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Abstract

Every subarrangement of Weyl arrangements of type B` is represented by a
signed graph. Edelman and Reiner characterized freeness of subarrangements be-
tween type A`−1 and type B` in terms of graphs. Recently, Suyama and the authors
characterized freeness for subarrangements containing Boolean arrangements satis-
fying a certain condition. This article is a sequel to the previous work. Namely,
we give a complete characterization for freeness of arrangements between Boolean
arrangements and Weyl arrangements of type B` in terms of graphs.

Mathematics Subject Classifications: 52C35, 32S22, 05C22, 20F55, 13N15

1 Introduction

A (central) hyperplane arrangement in a vector space is a finite collection of vector sub-
spaces of codimension one. In this article, we are mainly interested in the study of free-
ness of arrangements (see Section 2 for definitions and basic properties). An arrangement
consisting of the reflecting hyperplanes of a Weyl group is called a Weyl arrangement.
Saito [10, 11] proved that every Weyl arrangement is free. However, no complete char-
acterizations of freeness for Weyl subarrangements are known except for type A. Weyl
subarrangements of type A are represented by simple graphs and their freeness is charac-
terized in terms of simple graphs (see Section 2). In a similar way, Weyl subarrangements
of type B are represented by signed graphs.

In this article, a signed graph is a pair G = (G+, G−) in which G+ = (VG, E
+
G) and

G− = (VG, E
−
G) are simple graphs on a common set of vertices VG. Notice that we do

not consider graphs with loops, half edges, and so on. See [18] for a general treatment of
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signed graphs. Elements in the set E+
G (respectively E−G) are called positive (respectively

negative) edges. Edges are sometimes called links.
Let K be a field of characteristic zero. For each signed graph G on the vertex set

{1, . . . , `}, we define the signed-graphic arrangementA(G) in the `-dimensional vector
space K` by

A(G) := { {xi = 0} | 1 6 i 6 ` }
∪
{
{xi − xj = 0}

∣∣ {i, j} ∈ E+
G

}
∪
{
{xi + xj = 0}

∣∣ {i, j} ∈ E−G } ,
where (x1, . . . , x`) denotes a basis of the dual space (K`)∗ and, for each linear form α ∈
(K`)∗, {α = 0} denotes the hyperplane Ker(α) in K`. Note that, in [2, 5, 14], the
authors considered signed graphs with loops and associated to each loop the corresponding
coordinate hyperplane. In this article, however, we will always assume that every signed-
graphic arrangements contain all the coordinate hyperplanes.

Edelman and Reiner [5, Theorem 4.6] characterized the freeness of Weyl subarrange-
ments between type A`−1 and B` in terms of graphs. Bailey [2] characterized the freeness
of signed-graphic arrangements for some cases. Suyama and the authors characterized the
freeness of signed-graphic arrangements corresponding to graphs in the case G+ ⊇ G− as
follows.

Theorem 1.1 ([14, Theorem 1.4]). Let G be a signed graph with G+ ⊇ G−. Then the
following conditions are equivalent:

(1) G is balanced chordal.

(2) A(G) is divisionally free.

(3) A(G) is free.

Note that condition (2) in Theorem 1.1 is omitted in [14, Theorem 1.4]. However, the
verification of freeness was obtained via Abe’s division theorem, and therefore condition
(2) is also equivalent to the other two conditions.

The main result of this article is a generalization of Theorem 1.1 as follows. Note
that a signed-graphic arrangement A(G) is a Weyl subarrangement of type B containing
a Boolean arrangement, and vice versa, where a Boolean arrangement is an arrangement
consisting of the coordinate hyperplanes {xi = 0}.

Theorem 1.2. Let G be a signed graph. Then the following conditions are equivalent:

(1) G satisfies the following three conditions:

(I) G is balanced chordal.

(II) G has no induced subgraphs isomorphic to unbalanced cycles of length three or
more.

(III) G has no induced subgraphs which are switching equivalent to the graph in
Figure 1.
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Figure 1: An obstruction to freeness (Dashed line segments denote negative edges)

(2) A(G) is divisionally free.

