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Abstract. This paper solves an open question of Mortimer and Prellberg asking for
an explicit bijection between two families of walks. The first family is formed by what
we name triangular walks, which are two-dimensional walks moving in six directions
(0◦, 60◦, 120◦, 180◦, 240◦, 300◦) and confined within a triangle. The other family is
comprised of two-colored Motzkin paths with bounded height, in which the horizontal
steps may be forbidden at maximal height.

We provide several new bijections. The first one is derived from a simple inductive
proof, taking advantage of a 2n-to-one function from generic triangular walks to trian-
gular walks only using directions 0◦, 120◦, 240◦. The second is based on an extension
of Mortimer and Prellberg’s results to triangular walks starting not only at a corner
of the triangle, but at any point inside it. It has a linear-time complexity and is in
fact adjustable: by changing some set of parameters called a scaffolding, we obtain a
wide range of different bijections.

Finally, we extend our results to higher dimensions. In particular, by adapting the
previous proofs, we discover an unexpected bijection between three-dimensional walks
in a pyramid and two-dimensional simple walks confined in a bounded domain shaped
like a waffle.
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1. Introduction

In part due to the ubiquity of random walks in probability theory, lattice walks
are extensively studied in enumerative combinatorics [14, 12, 2]. In this context, it is
frequently discovered that two families of walks, which seem to be very different, are
in fact counted by the same numbers. The initial proof is often not combinatorial, and
finding an explicit bijection between such families can prove to be a difficult task (see
for example [6, 1]).

In this spirit, this paper answers a 5 year old open question from Mortimer and
Prellberg [15, Section 4.3]. By solving a functional equation satisfied by the generating
function, the two authors realized that the number of walks in a triangular domain
starting from a corner of this domain is equal to the number of Motkzin paths of bounded
height – we will give precise definitions of these families in the following subsections.
Their proof was purely analytic and, consequently, it raised the issue of finding an
explanatory bijection. This gave rise to an open question, which became rather famous
in the community, since Prellberg, one of the authors of [15], regularly asked for a
bijection in open problems sessions during combinatorics conferences. The current paper
solves this question, in several manners.

In the rest of this section, we introduce the notions of triangular paths, Motzkin
paths and Motzkin meanders, which will be our objects of study, and we present more
formally Mortimer and Prellberg’s problem. Then, in the last subsection, we give a
detailed outline of the present paper.

1.1. Triangular paths

Let (e1, e2, e3) denote the standard basis of R3. For some L ∈ N, we define the subset
TL of N3 as the triangular section of side length L of the integer lattice:

TL = {x1 e1 + x2 e2 + x3 e3 : x1, x2, x3 ∈ N, x1 + x2 + x3 = L}.

An example of such lattice is shown by Figure 1 (left).

We also introduce the notation

s1 = e1 − e3, s2 = e2 − e1, s3 = e3 − e2,

and for i ∈ {1, 2, 3}, we set si = −si. We will interpret the vectors si as forward steps
and the vectors si as backward steps. We denote by F = {s1, s2, s3} and B = {s1, s2, s3}
the set of forward and backward steps, respectively.

For convenience, we define the indices modulo 3, thus s0 = s3 and s4 = s1.
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Figure 1. Left. The triangular lattice T3. Right. The planar represen-
tation of the same lattice, with F and B.

The triangular lattice TL can be naturally drawn in the plane, as an equilateral triangle
of side length L, subdivided in smaller equilateral triangles of side length 1 (see Figure 1
right). We will use this planar representation for the remainder of the document.

We define O as the bottom left corner of TL, that is to say O = Le3. In some sense,
it denotes an origin for the lattice TL.

Definition 1 (Forward paths, triangular paths). Given an integer L ∈ N, and a
point z ∈ TL, a forward (triangular) path of length n starting from z is a sequence
(σ1, . . . , σn) ∈ Fn satisfying

∀k ∈ {0, . . . , n}, z +
k∑
i=1

σi ∈ TL.

A (generic) (triangular) path of length n starting from z is a sequence (ω1, . . . , ωn) ∈
(F ∪ B)n satisfying

∀k ∈ {0, . . . , n}, z +
k∑
i=1

ωi ∈ TL.

If L ≥ 2, there are 2 forward paths of length 2 and 8 generic paths of length 2 starting
from O, as shown by Figure 2.

For those who are familiar with the enumeration of walks in the quarter of plane,
forward paths can be seen as a subfamily of tandem walks [9, Section 4.7]. Tandem
walks are walks on N2 using steps (1, 0), (−1, 1), (0,−1) (East, North-West, South
steps). Their name comes from the fact that in queuing theory, they model the behavior
of two queues in series.

To be precise, forward paths of TL are equivalent to tandem walks confined in the
part of the positive quarter plane below the anti-diagonal x+y = L. In terms of queues,
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Figure 2. All triangular paths of T3 with length 2 starting at O.
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Figure 3. Equivalent definitions of the same object: forward paths of
T3 (left); tandem walks in the positive quarter of plane and below the
antidiagonal x + y = 3 (middle); standard Young tableaux with three
rows or less such that the label of the ith cell of the bottom row must be
less than the label of (i+ 3)th cell of the top row (right).

forward paths can be represented by two queues in series where the total number of jobs
(or customers) in both queues is never greater than L.

