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Abstract

Consider a graph G on n vertices with α
(
n
2

)
edges which does not contain an

induced K2,t (t > 2). How large must α be to ensure that G contains, say, a large
clique or some fixed subgraph H? We give results for two regimes: for α bounded
away from zero and for α = o(1).

Our results for α = o(1) are strongly related to the Induced Turán numbers
which were recently introduced by Loh, Tait, Timmons and Zhou. For α bounded
away from zero, our results can be seen as a generalisation of a result of Gyárfás,
Hubenko and Solymosi and more recently Holmsen (whose argument inspired ours).

Mathematics Subject Classifications: 05C35

1 Introduction

Fix an integer t > 2 and consider a graph G on n vertices with α
(
n
2

)
edges which does

not contain an induced K2,t. How large does α have to be to ensure that G contains some
substructure (like a large clique or a fixed subgraph H)? We consider two regimes: α is
bounded away from zero and α goes to zero as n goes to infinity.

In the regime where α is bounded away from zero, G will contain substructures that
grow with n (so for example the clique number of G, ω(G), will go to infinity). Gyárfás,
Hubenko and Solymosi [7] dealt with the clique number in the case when t = 2 (that is,
G contains no induced C4), confirming a conjecture of Erdős.

Proposition 1 (Gyárfás-Hubenko-Solymosi, [7]). Let G be a graph on n vertices with
α
(
n
2

)
edges. If G does not contain an induced K2,2, then ω(G) > α2n/10.

This was recently improved by Holmsen [8] (note that 1−
√

1− α > α/2 for α ∈ [0, 1]).
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Proposition 2 (Holmsen, [8]). Let G be a graph on n vertices with α
(
n
2

)
edges. If G does

not contain an induced K2,2, then ω(G) > (1−
√

1− α)2n.

This result has the added advantage that (1−
√

1− α)2 → 1 as α → 1, so it is approxi-
mately tight as α→ 1. The arguments in this paper are motivated by Holmsen’s.

Our main result is Theorem 10, which is an extension to the situation where G does
not contain an induced K2,t and also considers whether G contains some general subgraph
(in place of a clique). For comparison with Proposition 2, we state the special case of the
clique (we believe this result is also in a sense tight as α→ 1 – see Remark 12). First, it
will be convenient to define a constant β depending on α and t.

Definition 3. Given α ∈ [0, 1] and an integer t > 2, define

βt(α) =
t

2
√
t− 1

[√
1−

(
1− 2

t

)2
α−
√

1− α
]
.

Note that β2(α) = 1 −
√

1− α so Proposition 2 can be stated as: if G is a graph on n
vertices with α

(
n
2

)
edges containing no induced K2,2, then ω(G) > β2(α)2n.

Theorem 4. Let G be a graph on n vertices with α
(
n
2

)
edges containing no induced K2,t

and let β = βt(α). For any positive integer r with R(t, r) 6 β2n, we have ω(G) > r + 1.

Here R(t, r) denotes the usual Ramsey number. It is natural for Ramsey numbers to
appear in the statement. The class of graphs with “no induced K2,t” includes those with
“no independent t-set” and if ω(G) > r + 1 for all such graphs, then R(t, r + 1) 6 n.

Since R(2, r) = r, Theorem 4 is exactly Holmsen’s result when t = 2. In Section 3,
using known Ramsey number bounds we prove explicit lower bounds for the clique number
for all t. As an illustration, we state the case t = 3, which is particularly clean.

Theorem 5. Let G be a graph on n vertices with α
(
n
2

)
edges. If G does not contain an

induced K2,3, then

ω(G) >
⌊

2
3
α
√
n
⌋

for all n, and

ω(G) > 1
3
α
√
n log n+ 2 for large enough n in terms of α.

The regime where α goes to zero is closely related to the following natural question first
proposed by Loh, Tait, Timmons and Zhou [9]. Consider a graph G on n vertices with
α
(
n
2

)
edges containing no induced K2,t – how large must α be to ensure that some fixed

graph H is a subgraph of G? If we do not ban G from containing an induced K2,t then the
answer follows from the theorem of Erdős and Stone [3] (see Erdős and Simonovits [2]):
α = 1 − 1

χ(H)−1
+ o(1) where χ(H) is the chromatic number of H. However forbidding

G from containing an induced K2,t (ruling out Turán-style graphs) changes the answer
drastically. In particular we will see that the required α grows like n−1/2, that is, the
required number of edges grows like n3/2.