(3) A(G) is free.

The organization of this article is as follows. In Section 2, we review basic properties of
freeness of hyperplane arrangements and we recall several results on graphic and signed-
graphic arrangements. Moreover, we present necessary conditions for the freeness of a
signed-graphic arrangement and we prove the implication (3) ⇒ (1) of Theorem 1.2. In
Section 3, we introduce a way to construct another signed graph G̃ from a signed graph
G. The signed graph G̃ satisfies the property G̃+ ⊇ G̃− and hence we may apply Theorem
1.1 to G̃. In Section 4, we prove Theorem 1.2 in the case G̃+ is complete. In Section 5,
we prove a key lemma which states that if G satisfies conditions (I)(II)(III), then G̃ is
balanced chordal. This section is an essential part of this article. In Section 6, we prove
the implication (1)⇒ (2) of Theorem 1.2 and complete the proof of our main result.

2 Preliminaries

2.1 Hyperplane arrangements

Let K be an arbitrary field, A a central arrangement in the `-dimensional vector space
K`. Our main reference on the theory of hyperplane arrangement is [9]. Define the set
L(A) by

L(A) :=

{ ⋂
H∈B

H

∣∣∣∣∣ B ⊆ A
}
.

Note that when B is empty, the intersection over B is the ambient vector space K`. For
subspaces X, Y ∈ L(A), we define a partial order 6 by the reverse inclusion, that is,

X 6 Y
def⇔ X ⊇ Y . The set L(A) equipped with the partial order 6 forms a geometric

lattice. We call L(A) the intersection lattice of A. The rank of A, denoted by
rank(A), is the codimension of the center

⋂
H∈AH. The one-variable Möebius function

µ : L(A)→ Z is defined recursively by

µ(K`) := 1 and µ(X) := −
∑
Y <X

µ(Y ).

The characteristic polynomial χ(A, t) of A is defined by

χ(A, t) :=
∑

X∈L(A)

µ(X)tdimX .
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Let S be the ring of polynomial functions on K` and Der(S) the module of derivations
of S. Namely,

Der(S) := { θ : S → S | θ is K-linear and θ(fg) = θ(f)g + fθ(g) for any f, g ∈ S } .

Define the module of logarithmic derivations by

D(A) := { θ ∈ Der(S) | θ(αH) ∈ αHS for any H ∈ A } ,

where αH ∈ (K`)∗ denotes a defining linear form of a hyperplane H ∈ A. Note that D(A)
is a graded S-module.

Definition 2.3. An arrangement A is said to be free if D(A) is a free S-module.

For each hyperplane H ∈ A, we define the restriction AH by

AH := {H ∩K | K ∈ A \ {H} } .

Note that AH is an arrangement in H.
There are several beautiful results on free arrangements, see for example [15] and [3].

The following results played an important role in [14].

Theorem 2.4 (Abe [1, Theorem 1.1] (Division Theorem)). Let H ∈ A. Suppose that AH
is free and χ(AH , t) divides χ(A, t). Then A is free.

Abe’s division theorem leads to the notion of divisional freeness.

Definition 2.5. Divisional freeness is defined recursively by the following rules.

(1) The empty arrangements are divisionally free.

(2) If there exists H ∈ A such that AH is divisionally free and χ(AH , t) divides χ(A, t),
then A is divisionally free.

Another important notion in the theory of arrangements is supersolvability. We say
that A is supersolvable if the intersection lattice L(A) is supersolvable, that is, there ex-
ists a maximal chain of L(A) consisting of modular elements (see [12] for more details). It
is well known that every supersolvable arrangement is (divisionally) free (see [8, Theorem
4.2] and [1, Theorem 4.4(2)] ).

2.2 Simple graphs and graphic arrangements

LetG = (VG, EG) be a simple graph. Given a subsetW ⊆ VG, letG[W ] denote the induced
subgraph on W . A chord of a cycle in G is an edge connecting two non-consecutive
vertices of the cycle. We say that G is chordal if every cycle of length four or more
has a chord. A vertex of G is called simplicial if its neighborhood is a clique, that is,
a complete subgraph. An ordering (v1, . . . , v`) of the vertices of G is called a perfect
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elimination ordering if vi is simplicial in the induced subgraph G[{v1, . . . , vi}] for each
i ∈ {1, . . . , `}.

