On prime-valent symmetric Cayley graphs of finite simple groups

Jing Jian Li*

College of Mathematics and Information Science Guangxi University Nanning, P. R. China

lijjhx@163.com

Jicheng Ma[†]

Chongqing Key Lab. of Group & Graph Theories and Applications Chongqing University of Arts and Sciences Chongqing, P. R. China

 $ma_jicheng@hotmail.com$

Submitted: Feb 18, 2020; Accepted: Jan 30, 2021; Published: Feb 26, 2021 © The authors. Released under the CC BY-ND license (International 4.0).

Abstract

We give a characterization of the automorphism groups of connected primevalent symmetric Cayley graphs on finite (non-abelian) simple groups. Mathematics Subject Classifications: 05C25, 05E18

1 Introduction

Throughout this paper, all graphs are assumed to be finite, simple and undirected. For a graph Γ , we denote by $V(\Gamma)$, $E(\Gamma)$, $A(\Gamma)$ and $\operatorname{Aut}(\Gamma)$ its vertex set, edge set, arc set and (full) automorphism group, respectively. A graph Γ is said to be *X*-arc-transitive or *X*-symmetric if $X \leq \operatorname{Aut}(\Gamma)$ acts transitively on $A(\Gamma)$. Especially, when $X = \operatorname{Aut}(\Gamma)$, an *X*-arc-transitive (or *X*-symmetric) graph is simply called an *arc-transitive* (or *symmetric*) graph.

Let G be a group and an inverse-closed subset S of $G \setminus \{1\}$. A Cayley graph $\operatorname{Cay}(G, S)$ of G with connection set S is the graph with vertex set G and edge set $\{\{g, sg\} \mid g \in G, s \in S\}$. Clearly, $\operatorname{Cay}(G, S)$ has valency |S|, and it is connected if and only if $\langle S \rangle = G$.

The electronic journal of combinatorics $\mathbf{28(1)}$ (2021), #P1.42

^{*}Supported by NNSF of China (11861012).

[†]The corresponding author.

Moreover, each $g \in G$ induces an automorphism of $\operatorname{Cay}(G, S)$ by right multiplication on vertices, and so G can be regarded as a regular subgroup of $\operatorname{Aut}(\operatorname{Cay}(G, S))$. In this way, if G is normal in $\operatorname{Aut}(\operatorname{Cay}(G, S))$, then $\operatorname{Cay}(G, S)$ is called a *normal* Cayley graph, otherwise it is called a *non-normal* Cayley graph. Define

$$\operatorname{Aut}(G, S) = \{ \sigma \in \operatorname{Aut}(G) \mid S^{\sigma} = S \}.$$

Then it is easy to see that $G:\operatorname{Aut}(G,S) \leq \operatorname{Aut}(\operatorname{Cay}(G,S))$. In fact, $G:\operatorname{Aut}(G,S)$ is the normalizer of G in $\operatorname{Aut}(\operatorname{Cay}(G,S))$ (see for example [10, 24]). Thus normal Cayley graphs are precisely those $\operatorname{Cay}(G,S)$ with $\operatorname{Aut}(\operatorname{Cay}(G,S)) = G:\operatorname{Aut}(G,S)$. Hence, the normality is crucial in determining the full automorphism group of a Cayley graph.

The normality of Cayley graphs of finite non-abelian simple groups has received considerable attention [5, 6, 7, 9, 17, 25, 26]. In this paper, we focus on symmetric Cayley graphs of prime valency on non-abelian simple groups. This work is motivated by the study of the case when the graph is cubic or pentavalent started by Li [17] and Fang et al. [7], respectively. In 1996, Li [17] listed all possible finite non-abelian simple groups on which a connected cubic symmetric Cayley graph might be non-normal. Li's list was later made explicit by Xu, Fang, Wang and Xu [25], who showed that there exists a connected cubic symmetric non-normal Cayley graph on a finite non-abelian simple group G if and only if $G = A_{47}$. For connected pentavalent symmetric non-normal Cayley graphs on finite non-abelian groups, Fang, Ma and Wang first gave a characterization in 2011 [7]. Then recently Du, Feng and Zhou [5] obtained a list of all possible such non-abelian simple groups. To extend the above results to symmetric Cayley graphs of prime valency p on finite simple groups, we deal with the case when prime $p \ge 7$. Note that, if the regular simple group is abelian, say \mathbf{Z}_q with prime q. Then as each symmetric Cayley graph of prime valency is of even order, thus q = 2, which implies that p = 1, a contradiction. Hence, one can only consider the non-abelian simple groups. Our main theorem in the following is a characterization of those possible non-normal ones. For undefined terms, see Section 2.

Theorem 1. Let G be a finite non-abelian simple group, let $\Gamma = \text{Cay}(G, S)$ be a connected p-valent symmetric Cayley graph on G with prime $p \ge 7$. Then, for $\alpha \in V(\Gamma)$, we have either $\text{Aut}(\Gamma) = G \rtimes \text{Aut}(G, S)$ or one of the following holds:

- (a) Aut(Γ) is an almost simple group with socle L > G, and L is either a classical simple group or (L, G, L_{α}) lies in Table 1; or
- (b) Aut(Γ) has an intransitive non-trivial normal subgroup K such that Aut(Γ)/K is almost simple with socle *L* ≥ *GK*/*K* ≃ *G*. Moreover, we have *L* is either a classical simple group or (*L*, *G*, *L_α*) lies in Table 2, where *α* is a vertex of the quotient graph Γ_K; or (Aut(Γ), *G*, Aut(Γ)_α) lies in Table 3.

Remark 2. For line 1 of Table 1, we shall see in Example 3 that there exists a connected non-normal symmetric Cayley graph on M_{22} of valency 23. For line 2 in Table 1, it is shown in [7, Theorem 1.3] that there exists a connected non-normal symmetric Cayley graph on A_{p-1} of valency p for each prime $p \ge 7$.

Table 1:				
	L	G	L_{α}	remark
1	M_{23}	M_{22}	C_{23}	p = 23
2	A _n	A_{n-1}	[n]	p divides n
3	A_{p+1}	[p+1]	A _p	$\Gamma = K_{p+1}$
4	A_{p+3}	$\mathrm{PSL}(2,q)$	\mathbf{S}_p	p = q - 2 for q odd

Tabla 1

Table 2:	Table	2:	
----------	-------	----	--

	\overline{L}	G	$\overline{L}_{\overline{\alpha}}$	K	remark
1	A _n	A_{n-1}	has a subgroup		p divides n
			of index n		
2	A_p	A_{p-2}	$\mathrm{PGL}(d,q).\langle \sigma \rangle$		$p = (q^d - 1)/(q - 1),$
					σ divides f
3	A_p	A_{p-3}	$\mathrm{PGL}(2,q).\langle \sigma \rangle$		$p = q + 1, \sigma$ divides f
4	A_p	A_{p-3}	AGL(d, 2)		$p = 2^d - 1$ for d odd
5	A_{p+1}	has a subgroup	A_p		$\Gamma_K = K_{p+1}$
		of index $p+1$			
6	A_{p+3}	PSL(2, p+2)	\mathbf{S}_p		$p \equiv 1 \pmod{4}$
7	\mathbf{A}_{p+k}	$\mathrm{PSL}(d,q)$	$A_p \text{ or } S_p$		$\frac{q^d-1}{q-1} = p+k, \ k=2 \text{ or } 3$
8	A ₂₃	M ₂₃	A ₁₉	[48]	
			S_{19}	[96]	
	A_{24}	M_{24}			

Table 3: $\operatorname{Aut}(\Gamma)_{\alpha}$ Γ_K $\operatorname{Aut}(\Gamma)$ G1 $PSL(2,11) \times M_{12}$ K_{12} M_{11} M_{11} 2 $(C_{11}:C_5) \times M_{12}$ PSL(2, 11) K_{12} M_{11} $3 \quad C_5 \times M_{12}$ A_5 M_{11} K_{12} $4 \quad C_{11} \times M_{23}$ $C_{23}:C_{11}$ M_{22} 5 $(C_{23}:C_{11}) \times M_{24}$ PSL(2, 23) K_{24} M_{23} $6 \quad (C_7:C_3) \times AGL(3,2)$ PSL(2,7)SL(3,2) K_8

2 Preliminaries

Let G be a finite group, denote by $\pi(G)$ the set of prime divisors of |G|, by M(G) the Schur multiplier of G, and by $\operatorname{Soc}(G)$ the socle (that is, the product of all the minimal normal subgroups) of G. We say G is almost simple if $\operatorname{Soc}(G)$ is non-abelian simple. Let n be a positive integer, denote by [n] an (unspecified) group of order n, by F_n a Frobenius group of order n, by D_{2n} the dihedral group of order 2n, and by K_n the complete graph of order n. For a prime number r, let n_r be the largest power of r dividing n, let $n_{r'} = n/n_r$, and let $\mathbf{O}_r(G)$ be the largest normal r-subgroup of G.

Given a group X, let H be a core-free subgroup of (X of) finite index. Take g of $X \setminus H$ such that $g^2 \in H$, define a coset graph $\Gamma(X, H, g)$ to be the graph with the set of right cosets of H in X as vertex set, and join two vertices Hx and Hy an edge whenever $xy^{-1} \in HgH$. It is easy to see that $\Gamma(X, H, g)$ has valency $|H : H \cap g^{-1}Hg|$, and it is connected if and only if $\langle H, g \rangle = X$. Moreover, X acts on the right cosets by multiplication induces an arc-transitive subgroup of the automorphism group of $\Gamma(X, H, g)$.