Loh, Tait, Timmons and Zhou introduced the notion of an induced Turán number :
define

ex(n, {H,F -ind})
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to be the maximum number of edges in a graph on n vertices which does not contain H
as a subgraph and does not contain F as an induced subgraph. In this paper we focus
on F = K2,t, which was also considered by Loh, Tait, Timmons and Zhou. We will give
some improvements to their results. The important case where H is an odd cycle has
been resolved by Ergemlidze, Győri and Methuku [5].

Proposition 6 (Loh-Tait-Timmons-Zhou, [9]). Let t > 3 be an integer and G be a graph
on n vertices within minimum degree d. If G does not contain an induced K2,t, then

ω(G) >

(
d2

2n(t− 1)
(1− o(1))

) 1
t−1

− t+ 1.

A graph with α
(
n
2

)
edges has average degree α(n − 1) and has a subgraph of minimum

degree at least α(n − 1)/2. Thus one should view d as being between α(n − 1)/2 and

α(n − 1). We improve the dependence upon t for all α as well as adding a (log n)1− 1
t−1

factor for constant α > 0.

Theorem 7. Let G be a graph on n vertices with α
(
n
2

)
edges. If G does not contain an

induced K2,t, then

ω(G) >
⌊
t−1

4
(α2n)

1
t−1

⌋
− t+ 3 for all n, and

ω(G) > 1
20t

(
α2n(log n)t−2

) 1
t−1 for large enough n in terms of α.

Finally, Loh, Tait, Timmons and Zhou gave a general upper bound for ex(n, {H,F -ind})
when F = K2,t+1.

Proposition 8 (Loh-Tait-Timmons-Zhou, [9]). Fix a graph H with vH vertices. For any
integer t > 2,

ex(n, {H,K2,t+1-ind}) < (
√

2 + o(1))t
1
2 (vH + t)

t
2n

3
2 .

They also noted that a corollary of Füredi [6] is that, for H not bipartite,

1
4
t
1
2n

3
2 −Ot

(
n

4
3

)
6 ex(n, {H,K2,t+1-ind}).

In particular, for non-bipartite H, ex(n, {H,K2,t+1-ind}) = Θt(n
3/2) but the correct

growth rate in t lies between 1
4
t1/2n3/2 and CHt

(t+1)/2n3/2. We give a slightly more general
result (expressing the upper bound for the induced Turán number in terms of a Ramsey
number involving H – see Corollary 15 and Theorem 18) followed by an improvement to
the general upper bound.

Theorem 9. Fix a graph H with vH vertices. For any integer t > 1,

ex(n, {H,K2,t+1-ind}) < (t+ 1)
vH−1

2 n
3
2 ,

ex(n, {H,K2,t+1-ind}) < e
vH
2
−12t−1n

3
2 .

The first bound shows that, for non-bipartite H, the correct growth rate in t is a poly-
nomial in t times n3/2. The second bound is better when t and vH are of comparable
size.
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2 Notation, main result and organisation

If v is a vertex of a graph G = (V,E) then Γ(v) = {u ∈ V : uv ∈ E} is the neighbourhood
of v. We set Gv = G[Γ(v)]. For a fixed graph H, let {H−x} be the set of graphs obtained
by removing a single vertex from H and let {H− ē} be the set of graphs obtained from H
by either removing a single vertex or two non-adjacent vertices. In particular the Ramsey
number, R(Kt, {H − x}), is the least n such that any red-blue colouring of the edges of
Kn contains either a red Kt or a blue graph which can be obtained from H by removing
a single vertex.

Our main result is the following which applies for all values of α.

Theorem 10. Fix a graph H. Let G be a graph on n vertices with α
(
n
2

)
edges containing

no induced K2,t (t > 2) and let β = βt(α).
If R(Kt, {H−x}) 6 β2n, then H is a subgraph of G. In particular, if R(Kt, {H−x}) 6

t−1
t2
· α2n, then H is a subgraph of G.

The sufficiency of R(Kt, {H − x}) 6 t−1
t2
· α2n follows from the following lemma which

relates β to α in a manageable way.