For a simple graphG on the vertex set {1, . . . , `}, we define the graphic arrangement
A(G) in K` by

A(G) := { {xi − xj = 0} | {i, j} ∈ EG } .

Note that if we identify a simple graph G on ` vertices with a signed graph (G,K`), where
K` denotes the edgeless graph on ` vertices, then the graphic arrangement A(G) coincides
with the signed-graphic arrangement A(G,K`).

Characterizations of freeness of graphic arrangements are well known as follows.

Theorem 2.6 (Edelman-Reiner [5, Theorem 3.3], Fulkerson-Gross [6, Section 7], Stan-
ley [13, Corollary 4.10]). Let G be a simple graph. Then the following conditions are
equivalent:

(1) G is chordal.

(2) G has a perfect elimination ordering.

(3) A(G) is supersolvable.

(4) A(G) is free.

Together with chordal graphs, there is another important family of graphs.

Definition 2.7. Threshold graphs are defined recursively by the following conditions:

(1) The single-vertex graph K1 is threshold.

(2) If G is threshold, then the graph obtained by adding an isolated vertex to G is
threshold.

(3) If G is threshold, then the graph obtained by adding a dominating vertex to G is
threshold, where a vertex is said to be dominating if it is adjacent to the other
vertices.

The degree of a vertex v of G, denoted degG(v), is the number of vertices adjacent to
v. An ordering (v1, . . . , v`) of the vertices of G is called a degree ordering if degG(v1) >
. . . > degG(v`). Note that if G is threshold, then we have either v1 is dominating or v` is
isolated in every degree ordering.

Threshold graphs can also be characterized by forbidden induced subgraphs.

Theorem 2.8 (Golumbic [7, Corollary 5]). A simple graph G is threshold if and only if G
is (2K2, C4, P4)-free, that is, G has no induced subgraphs isomorphic to these three graphs
(see Figure 2).
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2K2 C4 P4

Figure 2: Forbidden induced subgraphs for threshold graphs

a b c d

abcd

a b c d

[abc]d

a b c d

[ab][cd]

Figure 3: Examples of notation of paths

2.3 Signed graphs and signed-graphic arrangements

Given a signed graph G and a subset W ⊆ VG, we call G[W ] := (G+[W ], G−[W ]) the
induced subgraph on W . For a vertex v ∈ VG, let G \ v denote the induced subgraph
on VG \ {v}. Call an edge e ∈ E+

G ∪ E
−
G double if e ∈ E+

G ∩ E
−
G , otherwise call e single.

A path of G is a sequence of distinct vertices v1, . . . , vk with positive or negative edges
{vi, vi+1} (1 6 i 6 k − 1). For k > 3, a cycle of length k of G is a path v1, . . . , vk with
an additional edge {v1, vk}. We use brackets for describing the negative parts of paths
and cycles (see Figure 3 for examples).

A chord of a cycle is an edge between two non-consecutive vertices in the cycle. A
cycle C is called balanced if C has an even number of negative edges, otherwise C is
called unbalanced. A balanced chord of a balanced cycle C is a chord which separates
C into two balanced cycles.

Definition 2.9. A signed graph G is said to be balanced chordal if every balanced
cycle of length at least four has a balanced chord.

Balanced chordality is a generalization of chordality of simple graphs. Namely, if G is
a chordal simple graph on ` vertices, then the signed graph (G,K`) is balanced chordal.
We have the following proposition describing the relation of such graphs with freeness.

Proposition 2.10 ([14, Lemma 4.7]). If a signed-graphic arrangement A(G) is free, then
G is balanced chordal.

Proposition 2.11 ([14, Proposition 4.6]). Let F be an induced subgraph of a signed graph
G. If A(G) is free, then A(F ) is free.

As for the concept of balanced chordal signed graphs, also the notion of simplicial
vertices can be generalized to signed graphs.