Example 3. Let $X \cong M_{23}$, $N \cong C_{23}:C_{11}$ be a maximal subgroup of X (see [4]), $H \cong C_{23}$ be a normal subgroup of N and g be an involution of X. As N is the only maximal subgroup of X up to conjugation of order divisible by 23, it follows that $\langle H, g \rangle = X$ and $N = \mathbf{N}_X(H)$. Consequently, $g \notin \mathbf{N}_X(H)$ and so $H \cap g^{-1}Hg = 1$. Thus $\Gamma(X, H, g)$ is a connected X-symmetric graph of valency 23. Moreover, X has a subgroup $G \cong M_{22}$. Since |G||H| = |X| and gcd(|G|, |H|) = 1, we see that G acts regularly by right multiplication. Hence $\Gamma(X, H, g)$ is a Cayley graph on G. As G is not normal in X, this is a non-normal Cayley graph on $G = M_{22}$.

The following result is well-known (see for example [18, Theorem 1.1]).

Lemma 4. Let X be a transitive permutation group of prime degree p. Then one of the following holds:

- (a) $C_p \leq X \leq AGL(1, p);$
- (b) $X = A_p \text{ or } S_p \text{ with } p \ge 5;$
- (c) $\operatorname{PGL}(d,q) \leq X \leq \operatorname{P\GammaL}(d,q)$ and $p = (q^d 1)/(q 1)$, where $d \geq 2$ and q is a prime power;
- (d) $(X, p) = (PSL(2, 11), 11), (M_{11}, 11) \text{ or } (M_{23}, 23).$

A permutation group X on a set Ω is said to be *quasiprimitive* if its non-trivial normal subgroups are all transitive on Ω . For a graph Γ and a subgroup K of Aut(Γ), the *quotient* graph Γ_K of Γ by K is defined to be the graph with vertices the K-orbits on $V(\Gamma)$ such that two vertices $\overline{\alpha}$ and $\overline{\beta}$ of Γ_K are adjacent if and only if there exist $\alpha \in \overline{\alpha}$ and $\beta \in \overline{\beta}$ adjacent in Γ . **Proposition 5.** ([9, Theorem 1.1]) Let G be a finite non-abelian simple group, $\Gamma = Cay(G, S)$ be a connected Cayley graph on G, and M be a subgroup of $Aut(\Gamma)$ containing G:Aut(G, S). Then either M = G:Aut(G, S) or one of the following holds:

- (a) M is almost simple, and Soc(M) > G is transitive on $V(\Gamma)$;
- (b) $G.Inn(G) \leq M = (G:Aut(G, S)).C_2$ and S is a self-inverse union of G-conjugacy classes;
- (c) M is not quasiprimitive and there is a maximal intransitive normal subgroup K of M such that one of the following holds:
 - (c.1) M/K is almost simple, and $\operatorname{Soc}(M/K) \ge GK/K \cong G$ is transitive on $V(\Gamma_K)$;
 - (c.2) $M/K = \text{AGL}(3, 2), G = \text{PSL}(2, 7), and \Gamma_K = K_8;$
 - (c.3) $\operatorname{Soc}(M/K) \cong T \times T$, and $GK/K \cong G$ is a diagonal subgroup of $\operatorname{Soc}(M/K)$, where T and G are given in Table 4.

	G	Т	m	$ V(\Gamma_K) $
1	A ₆	G	6	m^2
2	M ₁₂	$G \text{ or } A_m$	12	m^2
3	$\operatorname{Sp}_4(q)(q=2^a)$	$G \text{ or } A_m \text{ or } \operatorname{Sp}_{4r}(q_0)(q = q_0^r)$	$\frac{q^2(q^2-1)}{2}$	m^2
4		$\operatorname{Sp}_{4r}(q_0)(q=q_0^r)$	$\frac{q^2(q^2-1)}{2}$	$2m^2$
5	$P\Omega_8^+(q)$	$G \text{ or } A_m \text{ or } \operatorname{Sp}_8(2) \text{ (if } q = 2)$	$\frac{q^3(q^4-1)}{(2,q-1)}$	m^2

Table 4: Product action possibilities

Let Γ be a graph, $X \leq \operatorname{Aut}(\Gamma)$ and $\{\alpha, \beta\} \in E(\Gamma)$, let $\Gamma(\alpha)$ denote the neighborhood of α . Let $X_{\alpha}^{[1]}$ be the kernel of the vertex-stabilizer X_{α} acting on $\Gamma(\alpha)$, and let $X_{\alpha\beta}^{[1]} = X_{\alpha}^{[1]} \cap X_{\beta}^{[1]}$. For a positive integer s, an (s+1)-sequence $(\alpha_0, \alpha_1, \cdots, \alpha_s)$ of vertices of Γ is called an *s*-arc if $\{\alpha_{i-1}, \alpha_i\} \in E(\Gamma)$ for $i = 1, \ldots, s$ and $\alpha_{i-1} \neq \alpha_{i+1}$ for $i = 1, \ldots, s - 1$. The graph Γ is said to be (X, s)-arc-transitive if X acts transitively on the set of s-arcs of Γ , and is said to be (X, s)-transitive if it is (X, s)-arc-transitive but not (X, s+1)-arctransitive.

Proposition 6. ([13, Theorem 1.1]) Let Γ be a connected X-symmetric graph of valency 7. Then for $\alpha \in V(\Gamma)$, X_{α} lies in Table 5.

The next proposition follows from [12] and [20].

Proposition 7. Let Γ be a connected (X, s)-transitive graph of prime valency p > 7 and let $\{\alpha, \beta\}$ be an edge of Γ . If X_{α} is solvable, then $X_{\alpha} \cong (C_p:C_m) \times C_n$ for some m dividing (p-1) and n dividing m. If X_{α} is nonsolvable, then $|X_{\alpha}|_p = p$, and either (s, p, X_{α}) lies in Table 6, or one of the following statements (a)–(c) holds, where $d \ge 2$ is an integer and $q = r^f$ for some prime r and positive integer f such that $p = (q^d - 1)/(q - 1)$.

	Table 5:
$ X_{\alpha} _2$	X_{α}
1	$C_7, F_{21}, F_{21} \times C_3$
2	$D_{14}, F_{42}, F_{42} \times C_3$
2^{2}	$D_{28}, F_{42} \times C_2, F_{42} \times C_6$
2^{3}	$SL(3,2), A_7$
2^{4}	S ₇
2^{6}	$C_2^3:SL(3,2), SL(3,2) \times S_4, A_7 \times A_6$
2^{7}	$C_2^4:SL(3,2), (A_7 \times A_6):C_2$
2^{8}	$S_6 \times S_7$
2^{10}	$C_2^6:(SL(3,2)\times S_3)$
2^{24}	$[2^{20}]:(SL(3,2) \times S_3)$

Table 5:

— •	1 1		0	
<u></u>	h		h	٠
тa	υ.	LC.	U	٠

s	p	X_{lpha}
2	p	A_p, S_p
2	11	$PSL(2, 11), M_{11}$
2	23	M ₂₃
3	p	$A_{p-1} \times A_p, (A_{p-1} \times A_p):C_2, S_{p-1} \times S_p$
3	11	$A_5 \times PSL(2, 11), A_6 \times M_{11}, M_{10} \times M_{11}$
3	23	$M_{22} \times M_{23}$

(a) s = 2 and one of the following holds:

- (a.1) $d = 2, r = 2, PSL(2,q) \leq X_{\alpha} \leq P\Gamma L(2,q) \text{ and } X_{\alpha\beta}^{[1]} = 1;$
- (a.2) $d \ge 3$, $X_{\alpha} = ((C_r^{f(d-1)}:C_\ell) \times PSL(d,q)).\mathcal{O}$ and $X_{\alpha\beta}^{[1]} = 1$, where $\mathcal{O} \le C_f$ and $C_\ell \le C_{q-1}$;
- (a.3) $d \ge 3$, $X_{\alpha} = \mathbf{O}_r(X_{\alpha}).C_{\ell}.PSL(d,q).\mathcal{O}$ and $X_{\alpha\beta}^{[1]} \ne 1$, where $\mathcal{O} \le C_f$ and $C_{\ell} \le C_{q-1}$.
- (b) s = 3 and one of the following holds:
 - (b.1) $d = 2, r = 2, X_{\alpha} = ((C_2^f . \mathcal{O}_1) \times \text{PSL}(2, q)) . \mathcal{O} \text{ and } X_{\alpha\beta}^{[1]} = 1, \text{ where } \mathcal{O} \leq C_f \text{ and } \mathcal{O}_1 \leq C_{q-1} . \mathcal{O};$
 - (b.2) $d \ge 3$, $X_{\alpha} = ((C_r^{f(d-1)}: C_{\ell}. \text{PSL}(d-1, q).\mathcal{O}') \times \text{PSL}(d, q)).\mathcal{O} \text{ and } X_{\alpha\beta}^{[1]} = 1$, where $\mathcal{O} \le C_f, C_{\ell} \le C_{q-1} \text{ and } \mathcal{O}' \le C_{\text{gcd}(d-1,q-1)}.\mathcal{O};$

(b.3) $d \ge 3$, $X_{\alpha} = \mathbf{O}_r(X_{\alpha}).C_{\ell}.((\operatorname{PSL}(d-1,q).\mathcal{O}') \times \operatorname{PSL}(d,q)).\mathcal{O} \text{ and } X_{\alpha\beta}^{[1]} \neq 1$, where $\mathcal{O} \le C_f, C_{\ell} \le C_{q-1} \text{ and } \mathcal{O}' \le C_{\operatorname{gcd}(d-1,q-1)}.\mathcal{O}; \text{ moreover, if } r \ge 5 \text{ then } |\mathbf{O}_r(X_{\alpha})|$ divides $q^{d(d-1)}$.

