

π,σ

}∣∣∣∣.
Based on this observation Goulden and Jackson conjectured that the family

(
hλπ,σ

)
of

polynomials may have a combinatorial interpretation. The conjecture is known as the
b-Conjecture.
Conjecture 5.1 (b-Conjecture). For any partitions π, σ, λ ` n the quantity hλπ,σ can be
expressed as

hλπ,σ(β) =
∑

M∈Mλ
π,σ

βη(M),

where η : Mλ
π,σ −→ N0 is some hypothetical combinatorial statistic such that η(M) = 0 if

and only if M is orientable.

5.2 Root-deletion procedure and a measure of non-orientability.

The statistic η from the b-Conjecture should be a marker of non-orientability of maps.
We shall present the definition of the measure of non-orientability introduced by La Croix
[La 09, Definition 4.1], which seems to be a good candidate for the hypothetical statistic
conjectured by Goulden and Jackson. We adapt the statistic given by La Croix to the
case of lists of maps.
Definition 5.2 (Root-deletion procedure). Denote by e the root edge of the map M . By
deleting e from M we create either a new map, or two new maps. We give the canonical
procedure of rooting it or them. Rooting a map is equivalent to choosing an oriented
corner, see Figure 13. We denote such an oriented corner as the root corner. Denote by c
the root corner of M .

Suppose that M \ e is connected. Observe that c is contained in the unique oriented
corner of M \ e, we define such an oriented corner as the root of M \ e.

Suppose that M \ e has two connected components. One of them can be rooted as
above. Observe that the first corner in the root face of M following c is contained in a
unique oriented corner of the second component of M \ e, see Figure 13. We define this
oriented corner as the root of this component.
Remark 5.3. The Root-deletion procedure is defined for all maps, not necessary bipartite.
In particular, we do not require that the root vertex is black.

We classify the root edges of maps. Let f be the number of faces of a map M with
the root vertex e;

1. e is called a bridge if M \ e is not connected,
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c
c′

Figure 13 – The oriented corner c (red arrow) equivalent to the root (the black arrow) of a
map. The first corner in the root face of the map following c is labelled by c′ (red arrow).
By deleting the root edge the map splits into two new maps. The oriented corners c and
c′ are contained in two oriented corners of the new maps. They give the roots of those
maps (the blue arrows).

2. otherwise M \ e is connected and e is called

• a border if the number of faces in M \ e is equal to f − 1,
• a twisted edge if the number of faces in M \ e is equal to f ,
• a handle if the number of faces in M \ e is equal to f + 1.

Remark 5.4. A leaf (i.e. an edge connecting a vertex of degree 1) is considered as a bridge.
Definition 5.5. [La 09, Definition 4.1] A functional η on the set of rooted maps is called
a measure of non-orientability if it satisfies the following properties: follows.

1. If M has no edges then η(M) = 0.

2. Otherwise M has the root edge e,

• η(M) = η(M1) + η(M2) if e is a bridge, while M1 and M2 are the connected
components of M \ e,

• η(M) = η(M \ e) if e is a border,
• η(M) = η(M \ e) + 1 if e is a twisted edge,
• if e is a handle, there exists a unique mapM ′ with the root edge e′ constructed

by twisting the edge e in M , in such a way that e′ is a handle and the maps
M \ e, M ′ \ e are equal. In this case we require that

{η(M), η(M ′)} = {η(M \ e), η(M \ e) + 1} .

At most one of the maps M , M ′ is orientable. For such a map M we require
η(M) = η(M \ e).
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Observe that the above definition introduces a whole family of measures of non-
orientability η and among of them there is no canonical measure of non-orientability.
Remark 5.6. For a given rooted map M

η (M) = 0 if and only if M is orientable.