Since tandem walks are also described by standard Young tableaux [18] with three rows
or less, forward paths on TL form a particular subfamily of standard Young tableaux:
they must have 3 rows or less, and for every k > L, if there is a kth cell in the top
row of the tableau, then its label must be greater than the label of the (k−L)th cell of
the third row (which must exist). The three equivalent definitions of forward paths are
illustrated by Figure 3.

As for generic triangular paths, they are naturally encoded by double-tandem walks,
which are walks on N2 using steps (1, 0), (−1, 1), (0,−1), (−1, 0), (1−, 1), (0, 1) (we add
to the base step set of the tandem walks the opposite steps).
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Figure 4. Motzkin paths of length 4 sorted with respect to their am-
plitude (from 1 to 4)

1.2. Motzkin paths and meanders

A Motzkin path is a path using up, horizontal and down steps, respectively denoted
↗, → and ↘, such that:

• it starts at height 0;
• it remains at height ≥ 0 (i.e. inside any prefix of a Motzkin path, the number

of ↗ steps is greater or equal to the number of ↘ steps);
• it ends at height 0 (i.e. in total, there are as many ↗ steps as ↘ steps).

The following definition refines the notion of maximum height for a Motzkin path.

Definition 2 (Amplitude). Let M be a Motzkin path and H its maximum height (i.e
the maximal difference between the number of ↗ steps and the number of ↘ steps in a
prefix of M).

The amplitude of M is defined as{
2H + 1 if a horizontal step → is performed at height H,

2H otherwise.

For example, all the Motzkin paths of length 4 are listed by Figure 4: there is one
such path with amplitude 1, four with amplitude 2, three with amplitude 3 and one
with amplitude 4.

A Motzkin meander is a suffix1 of a Motzkin path. A Motzkin meander can thus start
at any height, but must end at height 0.

1Usually a meander is defined as a prefix, but up to a vertical symmetry, it is equivalent.
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Figure 5. Equinumeracy between forward paths of T3 with length 4
starting at O and Motzkin paths with amplitude bounded by 3.

1.3. Mortimer and Prellberg’s open question

We now state Mortimer and Prellberg’s enumerative result (reformulated in terms of
amplitude), for which we are going to give explanatory bijections.

Theorem 3 (Corollary 4 [15]). Given any L ≥ 0, there are as many triangular paths in
TL starting at O with p forward steps and q backward steps as bicolored Motzkin paths
of length p + q with an amplitude less than or equal to L where p steps are colored in
black and q are colored in white.

Setting p = n and q = 0, we obtain the following corollary about forward paths.

Corollary 4. Given any L ≥ 0, there are as many forward paths in TL of length n
starting at O as Motzkin paths of length n with an amplitude less than or equal to L.

An illustration of this corollary for n = 4 is shown by Figure 5.
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Connections between Motzkin paths and tandem walks (the natural superset of for-
ward paths) are not new. Regev [16] was the first to notice via an algebraic method that
standard Young tableaux with 3 rows or less and Motzkin paths are counted by the same
numbers. Gouyou-Beauchamps [11] then found an explanation for this equinumeracy,
thanks to the Robinson-Schensted correspondence. Since then, several authors [7, 8, 4, 3]
have given new bijections between tandem walks and Motzkin paths, which each have
their own ways to be generalized. It should be noted that none of these bijections restrict
to a bijection between forward paths in TL and Motzkin paths with amplitude bounded
by L.

By comparing Theorem 3 and its corollary, one can remark that there is a factor 2n

between forward paths in TL of length n and generic triangular paths in TL of length
n. This fact was known before Mortimer and Prellberg’s article for tandem walks and
double-tandem walks (in other words, whenever L is infinite). Bousquet-Mélou and
Mishna [2] were the first to notice it and wondered whether there is a combinatorial
explanation for this phenomenon. This was solved by Yeats via a convoluted bijec-
tion [17]. This bijection was subsequently improved by Chyzak and Yeats [4] by using
the formalism of automata. Again, their bijection does not restrict to the triangular
lattice TL.

1.4. Outline of the paper

This paper presents bijections that explain Theorem 3. More precisely, we demon-
strate on one hand why the ratio between forward paths and generic paths of length n
is 2n, and on the other hand, we find several bijections for Corollary 4. Combining both
results will give different combinatorial proofs of Theorem 3.

First, Section 2 concentrates around a symmetry property for the triangular paths:
the number of paths starting from a point in TL with a fixed sequence of forward and
backward steps does not depend on the sequence of forward and backward steps. This
property, stated by Theorem 6, infers the above-mentioned 1-to-2n function between
forward paths and triangular paths of length n. The proof is based on a convergent
rewriting system.

Section 3 provides a simple inductive proof of the equinumeracy between triangular
paths in TL and Motzkin paths with amplitude bounded by L (Proposition 17). Fur-
thermore, we manage to tweak this proof into a bijection which explains Corollary 4
(see Figure 12). However, this bijection is highly complex in the sense it is based on an
inclusion-exclusion argument and can take an exponential time to be computed.

