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Abstract

The Fibonacci word W on an infinite alphabet was introduced in [Zhang et
al., Electronic J. Combinatorics 2017 24(2), 2-52] as a fixed point of the morphism
2i → (2i)(2i + 1), (2i + 1) → (2i + 2), i > 0. Here, for any integer k > 2, we
define the infinite k-bonacci word W (k) on the infinite alphabet as ϕω

k (0), where the
morphism ϕk on the alphabet N is defined for any i > 0 and any 0 6 j 6 k − 1, by

ϕk(ki + j) =

{
(ki)(ki + j + 1) if j = 0, · · · , k − 2,
(ki + j + 1) otherwise.

We consider the sequence of finite words (W
(k)
n )n>0, where W

(k)
n is the prefix of

W (k) whose length is the (n+k)-th k-bonacci number. We then provide a recursive

formula for the number of palindromes that occur in different positions of W
(k)
n .

Finally, we obtain the structure of all palindromes occurring in W (k) and based on
this, we compute the palindrome complexity of W (k), for any k > 2.

Mathematics Subject Classifications: 68R15, 11B50
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1 Introduction

Finite and infinite Fibonacci words are among the most studied ones in combinatorics of
words and have important roles in computer science, based on their optimal properties and
various applications, see for example [13, 3, 14, 5]. The sequence of finite Fibonacci words
(Fn)n>−1 is given by F−1 = 1, F0 = 0 and the recurrence relation Fn = Fn−1Fn−2 which
holds for n > 1. An equivalent way to give these words for n > 0, is using Fn = ψn(0),
where ψ is the binary morphism 0 → 01, 1 → 0. The infinite Fibonacci word is then
given by F∞ = lim

n→∞
Fn or equivalently by F∞ = ψω(0).

The infinite Fibonacci word belongs to the class of infinite aperiodic binary words
having the minimal complexity (i.e. the minimal number of factors of each given length);
any such word is called a Sturmian word. Sturmian words are well-studied in the literature;
they admit some equivalent definitions and have several interesting properties, see [4, 12,
10] for instance.

A natural extension of finite Fibonacci words to k-letter alphabet, k > 2, is defining
finite k-bonacci words (F

(k)
n )n>0 by

F (k)
n =


0 if n = 0,

F
(k)
n−1 . . . F

(k)
0 n if 1 6 n < k,

F
(k)
n−1 . . . F

(k)
n−k if n > k.

Alternatively, these words may be given by F
(k)
n = ψn

k (0), for n > 0, where ψk : {0, . . . , k−
1}∗ → {0, . . . , k − 1}∗ is the morphism

ψk(i) =

{
0(i+ 1) if i = 0, · · · , k − 2,
0 if i = k − 1.

(1)

The infinite k-bonacci word is then given by F
(k)
∞ = lim

n→∞
F

(k)
n or equivalently by F

(k)
∞ =

ψω
k (0).

While the infinite Fibonacci word is the simplest example of Sturmian words, the
infinite k-bonacci word is similarly related to the most natural extension of Sturmian
words, namely episturmian words. More precisely, the k-bonacci word is the simplest
example of non-ultimately periodic episturmian words on the k-letter alphabet; to see the
definition and properties of episturmian words see [6, 4, 11, 8, 7].

The infinite Fibonacci word over the infinite alphabet of nonnegative integers, N,
denoted here as W (2), is presented in [15] as the fixed point of the morphism ϕ2 starting
with 0, where ϕ2 is given by ϕ2(2i) = (2i)(2i + 1) and ϕ2(2i + 1) = 2i + 2 for i > 0.
More precisely, we have W (2) = ϕω

2 (0). The authors of [15] have also studied the finite

Fibonacci words over N, namely the words W
(2)
n = ϕn

2 (0). It is obvious that when the

digits of W
(2)
n and W (2) are calculated mod 2, these words are reduced to Fn and F∞,

respectively. Among several properties of words W
(2)
n and W (2) studied in [15], the authors

characterized palindromic factors of W
(2)
n and W (2). Particularly, the authors showed that

in contrast to the ordinary infinite Fibonacci word which contains palindromic factors of
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arbitrary length, the word W (2) has no palindrome of length greater than 3. Some more
properties of these words were consequently studied by Glen et al. in [9]. Among other

results, they computed the number of palindromes in W
(2)
n .

In this paper, we introduce finite and infinite k-bonacci words on the infinite alphabet
N, denoted respectively as W

(k)
n and W (k). Studying theses words, we characterize the

palindromic factors of W (k) for any fixed integer k > 3. More precisely we show that the
length of a palindromic factor of W (k) belongs to the set Lk = {2} ∪ {2i − 1 : 2 6 i 6
3.2k−2}. Conversely, for each element ` of Lk we give the structure of palindromes of W (k)

with length `. We also enumerate the total number of palindromes of W
(k)
n .

2 Definitions and notation

In this paper, the alphabet, which can be a finite or a countable infinite set, is denoted as
A. When the alphabet is infinite, we simply take A = N. Each element of the alphabet
A is called a letter. When A = N, we equivalently use the term digit instead of letter. We
denote by A∗ the set of finite words over A and we let A+ = A∗\{ε}, where ε is the empty
word. We denote by Aω the set of all infinite words over A and we let A∞ = A∗ ∪ Aω.
If a ∈ A and W ∈ A∞, then the symbols |W | and |W |a denote respectively the length
of W , and the number of occurrences of letter a in W (It is obvious that when W ∈ Aω,
|W | = ∞). For any word W ∈ A∞, Alph(W ) is defined to be the set of letters which
have at least one occurrence in W , that is Alph(W ) = {a ∈ A : |W |a > 0}.

A word V ∈ A∗ is a factor of a word W ∈ A∞, denoted as V ≺ W , if there exist
U ∈ A∗ and U ′ ∈ A∞, such that W = UV U ′. A word V ∈ A∗ (resp. V ∈ A∞) is said to
be a prefix (resp. suffix) of a word W ∈ A∞, denoted as V CW (resp. V BW ), if there
exists U ∈ A∞ (resp. U ∈ A∗) such that W = V U (resp. W = UV ). We denote the
prefix (resp. suffix) V of length j of W ∈ A+ by Prefj(W ) (resp. Suffj(W )). If W ∈ A∗
and W = V U (resp. W = UV ,) we merely write V = WU−1 (resp. V = U−1W ).
For a finite word W = w1w2 . . . wn, with wi ∈ A and for 1 6 j 6 j′ 6 n, we denote
W [j, j′] = wj . . . wj′ , and for simplicity we denote W [j, j] by W [j]. The reversal of a finite
word W = w1w2 . . . wn, with wi ∈ A, is WR = wnwn−1 . . . w1. A word W ∈ A∗ is called
palindrome if W = WR. The set of all palindromic factors of the word W ∈ A∞ is denoted
by Pal(W ). When the alphabet is finite, for any word U ∈ A∞, the number of palindromic
factors of length n of U , called the palindrome complexity of U , is denoted by palU(n) (for
more information about the palindrome complexity see [1, 2] and the references therein).
When the alphabet is infinite (i.e. A = N), the definition of palindrome complexity can
naturally be extended to all words U ∈ A∞ with the same notation.

Let P be a palindrome of odd length 2k+1 and W = Prefk(P ). Then the letter a ∈ A
satisfying P = WaWR, is called the center of the palindrome P . If P is a palindrome of
even length, then the center of P is defined to be the empty word. For any occurrence of a
palindromic factor P ∈ A∗ in a word W ∈ A∞ such as W = UPV with U ∈ A∗, V ∈ A∞,
the center position of this occurrence of P in W is denoted by cp(P,W ) and defined to

be |U | + |P |+1
2

. We notice that when |P | is even the center-position is a non-integer. A
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palindromic factor P ∈ A∗ of W ∈ A∞ is called a maximal palindromic factor of W if
there is no longer palindromic factor of W with the same center position. We note that a
maximal palindromic factor of a word W , could be a factor of another palindromic factor
P of W . For instance, the only maximal palindromic factors of W = 1213121 are 1, 121
and 1213121.

For 1 6 i 6 n, let Ui ∈ A∗; then
∏1

i=n Ui is defined to be UnUn−1 . . . U1. For a finite
word W and an integer n, n ⊕W denotes the word obtained by adding n to each letter
of W . For example, let W = 01023 and n = 5, then n ⊕W = 56578. For a finite set
S = {S1, . . . , Sm} ⊂ A+, we define n⊕ S to be the set {n⊕ S1, . . . , n⊕ Sm}.

For any integer k > 2 the sequence of k-bonacci numbers, denoted by {f (k)
n }n>0, is

given as

f (k)
n =


0 if n = 0, . . . , k − 2,
1 if n = k − 1,∑n−1

i=n−k f
(k)
i if n > k.

