Graphs with no induced $K_{2,t}$

Freddie Illingworth*

Department of Pure Mathematics and Mathematical Statistics University of Cambridge Cambridge, United Kingdom

fci21@cam.ac.uk

Submitted: Dec 17, 2019; Accepted: Jan 13, 2021; Published: Jan 29, 2021 © The author. Released under the CC BY-ND license (International 4.0).

Abstract

Consider a graph G on n vertices with $\alpha\binom{n}{2}$ edges which does not contain an induced $K_{2,t}$ $(t \ge 2)$. How large must α be to ensure that G contains, say, a large clique or some fixed subgraph H? We give results for two regimes: for α bounded away from zero and for $\alpha = o(1)$.

Our results for $\alpha = o(1)$ are strongly related to the Induced Turán numbers which were recently introduced by Loh, Tait, Timmons and Zhou. For α bounded away from zero, our results can be seen as a generalisation of a result of Gyárfás, Hubenko and Solymosi and more recently Holmsen (whose argument inspired ours).

Mathematics Subject Classifications: 05C35

1 Introduction

Fix an integer $t \ge 2$ and consider a graph G on n vertices with $\alpha\binom{n}{2}$ edges which does not contain an induced $K_{2,t}$. How large does α have to be to ensure that G contains some substructure (like a large clique or a fixed subgraph H)? We consider two regimes: α is bounded away from zero and α goes to zero as n goes to infinity.

In the regime where α is bounded away from zero, G will contain substructures that grow with n (so for example the clique number of G, $\omega(G)$, will go to infinity). Gyárfás, Hubenko and Solymosi [7] dealt with the clique number in the case when t = 2 (that is, G contains no induced C_4), confirming a conjecture of Erdős.

Proposition 1 (Gyárfás-Hubenko-Solymosi, [7]). Let G be a graph on n vertices with $\alpha\binom{n}{2}$ edges. If G does not contain an induced $K_{2,2}$, then $\omega(G) \ge \alpha^2 n/10$.

This was recently improved by Holmsen [8] (note that $1 - \sqrt{1 - \alpha} \ge \alpha/2$ for $\alpha \in [0, 1]$).

^{*}Research supported by an EPSRC grant.

Proposition 2 (Holmsen, [8]). Let G be a graph on n vertices with $\alpha\binom{n}{2}$ edges. If G does not contain an induced $K_{2,2}$, then $\omega(G) \ge (1 - \sqrt{1 - \alpha})^2 n$.

This result has the added advantage that $(1 - \sqrt{1 - \alpha})^2 \to 1$ as $\alpha \to 1$, so it is approximately tight as $\alpha \to 1$. The arguments in this paper are motivated by Holmsen's.

Our main result is Theorem 10, which is an extension to the situation where G does not contain an induced $K_{2,t}$ and also considers whether G contains some general subgraph (in place of a clique). For comparison with Proposition 2, we state the special case of the clique (we believe this result is also in a sense tight as $\alpha \to 1$ – see Remark 12). First, it will be convenient to define a constant β depending on α and t.

Definition 3. Given $\alpha \in [0, 1]$ and an integer $t \ge 2$, define

$$\beta_t(\alpha) = \frac{t}{2\sqrt{t-1}} \left[\sqrt{1 - \left(1 - \frac{2}{t}\right)^2 \alpha} - \sqrt{1-\alpha} \right].$$

Note that $\beta_2(\alpha) = 1 - \sqrt{1 - \alpha}$ so Proposition 2 can be stated as: if G is a graph on n vertices with $\alpha\binom{n}{2}$ edges containing no induced $K_{2,2}$, then $\omega(G) \ge \beta_2(\alpha)^2 n$.

Theorem 4. Let G be a graph on n vertices with $\alpha\binom{n}{2}$ edges containing no induced $K_{2,t}$ and let $\beta = \beta_t(\alpha)$. For any positive integer r with $R(t,r) \leq \beta^2 n$, we have $\omega(G) \geq r+1$.

Here R(t, r) denotes the usual Ramsey number. It is natural for Ramsey numbers to appear in the statement. The class of graphs with "no induced $K_{2,t}$ " includes those with "no independent *t*-set" and if $\omega(G) \ge r+1$ for all such graphs, then $R(t, r+1) \le n$.

Since R(2, r) = r, Theorem 4 is exactly Holmsen's result when t = 2. In Section 3, using known Ramsey number bounds we prove explicit lower bounds for the clique number for all t. As an illustration, we state the case t = 3, which is particularly clean.