Almost independently from the previous sections, we describe in Section 4 a method
to build numerous bijections between triangular paths and Motzkin paths of bounded
amplitude. To do so, we relate the number of triangular paths starting at any z ∈ TL
and the numbers of Motzkin meanders of amplitude bounded by L starting at height i
(Theorem 24). This proves the existence of an object which we name scaffolding, which
works in much the same way as a finite-state transducer. This enables us to find several
parameterized bijections between forward paths and Motzkin paths (Algorithm 2), which
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can be extended into bijections between generic triangular paths and bicolored Motzkin
paths (Subsection 4.3). In Subsection 4.4 we give an explicit scaffolding, with simple,
albeit numerous transition rules, which has the additional property that it is independent
of the size L.

Finally, in Section 5 we generalize our results to higher dimensions. The triangular
lattice naturally extends to a simplicial lattice, in which the ratio property between
forward paths and generic paths (Theorem 33) still holds. More surprisingly, we find a
new bijection specifically in dimension 3. It matches walks using 4 steps confined within
a pyramid with walks using the 4 cardinal steps returning to the x-axis confined in a
domain which is the upper half of a square that have been rotated 45◦ (Theorem 34).
The second family of walks being easier to count than the first one, we find a formula
for the generating function of the pyramidal walks, which was part of an open question
from [15].

The bijections between forward paths and Motzkin paths have been implemented in
python and are available at https://tinyurl.com/yajkqlyv.

2. From forward paths to generic triangular paths

This section describes a one-to-2n function from the set of forward paths of length n
in TL to the set of generic paths of length n in TL. This is a crucial step in finding a
combinatorial proof of Theorem 3.

More precisely, we are going to describe a bijection between different sets of paths
where in each set, all paths have the same sequence of forward and backward steps,
which we call the direction vector.

Definition 5. The direction vector of a generic path (ω1, . . . , ωn) is the finite sequence
(D1, . . . , Dn) where Di = F if ωi is a forward step and Di = B if ωi is a backward step.

A forward path is then a generic path with direction vector (F, . . . , F ). Many examples
of paths along with their direction vectors are shown in Figure 7.

Theorem 6. Given z ∈ TL and two sequences W and W ′ of {F,B}n, the set of trian-
gular paths starting from z of direction vector W is in bijection with the set of triangular
paths starting from z of direction vector W ′.

This theorem will be proved in Section 2.2.

2.1. Forward and backward paths

This subsection shows by induction, without a bijection, a particular case of The-
orem 6 between two direction vectors: W = (F, . . . , F ) and W ′ = (B, . . . , B). This
provides an elementary proof of a weaker result, which enables to understand why the
more general theorem works.

https://tinyurl.com/yajkqlyv
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Definition 7. A backward (triangular) path is a triangular path of direction vec-
tor (B,B, . . . , B). In other words, a backward path starting at z ∈ TL is a sequence
(σ1, . . . , σn) ∈ Bn satisfying:

∀k ∈ {1, . . . , n}, z +

k∑
i=1

σi ∈ TL.

Theorem 8. Let z be any point of TL and n ≥ 0. Inside TL, there are as many forward
paths of length n starting from z as backward paths of length n starting from z.

The proof will use the following lemma, which concerns paths with one forward step
and one backward step:

Lemma 9. Given a starting point z and an ending point z′, there are as many paths of
length 2 from z to z′ made of a forward step then a backward step, as paths of length 2
from z to z′ made of a backward step then a forward step.

Proof. This lemma is obvious whenever the two steps can be permuted.

Let us first show that given a forward step σ and a backward step τ such that σ 6= −τ ,
the path (σ, τ) stays in TL from z to z′ if and only if the path (τ , σ) stays in TL from z
to z′. For such steps σ and τ , there are two possibilities:

(1) σ is a step si and τ is si+1. By cyclic permutation, we can assume that
σ = s1 = e1 − e3 and τ = s2 = e1 − e2. If z + σ ∈ TL and z + σ + τ ∈ TL, then
z must have a positive e2-coordinate and a positive e3-coordinate. The same
property holds if we replace the condition z + σ ∈ TL by z + τ ∈ TL. Therefore,
we can permute the forward step and the backward step in that case.

(2) τ is a step si and σ is a step si+1. Again, we can assume that τ = s1 =
e3−e1 and σ = s2 = e2−e1. Under the assumption that z+σ+τ ∈ TL, we need
z to have an e1-coordinate at least equal to 2. In this case, both paths (σ, τ)
and (τ , σ) are valid.

It remains to deal with paths satisfying σ = −τ . It is equivalent to treat the case
z = z′. It is then easy to check that for each possible position of z, there are as many
paths of length 2 beginning with a forward step as paths of length 2 beginning with a
backward step, as summarized by Figure 6. �

Proof of Theorem 8. Let fn(z) be the number of forward paths of length n and starting
at z ∈ TL, and bn(z) be the analogue for backward paths. We wish to prove that
fn(z) = bn(z) for every z ∈ TL by strong induction on n ≥ 0.