Definition 2.12. A vertex v of G is said to be link simplicial if, for any two distinct
edges incident to v, there exists an edge such that they form a balanced triangle. An
ordering (v1 . . . , v`) of the vertices of G is called a link elimination ordering if vi is
link simplicial in the induced subgraph G[{v1, . . . , vi}] for each i ∈ {1, . . . , `}.
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Remark 2.13. Note that a vertex is link simplicial if and only if it is bias simplicial (or
signed simplicial) in the signed graph with a loop at every vertex (see [19, 14]).

Zaslavsky completely characterized supersolvability of signed-graphic arrangements.
However, we need only the following result in this article.

Theorem 2.14 (Zaslavsky [19, Theorem 2.2]). Suppose that a signed graph G has a link
elimination ordering. Then A(G) is supersolvable.

A switching function ν of a signed graph G is a function ν : VG → {±1}. The signed
graph switched by ν is a signed graph Gν consisting of the following data:

(1) VGν := VG.

(2) E+
Gν :=

{
{u, v} ∈ E+

G

∣∣ ν(u) = ν(v)
}
∪
{
{u, v} ∈ E−G

∣∣ ν(u) 6= ν(v)
}

.

(3) E−Gν :=
{
{u, v} ∈ E+

G

∣∣ ν(u) 6= ν(v)
}
∪
{
{u, v} ∈ E−G

∣∣ ν(u) = ν(v)
}

.

We say that G and Gν are switching equivalent.

Remark 2.15. Note that freeness and the intersection lattice of signed-graphic arrange-
ments is stable under switching since switching acts on arrangements as a coordinate
transformation. Moreover, conditions (I) (II) (III) from Theorem 1.2 are also stable un-
der switching.

Let e be an edge of a signed graph G and H = {xi ± xj = 0} the corresponding
hyperplane (the sign depends on the sign of e). Deleting xi in the defining equations
of hyperplanes in A(G) with the relation xi ± xj = 0 we obtain the restriction A(G)H .
This is again a signed-graphic arrangement, that is, there exists a signed graph Gi on
VG \ {i} such that A(Gi) = A(G)H . If we delete xj, then we have another representation
of A(G)H and there exists a signed graph Gj on VG \{j} such that A(Gj) = A(G)H . The
graphs Gi and Gj are not isomorphic in general but one can show that they are switching
equivalent. Let G/e denote Gi or Gj and call it the contraction.

Proposition 2.16. Let G be an unbalanced cycle of length three or more. Then A(G) is
non-free.

Proof. We proceed by induction on the length ` of the cycle G. First assume that ` = 3.
Then the characteristic polynomial is

χ(A(G), t) = t3 − 6t2 + 12t− 7 = (t− 1)(t2 − 5t+ 7).

By Terao’s factorization theorem [16], we have A(G) is non-free.
Now suppose that ` > 4. Assume that A(G) is free. Fix an edge e and let H be

the corresponding hyperplane. Since G \ {e} has a link elimination ordering, the deletion
A(G)\{H} is supersolvable by Theorem 2.14. Using the restriction theorem [9, Corollary
4.47], we have that A(G)H is free. However, since G/e is an unbalanced cycle of length
` − 1, by the induction hypothesis, A(G)H is non-free, which is a contradiction. Thus
A(G) is non-free.
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G G̃

Figure 4: Example of G and G̃

Proposition 2.17. Let G be the signed graph in Figure 1. Then A(G) is non-free.

Proof. The characteristic polynomial A(G) is

χ(A(G), t) = t4 − 12t3 + 52t2 − 92t+ 51 = (t− 1)(t− 3)(t2 − 8t+ 17).

By Terao’s factorization theorem, we have A(G) is non-free.

From Proposition 2.10, 2.11, 2.16, and 2.17, we obtain the following lemma, that
proves the implication (3)⇒ (1) of Theorem 1.2..

Lemma 2.18. Let G be a signed graph. If A(G) is free, then conditions (I), (II), and
(III) hold.

3 The graph G̃

In this section, we will describe how to construct a new signed graph G̃ from a given
signed graph G. Furthermore, we will investigate the properties of G̃. This new graph
will play an important role in this article.