Theorem 5. Let G be a graph on n vertices with $\alpha \binom{n}{2}$ edges. If G does not contain an induced $K_{2,3}$, then

$$\begin{split} &\omega(G) \geqslant \left\lfloor \frac{2}{3} \alpha \sqrt{n} \right\rfloor \text{ for all } n, \text{ and} \\ &\omega(G) \geqslant \frac{1}{3} \alpha \sqrt{n \log n} + 2 \text{ for large enough } n \text{ in terms of } \alpha. \end{split}$$

The regime where α goes to zero is closely related to the following natural question first proposed by Loh, Tait, Timmons and Zhou [9]. Consider a graph G on n vertices with $\alpha \binom{n}{2}$ edges containing no induced $K_{2,t}$ – how large must α be to ensure that some fixed graph H is a subgraph of G? If we do not ban G from containing an induced $K_{2,t}$ then the answer follows from the theorem of Erdős and Stone [3] (see Erdős and Simonovits [2]): $\alpha = 1 - \frac{1}{\chi(H)-1} + o(1)$ where $\chi(H)$ is the chromatic number of H. However forbidding G from containing an induced $K_{2,t}$ (ruling out Turán-style graphs) changes the answer drastically. In particular we will see that the required α grows like $n^{-1/2}$, that is, the required number of edges grows like $n^{3/2}$.

Loh, Tait, Timmons and Zhou introduced the notion of an *induced Turán number*: define

$$ex(n, \{H, F\text{-ind}\})$$

The electronic journal of combinatorics $\mathbf{28(1)}$ (2021), #P1.19

to be the maximum number of edges in a graph on n vertices which does not contain H as a subgraph and does not contain F as an induced subgraph. In this paper we focus on $F = K_{2,t}$, which was also considered by Loh, Tait, Timmons and Zhou. We will give some improvements to their results. The important case where H is an odd cycle has been resolved by Ergemlidze, Győri and Methuku [5].

Proposition 6 (Loh-Tait-Timmons-Zhou, [9]). Let $t \ge 3$ be an integer and G be a graph on n vertices within minimum degree d. If G does not contain an induced $K_{2,t}$, then

$$\omega(G) \ge \left(\frac{d^2}{2n(t-1)}(1-o(1))\right)^{\frac{1}{t-1}} - t + 1.$$

A graph with $\alpha\binom{n}{2}$ edges has average degree $\alpha(n-1)$ and has a subgraph of minimum degree at least $\alpha(n-1)/2$. Thus one should view d as being between $\alpha(n-1)/2$ and $\alpha(n-1)$. We improve the dependence upon t for all α as well as adding a $(\log n)^{1-\frac{1}{t-1}}$ factor for constant $\alpha > 0$.

Theorem 7. Let G be a graph on n vertices with $\alpha\binom{n}{2}$ edges. If G does not contain an induced $K_{2,t}$, then

$$\omega(G) \ge \left\lfloor \frac{t-1}{4} (\alpha^2 n)^{\frac{1}{t-1}} \right\rfloor - t + 3 \text{ for all } n, \text{ and}$$
$$\omega(G) \ge \frac{1}{20t} (\alpha^2 n (\log n)^{t-2})^{\frac{1}{t-1}} \text{ for large enough } n \text{ in terms of } \alpha$$

Finally, Loh, Tait, Timmons and Zhou gave a general upper bound for $ex(n, \{H, F\text{-ind}\})$ when $F = K_{2,t+1}$.

Proposition 8 (Loh-Tait-Timmons-Zhou, [9]). Fix a graph H with v_H vertices. For any integer $t \ge 2$,

$$\exp(n, \{H, K_{2,t+1}\text{-ind}\}) < (\sqrt{2} + o(1))t^{\frac{1}{2}}(v_H + t)^{\frac{t}{2}}n^{\frac{3}{2}}.$$

They also noted that a corollary of Füredi [6] is that, for H not bipartite,

$$\frac{1}{4}t^{\frac{1}{2}}n^{\frac{3}{2}} - \mathcal{O}_t(n^{\frac{4}{3}}) \leq \exp(n, \{H, K_{2,t+1}\text{-ind}\})$$

In particular, for non-bipartite H, $\exp(n, \{H, K_{2,t+1}\text{-ind}\}) = \Theta_t(n^{3/2})$ but the correct growth rate in t lies between $\frac{1}{4}t^{1/2}n^{3/2}$ and $C_H t^{(t+1)/2}n^{3/2}$. We give a slightly more general result (expressing the upper bound for the induced Turán number in terms of a Ramsey number involving H – see Corollary 15 and Theorem 18) followed by an improvement to the general upper bound.