For n = 0 and n = 1, the property is straightforward.

Let us assume that the assumption is true for some n ≥ 1 and n− 1. For z ∈ TL we
have:

fn+1(z) =
∑
σ∈F

z+σ∈TL

fn(z + σ).
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z z
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Corner InteriorBorder

forward,
then backward
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Figure 6. All paths of length 2 returning to their starting point.

By the induction assumption,

fn+1(z) =
∑
σ∈F

z+σ∈TL

bn(z + σ)

=
∑

path of length 2
from z to z′

made of a forward step
then a backward step

bn−1(z
′).

We use the induction assumption now for n− 1, and Lemma 9:

fn+1(z) =
∑

path of length 2
from z to z′

made of a backward step
then a forward step

fn−1(z
′)

=
∑
τ∈B

z+τ∈TL

fn(z + τ).

=
∑
τ∈B

z+τ∈TL

bn(z + τ). (by induction)

= bn+1(z),

which concludes the induction, and hence the proof. �

2.2. Bijection between sets of different direction vectors

In this subsection, we describe a bijection that proves Theorem 6.
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(B,F, F )(F,B, F )

(B,F,B)

(B,B,B)

(F,B,B) (B,B, F )

(F, F,B)

(F, F, F )

Figure 7. The bijections between all direction vectors (arranged as a
Boolean lattice) applied to the forward path (s1, s2, s1).

This bijection consists in combining the elementary operations below, in any possible
order, until reaching a path with the desired direction sequences.

Definition 10 (Flips). We define here elementary reversible operations on a generic
path (ω1, . . . , ωn).
A swap flip changes two consecutive steps ωi and ωi+1 with respect to the rules:

(sj , sk)←→ (sk, sj) if j 6= k,

(sk, sk)←→ (sk−1, sk−1) otherwise.

(Recall that by convention, s0 = s3.) This has the effect of doing a flip (F,B)←→ (B,F )
in the direction vector.

A last-step flip changes the direction of the last step ωn thanks to the rule:

si ←→ si−1
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For example, if we wish to bijectively transform the path (s3, s3, s2) into a path of
direction vector (F,B,B), we use the following flips (cf Figure 7):

(s3, s3, s2) ←→
s2→s3

(s3, s3, s3) ←→
(s3,s3)→(s1,s1)

(s3, s1, s1)

←→
s1→s2

(s3, s1, s2) ←→
(s3,s1)→(s1,s3)

(s1, s3, s1).

Note that swap flips give a constructive proof to Lemma 9.

Proof of Theorem 6. We want to prove that successive flips induce a well-defined bijec-
tion between sets of triangular paths with different direction vectors. To do so, we have
to establish the following points.

(1) The flips are well defined.
In other words, we want to show that a flip does not make a path of TL go

outside TL.
For flips swapping steps si and sj such that si 6= −sj , we showed in the proof

of Lemma 9 that a forward step and a backward step can commute under the
condition that the two steps are not opposite.

The swap flip (s1, s1)←→ (s3, s3) is also well-defined because s1 and s3 have
both a negative e3-coordinate. Therefore, the position of the point just before
the flip must have a positive e3-coordinate. One can safely apply s1 or s3.

Similar arguments hold for the other swap flips, and for last-step flips.
(2) Each flip is bijective.

This is clear from the definition of the flips.
(3) Given two sequences W and W ′ of {F,B}n, one can transform any

path with direction vector W into a path of direction vector W ′ by
successive flips.

If W and W ′ have the same number of B’s, then we can use swap flips to
transform a walk of direction vector W into one of direction vector W ′.

Otherwise, we can increment (resp. decrement) the number of B’s of the
direction vector by putting a forward step (resp. a backward step) at the end of
the walk using successive swap flips, then changing the direction of this last step
using a last-step flip. We rinse and repeat until obtaining the desired number of
B’s, then use swap flips as above.

(4) If two different sequences of flips lead to triangular paths p and p′ that
share a same direction vector, then p = p′.

The proof of the last point is postponed until the next subsection (Proposition 14). �

In particular, Theorem 6 gives a bijective proof of Theorem 8. If we wish to make
it explicit, we can write an algorithm that chooses a specific sequence of flips that
transforms an (F, . . . , F ) direction vector into a (B, . . . , B) vector.

Corollary 11. Given z ∈ TL and an integer n, Algorithm 1 forms a bijection between
forward paths of length n starting at z and backward paths of length n starting at z. This
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bijection depends neither on the length L of the triangular lattice, nor on the position of
the starting point z.

Algorithm 1: Bijection between forward paths and backward paths
(for flips, see Definition 10).

input : a forward path p
output : a backward path p
n ← l ength o f p ;
for i from 1 to n
do make a l a s t−s tep f l i p on p [ i ] ;

for j decreasing from n−1 to i
do make a swap f l i p between p [ j ] and p [ j +1] ;

Remark 12. Algorithm 1 also transforms (in a bijective manner) a backward path into
a forward path. Thus, if we apply twice Algorithm 1 to a forward path, we also obtain
at the end a forward path. Therefore, assuming that the uniqueness claimed in Item (4)
in the proof of Theorem 8 holds (and it does), the two forward paths must be the same:
Algorithm 1 is in fact an involution.