Definition 3.19. Let G = (G+, G−) be a signed graph. Define G̃ := (G̃+, G̃−), where
G̃+ := G+ ∪G− and G̃− := G+ ∩G−.

Note that G̃+ is the underlying simple graph of G and G̃− is the simple graph consisting
of the double edges of G. Therefore G̃ satisfies G̃+ ⊇ G̃−. Furthermore, we obtain the
graph G̃ by replacing the single edges of G with single positive edges. Hence, for any
switching function ν, G and Gν yield the same graph G̃. However, G and G̃ are not
switching equivalent in general (see Figure 4).

Proposition 3.20. If a signed graph G satisfies (I) and (II), then G̃+ is chordal.

Proof. Let C be a cycle of G̃+ of length at least four. Let C ′ be a cycle of G corresponding
to C. It suffices to show that C ′ has a chord since every chord of C ′ leads a chord of C.
If C ′ is unbalanced, then C ′ has a chord or admits a double edge by (II). When the latter
holds, we obtain a balanced cycle by changing the sign of the double edge C ′. Hence we
may assume that C ′ is balanced. By (I), we have that C ′ has a chord.

Proposition 3.21. Let G be a signed graph. Then a link-simplicial vertex in G is link
simplicial in G̃. Moreover, when G has no induced subgraph isomorphic to an unbalanced
triangle, a link-simplicial vertex in G̃ is link simplicial in G.
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Proof. First we assume that v is link simplicial in G and prove that v is link simplicial in
G̃. Take edges e, e′ of G̃ incident to v such that the other endvertices u, u′ are distinct.

If e or e′ is double, then there exists a double edge between u and u′ since v is a
link-simplicial vertex of G. Therefore we may choose an edge forming a balanced triangle
with e, e′.

Now we assume that both e and e′ are positive single edges. Then we have a positive
edge in G̃ since v is link simplicial in G and this edge forms a balanced triangle with e, e′.

Next suppose that G has no induced subgraph isomorphic to an unbalanced triangle
and take a link-simplicial vertex v in G̃. We prove that v is link simplicial in G. Let e, e′

be edges of G incident to v such that the other endvertices u, u′ are different.
If e or e′ is double, we may prove the assertion in a similar way to the above. Suppose

that both e and e′ are single edges. Since v is link simplicial in G̃, there exists an edge e′′

of G between u and u′. If e, e′, e′′ form an unbalanced triangle, then e′′ is double since G
has no induced subgraph isomorphic to an unbalanced triangle. Thus we obtain an edge
forming a balanced triangle with e and e′. Therefore v is link simplicial in G.

4 The case G̃+ is complete

In this section, we consider the case that G̃+ is complete.

Proposition 4.22. Suppose that G̃+ is complete. If G satisfies (I) and (III), then G̃− is
threshold.

Proof. Assume that G̃− is not threshold. Then G̃− has an induced subgraph H isomorphic
to 2K2, C4, or P4 by Theorem 2.8. Let VH = {a, b, c, d} be the vertex set of H.

First suppose that H = 2K2. We may assume that {a, b} and {c, d} are the edges of
H. In other words, {a, b} and {c, d} are the double edges of G[{a, b, c, d}]. By switching,
we may assume that {a, d} and {b, c} are single positive edges. Considering the balanced
cycles abcda and [ab][cd]a, by condition (I), we may assume that {a, c} is a single positive
edge and {b, d} is a single negative edge, which contradicts condition (III).

Next suppose that H = C4 and that {a, b}, {b, c}, {c, d}, {d, a} are the double edges
of G[{a, b, c, d}]. By switching, we may assume that the single edges {a, c} and {b, d} are
positive. Consider the balanced cycle [ab][cd]a, we have that {a, c} or {b, d} is negative,
which is a contradiction. The case H = P4 is similar. Thus the assertion holds.

We are now ready to prove Theorem 1.2 in the case that G̃+ is complete.

Proposition 4.23. Suppose that G̃+ is complete. Then the following conditions are
equivalent:

(1) G has a link elimination ordering.