(2)

The last recurrence relation which holds eventually, states that the n-th term of the
sequence is the summation of the k previous ones. This reminds the Fibonacci and
Tribonacci recurrence relations in the special cases k = 2 and k = 3. In fact, f

(2)
n and f

(3)
n

are essentially the well-known Finonacci and Tribonacci numbers. It is easy to prove that
regardless of the first k − 1 zero terms, the above sequence of k-bonacci numbers can be
given as

f (k)
n =


1 if n = k − 1,
2n−k if k 6 n 6 2k − 1,

2f
(k)
n−1 − f

(k)
n−k−1 if n > 2k.

(3)

We define the finite (resp. infinite) k-bonacci words W
(k)
n (resp. W (k)) on the infinite

alphabet N, using the morphism ϕk given below for integers i > 0 and 0 6 j < k,

ϕk(ki+ j) =

{
(ki)(ki+ j + 1) if j = 0, . . . , k − 2

(ki+ j + 1) if j = k − 1.

More precisely, W
(k)
n = ϕn

k(0) and W (k) = ϕω
k (0) (Note that W

(k)
0 = F

(k)
0 = 0). Conse-

quently F
(k)
n = W

(k)
n mod k, that is for a fixed value of k, the k-bonacci words over the

infinite alphabet are reduced to k-bonacci words over a finite alphabet when the digits
are calculated mod k. It can be shown that for n > 0,

|F (k)
n | = |W (k)

n | = f
(k)
n+k. (4)

We end this section with two examples giving some initial k-bonacci words on finite and
infinite alphabets.

Example 1. In this example the 3-bonacci words on finite and infinite alphabet are given
when n 6 5. The infinite Tribonacci words on finite and infinite alphabet are also shown.

W
(3)
0 = 0, F

(3)
0 = 0,
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W
(3)
1 = 01, F

(3)
1 = 01,

W
(3)
2 = 0102, F

(3)
2 = 0102,

W
(3)
3 = 0102013, F

(3)
3 = 0102010,

W
(3)
4 = 0102013010234, F

(3)
4 = 0102010010201,

W
(3)
5 = 010201301023401020133435, F

(3)
5 = 010201001020101020100102,

The first terms of W (3) and F
(3)
∞ are as below

W (3) = 0 1 0 2 0 1 3 0 1 0 2 3 4 0 1 0 2 0 1 3 3 4 3 5 0 1 0 2 0 1 3 0 1 0 2 3 4 3 4 3 5 3 4 6 · · ·
F (3)
∞ = 0 1 0 2 0 1 0 0 1 0 2 0 1 0 1 0 2 0 1 0 0 1 0 2 0 1 0 2 0 1 0 0 1 0 2 0 1 0 1 0 2 0 1 0 · · ·

Example 2. In this example we fix n = 6 and consider different cases k = 3, 4, 5, 6.

W
(3)
6 = 01020130102340102013343501020130102343435346,

F
(3)
6 = 01020100102010102010010201020100102010102010.

W
(4)
6 = 01020103010201401020103010245010201030102014010201034546,

F
(4)
6 = 01020103010201001020103010201010201030102010010201030102.

W
(5)
6 = 0102010301020104010201030102015010201030102010401020103010256,

F
(5)
6 = 0102010301020104010201030102010010201030102010401020103010201.

W
(6)
6 = 010201030102010401020103010201050102010301020104010201030102016,

F
(6)
6 = 010201030102010401020103010201050102010301020104010201030102010.

3 Some properties of W (k)
n

In this section, we give some recursive identities which state the word W
(k)
n as the con-

catenation of previous words of the same type. These identities will help us to discover
the structure of palindromes in k-bonacci words in the future sections. First we present a
simple lemma stating a property of the morphism ϕk which can be easily deducted from
the definition.

Lemma 3. For any integer i > 0, ϕk(k + i) = k ⊕ ϕk(i).

Lemma 4. For 1 6 n 6 k − 1,

W (k)
n =

0∏
i=n−1

W
(k)
i n. (5)
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Proof. We use induction on n. It is easy to check that the statement is true for n = 1.
Suppose the lemma is true for all i with 1 6 i 6 n < k − 1. Then

W
(k)
n+1 =ϕk(W (k)

n )

=ϕk

( 0∏
i=n−1

W
(k)
i n

)
=

0∏
i=n−1

ϕk(W
(k)
i )ϕk(n)

=
1∏

i=n

W
(k)
i 0 (n+ 1) since n < k − 1 and ϕk(n) = 0(n+ 1)

=
0∏

i=n

W
(k)
i (n+ 1).

Lemma 5. For 1 6 n 6 k − 1,

W (k)
n = W

(k)
n−1W

(k)
n−1(n− 1)−1n.

Proof. By Lemma 4, we have

W (k)
n = W

(k)
n−1W

(k)
n−2 · · ·W

(k)
0 n

= W
(k)
n−1W

(k)
n−1(n− 1)−1n

In the next lemma we give a recursive formula for W
(k)
n when n > k.

Lemma 6. For n > k,

W (k)
n =

n−k+1∏
i=n−1

W
(k)
i (k ⊕W (k)

n−k). (6)

Proof. We use induction on n. If n = k, the statement is true since

W
(k)
k =ϕk(W

(k)
k−1)

=ϕk(
0∏

i=k−2

W
(k)
i (k − 1))

=
0∏

i=k−2

ϕk(W
(k)
i )ϕk(k − 1)

=
1∏

i=k−1

W
(k)
i k

=
1∏

i=k−1

W
(k)
i (k ⊕W (k)

0 ).
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Now, suppose Equation (6) holds for all n with k 6 n 6 j; we prove it below for n = j+1.

W
(k)
j+1 =ϕk(W

(k)
j )

=ϕk

( j−k+1∏
i=j−1

W
(k)
i (k ⊕W (k)

j−k)
)

=

j−k+1∏
i=j−1

ϕk(W
(k)
i )ϕk(k ⊕W (k)

j−k)

=

j−k+2∏
i=j

W
(k)
i (k ⊕ ϕk(W

(k)
j−k)) by Lemma 3

=

j−k+2∏
i=j

W
(k)
i (k ⊕W (k)

j−k+1).

Corollary 7. For integers 0 6 i 6 n, W
(k)
i is a prefix of W

(k)
n .

Proof. By Lemmas 4 and 6, for any integer n > 0, W
(k)
n CW (k)

n+1. Hence, the result follows
by induction on n.

Corollary 8. Let k > 2. For each 0 6 n 6 k − 1, |W (k)
n | = 2n and for each nonnegative

n, |W (k)
n+1| 6 2|W (k)

n |. Furthermore, the following identity holds.

|W (k)
n+1| =


2|W (k)

n | if 0 6 n 6 k − 2,

2|W (k)
n | − 1 if n = k − 1,

2|W (k)
n | − |W (k)

n−k| if n > k − 1.

Proof. Considering the definition of k-bonacci numbers in Equation (2) and using Lemmas

4 and 6, we conclude that |W (k)
n | = f

(k)
n+k holds for all n > 0. The other statements follow

from Equation (3).

Lemma 9. For any n > 0, the digit n is the largest one of W
(k)
n and appears once at the

end of this word.

Proof. We prove this using induction on n. When n = 1, W
(k)
1 = ϕk(0) = 01 and it is

obvious that the claim is true. Now suppose the result holds for n 6 m. We prove it for
n = m+ 1 below.

W
(k)
m+1 =ϕk(W (k)

m )

=ϕk(W (k)
m m−1m) by the induction hypothesis

=ϕk(W (k)
m m−1)ϕk(m).

Now, by induction hypothesis all digits of W
(k)
m m−1 are less than m. Hence, by definition

of ϕk, all digits of ϕk(W
(k)
m m−1) are less than m + 1. Again using definition of ϕk, the

largest digit of ϕk(m) is m + 1 which occurs once at the end of ϕk(m) and the proof is
complete.

the electronic journal of combinatorics 27(3) (2020), #P3.59 7



The following notation simplifies some definitions and proofs appearing in the rest of
the paper. Notation. For any integer i, we let (i)∗ = max{i, 0}.

Definition 10. Let n be a positive integer. Considering factorizations of W
(k)
n given in

the Equations (5) and (6), we divide the set of factors of W
(k)
n into three following types.

• Included factors. The digit n or the factors of W
(k)
n which are included in any of

the words W
(k)
n−1, W

(k)
n−2, . . ., W

(k)
(n−k+1)∗

or in (k ⊕W (k)
n−k), if n > k.

• Bordering factors. Factors F which are of the form F = XjYj for some (n− k +

1)∗ + 1 6 j 6 n − 1, where Xj 6= ε is a suffix of W
(k)
j and Yj 6= ε is a prefix of∏(n−k+1)∗

i=j−1 W
(k)
i . We call any such factor, a bordering factor of type j of W

(k)
n .

• Straddling factors. Factors F which are of the form F = AB, where A 6= ε is a
suffix of

∏(n−k+1)∗
i=n−1 W

(k)
i and B = n if n 6 k − 1, and B is a prefix of k ⊕W (k)

n−k if
n > k; these are called (A,B)-straddling factors (or straddling factors for short, if

there is no danger of confusion) of W
(k)
n .