Theorem 9. Fix a graph H with v_H vertices. For any integer $t \ge 1$,

$$\exp(n, \{H, K_{2,t+1}\text{-ind}\}) < (t+1)^{\frac{v_H-1}{2}}n^{\frac{3}{2}},\\ \exp(n, \{H, K_{2,t+1}\text{-ind}\}) < e^{\frac{v_H}{2} - 1}2^{t-1}n^{\frac{3}{2}}.$$

The first bound shows that, for non-bipartite H, the correct growth rate in t is a polynomial in t times $n^{3/2}$. The second bound is better when t and v_H are of comparable size.

$\mathbf{2}$ Notation, main result and organisation

If v is a vertex of a graph G = (V, E) then $\Gamma(v) = \{u \in V : uv \in E\}$ is the neighbourhood of v. We set $G_v = G[\Gamma(v)]$. For a fixed graph H, let $\{H - x\}$ be the set of graphs obtained by removing a single vertex from H and let $\{H - \bar{e}\}$ be the set of graphs obtained from H by either removing a single vertex or two non-adjacent vertices. In particular the Ramsey number, $R(K_t, \{H - x\})$, is the least n such that any red-blue colouring of the edges of K_n contains either a red K_t or a blue graph which can be obtained from H by removing a single vertex.

Our main result is the following which applies for all values of α .

Theorem 10. Fix a graph H. Let G be a graph on n vertices with $\alpha\binom{n}{2}$ edges containing no induced $K_{2,t}$ $(t \ge 2)$ and let $\beta = \beta_t(\alpha)$.

If $R(K_t, \{H-x\}) \leq \beta^2 n$, then H is a subgraph of G. In particular, if $R(K_t, \{H-x\}) \leq \beta^2 n$. $\frac{t-1}{t^2} \cdot \alpha^2 n$, then H is a subgraph of G.

The sufficiency of $R(K_t, \{H - x\}) \leq \frac{t-1}{t^2} \cdot \alpha^2 n$ follows from the following lemma which relates β to α in a manageable way.

Lemma 11. For all $\alpha \in [0,1]$ and integers $t \ge 2$, $\beta = \beta_t(\alpha)$ satisfies

$$\begin{aligned} (t-1) (\alpha - \beta^2)^2 &= t^2 (1-\alpha) \beta^2, \\ \frac{\sqrt{t-1}}{t} \alpha \leqslant \beta \leqslant \alpha, \\ \beta \to 1, \ as \ \alpha \to 1. \end{aligned}$$

Proof. The equation $(t-1)(\alpha - \beta^2)^2 = t^2(1-\alpha)\beta^2$ is a quadratic in β^2 . One can check that $\beta_t(\alpha)$ does indeed square to a solution of this quadratic.

Fix t and define the function $f(x) = \sqrt{1 - (1 - 2/t)^2 x} - \sqrt{1 - x}$ for $x \in [0, 1]$. Then f is convex increasing with f(0) = 0 and $f(1) = \frac{2\sqrt{t-1}}{t}$. Thus $f(x) \leq \frac{2\sqrt{t-1}}{t}x$. Also the derivative of f at zero is $\frac{2}{t} - \frac{2}{t^2} = \frac{2(t-1)}{t^2}$ so $f(x) \geq \frac{2(t-1)}{t^2}x$. In particular $\beta = \frac{t}{2\sqrt{t-1}}f(\alpha)$ satisfies $\frac{\sqrt{t-1}}{t} \alpha \leq \beta \leq \alpha$. Finally, f is continuous so, as α tends to 1, β tends to $\frac{t}{2\sqrt{t-1}}f(1) = 1$.

We prove Theorem 10 in Section 5. Before that we use Ramsey estimates to obtain various corollaries. We normally give two versions of the results: one which holds for all values of n and a stronger bound which holds for large enough n (in terms of α). The latter is only really applicable in the regime where α is bounded away from zero.

In Section 3 we look at the special case where H is a complete graph, proving Theorems 4, 5 and 7. In Section 4 we consider general H for the Induced Turán problem (so α going to zero) and prove Theorem 9. Finally in Section 6 we exhibit a variation on our methods which gives a slight asymptotic improvement for the induced Turán number of H-free graphs with no induced $K_{2,t}$. This includes the observation that such graphs contain $\mathcal{O}(n^{27/14}) = o(n^2)$ triangles.

3 Clique numbers of graphs with no induced $K_{2,t}$

If we take $H = K_{r+1}$ in Theorem 10 then $\{H - x\} = \{K_r\}$ so Theorem 4 is immediate.

Theorem 4. Let G be a graph on n vertices with $\alpha\binom{n}{2}$ edges containing no induced $K_{2,t}$ and let $\beta = \beta_t(\alpha)$. For any positive integer r with $R(t,r) \leq \beta^2 n$, we have $\omega(G) \geq r+1$.