(c) $s = 5, d = 2, r = 2, X_{\alpha} = ([q^3]: \mathrm{GL}(2, q)).\mathcal{O} \text{ and } X_{\alpha\beta}^{[1]} = 1, \text{ where } \mathcal{O} \leq C_f.$

Recall that a permutation group is called k-homogeneous if it is transitive on the k-sets of permuted points. The following result is about the k-homogeneous groups which can be get from [15, Theorem 1].

Lemma 8. Let G be a group k-homogeneous but not k-transitive on a finite set Ω of n points, where $n \ge 2k$. Then, up to permutation isomorphism, one of the following holds:

- (a) k = 2 and $G \leq A\Gamma L(1,q)$ with $n = q \equiv 3 \mod 4$;
- (b) k = 3 and $PSL(2,q) \leq G \leq P\Gamma L(2,q)$, where $n 1 = q \equiv 3 \mod 4$;
- (c) k = 3 and G = AGL(1, 8), $A\Gamma L(1, 8)$ or $A\Gamma L(1, 32)$;
- (d) k = 4 and G = PSL(2, 8), $P\Gamma L(2, 8)$ or $P\Gamma L(2, 32)$.

3 Proof of the main result

In the following section, we give the proof of our main theorem.

Lemma 9. Let X be a permutation group on a set Ω , let G be a transitive subgroup of X. Let $\alpha \in \Omega$, suppose that both X and G are non-abelian simple and X_{α} is as described in Proposition 6 or 7. Then either X is a classical simple group or (X, G, X_{α}) lies in Table 7.

Proof. From Propositions 6 and 7 we see that there exists a prime $p \ge 7$ such that $|X_{\alpha}|_p = p$. As G is transitive, we have $X = GX_{\alpha}$. Suppose that X is not a classical simple group. Then X is an alternating group or a simple group of exceptional Lie type or a sporadic simple group.

First assume that X is a simple group of exceptional Lie type. Since $X = GX_{\alpha}$ with G non-abelian simple, it follows from [14, Theorem 1] that (X, G, X_{α}) lies in Table 8. In line 1 of Table 8, X_{α} has a composition factor PSU(3, 4), which is not as described in Proposition 6 or 7, a contradiction. Similarly one may exclude lines 2 and 6–8 of Table 8. For the line 4 or 5, X_{α} has a composition factor PSL(3, q) with q a 3-power, and has no non-trivial solvable normal subgroup. It can be seen that only cases (a.2)–(a.3) and (b.2)–(b.3) of Proposition 7 satisfy that X_{α} has a composition factor PSL(3, q). However, in those cases X_{α} has a non-trivial solvable normal subgroup, a contradiction. Similarly one may exclude line 3 of Table 8. Hence, none of the triples (X, G, X_{α}) in Table 8 happens.

Next, assume that X is a sporadic simple group. By [11, Theorem 1.1], we know that (X, G, X_{α}) lies in Table 9. As X_{α} is described in Proposition 6 or 7, thus (X, G, X_{α})

	X	G	X_{lpha}	conditions
1	A _n	A_{n-1}	transitive permutation	$n \ge 6$
			group of degree n	
2	A_p	A_{p-2}	$\mathrm{PGL}(d,q).\langle \sigma \rangle$	$p = \frac{q^d - 1}{q - 1}, \sigma \mid f$
3	A_p	A_{p-3}	$\mathrm{PGL}(2,q).\langle \sigma \rangle$	$p = q + 1, \sigma \mid f$
			$\mathrm{AGL}(d,2)$	$p = 2^d - 1, d \text{ odd}$
4	A ₁₁	A_9	PSL(2, 11)	p = 11
		A ₇	M_{11}	p = 11
5	A_{23}	A ₁₉	M_{23}	p = 23
6	A_{p+1}	transitive permutation	A_p	p prime
		group of degree $p+1$		
7	A_{p+3}	PSL(2, p+2)	S_p	$p \equiv 1 \pmod{4}$
8	A ₁₁	M ₁₁	$A_7 \text{ or } S_7$	p = 7
	A ₁₂	M_{12}		
9	A_{23}	M_{23}	A_{19} or S_{19}	p = 19
	A ₂₄	M ₂₄		
10	A_{p+k}	$\mathrm{PSL}(d,q)$	$A_p \text{ or } S_p$	$\frac{q^d-1}{q-1} = p+k, \ k=2 \text{ or } 3$
11	A ₈	A_5	AGL(3,2)	p=7
		A_k	SL(3,2), AGL(3,2)	$p = 7, k \in \{6, 7\}$
12	M_{12}	M ₁₁	$M_{11}, PSL(2, 11)$	p = 11
13	M_{12}	PSL(2,11)	M_{11}	p = 11
14	M_{12}	A_5	M ₁₁	p = 11
15	M ₂₃	M ₂₂	$C_{23}, C_{23}:C_{11}$	p = 23
16	M ₂₄	M ₂₃	$SL(3,2), C_2^6:(SL(3,2) \times S_3)$	p = 7
17	M_{24}	PSL(2,23)	M ₂₃	p = 23

Table 7:

	Table 8:				
	X	G	X_{lpha}		
1	$G_2(4)$	J_2	$PSU(3,4), PSU(3,4).C_2$		
2	$G_2(4)$	PSU(3,4)	J_2		
3	$G_2(3^f)$	$\mathrm{PSL}(3,3^f)$	$PSU(3, 3^{f}), PSU(3, 3^{f}).C_{2}$		
4	$G_2(3^f)$	$PSU(3, 3^f)$	$PSL(3, 3^{f}), PSL(3, 3^{f}).C_{2}$		
5	$G_2(3^{2e+1})$	$^{2}G_{2}(3^{2e+1})$	$PSL(3, 3^{2e+1}), PSL(3, 3^{2e+1}).C_2$		
6	$G_2(3^{2e+1})$	$\mathrm{PSL}(3, 3^{2e+1})$	$^{2}G_{2}(3^{2e+1})$		
7	$F_4(2^f)$	$\operatorname{Sp}(8, 2^f)$	${}^{3}\mathrm{D}_{4}(2^{f}), {}^{3}\mathrm{D}_{4}(2^{f}).\mathrm{C}_{3}$		
8	$F_4(2^f)$	$^{3}\mathrm{D}_{4}(2^{f})$	$\operatorname{Sp}(8,2^f)$		

Table 9:

	X	G	X_{lpha}
1	M_{12}	M ₁₁	$M_{11}, PSL(2, 11)$
2	M_{12}	PSL(2,11)	M ₁₁
3	M_{12}	A ₅	M ₁₁
4	M_{23}	M ₂₂	$C_{23}, C_{23}:C_{11}$
5	M_{24}	M ₂₃	$M_{12}.C_2, C_2^3:F_{21}, C_2^6:C_{21}, C_2^6:F_{21}, C_2^6:C_7:S_3, C_2^6:(F_{21} \times C_3),$
			$C_2^6:(F_{21} \times S_3), C_2^6:(SL(3,2) \times C_3), C_2^6:(SL(3,2) \times S_3),$
			$SL(3,2), SL(3,2) \times C_3, SL(3,2) \times S_3, PGL(2,11), PSL(2,23)$
6	M ₂₄	PSL(2,23)	$P\Sigma L(3,4), PSL(3,4).S_3, C_2^4:A_7, C_2^4:A_8, M_{22}.C_2, M_{22}, M_{23}$
7	M_{24}	PSL(2,7)	M ₂₃
8	HS	M ₂₂	$PSU(3,5).C_2$
9	Ru	PSL(2,29)	$^{2}F_{4}(2)$
10	Suz	$G_2(4)$	$PSU(5,2), C_3^5:M_{11}$
11	Suz	PSU(5,2)	$G_2(4)$
12	Fi ₂₂	${}^{2}\mathrm{F}_{4}(2)'$	$C_2.PSU(6,2)$
13	Co ₁	Co_2	$(C_3.Suz).C_2, C_3.Suz$
14	Co_1	Co_2	$G_2(4) \leqslant X_{\alpha} \leqslant (A_4 \times G_2(4)).C_2$
15	Co_1	$G_2(4)$	Co_2
16	Co_1	Co ₃	$(C_3.Suz).C_2, C_3.Suz$
17	Co_1	Co ₃	$G_2(4).C_2 \leqslant X_{\alpha} \leqslant (A_4 \times G_2(4)).C_2$

cannot be lines 8–17 of Table 9. If (X, G, X_{α}) lies in lines 1–4 of Table 9, then one of lines 12–15 of Table 7 holds. If (X, G, X_{α}) lies in line 5–6 of Table 9, then p = 7, 11 or 23. Furthermore, by Proposition 6 and 7, we have lines 16–17 of Table 7 hold. If (X, G, X_{α}) lies in line 7 of Table 9, then $(X, G, X_{\alpha}) \cong (M_{24}, \text{PSL}(2, 27), M_{23})$. Note that $|G \cap X_{\alpha}| = \frac{|\text{PSL}(2,7)||M_{23}|}{|M_{24}|} = 7$. It follows that $X_{\alpha} \cong M_{23}$, which has no subgroup of index 7, a contradiction. Hence this case cannot happen.