2.3. Description of the bijection in terms of folded paths

This section presents the bijection of Theorem 6 in a more symmetric fashion. The
last-step flip, which we defined in Definition 10, can be actually seen as a disguised swap
flip, under the condition that the path is extended to what we call a folded path.

Definition 13 (Folded paths). Given a generic path ω = (ω1, . . . , ωn) ∈ (F ∪ B)n, we
define the folding of ω as the path

−→←−ω = (ω1, . . . , ωn,−ωn, . . . ,−ω1).

Such paths are said to be folded.

Let us denote by Sn the tilted square lattice

Sn = {(i, j) ∈ N× N : |i|+ |j| ≤ n}.
We will geometrically represent folded paths of length 2n as labeled walks on Sn starting
at (−n, 0). To construct the walk on Sn, we replace every forward step by a North-East
step (+1,+1), and every backward step by a South-East step (+1,−1). Moreover, these
North-East and South-East steps will carry labels, which are the steps of F ∪ B from
which they originate. For example, the folding of the path (s1, s3, s1) is represented on
the left of Figure 8.

Now, we are going to emulate the effect of swap flips (see Definition 10) on these
walks. More precisely, we view Sn as a square of size n× n which can be filled out with
1 × 1 square tiles of 9 types (see Figure 9). The four sides of the 9 allowed tiles are
labeled with elements of F ∪B such that the pairs formed by the two top labels and the
two bottom labels correspond to a commutation rule described in Definition 10.
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Figure 8. The geometric representation of the bijection
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Figure 9. The 9 possible tiles

The tiling of Sn proceeds as follows. We begin with the labels given by a folded path.
Then, we place copies of the tiles of Figure 9 in such a way that the two top labels
or the two bottom labels match (like a domino) with labels which were already in Sn.
Eventually, we obtain an alternative description of the bijection of Theorem 8, and thus
the required uniqueness:

Proposition 14. Let
−→←−ω be the folding of a triangular path ω of length n, which we

embed in the tilted square lattice Sn as described above.

There is a unique way to tile Sn with the 9 tiles of Figure 9 while preserving the labels

of
−→←−ω .
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Furthermore, let us fix a sequence W = (W1, . . . ,Wn) of {F,B}n. The path of direc-
tion vector W which corresponds to ω under the bijection of Theorem 6 is defined by the
sequence of labels obtained by following the walk in Sn whose k-th step is North-East if
Wk = F or South-East if Wk = B.

Example 15. Let us consider the path (s1, s3, s1), represented in Figure 9 (left). The
unique corresponding tiling is displayed on the right of the figure.

If we want the path of direction vector (B,F, F ) corresponding to (s1, s3, s1), then we
have to read labels from the walk going SE, NE, NE (in this order). We find (s3, s1, s2).

Proof of Proposition 14. The existence and the uniqueness of the tiling are proved by
induction. We just have to notice that every pair (σ, τ) with σ ∈ F and τ ∈ B appears
once among the top labels of the 9 tiles, and every pair (τ , σ) appears also once among
the bottom labels. We have no choice in how to place new tiles: the tiling is automatic
and unambiguous.

To connect the tiling with the bijection of Theorem 8, note that:

• A swap flip at positions k and k+ 1 can be emulated by positioning a tile along
the k-th and the (k+1)-th step and by symmetrically placing a second tile along
the (2n− k + 1)-th and the (2n− k)-th step.
• A last-step flip can be emulated by positioning a tile on the vertical axis of Sn.

One thus recovers what we described in previous subsection. �

As a consequence, in view of the vertical symmetry of the tiling, one can describe the
bijection of Theorem 8 uniquely in terms of swap flips – as claimed at the beginning of
this subsection.

Corollary 16. The folded paths of direction vector (F, . . . , F,B, . . . , B) are in bijection
with the folded paths of direction vector (B, . . . , B, F, . . . , F ) via successive uses of swap
flips.

3. A first bijection between forward paths and Motzkin meanders

In this section, we provide two proofs of Corollary 4: the first one uses an induction
and is elementary, the second one is based on a recursive bijection which is derived from
the first proof.

3.1. Recursive proof of the equinumeracy

The following proposition links Motzkin meanders and forward paths starting from
the border of TL.

Proposition 17. For any n ≥ 0 and L > 0, let fn(z) be the number of forward paths
in TL of length n starting at z, and mn(`) the number of Motzkin meanders of length
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Figure 10. Left. 8 forward paths of length 3 starting from O+s1 in T3.
Right. 8 Motzkin meander of length 3 and amplitude bounded by L = 3:
four of them begin at height 0, the remaining four begin at height 1.

n starting at height ` and with an amplitude bounded by L (see Subsection 1.2 for the
definitions).

Then, we have the formula

fn(O + `s1) =
∑̀
i=0

mn(i),

for ` ∈ {0, . . . , bL/2c}.