Lemma 11. For all α ∈ [0, 1] and integers t > 2, β = βt(α) satisfies

(t− 1)
(
α− β2

)2
= t2(1− α)β2,

√
t−1
t
α 6 β 6 α,

β → 1, as α→ 1.

Proof. The equation (t − 1)(α − β2)2 = t2(1 − α)β2 is a quadratic in β2. One can check
that βt(α) does indeed square to a solution of this quadratic.

Fix t and define the function f(x) =
√

1− (1− 2/t)2x−
√

1− x for x ∈ [0, 1]. Then

f is convex increasing with f(0) = 0 and f(1) = 2
√
t−1
t

. Thus f(x) 6 2
√
t−1
t

x. Also the

derivative of f at zero is 2
t
− 2

t2
= 2(t−1)

t2
so f(x) > 2(t−1)

t2
x. In particular β = t

2
√
t−1
f(α)

satisfies
√
t−1
t
α 6 β 6 α.

Finally, f is continuous so, as α tends to 1, β tends to t
2
√
t−1
f(1) = 1.

We prove Theorem 10 in Section 5. Before that we use Ramsey estimates to obtain various
corollaries. We normally give two versions of the results: one which holds for all values
of n and a stronger bound which holds for large enough n (in terms of α). The latter is
only really applicable in the regime where α is bounded away from zero.

In Section 3 we look at the special case where H is a complete graph, proving Theo-
rems 4, 5 and 7. In Section 4 we consider general H for the Induced Turán problem (so
α going to zero) and prove Theorem 9. Finally in Section 6 we exhibit a variation on
our methods which gives a slight asymptotic improvement for the induced Turán number
of H-free graphs with no induced K2,t. This includes the observation that such graphs
contain O(n27/14) = o(n2) triangles.
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3 Clique numbers of graphs with no induced K2,t

If we take H = Kr+1 in Theorem 10 then {H − x} = {Kr} so Theorem 4 is immediate.

Theorem 4. Let G be a graph on n vertices with α
(
n
2

)
edges containing no induced K2,t

and let β = βt(α). For any positive integer r with R(t, r) 6 β2n, we have ω(G) > r + 1.

Remark 12. The following example illustrates why we believe this result is in a sense tight
as α→ 1. Consider a graph G on n vertices which has no independent t-set and smallest
possible clique number (a Ramsey-like graph): that is, R(t, ω(G) + 1) > n > R(t, ω(G)).
Now G has no independent t-set so does not contain an induced K2,t. If there are such
graphs with (1 − o(1))

(
n
2

)
edges then these form a sequence of graphs for which α → 1

(and so β → 1), but for which the statement becomes false if β is actually replaced by 1.
We do believe that such graphs have (1 − o(1))

(
n
2

)
edges. This would follow, for

example, from R(t−1,m)
R(t,m)

→ 0 as m→∞ (true for t = 3 and 4 by standard Ramsey bounds

but not known in general): the non-neighbours of a vertex in such a graph, G, cannot
contain an independent (t−1)-set, so there are at most R(t−1, ω(G)+1) non-neighbours,
and so δ(G) would be (1− o(1))n.

The following corollary for t = 3 contains Theorem 5.

Corollary 13. Let G be a graph on n vertices with α
(
n
2

)
edges which contains no induced

K2,3. Let β = β3(α) = 3
2
√

2

[√
1− α

9
−
√

1− α
]
. Then

ω(G) > bβ
√

2nc >
⌊

2
3
α
√
n
⌋

for all n, and

ω(G) > β
√

1
2
n log n+ 2 > 1

3
α
√
n log n+ 2 for large enough n, say n > exp(2e2β−2).

Proof. Firstly, the theorem of Erdős and Szekeres [4] gives that R(3, r) 6
(
r+1

2

)
for all

positive r. Thus r = bβ
√

2nc − 1 satisfies R(3, r) 6 1
2
bβ
√

2nc2 6 β2n and so Theorem 4
gives the first result.

Secondly, R(3, r) 6 (r−2)2

log(r−1)−1
for all r > 4 (a corollary of Shearer’s result on indepen-

dent sets in triangle-free graphs, [10]). Thus r =
⌊
β
√

1
2
n log n

⌋
+2 satisfies R(3, r) 6 β2n

provided n > exp(2e2β−2).

The following corollary (which contains Theorem 7) for t larger than three is obtained
in exactly the same way, using known bounds for R(t, r). Improvements in the upper
bounds on Ramsey numbers would improve the results.