Indeed, removing twisted edges or handles during the root-deletion procedure are the only
possibilities of increasing the recursively-defined statistic η. An orientable map does not
have any twisted edges (a map with a twisted edge is embedded in a surface which contains
the Möbius strip, hence is nonorientable). The recursive definition of η guarantees that
removing handles from an orientable map does not increase the statistic η. Hence for an
orientable map M , we have η(M) = 0. A reverse analysis or a simple induction on the
number of edges provides the reverse implication.
Definition 5.7. Any measure of non-orientability η from Definition 5.5 might be extended
to the measure of non-orientability of rooted list of maps. For a rooted µ-list of maps
M = M1, . . . ,Mk we define its measure of non-orientability η by

η (M) := η (M1) + · · ·+ η (Mk) .

5.3 Unhandled and unicellular maps.

Definition 5.8. The rooted map M is called unhandled if by iteratively performing the
root-deletion process (see Definition 5.2) it does not have any handles. The map M is
called unicellular if it has only one face.

From now on we fix one measure of non-orientability η of the class of maps. Dołęga
[Doł17, Section 4] showed that for such a measure η the polynomial Hη given by the sum

(Hη)λπ,σ :=
∑

M∈Mλ
π,σ

βη(M)

has degree at most equal to n+ 1− `(π)− `(σ) and the leading coefficient is enumerated
by unhandled unicellular maps. In particular, (Hη)λπ,σ may achieve this bound of the
degree only if λ = (n). He also showed that the aforementioned leading coefficient is also
enumerated by oriented maps with arbitrary face-type, namely∣∣∣∣M ∈M•

π,σ : M is orientable
∣∣∣∣ =

∣∣∣∣M ∈M (n)
π,σ : M is unhandled

∣∣∣∣.
In fact, there is an explicit bijection between those two families of maps. Dołęga proved
[Doł17, Theorem 1.4] that for the statistic η

h(n)
π,σ(β) =

∑
M∈M(n)

π,σ

βη(M)

holds true for β ∈ {−1, 0, 1}, furthermore η(M) = n+ 1− `(π)− `(σ) if and only if M is
unhandled and unicellular.

the electronic journal of combinatorics 28(2) (2021), #P2.15 32



The result of Dołęga is easily transferable to the context of µ-lists of maps. Let us
choose the measures of non-orientability ηi for i ∈ [k], k = `(µ), which form the measure
η as it is described in Definition 5.7.
Lemma 5.9. For the statistic η, the polynomial (Hη)λ;•

π,σ given by the sum

(Hη)λ;•
π,σ :=

∑
µ:λ�µ

(Hη)λ;µ
π,σ (12)

where
(Hη)λ;µ

π,σ (β) =
∑

M∈Mλ;µ
π,σ

βη(M) (13)

is of degree at most d(π, σ;λ), see (4). Moreover, a µ-list of maps M contributes to
the constant term if and only if M is a list of orientable maps. The µ-lists of maps M
contributes to the leading coefficient if and only ifM is a list of unicellular and unhandled
maps, in particular µ = λ.

Proof. Each M = (M1, . . . ,Mk) ∈Mλ;µ
π,σ decompose into a list of maps Mi ∈M

λ|µi
π|µi ,σ|µi

for
some partitions π|µi , σ|µi , λ|µi ` µi satisfying

k⋃
i=1

π|µi = π,
k⋃
i=1

σ|µi = σ,
k⋃
i=1

λ|µi = λ.

We denote by Pµπ the set of lists of partitions
(
π|µ1 , . . . , π|µk

)
, where π|µi ` µi and

k⋃
i=1

π|µi = π.

Observe, that (13) can be rewritten in such a way:

∑
M∈Mλ;µ

π,σ

βη(M) =
∑

(π1,...,πk)∈Pµπ
(σ1,...,σk)∈Pµσ
(λ1,...,λk)∈Pµ

λ

k∏
i=1

∑
M∈Mλi

πi,σi

βηi(M).