Remark 12. The following example illustrates why we believe this result is in a sense tight as $\alpha \to 1$. Consider a graph G on n vertices which has no independent t-set and smallest possible clique number (a Ramsey-like graph): that is, $R(t, \omega(G) + 1) > n \ge R(t, \omega(G))$. Now G has no independent t-set so does not contain an induced $K_{2,t}$. If there are such graphs with $(1 - o(1)) \binom{n}{2}$ edges then these form a sequence of graphs for which $\alpha \to 1$ (and so $\beta \to 1$), but for which the statement becomes false if β is actually replaced by 1.

We do believe that such graphs have $(1 - o(1))\binom{n}{2}$ edges. This would follow, for example, from $\frac{R(t-1,m)}{R(t,m)} \to 0$ as $m \to \infty$ (true for t = 3 and 4 by standard Ramsey bounds but not known in general): the non-neighbours of a vertex in such a graph, G, cannot contain an independent (t-1)-set, so there are at most $R(t-1,\omega(G)+1)$ non-neighbours, and so $\delta(G)$ would be (1 - o(1))n.

The following corollary for t = 3 contains Theorem 5.

Corollary 13. Let G be a graph on n vertices with $\alpha \binom{n}{2}$ edges which contains no induced $K_{2,3}$. Let $\beta = \beta_3(\alpha) = \frac{3}{2\sqrt{2}} \left[\sqrt{1 - \frac{\alpha}{9}} - \sqrt{1 - \alpha} \right]$. Then

$$\begin{split} \omega(G) &\ge \lfloor \beta \sqrt{2n} \rfloor \geqslant \lfloor \frac{2}{3} \alpha \sqrt{n} \rfloor \text{ for all } n, \text{ and} \\ \omega(G) &\ge \beta \sqrt{\frac{1}{2} n \log n} + 2 \geqslant \frac{1}{3} \alpha \sqrt{n \log n} + 2 \text{ for large enough } n, \text{ say } n \geqslant \exp(2e^2 \beta^{-2}). \end{split}$$

Proof. Firstly, the theorem of Erdős and Szekeres [4] gives that $R(3,r) \leq \binom{r+1}{2}$ for all positive r. Thus $r = \lfloor \beta \sqrt{2n} \rfloor - 1$ satisfies $R(3,r) \leq \frac{1}{2} \lfloor \beta \sqrt{2n} \rfloor^2 \leq \beta^2 n$ and so Theorem 4 gives the first result.

Secondly, $R(3,r) \leq \frac{(r-2)^2}{\log(r-1)-1}$ for all $r \geq 4$ (a corollary of Shearer's result on independent sets in triangle-free graphs, [10]). Thus $r = \left\lfloor \beta \sqrt{\frac{1}{2}n \log n} \right\rfloor + 2$ satisfies $R(3,r) \leq \beta^2 n$ provided $n \geq \exp(2e^2\beta^{-2})$.

The following corollary (which contains Theorem 7) for t larger than three is obtained in exactly the same way, using known bounds for R(t, r). Improvements in the upper bounds on Ramsey numbers would improve the results.

Corollary 14. Let G be a graph on n vertices with $\alpha\binom{n}{2}$ edges containing no induced $K_{2,t}$ and let $\beta = \beta_t(\alpha)$. Then

$$\begin{split} \omega(G) &\ge \left\lfloor \frac{t-1}{e} (\beta^2 n)^{\frac{1}{t-1}} \right\rfloor - t + 3 \text{ and } \omega(G) \geqslant \left\lfloor \frac{t-1}{4} (\alpha^2 n)^{\frac{1}{t-1}} \right\rfloor - t + 3 \text{ for all } n, \text{ and} \\ \omega(G) &\ge \frac{1}{20} (\beta^2 n)^{\frac{1}{t-1}} (\frac{\log n}{t-1})^{1-\frac{1}{t-1}} \geqslant \frac{1}{20t} (\alpha^2 n (\log n)^{t-2})^{\frac{1}{t-1}} \text{ for large enough } n \text{ in terms of } \beta. \end{split}$$