Definition 11. Let n be a positive integer. Considering Definition 10, we call a palin-
dromic factor P of W

(k)
n an included (resp. a bordering, a straddling) palindrome if P is

an included (resp. a bordering, a straddling) factor of W
(k)
n .

The following definition helps us to detect factors of length two of W
(k)
n and will be

used in some lemmas.

Definition 12. Let B(k)
1 = {(a.k)⊕ ki : i > 0, a 6= 0}, B(k)

2 = {(0.b)⊕ ki : i > 0, 1 6 b 6
k − 1} and B(k)

3 = {a.0 : a 6= 0} and B(k) = B(k)
1 ∪ B

(k)
2 ∪ B

(k)
3 .

Lemma 13. Let B = s.t be a factor of length 2 of W
(k)
n , then B ∈ B(k).

Proof. By Definition 12, it is easy to see that B(k) ⊕ k ⊂ B(k). We prove the lemma by
induction on n. If n = 1, then W

(k)
1 = 01 has just one factor of length 2, namely 01 ∈ B(k)

2 .
Now let m > 1 and suppose that the lemma is true for all n, 1 6 n < m. To conclude
its validity for m, let B be a factor of length 2 of W

(k)
n . Considering Definition 10, one of

the following cases hold.

• B is an included factor of W (k)
m . Then either B ≺ W

(k)
n for some (m−k+1)∗ 6

n 6 m− 1 or B ≺ (k⊕W (k)
m−k) (this happens only if m > k). The former case leads

to B ∈ B(k) by the induction hypothesis, while the latter case leads to B	k ∈ B(k),
whence by B(k) ⊕ k ⊂ B(k), we have B ∈ B(k).

• B is a bordering factor of W (k)
m . Then by Definition 10, B = j0, for some

(n− k + 1)∗ + 1 6 j 6 n− 1. This means that B ∈ B(k)
3 .

• B is a straddling factor of W (k)
m . Then either B = 0.m, when m 6 k − 1, or

B = (m − k + 1)k. The latter case leads to B ∈ B(k)
1 by Definition 12 while the

former case leads to B ∈ B(k)
2 .
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The next corollaries are direct consequences of Lemma 13.

Corollary 14. Let n > 0 and k > 2. The finite word W
(k)
n contains no factor 00.

Corollary 15. Let s, t ∈ N and let n, k be two positive integers with k > 2. If st ≺ W
(k)
n ,

then either k | t or s < t.

Proof. Suppose that k 6| t, then by Lemma 13, st ∈ B(2). Hence, by Definition 12, s < t.

The following theorem gives us the suffix of length two of the word W
(k)
n .

Theorem 16. Let n > 1 and j = (n mod k). Then

• (n− j)nBW
(k)
n provided j 6= 0.

• (n− k + 1)nBW
(k)
n provided j = 0.

Proof. Recall that W
(k)
n = ϕn

k(0). We prove the theorem using induction on n. If n = j =
1, we have 01Bϕ1

k(0). Suppose that the result holds for all n, n 6 m. The validity of the
result for n = m+ 1 is then proved in the following two cases.

• If m + 1 ≡ 0 (mod k), then m ≡ k − 1 (mod k) and by induction hypothesis
(m− k + 1)(m) B ϕm

k (0). Hence,

ϕk((m− k + 1)(m))Bϕm+1
k (0),

ϕk(m− k + 1)ϕk(m)Bϕm+1
k (0),

(m− k + 1)(m− k + 2)(m+ 1)Bϕm+1
k (0).

• If m+ 1 ≡ j (mod k), and 0 < j < k then by Lemma 9, m is the last digit of ϕm
k (0)

or mB ϕm
k (0). Hence,

ϕk(m)Bϕm+1
k (0)

(m− j + 1)(m+ 1)Bϕm+1
k (0).

So, the proof is complete.

4 The number of palindromes in W (k)
n

In this section, we are going to count the total number of palindromes in W
(k)
n . Actually,

the process of counting all palindromes in W
(k)
n leads us to find all possible palindromic

factors of W
(k)
n . Equations (5) and (6) are essential in the rest of this work. By Equation

(5) and Lemma 5, we obtain an explicit formula for the number of palindromes in W
(k)
n

when n 6 k − 1; this is done in Section 4.1.
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Let P (k)(n) denote the total number of palindromes in W
(k)
n occurring in different

positions and B(k)(n, j) and S(k)(n) denote the number of bordering palindromes of type

j and straddling palindromes of W
(k)
n , respectively. Then by Definition 11, the following

recurrence relation holds

P (k)(n) = Σn−1
i=n−kP

(k)(i) + Σn−1
i=n−k+2B

(k)(n, i) + S(k)(n). (7)

The following theorem gives a recurrence formula for computing P (k)(n). The proof
which is formally stated in Section 4.4, is based on considering several cases with respect
to values of n and k. This is done in Sections 4.1-4.3.

Theorem 17. Let k > 2 and n > 1 be given integers. Then the following holds

(i) If 0 6 n 6 k − 1, then P (k)(n) = n2n−1 + 1,

(ii) If n > k, then P (k)(n) = Σn−1
i=n−kP

(k)(i) + α(k)(n), where

α(k)(n) =


2k − k2n−k+2 + n2n−k+1 if k 6 n 6 2k − 3,
0 if n = 2k − 2,
2n−2k+2 − 1 if 2k − 1 6 n 6 3k − 3,
2k − 2 if n = 3k − 2,
0 if n > 3k − 2.

To prove the theorem we divide the rest of this section into some subsections with
respect to the values of n and k.

4.1 Palindromes in W (k)
n when n 6 k − 1

Lemma 18. For 1 6 n 6 k − 1, W
(k)
n n−1 is a palindromic word.

Proof. We prove this by induction on n. Since for every k > 2 we have W
(k)
1 = 01, the first

step of the induction is true. Suppose n = j < k − 1, the word W
(k)
j j−1 is a palindrome.

Now using Lemma 5, we have

W
(k)
j+1(j + 1)−1 = W

(k)
j W

(k)
j j−1

= W
(k)
j j−1jW

(k)
j j−1,

which is a palindromic word by induction hypothesis.

Lemma 19. For every 1 6 n 6 k− 1, P (k)(n) = 2P (k)(n− 1) + 2n−1− 1 and P (k)(0) = 1.

Proof. Since the digit n just occurs in the last position of W
(k)
n , every palindromic factor

of W
(k)
n either equals to n or is a palindromic factor of W

(k)
n n−1. By Lemma 5, for every

n 6 k − 1, we have

W (k)
n n−1 = W

(k)
n−1W

(k)
n−1(n− 1)−1 = W

(k)
n−1(n− 1)−1(n− 1)W

(k)
n−1(n− 1)−1. (8)
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From Equation (8), we conclude that n − 1 occurs once in W
(k)
n n−1. Using Lemma 18

and again using Equation (8), we find that a factor P of W
(k)
n n−1 is a palindromic word

if and only if it is either a palindromic factor of W
(k)
n−1(n− 1)−1 or P = a(n− 1)a, where

a is a prefix of W
(k)
n−1. Therefore, P (k)(n) = 2(P (k)(n− 1)− 1) + |W (k)

n−1|+ 1. Hence, using
Corollary 8, we provide P (k)(n) = 2P (k)(n− 1) + 2n−1 − 1.

Theorem 20. For every 0 6 n 6 k − 1, P (k)(n) = n2n−1 + 1.

Proof. The proof is easy by induction on n.

4.2 Bordering Palindromes of W (k)
n

In this section, we consider the bordering palindromes of W
(k)
n when n > k. A bordering

palindrome B of W
(k)
n is called a maximal bordering palindrome if there is no longer

bordering palindromic factor of W
(k)
n with the same center position.

Lemma 21. Let Bj be one of the bordering palindromes of type j of W
(k)
n . Then

cp(Bj,W
(k)
n ) = |W (k)

n−1|+ · · ·+ |W
(k)
j |

and j is the center of Bj.

Proof. By Definition 11, we know that Bj is a factor of W = W
(k)
j W

(k)
j−1 · · ·W

(k)
n−k+1, and

it contains the last digit of W
(k)
j , which is j. By Lemma 9, |W |j = 1. Hence |Bj| is an

odd integer and j is the center of Bj. Moreover cp(Bj,W
(k)
n ) = |W (k)

n−1|+ · · ·+ |W
(k)
j |.

Lemma 22. Let Bj be a bordering palindrome of type j of W
(k)
n . Then n 6 2k − 3 and

n− k + 2 6 j 6 k − 1.

Proof. Let c = cp(Bj,W
(k)
n ) and j′ = (j mod k). By Theorem 16 and Lemma 21, we have

Bj[c] = j and

Bj[c− 1] =

{
j − j′ if (j′ 6= 0)
j − k + 1 otherwise .