We use the result of Dołęga applied to each right most side sum separately. Each such a
sum has degree at most equal to µi + 1 − `(πi) − `(σi) and the top-degree coefficient is
enumerated by unhandled unicellular maps. Since

n+ `(µ)− `(π)− `(σ) =
k∑
i=1

(
µi + 1− `(πi)− `(σi)

)
,

we conclude that (12) has degree at most equal to d(π, σ;λ) and the top-degree coefficient
is enumerated by µ-lists of unhandled unicellular maps.
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Corollary 5.10. For three given partitions π, σ, λ ` n we have∣∣∣∣M ∈M•;µ
π,σ : M is orientable

∣∣∣∣ =
∣∣∣∣M ∈Mµ;µ

π,σ : M is unhandled
∣∣∣∣.

Proof. Fix a list M ∈ Mµ;µ
π,σ of unhandled and unicellular maps. For each connected

component of M we use the aforementioned bijection between such maps and oriented
maps with arbitrary face-type given by Dołęga [Doł17, Corollary 3.10]. We get a µ-list of
orientable maps with arbitrary face type.

5.4 Measure of non-bipartiteness for matchings.

The hypothetical statistic wtλ from the Matchings-Jack Conjecture should be a marker
of non-bipartiteness for matchings. Naturally, matchings correspond to lists of maps, in
particular bipartite matching to lists of oriented maps.

The naive thought how the statistic wtλ should be defined is to adapt the measure of
non-orientability introduced by La Croix by the correspondence between matchings and
collections of maps given by Corollary 3.7. Regretfully, the measure introduced by La
Croix is defined for lists of rooted maps, and it is not clear how to define it naturally for
lists of maps with rooted faces in M

(
Gλ;µ
π,σ

)
, and hence for matchings in Gλ;µ

π,σ .
However, there is one special class of matchings, which may be identified with lists

of rooted maps, namely Gλ;λ
π,σ . When the number of faces is equal to the number of

connected components, numbering and rooting faces overlap with numbering and rooting
components. For a fixed measure of non-orientability η we define

stat : Gλ;λ
π,σ −→ [d(π, σ;λ)]
δ 7−→ stat (δ) := η (Mδ)

For given partitions λ, π, σ ` n we define the following polynomial
(Gη)λ;λ

π,σ :=
∑

δ∈Gλ;λ
π,σ

βstat(δ). (14)

Definition 5.11. We say that a matching δ ∈ Gλ;λ
π,σ is unhandled if the corresponding map

Mδ ∈Mλ;λ
π,σ is so.

Lemma 5.12. For any triple of partitions π, σ, λ ` n the corresponding polynomial (Gη)λ;λ
π,σ

is of degree at most d(π, σ;λ). Moreover, the matching δ contributes to the constant term
if and only if δ is bipartite. The matching δ contributes to the leading coefficient if and
only if δ is an unhandled matching.

Moreover, the top-degree coefficient may be enumerated in two different manners:∣∣∣∣δ ∈ Gλ;λ
π,σ : δ is unhandled

∣∣∣∣ =
∑
ν:ν�λ

zλ
zν

∣∣∣∣δ ∈ Gν;λ
π,σ : δ is bipartite

∣∣∣∣.
Proof. Observe that for a fixed measure of non-orientability η, the polynomials (Gη)λ;λ

π,σ and
(Hη)λ;λ

π,σ are equal. The first statement follows immediately from Lemma 5.9. The second
statement is an easy conclusion of Corollary 5.10 and relation given in Observation 3.12.
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6 Relations between the structure constants gµπ,σ and the con-
nection coefficients cµπ,σ

Structure constants gµπ,σ and the connection coefficients cµπ,σ are closely related notions.
In Section 4 the formula for the top-degree part of structure constants is presented, see
Theorem 4.3. We discuss relations between both families of coefficients gµπ,σ and cµπ,σ, and
recover the formula for the top-degree part of connection coefficients, which is presented
in Theorem 1.5.