THE ELECTRONIC JOURNAL OF COMBINATORICS 28(1) (2021), #P1.19

Proof. The theorem of Erdős and Szekeres [4] gives that $R(t,r) \leq \binom{r+t-2}{t-1} \leq \frac{(r+t-2)^{t-1}}{(t-1)!}$ for all positive r. Thus $r = \left\lfloor \left(\beta^2 n(t-1)!\right)^{\frac{1}{t-1}} \right\rfloor - t + 2$ has $R(t,r) \leq \beta^2 n$ so, by Theorem 4,

$$\omega(G) \ge \left\lfloor \left(\beta^2 n(t-1)!\right)^{\frac{1}{t-1}} \right\rfloor - t + 3 \ge \left\lfloor \left(\frac{t-1}{t^2}\alpha^2 n(t-1)!\right)^{\frac{1}{t-1}} \right\rfloor - t + 3.$$

Furthermore $(t-1)! \ge \left(\frac{t-1}{e}\right)^{t-1}$ so $\left((t-1)!\right)^{\frac{1}{t-1}} \ge \frac{t-1}{e}$. That $\left(\frac{t-1}{t^2}(t-1)!\right)^{\frac{1}{t-1}} \ge \frac{t-1}{4}$ follows from $(t-1)! \ge \frac{(t-1)^{t-1/2}}{e^{t-1}}$ for $t \ge 4$ and can be checked directly for t = 2, 3. Finally $R(t,r) \le 2(20)^{t-3} \frac{r^{t-1}}{(\log r)^{t-2}}$ for r sufficiently large (see Bollobás [1, Thm 12.17]) so we obtain, for all large n, that

$$\omega(G) \ge \frac{1}{20} \left(\frac{\beta^2 n(\log n)^{t-2}}{(t-1)^{t-2}}\right)^{\frac{1}{t-1}} \ge \frac{1}{20} \left(\frac{\alpha^2 n(\log n)^{t-2}}{t^2(t-1)^{t-3}}\right)^{\frac{1}{t-1}}.$$

Turán number for no H and no induced $K_{2,t}$ 4

We now focus on the regime where α goes to zero and consider the induced Turán numbers introduced by Loh, Tait, Timmons and Zhou.

Corollary 15. Fix a graph H. For any integer $t \ge 2$,

$$\exp(n, \{H, K_{2,t}\text{-ind}\}) < \frac{t}{2\sqrt{t-1}}R(K_t, \{H-x\})^{\frac{1}{2}}n^{\frac{3}{2}}.$$

Proof. Let G be a graph on n vertices containing no induced $K_{2,t}$ and no copy of H. By Theorem 10, $R(K_t, \{H-x\}) > \frac{t-1}{t^2} \cdot \alpha^2 n$ so $\alpha < \frac{t}{\sqrt{t-1}} n^{-\frac{1}{2}} R(K_t, \{H-x\})^{\frac{1}{2}}$. Therefore

$$e(G) = \alpha\binom{n}{2} < \frac{t}{2\sqrt{t-1}}R(K_t, \{H-x\})^{\frac{1}{2}}n^{\frac{1}{2}}(n-1).$$

We now use Theorem 7 and Corollary 15 to prove Theorem 9, restated here for convenience.

Theorem 9. Fix a graph H with v_H vertices. For any integer $t \ge 1$,

$$\exp(n, \{H, K_{2,t+1}\text{-ind}\}) < (t+1)^{\frac{v_H-1}{2}}n^{\frac{3}{2}},\\ \exp(n, \{H, K_{2,t+1}\text{-ind}\}) < e^{\frac{v_H-1}{2}2^{t-1}}n^{\frac{3}{2}}.$$

Proof. Note that $R(K_t, \{H - x\}) \leq R(t + 1, v_H - 1)$. For all positive integers a and b

$$\binom{a+b-2}{a-1} = \frac{a+b-2}{a-1} \cdot \frac{a+b-3}{a-2} \cdots \frac{b}{1} \leqslant b^{a-1},$$

and so Erdős and Szekeres's bound [4] gives $R(K_{t+1}, \{H-x\}) \leq (t+1)^{v_H-2}$. By Corollary 15,

$$\exp(n, \{H, K_{2,t+1}\text{-ind}\}) < \frac{t+1}{2\sqrt{t}}(t+1)^{\frac{v_H}{2}-1}n^{\frac{3}{2}} < (t+1)^{\frac{v_H-1}{2}}n^{\frac{3}{2}}.$$

THE ELECTRONIC JOURNAL OF COMBINATORICS 28(1) (2021), #P1.19

Let G be a graph on n vertices with $\alpha\binom{n}{2}$ edges and no induced $K_{2,t+1}$. If G does not contain H then $\omega(G) < v_H$ so, by Theorem 7, $v_H > \lfloor \frac{t}{4} (\alpha^2 n)^{\frac{1}{t}} \rfloor - t + 2$. $v_H + t - 2$ is an integer so

$$v_H + t - 2 > \frac{t}{4} (\alpha^2 n)^{\frac{1}{t}}.$$

Now rearranging and using $e(G) = \alpha \binom{n}{2} < \frac{\alpha}{2}n^2$ we get

$$e(G) < n^{\frac{3}{2}} 2^{t-1} \left(1 + \frac{v_H - 2}{t} \right)^{\frac{t}{2}} < e^{\frac{v_H}{2} - 1} 2^{t-1} n^{\frac{3}{2}}.$$

5 Proof of main result

For convenience we restate the main result here. As mentioned earlier, the proof is motivated by that of Holmsen [8].