As a particular case ` = 0 of the result above, we recover the statement of Corollary 4.

Example 18. Figure 10 corroborates Proposition 17 with n = 3, L = 3, and ` = 1:
numbers agree (8 on each side). Remark that if L is larger (L ≥ 4), the forward path
s1s1s1 will be added on the left, and the Motzkin meander ↗,↘,↘ on the right.

Proof of Proposition 17. Let us introduce the notation gn(`) = fn(O + `s1), with the
convention that gn(`) = 0 for ` < 0. Let us also write ∆gn(`) = gn(`) − gn(` − 1), and
H = bL/2c.

Note that the numbers of Motzkin meanders mn(`) satisfies the obvious recurrences

mn(`) = mn−1(`− 1) +mn−1(`) +mn−1(`+ 1) for ` ∈ {1, . . . ,H − 1},
mn(0) = mn−1(0) +mn−1(1),

mn−1(H) =

{
mn−1(H − 1) +mn(H) if L is odd
mn−1(H − 1) if L is even

,

for n ≥ 1. The proof is completed whenever we find the same recurrences for ∆gn(i).
The reader can refer to Figure 11 as a visual support for what follows.
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n n−1 n−1
= +

n n−1 n−1
= +

Figure 11. Explanation of Equations (1) and (2) in generic case. A
dot with a subscript n represents the number of forward paths of length
n starting from this point (which is, by Theorem 2, also the number of
backward paths).

For any ` ∈ {1, . . . ,H − 1}, starting from O+ `s2, the only possible forward steps are
s1 and s2, so that

gn(`) = fn−1(O + `s1 + s2) + fn−1(O + `s1 + s2)

= gn−1(`+ 1) + fn−1(O + `s1 + s2). (1)

We now count backward paths starting from O + (` − 1)s1. By Theorem 8, if bn(z) is
the number of backward paths of length n starting at z, we have fn(z) = bn(z) for every
z ∈ TL. In particular, gn(`− 1) = bn(O+ (`− 1)s1). Since only possible backward steps
from O + (`− 1)s1 are s1 and s3, we have for any ` ∈ {1, . . . ,H − 1},

gn(`− 1) = bn−1(O + (`− 1)s1 + s1) + bn−1(O + (`− 1)s1 + s3)

= fn−1(O + (`− 1)s1 + s1) + fn−1(O + (`− 1)s1 + s3)

= gn−1(`− 2) + fn−1(O + `s1 + (s3 − s1))
= gn−1(`− 2) + fn−1(O + `s1 + s2). (2)

(Note that the case ` = 1 is correctly handled since by convention, gn−1(−1) = 0.)
Combining (1) and (2), we deduce that for ` ∈ {1, . . . ,H − 1},

gn(`)− gn(`− 1) = gn−1(`+ 1)− gn−1(`− 2),

and hence

∆gn(`) = ∆gn−1(`− 1) + ∆gn−1(`) + ∆gn−1(`+ 1).

As for ` = 0, we straightforwardly have

∆gn(0) = gn(0) = gn−1(1)

= ∆gn−1(0) + ∆gn−1(1).

(i) Let us first assume that L = 2H + 1 is odd. Then, using a symmetry
through the plan of equation x1 = x3 (x1 being the coordinate in e1 and x3 the one
in e3), we have fn−1(O + Hs1) = bn−1(O + (H + 1)s1). By Theorem 8, it translates
gn−1(H) = gn−1(H + 1). Thus, ∆gn−1(H + 1) = 0, and

∆gn(H) = ∆gn−1(H − 1) + ∆gn−1(H).
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It follows that (∆gn(`))0≤`≤H satisfies the following recursion

∆gn(0)
∆gn(1)

...

...

...
∆gn(H)


=



1 1 0 · · · · · · 0

1 1 1
. . .

...

0 1 1 1
. . .

...
...

. . .
. . .

. . .
. . . 0

...
. . . 1 1 1

0 · · · · · · 0 1 1





∆gn−1(0)
∆gn−1(1)

...

...

...
∆gn−1(H)


which is the same recursion that we saw for (mn(`))0≤`≤H . Since the base cases agree
(∆g0(`) = m0(`) = 0 for ` > 1, and ∆g0(0) = m0(0) = 1), we have the equality
mn(`) = ∆gn(`), and the result directly follows.

(ii) Let us now assume that L = 2H is even. Always thanks to the symmetry
with respect the plane x1 = x3, we have gn−1(H−1) = gn−1(H+1), so that ∆gn−1(H+
1) + ∆gn−1(H) = 0, and

∆gn(H) = ∆gn−1(H − 1).

It follows that (∆gn(`))0≤`≤H satisfies the following recursion

∆gn(0)
∆gn(1)

...

...

...
∆gn(H)


=



1 1 0 · · · · · · 0

1 1 1
. . .

...

0 1 1 1
. . .

...
...

. . .
. . .

. . .
. . . 0

...
. . . 1 1 1

0 · · · · · · 0 1 0





∆gn−1(0)
∆gn−1(1)

...

...

...
∆gn−1(H)


.