Corollary 14. Let G be a graph on n vertices with α
(
n
2

)
edges containing no induced K2,t

and let β = βt(α). Then

ω(G) >
⌊
t−1
e

(β2n)
1

t−1

⌋
− t+ 3 and ω(G) >

⌊
t−1

4
(α2n)

1
t−1

⌋
− t+ 3 for all n, and

ω(G) > 1
20

(
β2n

) 1
t−1
(

logn
t−1

)1− 1
t−1 > 1

20t

(
α2n(log n)t−2

) 1
t−1 for large enough n in terms of β.
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Proof. The theorem of Erdős and Szekeres [4] gives that R(t, r) 6
(
r+t−2
t−1

)
6 (r+t−2)t−1

(t−1)!
for

all positive r. Thus r =
⌊(
β2n(t− 1)!

) 1
t−1
⌋
− t+ 2 has R(t, r) 6 β2n so, by Theorem 4,

ω(G) >
⌊(
β2n(t− 1)!

) 1
t−1
⌋
− t+ 3 >

⌊(
t−1
t2
α2n(t− 1)!

) 1
t−1
⌋
− t+ 3.

Furthermore (t−1)! >
(
t−1
e

)t−1
so
(
(t−1)!

) 1
t−1 > t−1

e
. That

(
t−1
t2

(t−1)!
) 1

t−1 > t−1
4

follows

from (t− 1)! > (t−1)t−1/2

et−1 for t > 4 and can be checked directly for t = 2, 3.

Finally R(t, r) 6 2(20)t−3 rt−1

(log r)t−2 for r sufficiently large (see Bollobás [1, Thm 12.17])
so we obtain, for all large n, that

ω(G) >
1

20

(
β2n(log n)t−2

(t− 1)t−2

) 1
t−1

>
1

20

(
α2n(log n)t−2

t2(t− 1)t−3

) 1
t−1

.

4 Turán number for no H and no induced K2,t

We now focus on the regime where α goes to zero and consider the induced Turán numbers
introduced by Loh, Tait, Timmons and Zhou.

Corollary 15. Fix a graph H. For any integer t > 2,

ex(n, {H,K2,t-ind}) < t
2
√
t−1
R(Kt, {H − x})

1
2n

3
2 .

Proof. Let G be a graph on n vertices containing no induced K2,t and no copy of H. By

Theorem 10, R(Kt, {H − x}) > t−1
t2
· α2n so α < t√

t−1
n−

1
2R(Kt, {H − x})

1
2 . Therefore

e(G) = α
(
n
2

)
< t

2
√
t−1
R(Kt, {H − x})

1
2n

1
2 (n− 1).

We now use Theorem 7 and Corollary 15 to prove Theorem 9, restated here for conve-
nience.

Theorem 9. Fix a graph H with vH vertices. For any integer t > 1,

ex(n, {H,K2,t+1-ind}) < (t+ 1)
vH−1

2 n
3
2 ,

ex(n, {H,K2,t+1-ind}) < e
vH
2
−12t−1n

3
2 .

Proof. Note that R(Kt, {H − x}) 6 R(t+ 1, vH − 1). For all positive integers a and b(
a+b−2
a−1

)
= a+b−2

a−1
· a+b−3

a−2
· · · b

1
6 ba−1,

and so Erdős and Szekeres’s bound [4] gives R(Kt+1, {H − x}) 6 (t + 1)vH−2. By Corol-
lary 15,

ex(n, {H,K2,t+1-ind}) < t+1
2
√
t
(t+ 1)

vH
2
−1n

3
2 < (t+ 1)

vH−1

2 n
3
2 .
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Let G be a graph on n vertices with α
(
n
2

)
edges and no induced K2,t+1. If G does not

contain H then ω(G) < vH so, by Theorem 7, vH >
⌊
t
4
(α2n)

1
t

⌋
− t + 2. vH + t− 2 is an

integer so
vH + t− 2 > t

4
(α2n)

1
t .

Now rearranging and using e(G) = α
(
n
2

)
< α

2
n2 we get

e(G) < n
3
2 2t−1

(
1 + vH−2

t

) t
2 < e

vH
2
−12t−1n

3
2 .

5 Proof of main result

For convenience we restate the main result here. As mentioned earlier, the proof is
motivated by that of Holmsen [8].