Theorem 10. Fix a graph H. Let G be a graph on n vertices with $\alpha\binom{n}{2}$ edges containing no induced $K_{2,t}$ $(t \ge 2)$ and let $\beta = \beta_t(\alpha)$.

If $R(K_t, \{H-x\}) \leq \beta^2 n$, then H is a subgraph of G. In particular, if $R(K_t, \{H-x\}) \leq \frac{t-1}{t^2} \cdot \alpha^2 n$, then H is a subgraph of G.

Proof. By Lemma 11, for $\alpha \in [0,1]$ we have $0 \leq \beta \leq \alpha \leq 1$ and also $\frac{t-1}{t^2} (\alpha - \beta^2)^2 = (1-\alpha)\beta^2$.

Suppose that G does not contain H. Let the set of missing edges in G be $M = \binom{V(G)}{2} - E(G)$, which has size $(1 - \alpha)\binom{n}{2}$. For each $v \in V(G)$, let

 m_v be the total number of missing edges in G_v ,

 $\bar{\Delta}_1, \ldots, \bar{\Delta}_{\gamma_v}$ be a maximal collection of pairwise vertex-disjoint independent *t*-sets in G_v .

By the maximality of γ_v , $G[\Gamma(v) \setminus \bigcup_j \overline{\Delta}_j]$ does not contain an independent *t*-set. Furthermore it does not contain any H - x (else together with v we have a copy of H in G). Thus

$$R(K_t, \{H - x\}) - 1 \ge |\Gamma(v)| - t\gamma_v = \deg(v) - t\gamma_v, \text{ and so}$$

$$\gamma_v \ge \frac{1}{t} [\deg(v) - R(K_t, \{H - x\}) + 1] \ge \frac{1}{t} [\deg(v) - \beta^2(n - 1)].$$
(1)

G contains no induced $K_{2,t}$ so at most one vertex in Δ_i is adjacent to all of Δ_j (for any $i \neq j$). In particular, between $\bar{\Delta}_i$ and $\bar{\Delta}_j$ there must be at least t-1 missing edges. These missing edges are in no $\bar{\Delta}_k$ (by vertex-disjointness) and each such edge corresponds to only one pair $(\bar{\Delta}_i, \bar{\Delta}_j)$. Considering these missing edges as well as the ones contained entirely in each $\bar{\Delta}_k$ gives

$$m_v \ge {t \choose 2}\gamma_v + (t-1){\gamma_v \choose 2} = q(\gamma_v),$$

where

$$q(x) = \frac{t-1}{2} \cdot x(x+t-1)$$

The electronic journal of combinatorics $\mathbf{28(1)}$ (2021), #P1.19

is convex and increasing for non-negative x. Averaging (1) over $v \in G$ we have

$$\frac{1}{n}\sum_{v\in G}\gamma_v \ge \frac{1}{tn}[2e(G) - \beta^2 n(n-1)] = \frac{1}{t}(\alpha - \beta^2)(n-1).$$

Using Jensen, the monotonicity of q, and the fact that $\alpha \ge \beta \ge \beta^2$ gives

$$\frac{1}{n}\sum_{v\in G}m_v \ge \frac{1}{n}\sum_{v\in G}q(\gamma_v) \ge q\left(\frac{1}{n}\sum_{v\in G}\gamma_v\right) \ge q\left(\frac{1}{t}\left(\alpha-\beta^2\right)(n-1)\right)$$
$$= \frac{t-1}{2}\cdot\frac{1}{t}\left(\alpha-\beta^2\right)(n-1)\cdot\left(\frac{1}{t}\left(\alpha-\beta^2\right)(n-1)+t-1\right)$$
$$\ge \frac{t-1}{2}\cdot\frac{1}{t}\left(\alpha-\beta^2\right)(n-1)\cdot\frac{1}{t}\left(\alpha-\beta^2\right)n$$
$$= \frac{t-1}{t^2}\left(\alpha-\beta^2\right)^2\cdot\binom{n}{2}$$
$$= \beta^2(1-\alpha)\binom{n}{2}.$$

Now $\sum_{v \in G} m_v = \sum_{\bar{e} \in M} \#\{v \text{ with } \bar{e} \subset \Gamma(v)\}$ and $|M| = (1 - \alpha) \binom{n}{2}$ so there is $\bar{e} \in M$ and $S \subset V(G)$ of size at least $\beta^2 n$ such that $\bar{e} \subset \Gamma(v)$ for each $v \in S$: that is, all vertices of S are in the common neighbourhood of the two end-vertices of the missing edge \bar{e} .