(2) A(G) is supersolvable.

(3) A(G) is free.
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(4) G satisfies (I), (II), and (III).

(5) G satisfies (II) and G̃− is threshold.

Proof. By Theorem 2.14, we have (1)⇒ (2). The implication (2)⇒ (3) is well known, as
mentioned before. From Lemma 2.18, the implication (3) ⇒ (4) holds. By Proposition
4.22, we have (4)⇒ (5).

We now show the implication (5) ⇒ (1). Let (v1, . . . , v`) be a degree ordering of G.
Since degG(vi) = degG̃(vi) = degG̃+(vi) + degG̃−(vi) for every i ∈ {1, . . . , `} and G̃+ is
complete, the ordering (v1, . . . , v`) is a degree ordering of G̃−. We proceed by induction
on `. The case ` = 1 is trivial. Assume that ` > 2. It is sufficient to prove that v` is a
link-simplicial vertex of G.

First assume that v` is isolated in G̃−. Then v` is connected to the other vertices
with single edges in G. Take two distinct single edges {vi, v`} and {vj, v`}. Since G̃+ is
complete and the induced subgraph G[{vi, vj, v`}] is not isomorphic to a unbalanced cycle
by condition (II), we have that {vi, vj} is a double edge or G[{vi, vj, v`}] is a balanced
triangle. In both cases, the vertex v` is a link-simplicial vertex of G.

Next we suppose that v` is not isolated in G̃−. Since G̃− is threshold, v1 is a dominating
vertex of G̃−. In other words, v1 is connected to the other vertices by double edges in G.
By the induction hypothesis v` is link simplicial in G[{v2, . . . , v`}]. Therefore v` is link
simplicial in G.

5 Balanced chordality of G̃

This section is devoted to prove the following crucial lemma.

Lemma 5.24. If a signed graph G satisfies conditions (I) (II) (III), then G̃ is balanced
chordal.

In order to prove the previous lemma, we need the following proposition.

Proposition 5.25. Suppose that G is a signed graph satisfying conditions (I) (II) (III)
and let C be a cycle of G of length four or more admitting two double edges. Let A,B
be the vertex sets of the connected components of the graph obtained by removing these
double edges from C. If C has no chords connecting vertices within A and within B, then
C has a double chord between a vertex in A and a vertex in B.

Proof. We will show the assertion by induction on the length of C and separate the cases.
Without loss of generality, we may assume that all the edges of C are positive by switching.
We label the vertices of C as shown in Figure 5

Case 1. Assume that |A| = 1 (Figure 6a). By induction, we will show that every chord
{a1, bi} (2 6 i 6 s− 1) is double.

First assume that the length of C equals four, that is, s = 3. By condition (I),
the balanced cycle a1b1b2b3a1 yields a positive chord {a1, b2}. Similarly, considering the
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a1
A

a2 a3 ar

b1
B

b2 b3 bs

Figure 5: The cycle C with the double edges

a1

b1 b2 bs

(a)

a1 a2

b1 b2

(b)

a1 a2

b1 b2 bs

(c)

Figure 6: Cases 1, 2, and 3

balanced cycle [a1b1]b2[b3a1], we obtain a negative chord {a1, b2}. Thus {a1, b2} is a double
chord.

Next, we assume that s > 4. By condition (I), we obtain a positive chord {a1, bi}
for some i ∈ {2, . . . , s − 1}, which separates our cycle C into two smaller cycles. By the
induction hypothesis, we may conclude that the assertion is true.

Case 2. Assume that the length of C equals four. If |A| = 1 or |B| = 1, then the assertion
holds by Case 1. Hence we may assume that |A| = |B| = 2 (Figure 6b). The balanced
cycles a1b1b2a2a1 and [a1b1][b2a2]a1 yield a positive and a negative chord, respectively. If
these two chords coincide, then we obtain a desired double chord. If not, the simple graph

˜G[A ∪B]
+

is complete. Therefore, by Proposition 4.23, we have that the simple graph

˜G[A ∪B]
−

is threshold. By Theorem 2.8, one of {a1, b2} and {a2, b1} is double.