Theorem 10. Fix a graph H. Let G be a graph on n vertices with α
(
n
2

)
edges containing

no induced K2,t (t > 2) and let β = βt(α).
If R(Kt, {H−x}) 6 β2n, then H is a subgraph of G. In particular, if R(Kt, {H−x}) 6

t−1
t2
· α2n, then H is a subgraph of G.

Proof. By Lemma 11, for α ∈ [0, 1] we have 0 6 β 6 α 6 1 and also t−1
t2

(
α − β2

)2
=

(1− α)β2.
Suppose that G does not contain H. Let the set of missing edges in G be M =(

V (G)
2

)
− E(G), which has size (1− α)

(
n
2

)
. For each v ∈ V (G), let

mv be the total number of missing edges in Gv,

∆̄1, . . . , ∆̄γv be a maximal collection of pairwise vertex-disjoint

independent t-sets in Gv.

By the maximality of γv, G[Γ(v)\ ∪j ∆̄j] does not contain an independent t-set. Further-
more it does not contain any H − x (else together with v we have a copy of H in G).
Thus

R(Kt, {H − x})− 1 > |Γ(v)| − tγv = deg(v)− tγv, and so

γv > 1
t
[deg(v)−R(Kt, {H − x}) + 1] > 1

t
[deg(v)− β2(n− 1)]. (1)

G contains no induced K2,t so at most one vertex in ∆̄i is adjacent to all of ∆̄j (for any
i 6= j). In particular, between ∆̄i and ∆̄j there must be at least t − 1 missing edges.
These missing edges are in no ∆̄k (by vertex-disjointness) and each such edge corresponds
to only one pair (∆̄i, ∆̄j). Considering these missing edges as well as the ones contained
entirely in each ∆̄k gives

mv >
(
t
2

)
γv + (t− 1)

(
γv
2

)
= q(γv),

where
q(x) = t−1

2
· x(x+ t− 1)
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is convex and increasing for non-negative x. Averaging (1) over v ∈ G we have

1

n

∑
v∈G

γv > 1
tn

[2e(G)− β2n(n− 1)] = 1
t

(
α− β2

)
(n− 1).

Using Jensen, the monotonicity of q, and the fact that α > β > β2 gives

1

n

∑
v∈G

mv >
1

n

∑
v∈G

q(γv) > q

(
1

n

∑
v∈G

γv

)
> q
(

1
t

(
α− β2

)
(n− 1)

)
= t−1

2
· 1
t

(
α− β2

)
(n− 1) ·

(
1
t

(
α− β2

)
(n− 1) + t− 1

)
> t−1

2
· 1
t

(
α− β2

)
(n− 1) · 1

t

(
α− β2

)
n

= t−1
t2

(
α− β2

)2 ·
(
n
2

)
= β2(1− α)

(
n
2

)
.

Now
∑

v∈Gmv =
∑

ē∈M #{v with ē ⊂ Γ(v)} and |M | = (1− α)
(
n
2

)
so there is ē ∈M and

S ⊂ V (G) of size at least β2n such that ē ⊂ Γ(v) for each v ∈ S: that is, all vertices of S
are in the common neighbourhood of the two end-vertices of the missing edge ē.

Now G[S] contains no independent t-set (else together with ē we have an induced K2,t)
and |S| > β2n > R(Kt, {H − x}) so G[S] contains a copy of some H − x. Together with
one end-vertex of ē we have a copy of H in G.

Remark 16. It is natural to ask whether the ideas of this argument could be extended to
graphs which contain no induced Ks,t. The argument above is so clean partly because the
number of independent 2-sets in G is determined by α (it is |M | = (1−α)

(
n
2

)
). Extending

to no induced Ks,t would require some knowledge of the number of independent s-sets
in G.

6 Improvement when there are few triangles

Corollary 15 says ex(n, {H,K2,t-ind}) < t
2
√
t−1
R(Kt, {H−x})

1
2n

3
2 . In this section we show

that n-vertex H-free graphs with no induced K2,t contain o(n2) triangles. This asymptot-
ically improves our lower bound on the number of missing edges in each neighbourhood
and so improves Corollary 15 by a factor of

√
t as well as reducing the Ramsey number

used – see Theorem 18.