Using Definition 10 and Equation (6), we have Bj[c+ 1] = 0. If j′ 6= 0, then by definition
of c, we obtain Bj[c + 1] = Bj[c − 1] = j − j′. Since Bj[c + 1] = 0, j = j′, which
shows that 0 6 j 6 k − 1. Moreover, by Equation (6), n − k + 2 6 j 6 n − 1. Hence
n− k+ 2 6 j 6 k− 1, which shows that n 6 2k− 3. If j′ = 0, then Bj[c− 1] = j − k+ 1
Using Bj[c+ 1] = Bj[c−1] = j−k+ 1, Bj[c+ 1] = 0 and j > n−k+ 2, we have j = k−1
and n 6 2k − 3, as desired.

Lemma 23. Let k 6 n 6 2k− 3 and n− k+ 2 6 j 6 k− 1. Then the maximal bordering
palindrome of type j of W

(k)
n is Bj = (W

(k)
j−1W

(k)
j−2 · · ·W

(k)
n−k+1)

R j (W
(k)
j−1W

(k)
j−2 · · ·W

(k)
n−k+1).
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Proof. By Definition 11, Bj is a palindromic factor of the following word

W
(k)
j j−1jW

(k)
j−1W

(k)
j−2 · · ·W

(k)
n−k+1,

and by Lemma 21, j is the center of Bj. Using Lemma 22, j 6 k−1 and n−k+1 6 j−1.

On the other hand by Lemma 4, we have W
(k)
j−1W

(k)
j−2 · · ·W

(k)
n−k+1 CW

(k)
j j−1. Hence, using

Lemma 18, (W
(k)
j−1W

(k)
j−2 · · ·W

(k)
n−k+1)

R BW
(k)
j j−1. Therefore,

Bj = (W
(k)
j−1W

(k)
j−2 · · ·W

(k)
n−k+1)

R j (W
(k)
j−1W

(k)
j−2 · · ·W

(k)
n−k+1).

Lemma 24. Let n and j be two integers with k 6 n 6 2k − 3 and n− k + 2 6 j 6 k − 1
and Bj be a maximal bordering palindrome of type j of W

(k)
n . Then |Bj| = 2(|W (k)

j | −
|W (k)

n−k+1|) + 1.

Proof. By Lemma 23, we have

Bj = (W
(k)
j−1W

(k)
j−2 · · ·W

(k)
n−k+1)

R j (W
(k)
j−1W

(k)
j−2 · · ·W

(k)
n−k+1).

Using Equation (5),

W
(k)
j−1W

(k)
j−2 · · ·W

(k)
n−k+1 = W

(k)
j (W

(k)
n−k · · ·W

(k)
0 j)−1.

Hence,

|Bj| = 2(|W (k)
j | − |W

(k)
n−k · · ·W

(k)
0 j|) + 1

= 2(|W (k)
j | − |W

(k)
n−k+1|) + 1.

Lemma 25. Let n > k, then

B(k)(n, j) =

{
2j − 2n−k+1 if (k 6 n 6 2k − 3) and (n− k + 2 6 j 6 k − 1),

0 otherwise .

Proof. If n 6 2k − 3 and n − k + 2 6 j 6 k − 1 and Bj be the maximal bordering

palindrome of type j of W
(k)
n . then by Lemmas 23 and 24, we have

B(k)(n, j) =
|Bj| − 1

2

=|W (k)
j | − |W

(k)
n−k+1|

=2j − 2n−k+1.

The last equality holds using Corollary 8. In other cases, by Lemma 22, B(k)(n, j) = 0,
as desired.
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4.3 Straddling Palindromes of W (k)
n

In this subsection, we are going to count the number of straddling palindromes of W
(k)
n

when n > k. A straddling palindrome of W
(k)
n is called a maximal straddling palindrome

of W
(k)
n if there is no longer straddling palindromic factor of W

(k)
n with the same center

position. Similarly, an (A,B)-maximal straddling palindrome, is an (A,B)-straddling
palindrome which is a maximal straddling palindrome.

Lemma 26. If S is a straddling palindrome of W
(k)
n , then 2k − 1 6 n 6 3k − 2.

Proof. First we note that (k ⊕ W
(k)
n−k) starts with k and W

(k)
n−k+1 ends with n − k + 1.

Hence, the sequence (n− k + 1).k occurs in any straddling palindrome P of W
(k)
n . Since

P is a palindrome, the sequence B = k.(n − k + 1) also occurs in P . Hence, by Lemma

13, B ∈ B(k). Since n > k, using Definition 12, we provide B ∈ B(k)
1 ∪ B

(k)
2 . If B ∈ B(k)

1 ,
then B = k.(n− k + 1) = (a.k)⊕ ki, for some integers a 6= 0 and i > 0. Since a 6= 0, we
conclude that a = k and i = 0. So, in this case n− k + 1 = k and n = 2k − 1.

If B ∈ B(k)
2 , then B = k.(n − k + 1) = (0.b) ⊕ ki for some i > 0 and 1 6 b 6 k − 1.

Hence, i = 1 and k+ 1 6 n−k+ 1 6 2k−1. Therefore, 2k 6 n 6 3k−2, as desired.

Lemma 27. The only straddling palindrome of W
(k)
2k−1 is k.k.

Proof. By Lemma 6, W
(k)
2k−1 = W

(k)
2k−2 · · ·W

(k)
k (k ⊕W (k)

k−1). It is clear that k C (k ⊕W (k)
k−1)

and using Theorem 16, (1.k)BW (k)
k .Hence, k.k is a straddling palindrome of W

(k)
2k−1. Now,

we are going to show that there is no other straddling palindrome in W
(k)
2k−1. Since there

is no digit 1 in (k ⊕W
(k)
k−1), every straddling palindrome of W

(k)
2k−1 has the last digit of

W
(k)
k (i.e. k) as a prefix. By Corollary 14, 0.0 is not a factor of W

(k)
k−1 and hence k.k is

not a factor of (k ⊕W (k)
k−1). Therefore, W

(k)
2k−1 could not have a straddling palindrome of

length greater than 2 and k.k is its only straddling palindrome.

Lemma 28. Let 2k − 1 < n < 3k − 2 and let W be an (A,B)-maximal straddling

palindrome of W
(k)
n . Then AB (k ⊕W (k)

n−2k+1) and hence |A| 6 2n−2k+1.

Proof. Let i = n− 2k. Then, by Equation (6),

W
(k)
2k+i = W

(k)
2k+i−1 · · ·W

(k)
k+i+1(k ⊕W

(k)
k+i),

W
(k)
k+i+1 = W

(k)
k+i · · ·W

(k)
i+2(k ⊕W

(k)
i+1).

Hence,

W
(k)
k+i+1(k ⊕W

(k)
k+i) BW

(k)
2k+i,

W
(k)
i+2(k ⊕W

(k)
i+1) BW

(k)
k+i+1.

Therefore,
W

(k)
i+2(k ⊕W

(k)
i+1)(k ⊕W

(k)
k+i) BW

(k)
2k+i. (9)
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Let W
(k)
2k+i = VW

(k)
i+2(k ⊕W

(k)
i+1)(k ⊕W

(k)
k+i) and ` = |VW (k)

i+2|. By definition of the (A,B)-

straddling palindrome of W
(k)
2k+i and using Equation (9), we conclude that ABVW

(k)
i+2(k⊕

W
(k)
i+1). Let A = W

(k)
2k+i[j, j

′], where by definition of A, j′ = |W (k)
2k+i| − |W

(k)
k+i|. We claim

that j > `. For the contrary, let j 6 `. The letter following i + 2 in Equation (9) is
k. Hence, (i + 2)k ≺ W and so k(i + 2) ≺ W , but this is impossible by Corollary 15,

since 1 < i + 2 < k. Therefore, AB (k ⊕W (k)
i+1). Hence, |A| 6 |W (k)

i+1|, so by Corollary 8,
|A| 6 2i+1.

The next lemma is useful to give an upper bound for the size of the word B in any
(A,B)-maximal straddling palindrome of W

(k)
n , 2k 6 n 6 3k − 2.

Lemma 29. Let i > 0 and P be palindromic prefix of W = (i+ 1)W
(k)
k+i. Then the largest

digit of P is i+ 1.

Proof. Let ` be the largest digit of P and for contrary suppose that ` > i + 1. Using
Lemma 9, we have ` < i + k. Hence, ` + 1 6 i + k which yields W

(k)
`+1 CW

(k)
i+k. We note

that `+ 1, which is the last digit of W
(k)
`+1, does not appear in P . Hence,

|P | 6 |W (k)
`+1|. (10)

On the other hand W
(k)
` CW

(k)
`+1 and since i + 1 < ` and using Lemma 9, we conclude

that the first place that ` occurs in W is the last digit of W
(k)
` . In other words if we let

m = |W (k)
` | + 1, then W [m] = ` and for any integer j < m we have W [j] < `. By our

assumption ` ∈ Alph(P ), therefore cp(P,W ) > m = |W (k)
` | + 1. Thus |P | > 2|W (k)

` | + 1

and using Equation (10), we have |P | 6 |W (k)
`+1|. Hence, 2|W (k)

` | + 1 6 |W (k)
`+1| but this

contradicts with Corollary 8. Hence our assumption is not true and ` 6 i+ 1, as desired.