Case 3. Assume that |A| = 2 and {a1, a2} is double (Figure 6c). Then the balanced
cycle a1b1 · · · bsa2a1 yields a positive chord between a vertex in A and a vertex in B.
By symmetry, we may assume that one of the endvertices is a1. Take a positive chord
{a1, bm} with m maximal. If m < s, then the cycle a1bmbm+1 · · · bsa2a1 is of length four or
more admitting double edges {a1, a2} and {a2, b2}. Applying the result of Case 1, every
{a2, bi} (m 6 i 6 s) is double. Therefore we may assume that m = s, that is, there exists
the positive chord {a1, bs}. Since the cycle a1b1 · · · bsa1 is balanced, every {a1, bi} (2 6
i 6 s) is a positive chord. Considering the balanced cycle [a1b1]b2 · · · bs[a2a1], we obtain
a balanced chord. If one of the endvertices of this chord is a1, then this chord is negative
and hence we have a double chord. Therefore we may assume that there is a positive
chord between a2 and a vertex in B. Let {a2, bm} be a positive chord with m minimal.
By the similar discussion above, we may assume that m = 1 and we obtain positive chords
{a2, bi} (1 6 i 6 s). The balanced cycle [a1b1]b2 · · · bs−1[bsa2]a1 yields a negative chord,
which must be double.
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a1 an am ar

b1 b2 bs

(a)

a1 a a′ ar

b1 b b′ bs

(b)

a1 am ai ar

b1 bj−1 bj bs

T

(c)

Figure 7: Case 4

Case 4. Assume that the length of C is at least five. By Case 1, we may suppose that
|A| > 2 and |B| > 3. First, we show that there exists a positive chord {a, b} such that
a ∈ A and b ∈ B \ {b1, bs}. By condition (I), there exists a positive chord between a
vertex in A and a vertex in B. We may assume that one of the endvertices of this chord
is bs. Let {am, bs} be the positive chord with m minimal. Since s = |B| > 3, the balanced
cycle a1b1 · · · bsam · · · a1 is of length four or more and hence has a positive chord. We may
assume that one of the endvertices of this chord is b1 and take the positive chord {an, b1}
such that n 6 m and n is maximal (Figure 7a). The balanced cycle anb1 · · · bsam · · · an
is of length four or more and hence we obtain a desired positive chord {a, b}. Using
the balanced cycle [a1b1]b2 · · · bs−1[bsar] · · · a1, we have a negative chord {a′, b′} such that
a′ ∈ A and b′ ∈ B \ {b1, bs} in a similar way.

If the positive chord {a, b} and the negative chord {a′, b′} coincide, then this is a
desired double chord. Otherwise, the positive chord {a, b}, the negative chord {a′, b′},
the path between a and a′, and the path between b and b′ form an unbalanced cycle
(Figure 7b). If the length of this unbalanced cycle is four or more, then it has a chord by
Proposition 3.20. This chord separates the unbalanced cycle into smaller balanced and
unbalanced cycles. Applying the same argument to the smaller unbalanced cycle one after
another, we obtain a unbalanced triangle T consisting of a positive and a negative chords
of C and an edge e lying in A or B. If one of these two chords is double, then this is a
desired double chord. Hence we may assume that e is double by condition (II).

If |A| = 2 and e = {a1, a2}, then we have a double chord by Case 3. Hence we may
assume that |A| > 3 or the edge e lies in B. In both cases, without loss of generality,
we may assume that the vertex set of T is {ai, bj−1, bj} for some i ∈ {1, . . . , r} and
j ∈ {3, . . . , s} by symmetry (Figure 7c). Let m be the minimal number such that the
chord {am, bj} exists. By switching, we may assume that this chord is positive. The
balanced cycle a1b1 · · · bjam · · · a1 is of length four or more and satisfies the hypothesis of
this proposition. By the induction hypothesis, this cycle has a double chord, which is a
desired double chord of C.