Theorem 17. Fix a graph H and an integer t > 2. Every n-vertex graph which contains
no copy of H and no induced K2,t has at most O(n27/14) triangles.

Proof. By Corollary 15, there is a constant C = CH,t such that every m-vertex graph
which contains no copy of H and no induced K2,t has at most Cm3/2 edges.

Let G be a graph on n vertices containing no induced K2,t and no copy of H. For each
vertex v of G, note that exactly e(Gv) triangles in G contain v. As G has no copy of H
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and no induced K2,t,

e(G) 6 Cn3/2,

e(Gv) 6 C deg(v)3/2.

Let X be the set of vertices in G whose degree is at least f(n) (a function of n whose
value we give later). Firstly,

|X|f(n) 6
∑
v∈X

deg(v) 6 2e(G) 6 2Cn3/2,

and so the number of triangles in G whose vertices are all in X is at most(|X|
3

)
6 1

6
|X|3 6 4

3
C3n9/2f(n)−3.

The number of triangles of G containing at least one vertex in V (G) \X is at most∑
v 6∈X

e(Gv) 6 C
∑
v 6∈X

deg(v)3/2.

The function x 7→ x3/2 is convex and all v 6∈ X satisfy deg(v) 6 f(n), so∑
v 6∈X

deg(v)3/2 6

(
f(n)−1

∑
v 6∈X

deg(v)

)
f(n)3/2 = f(n)1/2

∑
v 6∈X

deg(v)

6 2f(n)1/2e(G) 6 2Cn3/2f(n)1/2.

Thus, the number of triangles in G is at most

4
3
C3n9/2f(n)−3 + 2C2n3/2f(n)1/2.

We minimise this last expression by taking f(n) = 24/7C2/7n6/7 which gives a value less
than 3C15/7n27/14.

Theorem 18. Fix a graph H and an integer t > 2. Let ∆(n,H, t) denote the greatest
number of triangles in a graph on n vertices containing no copy of H and no induced K2,t.
Let G be a graph on n vertices with α

(
n
2

)
edges containing no induced K2,t. If

α2(n− 1) > R(Kt, {H − ē})− 1 + 3∆(n,H, t)
(
n
2

)−1
,

then H is a subgraph of G. In particular,

ex(n, {H,K2,t-ind}) 6 1
2

(
R(Kt, {H − ē})− 1 + o(1)

) 1
2n

3
2 .

Proof. R(Kt, {H − ē}) > 2 so we in fact have

α[α(n− 1)− 1] > (1− α)(R(Kt, {H − ē})− 1) + 3∆(n,H, t)
(
n
2

)−1
.
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We will use this to show H is a subgraph of G. Suppose for contradiction it is not. Let
the set of missing edges in G be M =

(
V (G)

2

)
−E(G) which has size (1− α)

(
n
2

)
. For each

v ∈ V (G) let

ev = e(Gv),

mv = total number of missing edges in Gv.

First note that ev +mv =
(|Γ(v)|

2

)
=
(

deg(v)
2

)
, so, by Jensen’s inequality,∑

v∈G

(mv + ev) > n
(

2e(G)/n
2

)
= n

(
α(n−1)

2

)
= α[α(n− 1)− 1]

(
n
2

)
.

Now ev is also the number of triangles in G containing v so
∑

v∈G ev is three times the
number of triangles in G which is at most 3∆(n,H, t). Thus∑

v∈G

mv > α[α(n− 1)− 1]
(
n
2

)
− 3∆(n,H, t) > (1− α)

(
n
2

)
(R(Kt, {H − ē})− 1).

Now
∑

v∈Gmv =
∑

ē∈M #{v with ē ⊂ Γ(v)} and |M | = (1 − α)
(
n
2

)
so there is some

missing edge ē and some S ⊂ V (G) of size R(Kt, {H − ē}) with ē ⊂ Γ(v) for each v ∈ S.
G[S] does not contain an independent t-set (else together with ē we have an induced K2,t

in G) so G[S] contains a copy of some H − x or some H − ē. Together with ē we have
that G contains a copy of H proving the first result.

By Theorem 17, ∆(n,H, t) = o(n2). Suppose that G is a graph on n vertices with no
H and no induced K2,t. We must have

α2(n− 1) 6 R(Kt, {H − ē})− 1 + o(1).

Using e(G) = α
(
n
2

)
we get the required result.
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