Finally, let X be the alternating group A_n naturally acts on a set Θ of n points with $n \ge 5$. Again, as $X = GX_{\alpha}$, we derive from [22, Theorem D and Remark 2] (which gave the maximal factorizations of the alternating groups) that one of the following holds:

- (i) $G = A_{n-k}$ for some $1 \le k \le 5$ and X_{α} is k-homogenous on Θ ;
- (ii) G is k-homogenous on Θ and $A_{n-k} \leq X_{\alpha} \leq (S_{n-k} \times S_k) \cap A_n$ for some $1 \leq k \leq 5$;
- (iii) $n = 6, G = PSL(2, 5), X_{\alpha} \leq S_3 \wr S_2$ and X_{α} is transitive on Θ ;
- (iv) $n = 10, G = PSL(2, 8), A_5 \times A_5 \leq X_{\alpha} \leq S_5 \wr S_2$ and X_{α} is transitive on Θ .

To finish the proof, in the following, we analyze the above four cases (i)–(iv) one by one. Case (i). Suppose that $G = A_{n-k}$ for some $1 \leq k \leq 5$ and X_{α} is k-homogenous on

 Θ . If k = 1, then $n \ge 6$ and X_{α} is transitive on Θ , as in line 1 of Table 7. Henceforth assume $k \ge 2$. Since $G = A_{n-k}$ is non-abelian simple group, $n - k \ge 5$, i.e., $n \ge 5 + k$. Note that, if $1 \le k \le 5$, then $n \ge 2k$.

Assume that X_{α} is k-homogeneous but not k-transitive. Then X_{α} is one of the four cases in Lemma 8, and especially we have $k \leq 4$. In the following, we will analyze these four cases one by one. Note that we have $|X : G| = |A_n : A_{n-k}| = n(n-1) \cdots (n-k+1)$ and $|X : G| \mid |X_{\alpha}|$.

Let $q = r^f$ for some prime r and positive integer f. If k = 2, then $X_{\alpha} \leq A\Gamma L(1,q)$ with $n = q \equiv 3 \mod 4$. Note that $G \cong A_{q-2}$, $|X:G| \mid |X_{\alpha}|$ with |X:G| = q(q-1)and $X_{\alpha} \leq A\Gamma L(1,q) \cong C_r^f:(C_{q-1}:C_f)$ for $q = r^f$. It follows that $X_{\alpha} \cong C_r^f:(C_{q-1}:C_\ell)$ for $\ell \mid f$, and so X_{α} is 2-transitive on Ω , a contradiction. Suppose that k = 3. Then $G \cong A_{n-3}$ for $n \geq 8$, and |X:G| = n(n-1)(n-2) is a factor of $|X_{\alpha}|$. On the other hand, Lemma 8 shows that either $PSL(2,q) \leq X_{\alpha} \leq P\Gamma L(2,q)$ with $n-1=q\equiv 3 \mod 4$, or $X_{\alpha} = AGL(1,8)$, $A\Gamma L(1,8)$ or $A\Gamma L(1,32)$. For the latter case, a calculation of the order for these candidates of X_{α} shows that this case cannot occur. Suppose that the former case occurs. Then n = q + 1, n(n-1)(n-2) = (q-1)q(q+1) is a factor of $|X_{\alpha}|$, and $X_{\alpha} \cong PSL(2,q).(C_2 \times C_l)$ for $l \mid f$ (see). Upon to Lemma 7, $p = \frac{q^2-1}{q-1} = q+1$, and so n = p. It is clear that X_{α} is 2-transitive on $\Theta = \{1, \dots, p\}$, a contradiction. Assume that k = 4. Then $G \cong A_{n-4}$ for $n \geq 9$ and $|X:X_{\alpha}| = n(n-1)(n-2)(n-3)$ is a factor of $|X_{\alpha}|$. In particular, Lemma 8 shows that $X_{\alpha} \cong PSL(2,8)$, $P\Gamma L(2,8)$ or $P\Gamma L(2,32)$. A calculation of the orders for those candidates of X_{α} shows that this case cannot occur.

Now we suppose that X_{α} is k-transitive on Θ for $k \ge 2$. Note that $(C_p:C_{p-1}):C_{\ell}$ with $n = p \ge 7$ prime and $\ell \mid (p-1)$, is not isomorphic to a subgroup of A_p as C_{p-1} contains an element of odd permutation. Then since X_{α} is a k-transitive subgroup of A_n and is also as described in Proposition 6 or 7, one can get that either $PSL(d,q) \le X_{\alpha} \le P\Gamma L(d,q)$

with $n = p = (q^d - 1)/(q - 1) \ge 7$ prime for some integer $d \ge 2$ and prime power q, or $(X_{\alpha}, n) = (\operatorname{PSL}(2, 11), 11), (M_{11}, 11)$ or $(M_{23}, 23)$. For the latter case, one can deduce that line 4-5 of Table 7 hold. Now assume that the former case occurs. Then since X_{α} is a k-transitive permutation group for $k \ge 2$, by [3, Theorem 4.11], we have $k \le 3$. Again, as X_{α} is described in Proposition 6 or 7, we deduce that if k = 2, then line 2 of Table 7 holds. For k = 3, X_{α} is a 3-transitive permutation group, and so $X_{\alpha} \cong \operatorname{PGL}(2,q).\langle \sigma \rangle$ for p = q + 1 and $\sigma \mid f$, or AGL(d, 2) for $p = 2^d - 1$ (see [3, Table 7.3, 7.4] for example). For $p = 2^d - 1$ is prime, then d is odd. Hence line 3 of Table 7 holds.

Case (ii). Assume that G is k-homogenous on Θ and $A_{n-k} \leq X_{\alpha} \leq (S_{n-k} \times S_k) \cap A_n$ for some $1 \leq k \leq 5$. Note that X_{α} is given in Proposition 6 or 7. Then $X_{\alpha} \cong A_{n-k}$ or S_{n-k} for $1 \leq k \leq 5$ and n-k=p. If k=1, then $(X, X_{\alpha}) \cong (A_{p+1}, A_p)$ and G is a transitive permutation group of degree n=p+1. Hence the line 6 of Table 7 holds.

For $k \ge 2$, assume that G is k-homogeneous but not k-transitive, then G is given in Lemma 8. Let $q = r^f$ for some prime r and positive integer f. Note that $n \ge 5 + k$ and $|X : X_{\alpha}| = n(n-1) \cdots (n-k+1)$ or $\frac{n(n-1)\cdots(n-k+1)}{2}$ respecting to $X_{\alpha} \cong A_{n-k}$ or S_{n-k} for n-k=p. Since $|X : X_{\alpha}| \mid |G|$ and G is k-homogeneous but not k-transitive, by a careful analysis of the cases (a)–(d) in Lemma 8, we can draw that k = 3 and $G \cong PSL(2,q)$ with $n-1=q \equiv 3 \mod 4$. Then p=n-3 and q=n-1 is odd, and so n is even. Therefore, $|G| = |PSL(2,q)| = \frac{q(q-1)(q+1)}{(2,q-1)} = \frac{n(n-1)(n-2)}{(2,n-2)} = \frac{n(n-1)(n-2)}{2}$. Furthermore, since $|X:G| \mid |X_{\alpha}|$, we conclude that $X_{\alpha} \cong S_p$. We derive from q=n-1 and p=n-3 that q=p+2. It follows that $p \equiv 1 \mod 4$ as $q \equiv 3 \mod 4$. Hence the line 7 of Table 7 holds.