Proof of Lemma 5.24. Let C be a balanced cycle of G̃ of length at least four. If every
edge of C is positive, then C has a positive chord by Proposition 3.20. Hence we may
assume that C has at least two negative edges. Let C ′ be a cycle of G corresponding to
C. Since C has at least two negative edges, the cycle C ′ admits at least two double edges.
Hence we may assume that C ′ is a cycle as shown in Figure 5. Without loss of generality,

the electronic journal of combinatorics 27(3) (2020), #P3.10 12



we may assume that |A| 6 |B|.
Let C ′′ be a cycle of G on the vertices a1, b1, ar, bs, and some vertices in A and B

such that there is no chord lying in both A and B. Suppose that the length of C ′′ is
three. This happens only when |A| = 1 and C ′′ is a cycle on the vertices {a1, b1, bs}. The
edge {b1, bs} leads to a positive chord of C. Therefore we may assume that the length
of C ′′ is at least four. By Proposition 5.25, the cycle C ′′ has a double chord between a
vertex in A and a vertex in B, which is also a double chord of C ′. Choosing a sign of the
corresponding double chord of C, we may say that C has a balanced chord. Thus G̃ is
balanced chordal.

6 Proof of Theorem 1.2

The following result played a key role in [14].

Proposition 6.26 ([14, Proposition 6.5 and Lemma 6.9]). Let G be a signed graph with
G+ ⊇ G−. If G is balanced chordal, then one of the following holds:

(i) G has a link-simplicial vertex.

(ii) There exist induced subgraphs G1 and G2 such that G1∪G2 = G and G1∩G2 = K±n ,
where K±n := (Kn, Kn) denotes a signed graph on n vertices with all possible edges,
which is called the complete signed graph.

If G is a signed graph with property (ii) in Proposition 6.26, then the characteristic
polynomial of A(G) is decomposed as

χ(A(G), t) =
χ(A(G1), t)χ(A(G2), t)

χ(A(K±n ), t)

as shown in [14, Theorem 4.10 and Lemma 4.13]. The decomposition is a special case of a
property of generalized parallel connections of simple matroids studied by Brylawski [4].
In [17], the second author investigated some arrangements obtained by modular joins (a
special kind of generalized parallel connections). For signed graphs, we have the following
proposition.

Proposition 6.27 ([17, Theorem 4.11]). Let M be the minimal class of signed graphs
satisfying the following conditions.

(i) The null graph is a member of M.

(ii) If G has a link-simplicial vertex v and G \ v ∈M, then G ∈M.

(iii) If there exist induced subgraphs G1 and G2 of a signed graph of G such that G1∪G2 =
G and G1 ∩G2 = K±n for some n and G1, G2 ∈M, then G ∈M.

Then for every G ∈M, the corresponding arrangement A(G) is divisionally free.

the electronic journal of combinatorics 27(3) (2020), #P3.10 13



Remark 6.28. In this article, we always suppose that A(G) contains the Boolean arrange-
ments. Therefore the graph is considered to equip all loops in terminology of [17].

Now we are ready to prove the main theorem.

Proof of Theorem 1.2. The implication (3)⇒ (1) is due to Lemma 2.18. The implication
(2)⇒ (3) is trivial by the definition of divisional freeness.

We just need to prove the implication (1) ⇒ (2). This will be achieved by induction
on `, the number of vertices of G. We may assume that ` > 2 and show that G ∈ M,
where M is defined in Proposition 6.27.

By Lemma 5.24, G̃ is balanced chordal. Therefore G̃ has a link-simplicial vertex v or
G̃ is the union of two signed graphs whose intersection is a complete signed graph.

Suppose the former case holds. By Proposition 3.21, the vertex v is link simplicial in
G. Since the induced subgraph G \ v also satisfies conditions (I)(II)(III), the graph G \ v
belongs to M bu the induction hypothesis. Hence G also belongs to M.

Next we consider the latter case. Then there exist induced subgraphs G1 and G2 such
that G1∪G2 = G and G1∩G2 = K±n for some n. By the induction hypothesis G1, G2 ∈M
and hence G ∈M.

Thus we have proven that G ∈ M by induction. Applying Proposition 6.27, we can
conclude that A(G) is divisionally free.
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