It is worth mentioning that the coefficients cµπ,σ are indexed by three partitions of the
same size, while the quantities gµπ,σ are indexed by triples of arbitrary partitions. Dołęga
and Féray investigated the relationship between these two families of coefficients and
showed [DF16, Equation (19)] that for µ, π, σ ` n,

cµπ,σ =
√
α
d(π,σ;µ) zµ̃

zπ̃zσ̃

m1(π)∑
i=0

gµ̃∪1i
π̃,σ̃ · i!

(
n− |µ̃|

i

)
, (15)

where π̃ is constructed from the partition π by deleting all units.
Dołęga and Féray [DF16] proven the polynomiality and the bound on the degree of

gµπ,σ. Using (15) they deduced the polynomiality and the bound of the degree of connection
coefficients cµπ,σ. We establish other relations between those two families of coefficients.
Corollary 6.1. For three given partitions µ, π, σ ` n, each of the polynomials cµπ,σ(β)
and gµ̃π̃,σ̃(δ) is of degree at most d(π, σ;µ), and their leading coefficients coincide up to a
normalizing constant, namely[

βd(π,σ;µ)
]
cµπ,σ = zµ̃

zπ̃zσ̃
·
[
δd(π,σ;µ)

]
gµ̃π̃,σ̃.

Proof. Fix three partitions µ, π, σ ` n. Observe that for each i > 0, the third estimation
shown in (6) gives us

degδ g
µ̃∪1i
π̃,σ̃ 6 d (π, σ;µ)− i.

Let us recall that δ =
√
α− 1√

α
, hence the right-hand side of (15) is of

√
α-degree at most

equal to 2d(π, σ;µ), and in the sum over i, the only contribution to the 2d(π, σ;µ)-degree
coefficient comes from gµ̃π̃,σ̃. We have

[√
α

2d(π,σ;µ)]√αd(π,σ;µ) zµ̃
zπ̃zσ̃

m1(π)∑
i=0

gµ̃∪1i
π̃,σ̃ · i!

(
n− |µ̃|

i

) = zµ̃
zπ̃zσ̃

[
δd(π,σ;µ)

]
gµ̃π̃,σ̃.

Since β = α − 1, the 2d(π, σ;µ)-degree coefficient of cµπ,σ in variable
√
α coincides with

d(π, σ;µ)-degree coefficient in variable β. Hence (15) finishes the proof.

Assuming Theorem 4.3 we are ready to prove the main result of this paper. The proof
may seem intricate, it combines different facts which have been proven so far.
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Proof of Theorem 1.5. Fix partitions π, σ, λ ` n. We investigate the polynomial cλπ,σ(β).
By Corollary 6.1 we have [

βd(π,σ;λ)
]
cλπ,σ = zλ̃

zπ̃zσ̃
·
[
δd(π,σ;λ)

]
gλ̃π̃,σ̃,

and by Theorem 4.3 we know that the polynomial gλ̃π̃,σ̃ achieves the d(π, σ;λ)-degree part
if and only if |λ̃| > |π̃|, |σ̃|, π̃∪1|λ̃|−|π̃| � λ̃, and σ̃∪1|λ̃|−|σ̃| � λ̃. Observe that this condition
is equivalent to π � λ and σ � λ. Hence the condition on partitions π, σ, λ for achieving
by cλπ,σ the d(π, σ;λ)-degree.

Thus, we have
[
βd(π,σ;λ)

]
cλπ,σ

Corollary 6.1= zλ̃
zπ̃zσ̃

·
[
δd(π,σ;λ)

]
gλ̃π̃,σ̃

Theorem 4.3=
∣∣∣∣M̃•;λ̃

π̃,σ̃

∣∣∣∣.
Since there is only one map M1 ∈ M̃ (1)

(1),(1), we have∣∣∣∣M̃•;λ̃
π̃,σ̃

∣∣∣∣ =
∣∣∣∣M̃•;λ

π,σ

∣∣∣∣.
Indeed, from any λ-list of maps M ∈ M̃•;λ

π,σ we can canonically create a λ̃-list of map
M̃ ∈ M̃•;λ̃

π̃,σ̃ by erasing the last |λ| − |λ̃| components. This procedure is reversible, since we
can add new M1 components to M̃ . Then we have∣∣∣∣M̃•;λ