Now suppose that G is k-transitive on Θ . Note that $X_{\alpha} \cong A_{n-k}$ or S_{n-k} with n-k=p. Since $G < X \cong A_n$ is a non-abelian simple group and $k \ge 2$, by [3, Theorem 4.11], we conclude that $2 \leq k \leq 5$, and if k = 4 or 5, then $(G, n, k) = (M_{11}, 11, 4), (M_{12}, 12, 5),$ $(M_{23}, 23, 4)$ or $(M_{24}, 24, 5)$. It follows that $(X, G, p) = (A_{11}, M_{11}, 7), (A_{12}, M_{12}, 7), (A_{23}, 7)$ M_{23} , 19) or $(A_{24}, M_{24}, 19)$ respectively, and hence lines 8-9 of Table 7 hold. Now for k = 2or 3. Since G is non-abelian simple, G is given in [3, Table 7.4]. Together with the conditions that $|X:X_{\alpha}| \mid |G|$ and $X_{\alpha} \cong A_{n-k}$ or S_{n-k} for n-k=p, we can deduce that either $G \cong PSL(d,q)$ for $n = (q^d - 1)/(q - 1), d \ge 2$ and q being a prime power, or $G \cong$ $\operatorname{Sp}(2d,2)$ for $n=2^{2d-1}\pm 2^{d-1}$ and $d \ge 3$. For the latter case, we derive from $n-k=p \ge 7$ is an odd prime that $2^{2d-1} \pm 2^{d-1} - 2 = p$ or $2^{2d-1} \pm 2^{d-1} - 3 = p$. However, $2^{2d-1} \pm 2^{d-1} - 2$ is even, which leads to that $2^{2d-1} \pm 2^{d-1} - 3 = p$. Noting that $2^{2d-1} + 2^{d-1} - 3 = 2^{2d-1} - 2 + 2^{2d-1} - 3 = 2^{2d-1} - 2 + 2^{2d-1} - 3 = 2^{2d-1} - 2 + 2^{2d-1} - 3 = 2^{2d-1} - 3$ $2^{d-1} - 1 = 2((2^{d-1})^2 - 1) + 2^{d-1} - 1 = 2(2^{d-1} - 1)(2^{d-1} + 1) + 2^{d-1} - 1 = (2^{d-1} - 1)(2(2^{d-1} + 1) + 1) + 2^{d-1} - 1 = (2^{d-1} - 1)(2(2^{d-1} + 1) + 1) + 2^{d-1} - 1 = (2^{d-1} - 1)(2(2^{d-1} + 1) + 1) + 2^{d-1} - 1 = (2^{d-1} - 1)(2(2^{d-1} + 1) + 1) + 2^{d-1} - 1 = (2^{d-1} - 1)(2(2^{d-1} + 1) + 1) + 2^{d-1} - 1 = (2^{d-1} - 1)(2(2^{d-1} + 1) + 2^{d-1} - 1) = (2^{d-1} - 1)(2(2^{d-1} + 1) + 2^{d-1} - 1) = (2^{d-1} - 1)(2(2^{d-1} + 1) + 2^{d-1} - 1) = (2^{d-1} - 1)(2(2^{d-1} + 1) + 2^{d-1} - 1) = (2^{d-1} - 1)(2(2^{d-1} + 1) + 2^{d-1} - 1) = (2^{d-1} - 1)(2(2^{d-1} + 1) + 2^{d-1} - 1) = (2^{d-1} - 1)(2(2^{d-1} + 1) + 2^{d-1} - 1) = (2^{d-1} - 1)(2(2^{d-1} + 1) + 2^{d-1} - 1) = (2^{d-1} - 1)(2(2^{d-1} + 1) + 2^{d-1} - 1) = (2^{d-1} - 1)(2(2^{d-1} + 1) + 2^{d-1} - 1) = (2^{d-1} - 1)(2(2^{d-1} + 1) + 2^{d-1} - 1) = (2^{d-1} - 1)(2(2^{d-1} + 1) + 2^{d-1} - 1) = (2^{d-1} - 1)(2(2^{d-1} + 1) + 2^{d-1} - 1) = (2^{d-1} - 1)(2(2^{d-1} + 1) + 2^{d-1} - 1) = (2^{d-1} - 1)(2(2^{d-1} + 1) + 2^{d-1} - 1) = (2^{d-1} - 1)(2(2^{d-1} + 1) + 2^{d-1} - 1) = (2^{d-1} - 1)(2(2^{d-1} + 1) + 2^{d-1} - 1) = (2^{d-1} - 1)(2(2^{d-1} + 1) + 2^{d-1} - 1) = (2^{d-1} - 1)(2^{d-1} - 1) = (2^{d-1} - 1) = (2^{d-1} - 1)(2^{d-1} - 1) = (2^{d-1} - 1) = (2^{d-1} - 1)(2^{d-1} - 1) = (2^{d-1} - 1) = (2^{d-1}$ is not a prime, we conclude that this case cannot occur. Then along the same lines as the previous case, we see that $2^{2d-1} - 2^{d-1} - 3 = (2^{d-1} + 1)(2(2^{d-1} - 1) - 1)$ is also not prime. It yields that $G \ncong \operatorname{Sp}(2d, 2)$ for $n = 2^{2d-1} \pm 2^{d-1}$ and $d \ge 3$, and hence line 10 of Table 7 holds.

Cases (iii) and (iv). Suppose that n = 6, G = PSL(2,5), $X_{\alpha} \leq S_3 \wr S_2$ and X_{α} is transitive on Ω ; or n = 10, G = PSL(2,8), $A_5 \times A_5 \leq X_{\alpha} \leq S_5 \wr S_2$ and X_{α} is transitive on Ω . Since X_{α} is given in Proposition 6 or 7, in particular, $|X_{\alpha}|_p = p \geq 7$, we can deduce that those cases cannot occur.

In the rest of this section, we always let G be a finite non-abelian simple group, let $\Gamma = \operatorname{Cay}(G, S)$ be a connected symmetric Cayley graph on G of prime valency $p \ge 7$, and let $L = \operatorname{Soc}(\operatorname{Aut}\Gamma)$ and α be a vertex of Γ . Moreover, for short, let $A = \operatorname{Aut}\Gamma$. If A = G.Aut(G, S), then Γ is a normal Cayley graph. Now we assume that A > G.Aut(G, S).

Lemma 10. Assume that A acts quasiprimitively on $V(\Gamma)$. Then either L is a classical simple group or Γ is isomorphic to one of the lines of Table 1.

Proof. Since A is quasiprimitive on $V(\Gamma)$, then either (a) or (b) of Proposition 5 occurs.

Case (i). Suppose that (b) holds. Then the action of G on S by conjugation is either trivial or faithful as G is simple. If the action is trivial, then G is abelian as S generates G, a contradiction. Suppose that the action is faithful. Note that $\operatorname{Inn}(G) \trianglelefteq \operatorname{Aut}(G)$ and $S^{\operatorname{Inn}(G)} = S$. Then $\operatorname{Inn}(G) \trianglelefteq \operatorname{Aut}(G, S)$. Since $A = (G.\operatorname{Aut}(G, S)).C_2$ and |S| is odd prime, then $\operatorname{Aut}(G, S)$ acts transitively on S, and so it is primitive. It follows that $\operatorname{Inn}(G)$ is a transitive permutation group of degree p, so does G as $G \cong \operatorname{Inn}(G)$. Further, by Lemma 4, $G \cong \operatorname{PSL}(2, 11)$ for p = 11, M_{11} for p = 11 or M_{23} for p = 23, A_p , $\operatorname{PSL}(d, q)$ for $p = (q^d - 1)/(q - 1)$, where $d \ge 2$ and q is a prime power. On the other hand, since $G.\operatorname{Inn}(G) \le A = (G.\operatorname{Aut}(G, S)).C_2, |A| = |G||A_1|$ and $\operatorname{Aut}(G, S) \le A_1$ for identity $1 \in G$ a vertex of Γ , then $|A_1| = 2|\operatorname{Aut}(G, S)|$ and $A_{\alpha} \cong A_1 \cong \operatorname{Aut}(G, S).C_2$.

Assume that $G \cong \mathrm{PSL}(2,11)$ for p = 11. Then $\mathrm{Inn}(G) \cong G \cong \mathrm{PSL}(2,11)$ and Aut $(G,S) \cong \mathrm{PSL}(2,11)$ or $\mathrm{PSL}(2,11).\mathrm{C}_2$. Since $A_1 \cong \mathrm{Aut}(G,S).\mathrm{C}_2$, by Proposition 7(b), we have $A_1 \cong \mathrm{PSL}(2,11)$, and so $A_1 = \mathrm{Aut}(G,S)$, a contradiction. A similar argument excludes the case where $G \cong \mathrm{M}_{11}$ or M_{23} . Suppose that $G \cong \mathrm{A}_p$. Then $\mathrm{Inn}(G) \cong G \cong$ A_p . Since $\mathrm{Inn}(G) \trianglelefteq \mathrm{Aut}(G,S)$, then $\mathrm{Aut}(G,S) \cong \mathrm{A}_p$ or S_p , and $|A_1| = 2|\mathrm{A}_p|$ or $2|\mathrm{S}_p|$ respectively. Noting $p \ge 7$ is prime, by Lemma 7, one can get that $A_1 \cong \mathrm{S}_p$, and then $\mathrm{Aut}(G,S) \cong \mathrm{A}_p$ and $A = (G.\mathrm{A}_p).\mathrm{C}_2 \cong (\mathrm{A}_p \times \mathrm{A}_p).\mathrm{C}_2$. Then $\mathrm{Soc}(A) = G \times \mathrm{A}_p \cong \mathrm{A}_p \times \mathrm{A}_p$. Since $\mathrm{Soc}(A)$ is a characteristic subgroup of A and $G \cong \mathrm{A}_p$ is a normal subgroup of $\mathrm{Soc}(A)$, then $G \trianglelefteq A$. However, it contradicts to the assumption that Γ is not a normal Cayley graph. Then $G \cong \mathrm{PSL}(d,q)$ for $p = (q^d - 1)/(q - 1)$, where $d \ge 2$. Along the same lines as the previous case, we can exclude this case.

Case (ii). Now assume that (a) of Lemma 5 holds, that is A is an almost simple group with G < L and L is transitive on $V(\Gamma)$. Note that the valency of Γ is prime p. Then, for $\alpha \in V(\Gamma)$, A_{α} is primitive on $\Gamma(\alpha)$, so is L_{α} as $L_{\alpha} \leq A_{\alpha}$. It implies that Γ is L-locally-primitive. Then $\Gamma = \Gamma(A, A_{\alpha}, g) \cong \Gamma(L, L_{\alpha}, t)$. Let L = HD be a maximal factorization of L for $G \leq H$ and $L_{\alpha} \leq D$, in particular, $L = GL_{\alpha}, G \cap L_{\alpha} = 1$ and $|L| = |G||L_{\alpha}|$. Now we assume that L is not a classical simple group. Then the triples (L, G, L_{α}) are given in Table 7 of Lemma 9.

Since $|L| = |G||L_{\alpha}|$, the calculation shows that only lines 1, 4, 7, 9, 10 or 15 of Table 7 of Lemma 9 hold. In the following, we will analyze them one by one. Assume that $L \cong A_n$ and $G \cong A_{n-1}$, just as in line 1 of Table 7. Then $|L_{\alpha}| = n$. It is shown in [7, Theorem 1.3] that there is a connected symmetric non-normal Cayley graph on A_{p-1} of valency p for each prime $p \ge 7$. Then line 2 of Table 1 holds.