Lemma 30. Let 2k − 1 < n < 3k − 2 and let W be an (A,B)-maximal straddling

palindrome of W
(k)
n . Then BC k⊕ (W

(k)
n−2k+2(n− 2k+ 2)−1) and hence |B| 6 2n−2k+2− 1.

Proof. Let i = n− 2k. Then, using Equation (6) we have

W
(k)
2k+i = W

(k)
2k+i−1 · · ·W

(k)
k+i+1(k ⊕W

(k)
k+i).

So we have
B C (k ⊕W (k)

k+i).

By Lemma 28,
AB (k ⊕W (k)

i+1) (11)

Hence, k + i + 2 6∈ Alph(A). We claim that k + i + 2 6∈ Alph(B). For contrary suppose

that k + i+ 2 ∈ Alph(B). We note that (k ⊕W (k)
i+2) C (k ⊕W (k)

k+i). Now, let m = |W (k)
i+2|,

then by Lemma 9, B[m] = k + i + 2 and for all m′ < m, B[m′] < k + i + 2. On the
other hand by Equation (11), k+ i+ 2 6∈ Alph(A), hence cp(W,W ) > |A|+m. Therefore,
(k+ i+ 1)B contains a palindrome prefix P with k+ i+ 2 ∈ Alph(P ), which is impossible

by Lemma 29. Hence, k + i + 2 6∈ Alph(B), which implies that B C k ⊕ (W
(k)
i+2(i + 2)−1)

and by Corollary 8, |B| 6 2i+2 − 1 = 2n−2k+2 − 1.
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Now, we are ready to prove the following lemma.

Lemma 31. Let 2k − 1 < n < 3k − 2. Then W
(k)
n has exactly two maximal straddling

palindromes, one of which is the (k ⊕W (k)
n−2k+1, k ⊕ (W

(k)
n−2k+1(n − 2k + 1)−1))-straddling

palindrome and the other is the (k ⊕ W
(k)
n−2k+1, k ⊕ (W

(k)
n−2k+1W

(k)
n−2k+1(n − 2k + 1)−1))-

straddling palindrome.

Proof. Let S = AB be an (A,B)-maximal straddling palindrome of W
(k)
n . Let i = n− 2k

and W = k⊕(W
(k)
i+1W

(k)
i+2(i+2)−1). Then by Lemmas 28 and 30, we conclude that S ≺ W .

Moreover, by Equation (5) we have

W = k ⊕ (W
(k)
i+1W

(k)
i+2(i+ 2)−1)

= k ⊕ (W
(k)
i+1W

(k)
i+1W

(k)
i · · ·W

(k)
0 )

= k ⊕ (W
(k)
i+1W

(k)
i+1W

(k)
i+1(i+ 1)−1) (12)

= k ⊕ (W
(k)
i+1(i+ 1)−1(i+ 1)W

(k)
i+1(i+ 1)−1(i+ 1)W

(k)
i+1(i+ 1)−1).

By the last equation and using Lemma 9, we conclude that |W |k+i+1 = 2. Let c1 and c2
be two integers with c1 < c2 6 |W | such that W [c1] = W [c2] = k+ i+ 1. Using Equation
(6), we have

W
(k)
2k+i = W

(k)
2k+i−1 · · ·W

(k)
k+i+2W

(k)
k+i+1(k ⊕W

(k)
k+i)

= W
(k)
2k+i−1 · · ·W

(k)
k+i+2(W

(k)
k+i · · ·W

(k)
i+2(k ⊕W

(k)
i+1))(k ⊕W

(k)
k+i)

W starts by (k⊕W (k)
k+i) in the previous expression. Thus, the first occurrence of k+ i+ 1

in W is the last letter of (k⊕W (k)
k+i). Since S is a straddling palindrome of W

(k)
2k+i, the first

occurrence of the digit has to be in S. Therefore, either cp(S,W ) = c1 or cp(S,W ) = c1+c2
2

.
In other words, the center position of S is either the corresponding position of the first
occurrence of k+ i+ 1, or is the position of the middle digit between the two occurrences
of k + i+ 1 in W . So, we have the following two cases

• S has only one digit k + i + 1: in this case we show that A = k ⊕W (k)
i+1 and B =

k⊕ (W
(k)
i+1(i+ 1)−1). By Lemma 28, it suffices to show that k⊕ (W

(k)
i+1W

(k)
i+1(i+ 1)−1)

is a palindrome and this is true by Lemma 18.

• S has exactly two digits k + i + 1: in this case we show that A = k ⊕W (k)
i+1 and

B = k ⊕ (W
(k)
i+1W

(k)
i+1(i + 1)−1). By Lemma 18, k ⊕ (W

(k)
i+1W

(k)
i+1W

(k)
i+1(i + 1)−1) is a

palindrome and using Lemmas 28 and 30 and Equation (12), S = AB is a maximal
straddling palindrome, as desired.

Lemma 32. Let n = 3k − 2 and let W be an (A,B)-maximal straddling palindrome of

W
(k)
n . Then AB (k ⊕W (k)

k−1) and hence |A| 6 2k−1.
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Proof. By Lemma 6, we have

W
(k)
3k−2 = W

(k)
3k−3 · · ·W

(k)
2k−1(k ⊕W

(k)
2k−2),

W
(k)
2k−1 = W

(k)
2k−2 · · ·W

(k)
k (k ⊕W (k)

k−1).

Hence, W
(k)
k (k ⊕ W

(k)
k−1)(k ⊕ W

(k)
2k−2) B W

(k)
3k−2. Since 1k B W

(k)
k and by Corollary 15,

k1 6≺ W
(k)
3k−2, we conclude that |A| 6 |k(k ⊕W (k)

k−1)|. Hence, using Corollary 8, we have

|A| 6 2k−1 +1. Moreover, kkCk(k⊕W (k)
k−1), but kk could not appear in k⊕(W

(k)
k−1W

(k)
2k−2),

because otherwise 00 ≺ (W
(k)
k−1W

(k)
2k−2) which is impossible by Corollary 14. Therefore,

AB (k ⊕W (k)
k−1) and using Corollary 8, |A| 6 2k−1.

Lemma 33. Let n = 3k − 2 and let W be an (A,B)-maximal straddling palindrome of

W
(k)
n . Then B C k ⊕ (W

(k)
k k−1), hence, |B| 6 2k − 1.

Proof. Using Equation (6) we have

W
(k)
3k−2 = W

(k)
3k−3 · · ·W

(k)
2k−1(k ⊕W

(k)
2k−2),

W
(k)
2k−1 = W

(k)
2k−2 · · ·W

(k)
k (k ⊕W (k)

k−1).

So we have
B C (k ⊕W (k)

2k−2).

By Lemma 32,
AB (k ⊕W (k)

k−1)

Hence, 2k 6∈ Alph(A). We claim that 2k 6∈ Alph(B) as well. For contrary suppose that

2k ∈ Alph(B). We note that (k ⊕W (k)
k ) C (k ⊕W (k)

2k−2). Now, let m = |W (k)
k |, then by

Lemma 9, B[m] = 2k and for all m′ < m, B[m′] < 2k. On the other hand, 2k 6∈ Alph(A),
hence cp(W,W ) > |A| + m. Therefore, (2k − 1)B contains a palindrome prefix P with
2k ∈ Alph(P ), which is impossible by Lemma 29. Hence, 2k 6∈ Alph(B), which implies

that B C k ⊕ (W
(k)
k (k)−1) and by Corollary 8 |B| 6 2k − 1.

Lemma 34. Let n = 3k− 2. Then W
(k)
n has exactly two maximal straddling palindromes

which are respectively the (k⊕W (k)
k−1, k⊕ (W

(k)
k−1(k− 1)−1))-straddling palindrome and the

(k ⊕ (0−1W
(k)
k−1), k ⊕ (W

(k)
k−1W

(k)
k−1(0(k − 1))−1))-straddling palindrome in W

(k)
n .