Now G[S] contains no independent *t*-set (else together with \bar{e} we have an induced $K_{2,t}$) and $|S| \ge \beta^2 n \ge R(K_t, \{H - x\})$ so G[S] contains a copy of some H - x. Together with one end-vertex of \bar{e} we have a copy of H in G.

Remark 16. It is natural to ask whether the ideas of this argument could be extended to graphs which contain no induced $K_{s,t}$. The argument above is so clean partly because the number of independent 2-sets in G is determined by α (it is $|M| = (1 - \alpha) {n \choose 2}$). Extending to no induced $K_{s,t}$ would require some knowledge of the number of independent s-sets in G.

6 Improvement when there are few triangles

Corollary 15 says $\exp(n, \{H, K_{2,t}\text{-ind}\}) < \frac{t}{2\sqrt{t-1}}R(K_t, \{H-x\})^{\frac{1}{2}}n^{\frac{3}{2}}$. In this section we show that *n*-vertex *H*-free graphs with no induced $K_{2,t}$ contain $o(n^2)$ triangles. This asymptotically improves our lower bound on the number of missing edges in each neighbourhood and so improves Corollary 15 by a factor of \sqrt{t} as well as reducing the Ramsey number used – see Theorem 18.

Theorem 17. Fix a graph H and an integer $t \ge 2$. Every n-vertex graph which contains no copy of H and no induced $K_{2,t}$ has at most $\mathcal{O}(n^{27/14})$ triangles.

Proof. By Corollary 15, there is a constant $C = C_{H,t}$ such that every *m*-vertex graph which contains no copy of *H* and no induced $K_{2,t}$ has at most $Cm^{3/2}$ edges.

Let G be a graph on n vertices containing no induced $K_{2,t}$ and no copy of H. For each vertex v of G, note that exactly $e(G_v)$ triangles in G contain v. As G has no copy of H and no induced $K_{2,t}$,

$$e(G) \leqslant Cn^{3/2},$$

$$e(G_v) \leqslant C \deg(v)^{3/2}.$$

Let X be the set of vertices in G whose degree is at least f(n) (a function of n whose value we give later). Firstly,

$$|X|f(n)\leqslant \sum_{v\in X} \deg(v)\leqslant 2e(G)\leqslant 2Cn^{3/2},$$

and so the number of triangles in G whose vertices are all in X is at most

$$\binom{|X|}{3} \leqslant \frac{1}{6} |X|^3 \leqslant \frac{4}{3} C^3 n^{9/2} f(n)^{-3}.$$

The number of triangles of G containing at least one vertex in $V(G) \setminus X$ is at most

$$\sum_{v \notin X} e(G_v) \leqslant C \sum_{v \notin X} \deg(v)^{3/2}.$$

The function $x \mapsto x^{3/2}$ is convex and all $v \notin X$ satisfy $\deg(v) \leqslant f(n)$, so

$$\sum_{v \notin X} \deg(v)^{3/2} \leqslant \left(f(n)^{-1} \sum_{v \notin X} \deg(v) \right) f(n)^{3/2} = f(n)^{1/2} \sum_{v \notin X} \deg(v)$$
$$\leqslant 2f(n)^{1/2} e(G) \leqslant 2C n^{3/2} f(n)^{1/2}.$$

Thus, the number of triangles in G is at most

$$\frac{4}{3}C^3n^{9/2}f(n)^{-3} + 2C^2n^{3/2}f(n)^{1/2}.$$

We minimise this last expression by taking $f(n) = 2^{4/7}C^{2/7}n^{6/7}$ which gives a value less than $3C^{15/7}n^{27/14}$.