π,σ

∣∣∣∣ =
∑
ν:ν�λ

∣∣∣∣M̃ν;λ
π,σ

∣∣∣∣ Observation 3.12=
∑
ν:ν�λ

zλ
zν

∣∣∣∣G̃ν;λ
π,σ

∣∣∣∣.
Hence [

βd(π,σ;λ)
]
cλπ,σ =

∑
ν:ν�λ

zλ
zν

∣∣∣∣G̃ν;λ
π,σ

∣∣∣∣.
From Lemma 5.12 we conclude that the leading coefficient of cλπ,σ coincides with the

leading coefficient of the polynomial

(Gη)λ;λ
π,σ :=

∑
δ∈Gλ;λ

π,σ

βstat(δ),

see (14), and that both are of the same degree. As we shall see, Lemma 5.12 provides the
second expression for the leading coefficient of the polynomial cλπ,σ.
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A Top-degree parts in the Matchings-Jack Conjecture and the
b-Conjecture

We shall prove that our result about the top-degree part in the Matchings-Jack Conjecture
presented in Theorem 1.5 and the result of Dołęga [Doł17, Theorem 1.5] about the top-
degree part in b-Conjecture are equivalent.

First note that the polynomials cλπ,σ and hλπ,σ are related as follows∑
n>1

tn
∑

λ,π,σ`n
hλπ,σpπ(x)pσ(y)pλ(z) =

αt
∂

∂t
log

∑
n>0

tn
∑

λ,π,σ`n

cλπ,σ
α`(λ)zλ

pπ(x)pσ(y)pλ(z)
 (16)

and
∑
n>0

tn
∑

λ,π,σ`n

cλπ,σ
α`(λ)zλ

pπ(x)pσ(y)pλ(z) =

exp
∑
n>1

1
αn

tn
∑

λ,π,σ`n
hλπ,σpπ(x)pσ(y)pλ(z)

 , (17)

see (1) and (2). Multiplication of power-sum symmetric functions expresses as follows
pλ1(z) · pλ1(z) = pλ1∪λ1(z) in the terms of concatenations of relevant partitions. Notice
that for λ = (n) only the linear term in the expansion of the logarithm on the RHS of
(16) contribute to the coefficient of pλ(z).

In Theorem 1.5 we showed that the leading coefficient of cλπ,σ can be expressed in the
following way: [

βd(π,σ;λ)
]
cλπ,σ =

∣∣∣∣M ∈Mλ;λ
π,σ : M is unhandled

∣∣∣∣
where Mλ;λ

π,σ is the set of λ-lists of unicellular maps with the white and black vertices
distribution given by π and σ respectively.

On the other hand, Dołęga [Doł17, Theorem 1.5] showed that the leading coefficient
of h(n)

π,σ can be expressed in the following way:[
βd(π,σ;(n))

]
h(n)
π,σ =

∣∣∣∣M ∈M (n)
π,σ : M is unhandled

∣∣∣∣
where M (n)

π,σ is the set of unicellular maps with the white and black vertices distribution
given by π and σ respectively.

We investigate the
[
p(n)(z)

]
coefficient in both sides of (16). We have

tn
∑
π,σ`n

h(n)
π,σpπ(x)pσ(y) = αt

∂

∂t

tn ∑
π,σ`n

c(n)
π,σ

αz(n)
pπ(x)pσ(y)

 =

αntn
∑
π,σ`n

c(n)
π,σ

αn
pπ(x)pσ(y)
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hence c(n)
π,σ and h(n)

π,σ are equal.
Since c(n)

π,σ = h(n)
π,σ, it might seem that our result extends the result of Dołęga. However,

a more subtle analysis of relationships between the coefficients of cλπ,σ and hλπ,σ shows that
both results are equivalent.