Proof. Let W be an (A,B)-maximal straddling palindrome of W
(k)
3k−2. Using Equation (6)

we have

k ⊕ (W
(k)
k k−1) = k ⊕ (W

(k)
k−1W

(k)
k−2 · · ·W

(k)
1 k.k−1)

= k ⊕ (W
(k)
k−1W

(k)
k−2 · · ·W

(k)
1 )

= k ⊕ (W
(k)
k−1W

(k)
k−1(0(k − 1))−1).
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Therefore, using Lemmas 33 and 34 every (A,B)-straddling palindrome S of W
(k)
3k−2, we

have S = AB ≺ W , where

W = k ⊕ (W
(k)
k−1W

(k)
k−1W

(k)
k−1(0(k − 1))−1 (13)

= k ⊕ (W
(k)
k−1(k − 1)−1(k − 1)W

(k)
k−1(k − 1)−1(k − 1)W

(k)
k−1(0(k − 1))−1). (14)

By Lemma 9 and Equation (14) the digit 2k− 1 occurs twice in W . Let c1 and c2 be two
integers with c1 < c2 6 |W | such that W [c1] = W [c2] = 2k − 1. Since S is a straddling

palindrome of W
(k)
3k−2, S should contain the first occurrence of 2k − 1 in W . Therefore,

either we have cp(S,W ) = c1 or cp(S,W ) = c1+c2
2

. In other words the center position of
S is either the position of the first occurrence of 2k − 1 in W or exactly the position of
the digit in the middle of the two occurrences of 2k − 1 in W . So, we have the following
two cases

• |S|2k−1 = 1 : In this case we show that A = k⊕W (k)
k−1 and B = k⊕ (W

(k)
k−1(k−1)−1).

By Lemma 32, it suffices to show that k ⊕ (W
(k)
k−1W

(k)
k−1(k − 1)−1) is a palindrome

and this is true by Lemma 18.

• |S|2k−1 = 2 : In this case we show that A = k ⊕ (0−1W
(k)
k−1) and B = k ⊕

(W
(k)
k−1W

(k)
k−1(0(k − 1))−1). By Lemma 18, k ⊕ (0−1W

(k)
k−1W

(k)
k−1W

(k)
k−1(0(k − 1))−1)

is a palindrome and using Lemmas 32 and 33, S = AB is a maximal straddling
palindrome as desired.

Theorem 35. Let S(k)(n) be the number of straddling palindromes of W
(k)
n . Then

S(k)(n) =


2n−2k+2 − 1 if 2k − 1 6 n < 3k − 2,
2k − 2 if n = 3k − 2,
0 otherwise .

Proof. If n = 2k − 1, then by Lemma 27, the only straddling palindrome of W
(k)
n is kk.

Hence, S(k)(2k − 1) = 1.
If 2k 6 n 6 3k − 3, then by Lemma 31, the only maximal straddling palindromes of

W
(k)
n are S1 = (k⊕W (k)

i+1)(k⊕(W
(k)
i+1(i+1)−1) and S2 = (k⊕W (k)

i+1)(k⊕(W
(k)
i+1W

(k)
i+1(i+1)−1)),

where i = n− 2k. According to the proof of Lemma 31, the center of S1 is k + i+ 1 and
cp(S1, S1) = |W (k)

i+1|. Therefore, the number of straddling palindromes with the same center

position as S1, is |W (k)
i+1|−1, which equals to 2i+1−1 = 2n−2k+1−1, using Corollary 8. Now,

again by the proof of Lemma 31, cp(S2, S2) > |W (k)
i+1|. Hence, by Corollary 8, the number

of straddling palindromes with the same center position as S2, is |W (k)
i+1| = 2i+1 = 2n−2k+1.

Therefore, for 2k 6 n 6 3k − 3, S(k)(n) = 2n−2k+1 + 2n−2k+1 − 1 = 2n−2k+2 − 1.

If n = 3k−2, then by Lemma 34, the only maximal straddling palindromes of W
(k)
n are

S1 = k⊕W (k)
k−1k⊕ (W

(k)
k−1(k− 1)−1) and S2 = k⊕ (0−1W

(k)
k−1)k⊕ (W

(k)
k−1W

(k)
k−1(0(k− 1))−1).

According to the proof of Lemma 34, cp(S1, S1) = |W (k)
k−1|. Therefore, the number of

straddling palindromes with the same center position as S1 is |W (k)
k−1| − 1, which equals to
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2k−1−1 by Corollary 8. Now, again by the proof of Lemma 34, cp(S2, S2) > |W (k)
k−1|. Hence,

using Corollary 8, the number of straddling palindrome with the same center position as
S2, is |0−1W (k)

k−1| = 2k−1 − 1. Therefore, S(k)(3k − 2) = 2k − 2.

Finally, S(k)(n) = 0, when n < 2k − 1 or n > 3k − 2, using by Lemma 26.

4.4 Proof of Theorem 17

Theorem 12. Let k > 2 and n > 0 be given integers. Then the following holds

(i) If 0 6 n 6 k − 1, then P (k)(n) = n2n−1 + 1,

(ii) If n > k, then P (k)(n) = Σn−1
i=n−kP

(k)(i) + α(k)(n), where

α(k)(n) =


2k − k2n−k+2 + n2n−k+1 if k 6 n 6 2k − 3,
0 if n = 2k − 2,
2n−2k+2 − 1 if 2k − 1 6 n 6 3k − 3,
2k − 2 if n = 3k − 2,
0 if n > 3k − 2.

Proof. (i) This part is true according to Theorem 20.

(ii) To prove this part by Equation (7) we have

P (k)(n) = Σn−1
i=n−kP

(k)(i) + Σn−1
j=n−k+2B

(k)(n, j) + S(k)(n).

Therefore,
P (k)(n) = Σn−1

i=n−kP
(k)(i) + α(k)(n),

where
α(k)(n) = Σn−1

j=n−k+2B
(k)(n, j) + S(k)(n). (15)

By Theorem 35, when k 6 n 6 2k − 3, S(k)(n) = 0. Therefore, α(k)(n) =
Σn−1

j=n−k+2B
(k)(n, j), when k 6 n 6 2k − 3. Now, by Lemmas 22 and 25 we have

α(k)(n) =Σn−1
j=n−k+2B

(k)(n, j)

=Σk−1
j=n−k+2B

(k)(n, j) by Lemma 22

=Σk−1
j=n−k+2(2

j − 2n−k+1)

=2k − k2n−k+2 + n2n−k+1.

If 2k − 1 6 n 6 3k − 2, then by Lemma 25 and Equation (15), α(k)(n) = S(k)(n).
Hence using Theorem 35, we have

α(k)(n) =

{
2n−2k+2 − 1 if 2k − 1 6 n 6 3k − 3,
2k − 2 if n = 3k − 2.

Finally, using Theorem 35 and Lemma 25, α(k)(n) = 0, if either n = 2k − 2 or
n > 3k − 2.
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4.5 Examples

In the following example in the case k = 4 for some different values of n we give all of
the maximal straddling palindromes and the maximal bordering palindromes of W

(k)
n , if

there exists any.

Example 36. Let k = 4. Then by Lemma 23, the word W
(4)
4 has two maximal bordering

palindromes B2 = (W
(4)
1 )R2(W

(4)
1 ) and B3 = (W

(4)
2 W

(4)
1 )R3(W

(4)
2 W

(4)
1 ), which are shown

below. We also notice that by Theorem 35, W
(4)
4 has no straddling palindrome.

W
(4)
4 =01020103.0102.01.4

W
(4)
4 =01020103.0102.01.4.

In the case n = 5 = 2k − 3, by Lemma 23, the word W
(4)
5 has a maximal bordering

palindrome B3 = (W
(4)
2 )R3(W

(4)
2 ), which is shown bellow. We also notice that by Theorem

35, W
(4)
5 has no straddling palindrome.

W
(4)
5 = 010201030102014.01020103.0102.45 (16)

In the case n = 6, by Theorem 35 and Lemma 25, W
(4)
6 contains neither a straddling

palindrome nor a bordering palindrome.

W
(4)
6 = 01020103010201401020103010245.010201030102014.01020103.4546

Example 37. Let k = 4. Again by the same reasoning as the previous example the word
W

(4)
7 has one straddling palindrome and no bordering palindrome.

W
(4)
7 =01020103010201401020103010245010201030102014010201034546.010201030102014

01020103010245.010201030102014.45464547

By Lemma 25, W
(4)
9 has no bordering palindrome and by Lemma 31 it has two maximal

straddling palindromes which are given by (4 ⊕W (4)
2 , 4 ⊕ (W

(4)
2 2−1)) and (4 ⊕W (4)

2 , 4 ⊕
(W

(4)
2 W

(4)
2 2−1)) as shown below.

W
(4)
9 =01020103010201401020103010245010201030102014010201034546010201030102014

01020103010245010201030102014454645470102010301020140102010301024501020

103010201401020103454601020103010201401020103010245454645474546458.0102

01030102014010201030102450102010301020140102010345460102010301020140102

010301024501020103010201445464547.0102010301020140102010301024501020103

0102014010201034546.45464547454645845464547454689

W
(4)
9 =01020103010201401020103010245010201030102014010201034546010201030102014
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01020103010245010201030102014454645470102010301020140102010301024501020

103010201401020103454601020103010201401020103010245454645474546458.0102

01030102014010201030102450102010301020140102010345460102010301020140102

010301024501020103010201445464547.0102010301020140102010301024501020103

0102014010201034546.45464547454645845464547454689.

5 Palindrome Structure

In this section, based on finding the structure of all palindromic factors of W (k), we
compute its palindrome complexity, palW (k)(n). We recall that for a fixed word U ∈ A∞,
palU(n) is the number of palindromic factors of length n of U . Hence, palU(n) is a function
from N to N ∪ {∞}.