We thus recover the recursion of (m′n(`))0≤`≤H , and we conclude like above. �

3.2. Exponential bijection

We now convert the argument of Subsection 3.1 to a bijection, albeit one which is
defined recursively and takes non-linear time to apply.

We fix in this section the length L of the triangular lattice TL, and H the semi-length:
H = bL/2c.

Let Gn(k) be the set of forward paths of length n starting at O + ks1 and let Mn(k)
be the set of Motzkin meanders of length n starting at height k and having amplitude
bounded by L.

It follows from Proposition 17 that |Mn(k)| = |Gn(k)| − |Gn(k − 1)|.

To show this bijectively, we will recursively define a sequence of bijective functions
Ωn,k : Gn(k)→Mn(k)∪Gn(k−1) for n ∈ N and k ∈ [0, H]. This will use the bijection of
Theorem 6 between triangular paths with different direction vectors. In particular, we
will use this in the special cases sending paths with some direction vector W of length n
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Output Ωn,k(ω)

A Motzkin meander of length n starting at height k

A forward path of length n starting at O + (k − 1)s1
or

Decompose ω = ω1ω
′ where ω1 is the first step

n = 0 n > 0

ω1 = s1 ω1 = s2

Return Wn(s3ω
′)Compare k with H

In ω′, replace each s1, s2, s3 step
with s1, s3, s2 respectively.

Then apply Wn−1.
Call ρ the obtained path.

Check the parity of L

Check if k is null

Return the
only Motzkin

path of
length 0

Return the only
triangular path of
length 0 starting
at O + (k − 1)s1

Compute $[k+1] := Ωn−1,k+1(ω′)

Compute $[k] := Ωn−1,k($[k+1])

Compute $[k−1] := Ωn−1,k−1($[k])

Return ↗ $[k+1]

Return → $[k]

Return ↘ $[k−1] Return Wn(s1$
[k−1])

Set $[k+1] := ρ

Set $[k] := ρ

k = 0 k > 0

k = H

k < H

$[k+1] is a
forward path

$[k+1] is a
Motzkin meander

$[k] is a
forward path

$[k] is a Motzkin
meander

L odd

L even

$[k−1] is a
forward path

$[k−1] is a
Motzkin meander

2

3 4

5

6

7

8

10

12

9

11

13

14

15

16

18

17

Input ω

A forward path ω of length n starting at O + ks1
1

Figure 12. Algorithm computing Ωn,k(ω) where ω is a path of length
n starting at O + ks1

to paths with direction vector (F, . . . , F ). We denote this function by Wn – this forms
a bijection when the domain is restricted to those paths with some explicit direction
vector.

Theorem 19. Let k and n be two integers with k ≤ H. The function Ωn,k, defined by
Figure 12, is a bijection from Gn(k) to Mn(k) ∪ Gn(k − 1), where Gn(k) is the set of
forward paths of length n starting at O+ks1, and Mn(k) is the set of Motzkin meanders
of length n starting at height k and having amplitude bounded by L.
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Proof. 1. Let us show that the map is well-defined, i.e. its image is included
in Mn(k) ∪Gn(k − 1).

It is quite straighforward, except maybe two points:

• Why is path ρ from block 15 of Figure 12 a valid triangular path of TL? By
replacing s1, s2, s3 steps with s1, s3, s2, path ω′ undergoes a vertical reflection
about the vertical midline of TL. Thus, ω′ is transformed into a backward path
starting at O + Hs1 (if L is odd) or at O + (H − 1)s1 (if L is even). Applying
Wn−1 makes it a forward path, which is ρ, that belongs to Gn−1(H) (when L is
odd) or Gn−1(H − 1) (when L is even).
• When k = H, it is impossible to output a Motzkin meander starting at height H

and beginning by a ↗ step. So the amplitude of every meander in the image is
bounded by 2H+1. Moreover, when L is even and k = H, the returned meanders
cannot begin by a horizontal step, which explains why they have amplitude
bounded by L = 2H.

2. Let us show by induction on n that Ωn,k is a bijection for every k ≥ 0.

The case n = 0 is clear.

Let n be a positive integer. If the image is a Motzkin meander beginning by↗ (resp.
→, ↘), then the algorithm must end at block 8 (resp. 10, resp. 12). This covers all
Motzkin paths of Mn(k) (or M ′n(k)). Then we can bijectively recover the original path
ω by following the arrows backwards up to block 1. In fact, all the arrows are reversible,
notably because of the induction hypothesis. There is no ambiguity from blocks 9 and
12 (where there are a priori two possible ingoing arrows) because one can only go to
block 7 and 9 if k < H. In the contrary case where k = H, one have to go to the right
side of the diagram (blocks 17 and 18).

If the image is in Gn(k − 1), then the algorithms ends either to block 13 or to block
14. Since Wn is a bijection from paths with direction vector (B,F, F, . . . , F ) to forward
paths in Gn(k − 1), we can recover the preimage under Wn. If this preimage begins by
s1, then the algorithm actually ended at block 13; if it begins by s3, the algorithm ended
at block 14. At this point, we can use the above reasoning to go backwards to the root
of the decision tree and find ω. Thus, we prove that Ωn,k is a bijection. �

When k = 0, Theorem 19 provides a bijection between forward paths and Motzkin
paths of bounded amplitude. Go back to Figure 5 for examples: each forward path is
put aside its image under Ω3,0.