The power series expansion of the exponential function in (17) gives us

∑
n>0

tn
∑

λ,π,σ`n

cλπ,σ
α`(λ)zλ

pπ(x)pσ(y)pλ(z) =

∑
k>0

1
k!

∑
s>1

1
s
ts

∑
λ,π,σ`s

hλπ,σ
α
pπ(x)pσ(y)pλ(z)

k . (18)

We denote by Pλ,π,σk the set of triplets of lists of partitions( (
λ1, . . . , λk

)
,
(
π1, . . . , πk

)
,
(
σ1, . . . , σk

))
such that

k⋃
i=1

λi = λ,
k⋃
i=1

µi = µ,
k⋃
i=1

σi = σ

and for each i we have |λi| = |πi| = |σi|.
Let us investigate the [pπ(x)pσ(y)pλ(z)] coefficient in both sides of (18). We have

tn
cλπ,σ

α`(λ)zλ
= tn

∑
16k6`(λ)

1
k!

∑(
(λ1,...,λk),

(π1,...,πk),

(σ1,...,σk)
)
∈Pλ,π,σ

k

k∏
i=1

1
|λi|

hλ
i

πi,σi

α
. (19)

Dołęga and Féray [DF17, Theorem 1.2] gave the following bound on the degree

deg hλiπi,σi 6 |λi|+ 2− `(λ1)− `(πi)− `(σi).

Hence, each summand of the first sum on the right-hand side of (19) has degree equal to
at most

n+ 2k − `(λ)− `(π)− `(σ),
and the maximal bound may be achieved only for summands corresponding to k = `(λ).
For such a summand, its bound on the degree is the same as the bound on the degree for
the left-hand side of (19) given by (3). We have

1
zλ

[
αd(π,σ;λ)

]
cλπ,σ = 1

`(λ)!
∑(

(λ1,...,λ`(λ)),

(π1,...,π`(λ)),

(σ1,...,σ`(λ))
)
∈Pλ,π,σ

`(λ)

`(λ)∏
i=1

1
|λi|

[
α|λi|+1−`(π)−`(σ)

]
hλiπi,σi .
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For a Young diagram λ = (λ1, . . . , λk), denote by Cλ the set of all compositions of a
type λ, i.e. the set of all lists (λσ(1), . . . , λσ(k)), for some σ ∈ S (n). Observe that

|Cλ| =
`(λ)!∑
imi(λ)! .

Observe that for k = `(λ) the first list in any triplet from Pλ,π,σk is a composition of a
type of the Young diagram λ. We have

1
zλ

[
αd(π,σ;λ)

]
cλπ,σ = 1

`(λ)! |Cλ|
∑((

(λ1),...,(λ`(λ))
)
,(

π1,...,π`(λ)
)
,(

σ1,...,σ`(λ)
))
∈Pλ,π,σ

`(λ)

`(λ)∏
i=1

1
λi

[
αλi+1−`(π)−`(σ)

]
h

(λi)
πi,σi

and hence

[
αd(π,σ;λ)

]
cλπ,σ =

∑((
(λ1),...,(λ`(λ))

)
,(

π1,...,π`(λ)
)
,(

σ1,...,σ`(λ)
))
∈Pλ,π,σ

`(λ)

`(λ)∏
i=1

[
αλi+1−`(π)−`(σ)

]
h

(λi)
πi,σi (20)

Dołęga’s result [Doł17, Theorem 1.5] shows us that
[
αλi+1−`(π)−`(σ)

]
h

(λi)
πi,σi =

∣∣∣∣M ∈M (λi)
πi,σi : M is unhandled

∣∣∣∣.
Directly from the definition of Pλ,π,σ`(λ) we obtain that

[
αd(π,σ;λ)

]
cλπ,σ =

∣∣∣∣M ∈Mλ;λ
π,σ : M is unhandled

∣∣∣∣,
which allows us to conclude the equivalence of both results.
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