Now consider the line 4 of Table 7. Since $|L| = |G||L_{\alpha}|$, a straight forward calculation shows that $(L, G, L_{\alpha}) \cong (A_{11}, A_7, M_{11})$ and p = 11. With the help of MAGMA, no such graphs exist in this case. Assume that $(L, L_{\alpha}) \cong (A_{p+1}, A_p)$ and $(p+1) \mid |G|$, as the line 6 of Table 7. Then |G| = p+1, in particular, Γ is the complete graph K_{p+1} . Hence line 3 of Table 1 holds.

Assume that line 8 of Table 7 holds. Note that $|L| = |G||L_{\alpha}|$. Then $(L, G, L_{\alpha}) \cong$ (A₁₁, M₁₁, A₇) or (A₁₂, M₁₂, A₇), in particular, p = 7 and Γ is 2-arc-transitive. With the help of MAGMA, neither $\Gamma(A_{11}, M_{11}, g)$ nor $\Gamma(A_{12}, M_{12}, g)$ exists. Suppose that line 10 of Table 7 holds. A straight forward calculation shows that $(L, G, L_{\alpha}) \cong (A_{p+3}, \text{PSL}(2, q), S_p)$ for q odd and p = q - 2, and so the line 4 of Table 1 holds.

Suppose that the line 15 of Table 7 holds. Then $(L, G, L_{\alpha}) \cong (M_{23}, M_{22}, C_{23})$. Moreover, p = 23 and Γ is 1-regular. By Example 3, there does exist graph in this case. Hence line 1 of Table 1 holds, and thus Lemma 10 holds.

In the following Lemma, we will consider the case where Aut Γ is not quasiprimitive on $V(\Gamma)$.

Lemma 11. Assume that A is not quasiprimitive on $V(\Gamma)$. Then there exists an intransitive non-trivial normal subgroup K of A such that A/K is almost simple with socle $\overline{L} \ge GK/K \cong G$. Moreover, for $\overline{\alpha} \in V(\Gamma_K)$, we have

- (a) \overline{L} is a classical simple group or $(\overline{L}, G, \overline{L}_{\overline{\alpha}})$ lies in Table 2; or
- (b) (A, G, A_{α}) lies in Table 3.

Proof. Since A is not quasiprimitive, there exists a non-trivial maximal intransitive normal subgroup, say K. If K has two orbits on $V(\Gamma)$, then Γ is bipartite. Since G is transitive on $V(\Gamma)$, then G has a normal subgroup of index 2, a contradiction. It follows that K has at least p + 1 orbits on $V(\Gamma)$. Let Γ_K be the quotient graph of Γ relative to K. Clearly, Γ_K is arc-transitive with valency p. According to the maximum of K and Γ is locally primitive, we can conduct that the action of A/K on $V(\Gamma_K)$ is quasiprimitive and Γ_K is A/K-locally primitive, in particular, $(A/K)_{\overline{\alpha}}$ is given in Lemma 6 and 7 for $\overline{\alpha} \in V(\Gamma_K)$. Especially, Proposition 5 shows that there are only three cases in this situation:

(i). A/K is almost simple, and $\operatorname{Soc}(A/K)$ contains GK/K and is transitive on $V(\Gamma_K)$;

(ii). $A/K \cong AGL(3,2), G \cong PSL(2,7)$ and $\Gamma_K \cong K_8$; or

(iii). Soc $(A/K) = T \times T$, and $GK/K \cong G$ is a diagonal subgroup of Soc(A/K), where T and G are given in [9, Table 1].

Case (i). Now suppose that A/K is almost simple, just as (i). Write $\operatorname{Soc}(A/K) = \overline{L}$, which is a finite non-abelian simple group containing $\overline{G} = GK/K \cong G$. If \overline{L} is regular on $V(\Gamma_K)$, then $\overline{L} = \overline{G}$ as $\overline{G} \leq \overline{L}$ is transitive on Γ_K . So \overline{G} is regular on $V(\Gamma_K)$. It follows that $|V(\Gamma)| = |G| = |\overline{G}| = |V(\Gamma_K)|$, a contradiction. Hence \overline{L} is not regular on $V(\Gamma_K)$. We claim that $\overline{L} \neq \overline{G}$. If not, then $\overline{L} = \overline{G}$, i.e., GK/K is a characteristic subgroup of A/K, and so GK is a characteristic subgroup of A. Noting that $G \trianglelefteq GK$, we have $G \trianglelefteq A$, and then Γ is normal, a contradiction. Hence the claim holds. Then Γ_K is \overline{L} -arctransitive, and so \overline{L} is locally primitive as the valency of Γ_K is prime, in particular, $\overline{L_{\overline{\alpha}}}$ is isomorphic to a group of Proposition 6 or 7, where $\alpha \in V(\Gamma)$ and $\overline{\alpha} \in V(\Gamma_K)$. Further, $\overline{L} = \overline{L_{\overline{\alpha}}}\overline{G}$ with $\overline{G} \cap \overline{L_{\overline{\alpha}}} = \overline{G_{\overline{\alpha}}}$. Since G is regular on $V(\Gamma)$ and K is semiregular on $V(\Gamma)$.

we have $K \cong \overline{G_{\alpha}}$. Thus $|\overline{L}:\overline{G}| = |\overline{L_{\alpha}}:\overline{G_{\alpha}}| = |\overline{L_{\alpha}}|/|K|$. We claim that $(A/K)_{\overline{\alpha}} \cong A_{\alpha}$. Note that $A_{\overline{\alpha}}/K = (A/K)_{\overline{\alpha}}$. By the Frattini argument, we have $A_{\overline{\alpha}} = K:A_{\alpha}$, i.e., $A_{\overline{\alpha}}/K \cong A_{\alpha}$. Hence $(A/K)_{\overline{\alpha}} \cong A_{\alpha}$, and so the claim holds. By Lemma 9, $(\overline{L}, \overline{G}, \overline{L_{\alpha}})$ are given in Table 7. Since $|A| = |GA_{\alpha}| = |G||A_{\alpha}|$ and |K| = |A|/|A/K|, we have $|A_{\alpha}|/|K| = |A/K|/|G|$. Note that $A_{\alpha} \cong (A/K)_{\overline{\alpha}}$ and $G \cong \overline{G}$. Then $|(A/K)_{\overline{\alpha}}|/|K| = |A/K|/|\overline{G}|$.

Suppose that L is not a classical simple group. Then by Lemma 9, $(L, G, L_{\overline{\alpha}})$ are given in Table 7. In the following, we will analyze them one by one.

(1). Assume that $\overline{L} \cong A_n$ and $\overline{G} \cong A_{n-1}$, in particular, $n \mid |\overline{L}_{\overline{\alpha}}|$ and $p \mid n$ for $n \ge 6$, as line 1 of Table 7. In [21, Theorem 1.1], it is shown that there exists a graph with n = p = 7 and $\overline{L}_{\overline{\alpha}} \cong C_7$. Hence line 1 of Table 2 holds. For a similar reason, lines 2-3 of Table 7 lead to that line 2-4 of Table 2 hold.

(2). Assume that $(\overline{L}, \overline{G}, \overline{L_{\alpha}}) \cong (A_{11}, A_9, PSL(2, 11))$ or (A_{11}, A_7, M_{11}) and p = 11, just as line 4 of Table 7. For $(\overline{L}, \overline{G}, \overline{L_{\alpha}}) \cong (A_{11}, A_9, PSL(2, 11))$. Since $Soc(A/K) = \overline{L} \cong A_{11}$, we can conduct that $A/K \cong A_{11}$ or S_{11} , and so $(A/K)_{\overline{\alpha}} \cong PSL(2, 11)$ or $PSL(2, 11):C_2$ respectively. On the other hand, $(A/K)_{\overline{\alpha}}$ is given in Proposition 7(b), which gives that $(A/K)_{\overline{\alpha}} \cong PSL(2, 11)$, and so $A/K \cong A_{11}$, i.e., $A/K = \overline{L}$. Furthermore, Γ_K is $(\overline{L}, 2)$ -arc transitive. By MAGMA, we have that the graph Γ_K does not exist, a contradiction. Then along the same lines as the previous case we can exclude the cases when $(\overline{L}, \overline{G}, \overline{L_{\alpha}}) \cong$ (A_{11}, A_7, M_{11}) (which corresponding to line 4 of Table 7), and (A_{23}, A_{19}, M_{23}) (which corresponding to line 5 of Table 7).

(3). Assume that $(\overline{L}, \overline{L}_{\overline{\alpha}}) \cong (A_{p+1}, A_p)$ and $(p+1) | |\overline{G}|$, just as line 6 of Table 7. It is clear that $\Gamma_K \cong \mathsf{K}_{p+1}$. Hence line 5 of Table 2 holds. For a similar reason, line 7 and 10 of Table 7 gives line 6 and 7 of Table 2 respectively.

(4). Assume that $(\overline{L}, \overline{G}) \cong (A_{11}, M_{11})$ or (A_{12}, M_{12}) , and $\overline{L}_{\overline{\alpha}} \cong A_7$ or S_7 , in particular, p = 7, just as line 8 of Table 7. It is clear that A_7 is 2-transitive on $\Gamma_K(\overline{\alpha})$. By MAGMA, we have that the graph Γ_K does not exist, a contradiction. Hence this case does not occur.