Definition 38. For a set P of palindromic words, we define

CPal(P ) = {W ∈ A∗| There exist U ∈ P and integers i, j with

1 6 i 6 j 6 |U |, i+ j = |U |+ 1 and W = U [i, j] }.

Remark 39. It is obvious from Definition 38 that any element of CPal(P ) is a palindromic
factor of some word of P , but there may exist other palindromic factors of words of P
which do not belong to CPal(P ) as is seen from the following example.

Example 40. Let P = {1213121, 33433}. Then by Definition 38,

CPal(P ) = {1213121, 21312, 131, 3, 33433, 343, 4}.

Note that the words 1, 2, 33 and 121 are palindromic factors of some words of P but they
are not elements of CPal(P ).

Lemma 41. Let U ∈ A∗ and P ⊆ Pal(U). Then CPal(P ) ⊆ Pal(U).

Proof. Since any element of P is a palindrome, by Definition 38, any element W ∈
CPal(P ) is also a palindromic factor of U , whence the result follows.

Lemma 42. For any integer k > 2 we have

Pal(W (k)) =
⋃
i>0

(ki⊕ (
3k−2⋃
j=1

Pal(W (k)
j ))).

Proof. Let 1 6 j 6 3k − 2. By Equation (6), we have (k ⊕W (k)
j ) BW

(k)
j+k. Hence, using

induction on i, for every nonnegative integer i we provide

(ki⊕W (k)
j ) BW

(k)
j+ki.
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Now, since W
(k)
j+ki ≺ W (k) we conclude that

⋃
i>0

(ki⊕ (
3k−2⋃
j=1

Pal(W (k)
j ))) ⊆ Pal(W (k)).

To complete the proof, we need to show that

Pal(W (k)
n ) ⊆

⋃
i>0

(ki⊕ (
3k−2⋃
j=1

Pal(W (k)
j ))), (17)

holds for all integers n. But since m < n implies that W
(k)
m ≺ W

(k)
n and Pal(W (k)

m ) ⊂
Pal(W (k)

n ), it suffices to prove that Equation (17) holds from a point on, say that it holds
for all n > 3k− 3. To prove this, we use strong induction on n. The basis step n = 3k− 2
is obviously true because Pal(W (k)

3k−2) appears in the right side of Equation (17). For the
inductive step, let n > 3k − 2 and assume that Equation (17) holds for all integers j,

3k − 2 6 j < n. Since 3k − 2 < n, using Lemma 25 and Theorem 35, W
(k)
n has neither a

straddling palindrome nor a bordering palindrome. Hence, by Equation (6), we have

Pal(W (k)
n ) =

n−1⋃
j=n−k+1

Pal(W (k)
j )

⋃
(k ⊕ (Pal(W (k)

n−k))).

By the induction hypothesis we have

n−1⋃
j=n−k+1

Pal(W (k)
j )

⋃
(k ⊕ (Pal(W (k)

n−k))) ⊆
⋃
i>0

(ki⊕ (
3k−2⋃
j=1

Pal(W (k)
j ))).

Therefore, Equation (17) holds for j = n, as desired.

To present the next results we need the following definition.

Definition 43. Let k > 2. We define the following sets of words:

P(k)
1 := {ki⊕ (W (k)

n n−1) : 1 6 n 6 k − 1, i > 0},

P(k)
2 := {ki⊕ ((W

(k)
j−1W

(k)
j−2 · · ·W

(k)
n−k+1)R j (W

(k)
j−1W

(k)
j−2 · · ·W

(k)
n−k+1)) :

k 6 n 6 2k − 3, n− k + 2 6 j 6 k − 1, i > 0},

P(k)
3 := {ki⊕ (W

(k)
n−2k+1W

(k)
n−2k+1(n− 2k + 1)−1), ki⊕ (W

(k)
n−2k+1W

(k)
n−2k+1W

(k)
n−2k+1(n− 2k + 1)−1) :

2k 6 n 6 3k − 3, i > 1},

P(k)
4 := {ki⊕ (W

(k)
k−1W

(k)
k−1(k − 1)−1), ki⊕ (0−1W

(k)
k−1W

(k)
k−1W

(k)
k−1(0(k − 1))−1), ki⊕ (00) : i > 1}.

Lemma 44. Let k > 2. Then N ⊆ CPal(P (k)
1 ∪ P (k)

2 ).

Proof. Let m ∈ N and m = (j mod k). If j = 0 or j = 1, then by Definition 43, we have

0, 010 ∈ P(k)
1 and hence m ∈ CPal(P(k)

1 ). Otherwise 2 6 j 6 k − 1 and using Lemma 23,
for every integer n satisfying k 6 n 6 k + j − 2 we have

(W
(k)
j−1W

(k)
j−2 · · ·W

(k)
n−k+1)

R j (W
(k)
j−1W

(k)
j−2 · · ·W

(k)
n−k+1) ∈ Pal(W

(k)
n ).

Hence, j ∈ CPal(P(k)
2 ) and by Definition 43, m ∈ CPal(P(k)

2 ) as well.
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Lemma 45. Let k > 2. Then
4⋃

i=1

P(k)
i ⊆ Pal(W (k)).

Proof. Using Lemma 18,

{W (k)
n n−1 : 1 6 n 6 k − 1} ⊆ Pal(W (k)). (18)

By Lemma 23, the set

{(W (k)
j−1W

(k)
j−2 · · ·W

(k)
n−k+1)

R j (W
(k)
j−1W

(k)
j−2 · · ·W

(k)
n−k+1) : (19)

k 6 n 6 2k − 3, n− k + 2 6 j 6 k − 1} ⊆ Pal(W (k)).

By Lemma 31,

{k ⊕ (W
(k)
n−2k+1W

(k)
n−2k+1(n− 2k + 1)−1), k ⊕ (W

(k)
n−2k+1W

(k)
n−2k+1W

(k)
n−2k+1(n− 2k + 1)−1) :

(20)

2k 6 n 6 3k − 3} ⊆ Pal(W (k)).

Finally, by Lemmas 27 and 34,

{k⊕(W
(k)
k−1W

(k)
k−1(k−1)−1), k⊕(0−1W

(k)
k−1W

(k)
k−1W

(k)
k−1(0(k−1))−1), k.k} ⊆ Pal(W (k)). (21)

On the other hand, using Equation (6), we conclude that if P ∈ Pal(W (k)), then for every
integer i > 0, ki ⊕ P ∈ Pal(W (k)). Therefore, using Equations (18)-(21), we conclude.

The following six lemmas give the structure of the palindromes of W
(k)
n , when n 6

3k − 2.

Lemma 46. Let k > 2, 1 6 n < k and P be a maximal palindromic factor of W
(k)
n of

length at least 2. Then P ∈ P(k)
1 .

Proof. By Lemma 18, W
(k)
n n−1 = W

(k)
n−1(n − 1)−1(n − 1)W

(k)
n−1(n − 1)−1 is a maximal

palindrome with center n− 1. Therefore, it is easy to see that the maximal palindromes
appearing in W

(k)
n are either equal to W

(k)
n n−1 or are a maximal palindrome of W

(k)
n−1(n−

1)−1. Hence, using induction we can see that the set of all maximal palindromes of W
(k)
n

is {W (k)
i i−1 : 2 6 i 6 n} ⊂ P(k)

1 .

Lemma 47. Let 2 < k 6 n 6 2k − 3 and P be a maximal palindromic factor of W
(k)
n of

length at least 2, then P ∈ P(k)
1 ∪ P

(k)
2 .

Proof. We prove the result using induction on n. For the basis step let n = k and
P ∈ P(k)

2 \ P
(k)
1 be a maximal palindromic factor of W

(k)
n . Since P /∈ P(k)

1 , using Lemma

46, we conclude that P is not an included palindromic factor of W
(k)
n . On the other hand

by Theorem 35, P is not a straddling factor of W
(k)
n . Hence, P is a maximal bordering

factor of W
(k)
n . Now, using Lemma 23, we provide P ∈ P(k)

2 .
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For the inductive step, let k < n 6 3k − 3 and suppose that the result is true for all
j, k 6 j < n. Let P be a maximal palindromic factor of W

(k)
n . Then by Theorem 35,

either P is an included maximal palindromic factor of W
(k)
n or it is a bordering maximal

palindromic factor of W
(k)
n . In the former case, using Lemma 46 and induction hypothesis

we conclude that P ∈ P(k)
1 ∪ P

(k)
2 . In the latter case, by Lemma 23 we have P ∈ P(k)

2 , as
desired.

Lemma 48. Let k > 2 and n = 2k − 2 and P be a maximal palindromic factor of W
(k)
n

of length at least 2. Then P ∈ P(k)
1 ∪ P

(k)
2 .

Proof. By Lemma 25 and Theorem 35, W
(k)
n has neither a straddling palindrome nor

a bordering palindrome. Hence, using Equation (6), Lemmas 46 and 47, Pal(W (k)
n ) ⊆

(P(k)
1 ∪ P

(k)
2 ), as desired.