Theorem 18. Fix a graph H and an integer $t \ge 2$. Let $\Delta(n, H, t)$ denote the greatest number of triangles in a graph on n vertices containing no copy of H and no induced $K_{2,t}$. Let G be a graph on n vertices with $\alpha\binom{n}{2}$ edges containing no induced $K_{2,t}$. If

$$\alpha^{2}(n-1) > R(K_{t}, \{H - \bar{e}\}) - 1 + 3\Delta(n, H, t) {\binom{n}{2}}^{-1},$$

then H is a subgraph of G. In particular,

$$\exp(n, \{H, K_{2,t}\text{-ind}\}) \leq \frac{1}{2} \left(R(K_t, \{H - \bar{e}\}) - 1 + o(1) \right)^{\frac{1}{2}} n^{\frac{3}{2}}.$$

Proof. $R(K_t, \{H - \bar{e}\}) \ge 2$ so we in fact have

$$\alpha[\alpha(n-1)-1] > (1-\alpha)(R(K_t, \{H-\bar{e}\})-1) + 3\Delta(n, H, t)\binom{n}{2}^{-1}.$$

THE ELECTRONIC JOURNAL OF COMBINATORICS 28(1) (2021), #P1.19

We will use this to show H is a subgraph of G. Suppose for contradiction it is not. Let the set of missing edges in G be $M = \binom{V(G)}{2} - E(G)$ which has size $(1 - \alpha)\binom{n}{2}$. For each $v \in V(G)$ let

$$e_v = e(G_v),$$

 $m_v = \text{ total number of missing edges in } G_v.$

First note that $e_v + m_v = {\binom{|\Gamma(v)|}{2}} = {\binom{\deg(v)}{2}}$, so, by Jensen's inequality,

$$\sum_{v \in G} (m_v + e_v) \ge n \binom{2e(G)/n}{2} = n \binom{\alpha(n-1)}{2} = \alpha [\alpha(n-1) - 1] \binom{n}{2}.$$

Now e_v is also the number of triangles in G containing v so $\sum_{v \in G} e_v$ is three times the number of triangles in G which is at most $3\Delta(n, H, t)$. Thus

$$\sum_{v \in G} m_v \ge \alpha [\alpha(n-1) - 1] \binom{n}{2} - 3\Delta(n, H, t) > (1 - \alpha) \binom{n}{2} (R(K_t, \{H - \bar{e}\}) - 1).$$

Now $\sum_{v \in G} m_v = \sum_{\bar{e} \in M} \#\{v \text{ with } \bar{e} \subset \Gamma(v)\}$ and $|M| = (1 - \alpha) {n \choose 2}$ so there is some missing edge \bar{e} and some $S \subset V(G)$ of size $R(K_t, \{H - \bar{e}\})$ with $\bar{e} \subset \Gamma(v)$ for each $v \in S$. G[S] does not contain an independent *t*-set (else together with \bar{e} we have an induced $K_{2,t}$ in G) so G[S] contains a copy of some H - x or some $H - \bar{e}$. Together with \bar{e} we have that G contains a copy of H proving the first result.

By Theorem 17, $\Delta(n, H, t) = o(n^2)$. Suppose that G is a graph on n vertices with no H and no induced $K_{2,t}$. We must have

$$\alpha^2(n-1) \leqslant R(K_t, \{H - \bar{e}\}) - 1 + o(1).$$

Using $e(G) = \alpha \binom{n}{2}$ we get the required result.

Acknowledgements

The author would like to thank Andrew Thomason for many helpful discussions as well as the anonymous referees for their careful reading of the manuscript and bringing [5] to the author's attention.

References

- [1] B. Bollobás. *Random Graphs*. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2nd edition, 2001.
- [2] P. Erdős and M. Simonovits. A limit theorem in graph theory. Studia Scientiarum Mathematicarum Hungarica, 1:51–57, 1966.
- [3] P. Erdős and A. H. Stone. On the structure of linear graphs. Bulletin of American Mathematical Society, 52:1087–1091, 1946.

- [4] P. Erdős and G. Szekeres. A combinatorial problem in geometry. Compositio Mathematica, 2:463–470, 1935.
- [5] B. Ergemlidze, E. Győri, and A. Methuku. Turán number of an induced complete bipartite graph plus an odd cycle. *Combinatorics, Probability and Computing*, 28(2):241–252, 2019.
- [6] Z. Füredi. New asymptotics for bipartite turán numbers. Journal of Combinatorial Theory, Series A, 75(1):141–144, 1996.
- [7] A. Gyárfás, A. Hubenko, and J. Solymosi. Large cliques in C₄-free graphs. Combinatorica, 22(2):269–274, Apr 2002.
- [8] A. Holmsen. Large cliques in hypergraphs with forbidden substructures. *Combinatorica*, 40(4):527–537, Mar 2020.
- [9] P.-S. Loh, M. Tait, C. Timmons, and R. M. Zhou. Induced Turán numbers. Combinatorics Probability and Computing, 27:1–15, Nov 2017.
- [10] J. B. Shearer. A note on the independence number of triangle-free graphs. Discrete Mathematics, 46(1):83–87, 1983.