(5). Assume that $(\overline{L}, \overline{G}) \cong (A_{23}, M_{23})$ or (A_{24}, M_{24}) and $\overline{L}_{\overline{\alpha}} \cong A_{19}$ or S_{19} , in particular, p = 19, just as line 9 of Table 7. Suppose that $(\overline{L}, \overline{G}) \cong (A_{23}, M_{23})$. Note that $|\overline{L}_{\overline{\alpha}}|/|K| = |\overline{L}|/|\overline{G}| = 1267136462592000$ denoted by m, and $K \cong \overline{G}_{\overline{\alpha}} \leq (\overline{L})_{\overline{\alpha}}$, we have that K is isomorphic to a subgroup of A_{19} or S_{19} with index m. Thus |K| = 48 or 96 respects to $\overline{L}_{\overline{\alpha}} \cong A_{19}$ or S_{19} . Hence the first line of line 8 in Table 2 holds. For the same reason, the case where $(\overline{L}, \overline{G}) \cong (A_{24}, M_{24})$ implies that line 8 of Table 2 holds.

(6). Assume that $(\overline{L}, \overline{G}) \cong (A_8, A_k)$ for $k \in \{5, 6, 7\}$, and $\overline{L}_{\overline{\alpha}} \cong SL(3, 2)$ or AGL(3, 2), in particular, p = 7, as line 11 of Table 7. By [13, Theorem 1.1], we have Γ_K is $(\overline{L}, 2)$ -arc transitive. With the help of MAGMA, there is no such graph Γ_K exists, a contradiction.

(7). Assume that $(L, G, L_{\overline{\alpha}}) \cong (M_{12}, M_{11}, M_{11})$ or $(M_{12}, M_{11}, PSL(2, 11))$, and p = 11as line 12 of Table 7. Suppose that $(\overline{L}, \overline{G}, \overline{L}_{\overline{\alpha}}) \cong (M_{12}, M_{11}, M_{11})$. Then Γ_K is isomorphic to a complete graph K_{12} . Note that $\operatorname{Soc}(A/K) = \overline{L} \cong M_{12}$. Then $A/K \cong M_{12}$ or $M_{12}.C_2$, and so $(A/K)_{\overline{\alpha}} \cong M_{11}$ or $M_{11}.C_2$. On the other hand, since Γ_K is A/K-arc transitive graph of valency 11, then $(A/K)_{\overline{\alpha}}$ is given in Proposition 7(b), which shows that $A_{\alpha} \cong$ $(A/K)_{\overline{\alpha}} \cong M_{11}$. It follows that $A/K = \overline{L} \cong M_{12}$. Since $|\overline{L}_{\overline{\alpha}}|/|K| = |\overline{L}|/|\overline{G}| = 12$ and $K \cong \overline{G}_{\overline{\alpha}} \leqslant (\overline{L})_{\overline{\alpha}} \cong M_{11}$, we have that K is isomorphic to a subgroup of M_{11} of index 12. By [4, Page 18], $K \cong PSL(2, 11)$. On the other hand, the Schur multiplier $M(M_{12}) \cong C_2$ (see [4, Page 31] for example). Hence $A \cong K.A/K \cong PSL(2, 11).M_{12} \cong PSL(2, 11) \times M_{12}$. Hence $(A, G, A_{\alpha}) \cong (PSL(2, 11) \times M_{12}, M_{11}, M_{11})$, just as line 1 of Table 3. Assume that $(\overline{L}, \overline{G}, \overline{L}_{\overline{\alpha}}) \cong (M_{12}, M_{11}, PSL(2, 11))$. By Proposition 7(b), we have Γ_K is $(\overline{L}, 2)$ -arc transitive. With the help of MAGMA, the graph Γ_K does not exist, a contradiction.

(8). Suppose that $(\overline{L}, \overline{G}, \overline{L_{\alpha}}) \cong (M_{12}, PSL(2, 11), M_{11})$ and p = 11 as line 13 of Table 7. Then Γ_K is isomorphic to a complete graph K_{12} . Note that $\overline{L_{\alpha}} \cong \mathsf{M}_{11}$ and $\mathsf{Soc}(A/K) = \overline{L} \cong \mathsf{M}_{12}$. Then $A/K \cong \mathsf{M}_{12}$ or $\mathsf{M}_{12}.\mathsf{C}_2$, and so $(A/K)_{\overline{\alpha}} \cong \mathsf{M}_{11}$ or $\mathsf{M}_{11}.\mathsf{C}_2$ respectively. On the other hand, since Γ_K is A/K-arc transitive graph of valency 11, then $(A/K)_{\overline{\alpha}}$ is given in Proposition 7(b), which shows that $(A/K)_{\overline{\alpha}} \cong \mathsf{M}_{11}$. It follows that $A_{\alpha} \cong (A/K)_{\overline{\alpha}} \cong$ M_{11} and $A/K \cong \overline{L} \cong \mathsf{M}_{12}$. Noting $G \cong \overline{G} \cong \mathsf{PSL}(2, 11)$, we have $|(A/K)_{\overline{\alpha}}|/|K| =$ $|A/K|/|\overline{G}| = 144$. Since $K \cong \overline{G_{\overline{\alpha}}} \leqslant (A/K)_{\overline{\alpha}} \cong \mathsf{M}_{11}$, we have K is isomorphic to a subgroup of M_{11} of index 144. By [4, Page 18], $K \cong \mathsf{C}_{11}:\mathsf{C}_5$ and the Schur multiplier $M(\mathsf{M}_{12}) \cong \mathsf{C}_2$, and hence $A \cong K.A/K \cong (\mathsf{C}_{11}:\mathsf{C}_5).\mathsf{M}_{12}$. With the help of GAP, we have $\mathsf{Aut}(\mathsf{C}_{11}:\mathsf{C}_5) \cong (\mathsf{C}_{11}:\mathsf{C}_5):\mathsf{C}_2$. Thus $(\mathsf{C}_{11}:\mathsf{C}_5).\mathsf{M}_{12} \cong (\mathsf{C}_{11}:\mathsf{C}_5) \times \mathsf{M}_{12}$. Thereby, $(A, G, A_{\alpha}) \cong$ $((\mathsf{C}_{11}:\mathsf{C}_5) \times \mathsf{M}_{12}, \mathsf{PSL}(2, 11), \mathsf{M}_{11})$, just as line 2 of Table 3.

(9). Assume that $(\overline{L}, \overline{G}, \overline{L_{\alpha}}) \cong (M_{12}, A_5, M_{11})$ as line 14 of Table 7, in particular, p = 11 and $\Gamma_K \cong \mathsf{K}_{12}$. Note that $\overline{L_{\alpha}} \cong \mathsf{M}_{11}$ and $\mathsf{Soc}(A/K) = \overline{L} \cong \mathsf{M}_{12}$. Then $A/K \cong \mathsf{M}_{12}$ or $\mathsf{M}_{12}.\mathsf{C}_2$, and so $(A/K)_{\overline{\alpha}} \cong \mathsf{M}_{11}$ or $\mathsf{M}_{11}.\mathsf{C}_2$. On the other hand, since Γ_K is A/K-arc transitive graph of valency 11, then $(A/K)_{\overline{\alpha}}$ is given in Proposition 7(b), which shows that $(A/K)_{\overline{\alpha}} \cong \mathsf{M}_{11}$. It follows that $A_{\alpha} \cong (A/K)_{\overline{\alpha}} \cong \mathsf{M}_{11}$ and $A/K = \overline{L} \cong \mathsf{M}_{12}$. Note that $G \cong \overline{G} \cong \mathsf{M}_{11}$, we have $|(A/K)_{\overline{\alpha}}|/|K| = |A/K|/|G| = |\mathsf{M}_{12}|/|\mathsf{A}_5| = 2^4 \cdot 3^2 \cdot 11$. Since $K \cong \overline{G_{\overline{\alpha}}} \leqslant (A/K)_{\overline{\alpha}} \cong \mathsf{M}_{11}$, we have K is isomorphic to a subgroup of M_{11} of index $2^4 \cdot 3^2 \cdot 11$. By [4, Page 18], $K \cong \mathsf{C}_5$ and $M(\mathsf{M}_{12}) \cong \mathsf{C}_2$, and hence $A \cong K.A/K \cong$ $\mathsf{C}_5.\mathsf{M}_{12} \cong \mathsf{C}_5 \times \mathsf{M}_{12}$. Hence $(A, G, A_{\alpha}) \cong (\mathsf{C}_5 \times \mathsf{M}_{12}, \mathsf{A}_5, \mathsf{M}_{11})$, just as line 3 of Table 3.

(10). Assume that $(\overline{L}, \overline{G}) \cong (M_{23}, M_{22})$ and $\overline{L}_{\overline{\alpha}} \cong C_{23}:C_{11}$ or C_{23} , as line 15 of Table 7, in particular, p = 23. Note that $\operatorname{Soc}(A/K) = \overline{L} \cong M_{23}$ and $\operatorname{Out}(M_{23}) = 1$. Then $A/K \cong M_{23}$, and so $A_{\alpha} \cong (A/K)_{\overline{\alpha}} = \overline{L}_{\overline{\alpha}} \cong C_{23}:C_{11}$ or C_{23} . In particular, $|(A/K)_{\overline{\alpha}}|/|K| = |A/K|/|\overline{G}| = 23$. Since $K \cong \overline{G}_{\overline{\alpha}} \leq (A/K)_{\overline{\alpha}}$ of index 23 and $K \neq 1$, then $\overline{L}_{\overline{\alpha}} \cong C_{23}:C_{11}$ and $K \cong C_{11}$. By [4, Page 71], the Schur multiplier $M(M_{23}) = 1$, and so $A \cong C_{11}.M_{23} \cong C_{11} \times M_{23}$. Hence line 4 of Table 3 holds.