Lemma 49. Let k > 2 and n = 2k − 1 and P be a maximal palindromic factor of W
(k)
n

of length at least 2. Then either P = k.k or P ∈ P(k)
1 ∪ P

(k)
2 .

Proof. Let P /∈ P(k)
1 ∪ P(k)

2 . Then by Lemmas 46-48, P is not a maximal palindromic

factor of any W
(k)
j , j < n. Hence, P is either a straddling palindrome or a bordering

palindrome. By Lemmas 22 and 27, P is straddling and P = k.k.

Lemma 50. Let k > 2 and 2k 6 n 6 3k − 3 and P be a maximal palindromic factor of
W

(k)
n of length at least 2. Then P ∈ (P(k)

1 ∪ P
(k)
2 ∪ P

(k)
3 ∪ {ki.ki : i > 1}).

Proof. We use induction on n. First, let n = 2k and let P be a maximal palindromic
factor of W

(k)
2k . Then by Lemma 25, P is not a bordering factor, hence, it is either an

included palindromic factor or a straddling palindromic factor of W
(k)
2k . In the former

case, by Lemmas 46-49, P ∈ (P(k)
1 ∪ P

(k)
2 ∪ {ki.ki : i > 1}), while in the latter case, by

Lemma 31, P ∈ P(k)
3 . This terminates the basis step of the induction.

For the inductive step, consider any integer n, 2k < n 6 3k − 3, and assume that
the lemma holds for all integers j, 2k 6 j < n. To conclude the validity of lemma for n,
note that a maximal palindromic factor P of W

(k)
n is either an included or a straddling

palindrome, by Lemma 25. In the former case, by induction hypothesis, P ∈ (P(k)
1 ∪P

(k)
2 ∪

P(k)
3 ∪ {ki.ki : i > 1}), while in the latter case, by Lemma 31, P ∈ P(k)

3 . Hence, we are
done.

Lemma 51. Let k > 2, n = 3k − 2 and P be a maximal palindromic factor of W
(k)
n of

length at least 2. Then P ∈
4⋃

i=1

P(k)
i .

Proof. Let P /∈ (P(k)
1 ∪ P(k)

2 ∪ P(k)
3 ∪ {ki.ki : i > 1}). Thus, by Lemmas 46-50, P is

not a maximal palindromic factor of any W
(k)
j , j < n. Hence, P is either a straddling

palindrome or a bordering palindrome. By Lemma 25, W
(k)
n has no bordering palindrome

and hence it is a maximal straddling palindrome of W
(k)
n . By Lemma 34, we conclude

that P ∈ P(k)
4 .
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Lemma 52. Let k > 2 and let P be a maximal palindromic factor of W (k) of length at

least 2. Then P ∈
4⋃

i=1

P(k)
i .

Proof. By Lemma 42, there exist i > 0 and 1 6 j 6 3k − 2 such that P ′ is a maximal

palindrome of W
(k)
j and P = ki ⊕ P ′. Now, using Lemmas 46-51, P ′ ∈

4⋃
i=1

P(k)
i . Since

ki⊕ (
4⋃

i=1

P(k)
i ) =

4⋃
i=1

P(k)
i , we have P ∈

4⋃
i=1

P(k)
i .

Theorem 53. For any integer k > 2 we have

Pal(W (k)) = CPal(
4⋃

i=1

P(k)
i ). (22)

Proof. First we prove that the left side of Equation (22) is a subset of its right side.
For this, consider any element P ∈ Pal(W (k)). If |P | = 1, then by Lemma 44, P ∈

CPal(
4⋃

i=1

P(k)
i ). Otherwise, consider a maximal palindromic factor factor U of W (k) such

that P ∈ CPal({U}). By Lemma 52, U ∈
⋃4

i=1P
(k)
i . therefore, using Lemma 41, P ∈

CPal(
4⋃

i=1

P(k)
i ) as required.

To prove that the right side of Equation (22) is a subset of its left side, note that by

Lemma 45,
4⋃

i=1

P(k)
i ⊆ Pal(W (k)). Thus using Lemma 41, CPal(

4⋃
i=1

P(k)
i ) ⊆ Pal(W (k)).

Example 54. Consider the wordW (3). Then by Definition 43, the sets P(3)
1 ,P(3)

2 ,P(3)
3 ,P(3)

4

are as follows:

P(3)
1 ={3i, 3i⊕ (010) : i > 0},
P(3)

2 ={3i⊕ (10201) : i > 0},
P(3)

3 ={3i⊕ (010), 3i⊕ (01010) : i > 1},
P(3)

4 ={3i⊕ (0102010), 3i⊕ (102010201), 3i⊕ (00) : i > 1}.

By Theorem 53, Pal(W (3)) = CPal(
4⋃

i=1

P(3)
i ).

Example 55. Consider the wordW (4). Then by Definition 43, the sets P(4)
1 ,P(4)

2 ,P(4)
3 ,P(4)

4

are as follows:

P(4)
1 ={4i, 4i⊕ (010), 4i⊕ (0102010) : i > 0},
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P(4)
2 ={4i⊕ (10201), 4i⊕ (1020103010201), 4i⊕ (201030102) : i > 0},
P(4)

3 ={4i⊕ (010), 4i⊕ (01010), 4i⊕ (0102010), 4i⊕ (01020102010) : i > 1},
P(4)

4 ={4i⊕ (010201030102010), 4i⊕ (102010301020103010201), 4i⊕ (00) : i > 1}.

By Theorem 53, Pal(W (4)) = CPal(
4⋃

i=1

P(4)
i ).

Example 56. Consider the wordW (5). Then by Definition 43, the sets P(5)
1 ,P(5)

2 ,P(5)
3 ,P(5)

4
are as follows:

P(5)
1 = {5i, 5i⊕ (010), 5i⊕ (0102010), 5i⊕ (010201030102010) : i > 0},

P(5)
2 = {5i⊕ (10201), 5i⊕ (1020103010201), 5i⊕ (10201030102010401020103010201),

5i⊕ (201030102), 5i⊕ (2010301020104010201030102), 5i⊕ (30102010401020103) : i > 0},

P(5)
3 = {5i⊕ (010), 5i⊕ (01010), 5i⊕ (0102010), 5i⊕ (01020102010), 5i⊕ (010201030102010),

5i⊕ (01020103010201030102010) : i > 1},

P(5)
4 = {5i⊕ (00), 5i⊕ (102010301020104010201030102010401020103010201),

5i⊕ (0102010301020104010201030102010) : i > 1}.

By Theorem 53, Pal(W (5)) = CPal(
4⋃

i=1

P(5)
i ).

5.1 Length of Palindromes in W (k)

In this section, we want to compute all possible values for the lengths of palindromes in
W (k).

Definition 57. Let k > 2, and for 1 6 i 6 4. Let P(k)
i be the sets given in Definition 43.

For 1 6 i 6 4, we define L(P(k)
i ) := {|P | : UPUR ∈ P(k)

i , |P | > 1 and U ∈ N∗}.

Lemma 58. For each integer k > 3

L(P(k)
1 ) := {2i− 1 : 1 6 i 6 2k−2},

L(P(k)
2 ) := {2i− 1 : 2 6 i 6 2k−1 − 1},

L(P(k)
3 ) := {2i− 1 : 2 6 i 6 3 · 2k−3},

L(P(k)
4 ) := {2, 2i− 1 : 2 6 i 6 3 · 2k−2 − 1}.

Proof. We just prove L(P(k)
1 ) = {2i − 1 : 1 6 i 6 2k−2}, the proof of the rest parts

are similar to this case. By Definition 43, it is clear that the set L(P(k)
1 ) just contains

odd integers. Again by Definition 43, it can be seen that if t ∈ L(P(k)
1 ) is an odd

number greater than 2, then t− 2 ∈ L(P(k)
1 ). So if `1 is the maximum integer in L(P(k)

1 ),
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then L(P(k)
1 ) = {1, 3, 5, · · · , `1}. Therefore, to prove this part it suffices to show that

`1 = 2k−1 − 1. By Definition 43 and Corollary 8, we have

`1 = |W (k)
k−1| − 1 = 2k−1 − 1.

Theorem 59. For every integer k > 3, the palindrome complexity of W (k) is given by

palW (k)(n) =

{
∞ if n ∈ {2} ∪ {2i− 1 : 1 6 i 6 3 · 2k−2 − 1},
0 otherwise.

Proof. Let A = {2} ∪ {2i− 1 : 1 6 i 6 3 · 2k−2 − 1}. Using Theorem 53 and Lemma 58,
we find that if n 6∈ A, then there is no palindromic factor in W (k) of length n, in other
words palW (k)(n) = 0. If n ∈ A, then by Theorem 53 and Lemma 58, W (k) has at least
one palindromic factor of length n or equivalently palW (k)(n) 6= 0. By Definitions 43 and
57, it is easy to see that in this case palW (k)(n) =∞.
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