(11). Assume that $(\overline{L}, \overline{G}) \cong (M_{24}, M_{23})$ and $\overline{L}_{\overline{\alpha}} \cong SL(3, 2)$ or $C_2^6:(SL(3, 2) \times S_3)$, as line 16 of Table 7, in particular, p = 7. Suppose that $\overline{L}_{\overline{\alpha}} \cong C_2^6 \times (SL(3, 2) \times S_3)$. By Lemma 6, we have Γ_K is $(\overline{L}, 2)$ -arc transitive. However, by MAGMA, we have that the graph Γ_K does not exist, a contradiction. If $\overline{L}_{\overline{\alpha}} \cong SL(3, 2)$, then $P := \overline{L}_{\overline{\alpha}\overline{\beta}} \cong S_4$ for $\overline{\beta} \in \Gamma_K(\overline{\alpha})$. With the help of GAP, we have $N := \mathbf{N}_{\overline{L}}(P) \cong S_3 \times S_4$ and $\langle \overline{L}_{\overline{\alpha}}, N \rangle < M_{24}$. It contradicts to the assumption that Γ_K is connected.

(12). Assume that $(\overline{L}, \overline{G}, \overline{L_{\alpha}}) \cong (M_{24}, PSL(2, 23), M_{23})$ as line 17 of Table 7, in particular, p = 23 and $\Gamma_K \cong K_{24}$. Note that $\overline{L_{\alpha}} \cong M_{23}$ and $Soc(A/K) = \overline{L} \cong M_{24}$. Then $A/K \cong M_{24}$ and so $A_{\alpha} \cong (A/K)_{\overline{\alpha}} \cong M_{23}$. Note that $G \cong \overline{G} \cong PSL(2, 23)$, we have $|(A/K)_{\overline{\alpha}}|/|K| = |A/K|/|G| = |M_{24}|/|PSL(2, 23)| = 2^7 \cdot 3^2 \cdot 5 \cdot 7$. Since $K \cong \overline{G_{\alpha}} \leq$ $(A/K)_{\overline{\alpha}} \cong M_{23}$, we have K is isomorphic to a subgroup of M_{23} of index $2^7 \cdot 3^2 \cdot 5 \cdot 7$. By [4, Page 71], $K \cong C_{23}:C_{11}$ and $M(M_{24}) = 1$, and hence $A \cong K.A/K \cong (C_{23}:C_{11}).M_{24} \cong$ $(C_{23}:C_{11}) \times M_{24}$. Hence $(A, G, A_{\alpha}) \cong ((C_{23}:C_{11}) \times M_{24}, PSL(2, 23), M_{23})$, just as line 5 of Table 3.

Case (ii). Assume that (ii) occurs, i.e., $A/K \cong \text{AGL}(3,2)$, $G \cong \text{PSL}(2,7)$ and $\Gamma_K \cong K_8$. Since $\overline{G} \cong G$ is transitive on $V(\Gamma_K)$, then $|G|/8 = |\overline{G}_{\overline{\alpha}}|$, in particular, the index of $\overline{G}_{\overline{\alpha}}$ in G is 8. It follows that $\overline{G}_{\overline{\alpha}} \cong C_7:C_3$. Since G is regular and K is semiregular on $V(\Gamma)$, then $\overline{G}_{\overline{\alpha}} \cong K$. Hence $A \cong K.A/K \cong (C_7:C_3).\text{AGL}(3,2)$. Note that $\text{AGL}(3,2) \cong C_2^3:\text{SL}(3,2)$ with C_2^3 being the unique minimal normal subgroup. By [4], $M(\text{SL}(3,2)) \cong C_2$. Note that $\text{Aut}(C_7:C_3) \cong (C_7:C_3):C_2$, we have $A \cong (C_7:C_3) \times \text{AGL}(3,2)$. On the other hand, since $|A/K| = 8|(A/K)_{\overline{\alpha}}|$ and $A/K = \text{AGL}(3,2) \cong C_2^3:\text{SL}(3,2)$, then $(A/K)_{\overline{\alpha}} \cong \text{SL}(3,2)$. It follows that $A_{\alpha} \cong (A/K)_{\overline{\alpha}} \cong \text{SL}(3,2)$. Then Lemma 11 holds in this case.

Case (iii). Assume that (iii) occurs, i.e., $\operatorname{Soc}(A/K) = T \times T$, and $GK/K \cong G$ is a diagonal subgroup of $\operatorname{Soc}(A/K)$, where T and G are given in [9, Table 1]. Then Γ_K is \overline{L} -arc transitive and $\overline{L}_{\overline{\alpha}}$ is primitive on $\Gamma_K(\overline{\alpha})$. So $\overline{L}_{\overline{\alpha}}$ is given in Lemma 6 and 7, in particular, $(|\operatorname{Soc}(A/K)|/|V(\Gamma_K)|)_p = |\overline{L}_{\alpha}|_p = p$ for $p \ge 7$. However a calculation on the index of $|V(\Gamma_K)|$ in $\operatorname{Soc}(A/K)$ shows that $(|\operatorname{Soc}(A/K)|/|V(\Gamma_K)|)_p \ge p^2$, a contradiction. This finishes the proof of Lemma 11.

The proof of Theorem 1: The Theorem 1 follows immediately from Lemma 10 (which gives (a) of Theorem 10) and Lemma 11 (which gives (b) of Theorem 10). \Box

Acknowledgements

The authors acknowledge the use of the MAGMA and GAP computational package, which helped show some of the results given in this paper.

References

- [1] B. Baumeister, Primitive permutation groups with a regular subgroup, J. Algebra, 310(2): 569–618, 2007.
- [2] J. N. Bray, D. F. Holt and C. M. Roney-Dougal, The Maximal Subgroups of the Low-Dimensional Finite Classical Groups, Cambridge University Press, New York, 2013.
- [3] P. J. Cameron, Finite permutation groups, Cambridge University Press, 1999.
- [4] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford, 1985. (http://brauer.maths.qmul.ac. uk/Atlas/v3/).
- [5] J.-L. Du, Y.-Q. Feng and J.-X. Zhou, Pentavalent symmetric graphs admitting vertex-transitive non-abelian simple groups, *European J. Combin.*, 63: 134–145, 2017.
- [6] X. G. Fang, C. H. Li, J. Wang and M. Y. Xu, On cubic Cayley graphs of finite simple groups, *Discrete Math.*, 244(1–3): 67–75, 2002.
- [7] X. G. Fang, X. Ma and J. Wang, On locally primitive Cayley graphs of finite simple groups, J. Combin. Theory Ser. A, 118: 1039–1051, 2011.

- [8] X. G. Fang and C. E. Praeger, Finite two-arc transitive graphs admitting a Suzuki simple group, Comm. Algebra, 27(8): 3727–3754, 1999.
- [9] X. G. Fang, C. E. Praeger and J. Wang, On the automorphism group of Cayley graphs of finite simple groups, J. London Math. Soc. (2), 66(3): 563–578, 2002.
- [10] C. D. Godsil, On the full automorphism group of a graph, Combinarorica, 1: 243–256, 1981.
- [11] M. Giudici, Factorisations of sporadic simple groups, J. Algebra, 304(1): 311–323, 2006.
- [12] S.-T. Guo, H. Hou and Y. Xu, A note on solvable vertex stabilizers of s-transitive graphs of prime valency, *Czechoslovak Math. J.*, 65: 781–785, 2015.
- [13] S.-T. Guo, Y. Li and X.-H. Hua, (G,s)-transitive graphs of valency 7, Algebra Colloq., 23(3): 493–500, 2016.
- [14] C. Hering, M. W. Liebeck, and J. Saxl, The factorizations of the finite exceptional groups of lie type, J. Algebra, 106(2): 517–527, 1987.
- [15] W. M. Kantor, k-homogeneous groups, Math. Z., 124: 261–265, 1972.
- [16] P. Kleidman and M. Liebeck, The subgroup structure of the finite classical groups, Cambridge University Press, New York, 1990.
- [17] C. H. Li, *Isomorphims of finite Cayley graphs*, PhD Thesis, The University of Western Australia, 1996.
- [18] C. H. Li, The finite primitive permutation groups containing an abelian regular subgroup, Proc. London Math. Soc., 87(3): 725–747, 2003.
- [19] C. H. Li, A. Seress and S. J. Song, s-arc-transitive graphs and normal subgroups, J. Algebra, 421: 331–348, 2015.
- [20] J. J. Li, B. Ling and G. D. Liu, A characterisation on arc-transitive graphs of prime valency, *Appl. Math. Comput.*, 325: 227-233, 2018.
- [21] J. J. Li, G. R. Zhang and B. Ling, 1-regular Cayley graphs of valency 7, Bull. Aust. Math. Soc., 88(3): 479–485, 2013.
- [22] M. W. Liebeck, C. E. Praeger and J. Saxl, The maximal factorizations of the finite simple groups and their automorphism groups, *Mem. Amer. Math. Soc.*, 86, no. 432, 1990.
- [23] M. W. Liebeck, C. E. Praeger and J. Saxl, Transitive subgroups of primitive permutation groups, J. Algebra 234(2): 291–361, 2000.
- [24] M. Y. Xu, Automorphism groups and isomorphisms of Cayley graphs, *Discrete Math.* 182: 309–319, 1998.
- [25] S. J. Xu, X. G. Fang, J. Wang and M. Y. Xu, On cubic s-arc transitive Cayley graphs of finite simple groups, *European J. Combin.* 26(1): 133–143, 2005.
- [26] C. Zhang and X. G. Fang, A note on the automorphism groups of cubic Cayley graphs of finite simple groups, *Discrete Math.*, 310(21): 3030–3032, 2010.