Thus, at this point, we have answered Mortimer and Prellberg’s open question (Theo-
rem 3). Indeed, starting from a bicolored Motzkin path m (let us say in black and white)
of length n and of amplitude bounded by L, we can construct a direction vector W from
it: write F for each black step; B for each white step. Then, we compute Ωn,0(m),
which is a forward path. Finally, we use the bijection from Theorem 6 to transform the
forward path into a triangular path of direction vector W .
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Finally, let us discuss about the complexity of the algorithm. If c(n, k) denotes the
worst-case complexity of Ωn,k, then we can derive from Figure 12 the (rough) upper
bound

c(n, k) ≤ c(n− 1, k + 1) + c(n− 1, k) + c(n− 1, k − 1) + n2.

(The n2 term reflects the complexity of the function Wn−1 appearing in block 15.) Then,
by a simple induction, one can see that c(n, k) ≤ mn(k) + O(n3) where mn(k) is the
number of Motzkin meanders of length n starting at height k and having amplitude
bounded by L. Since mn(0) is O(3n), we deduce that the complexity of Ωn,0 is bounded
by an exponential in n. However, we do not know if this bound is tight. Experimentally,
we have observed that the complexity of the algorithm has a large standard deviation
when the input is randomly chosen: in most cases, the complexity is linear in n (in
terms of running time and the number of recursive calls) but sometimes the complexity
seems to be quadratic in n.

4. Many other bijections

In the previous section, we described a bijection between forward paths and Motzkin
paths of bounded amplitude. However, the definition being recursive, the computation
of an image takes a priori a long time, and its description lacks some clarity.

This section proposes a new way to define bijections between forward paths and
Motzkin paths. Such bijections will have a double advantage. First, they only require
linear time to compute. Second, these bijections are parameterized: each one of them
comes with a specific metadata (which we name scaffolding), making them all different.

4.1. Profile

We start to define a integer vector for each point of TL:

Definition 20 (Profile). Let z = ie1 + je2 + ke3 be any point of TL. The profile of z is
the vector (p0(z), . . . , pH(z)) where H =

⌊
L
2

⌋
and p0(z), . . . , pH(z) is the first half of the

coefficients of the polynomial

(1− xi+1)(1− xj+1)(1− xk+1)

(1− x)2
= p0(z) + p1(z)x+ · · ·+ pH(z)xH + · · ·+ pL+1(z)x

L+1.

Example 21. Fix L = 5. The profile of any corner of T5 (that is 5e1, 5e2 or 5e3)
is (1, 0, 0) since the corresponding polynomial is (1 − x6) (regardless of the corner).
The profile of the point e1 + e2 + 3e3 is (1, 2, 1), which can be found by expanding the
polynomial (1− x2)2(1− x4)/(1− x)2 = 1 + 2x+ x2 − x4 − 2x5 − x6.

Note that one can also extend the definition of profile for points ie1 + je2 +ke3 where
i = −1 or j = −1 or k = −1. Even if they are not in TL, we can see that the polynomial
(1−xi+1)(1−xj+1)(1−xk+1)

(1−x)2 is null for such points, so by convention, we can define the profile

as the null vector (0, . . . , 0). It will be useful to deal with border cases.
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Figure 13. A cell representation of T5. The enlighten zone corresponds
to point e1 + e2 + 3e3.

It is convenient to represent the profiles as sets of square cells.

Definition 22 (Cell representation). A cell representation of a point z is a finite subset
C(z) of Z2 satisfying |{` : (f, `) ∈ C(z)}| = pf (z) for every f ∈ {0, . . . ,H}. A cell
representation of TL is a family C = (C(z))z∈TL of cell representations of points of TL.
The height of a cell c = (f, `) is defined as h(c) = f .

The profile of every point z is then illustrated by the cell representation C(z): for
every (f, `) ∈ C(z), a square is placed at coordinates (`, f).2 For example, as shown
by Figure 13, the cell representation of e1 + e2 + 3e3 in T5 (whose profile is (1, 2, 1), as
mentioned above) can be represented as three rows of squares: the first (bottom) and
the third (top) rows have 1 square each while the central row has 2 squares.

It is not obvious from Definition 20 that we always have pf (z) ≥ 0, and hence that a
cell representation of TL exists for every L ∈ N. However a cell representation of TL will
be explicitly given by Proposition 31, proving the non-negativity of the components of
a profile.

The next lemma establishes some identities about the profile.

2We swap the two coordinates so that f (which stands for floor) corresponds to the height of a cell,
consistent with the fact that f represents the height in a Motzkin path.
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Lemma 23. Let z be in TL. Then for i ∈ {1, . . . ,H − 1}, the identities

pi(z + s1) + pi(z + s2) + pi(z + s3) = pi−1(z) + pi(z) + pi+1(z), (3)

p0(z + s1) + p0(z + s2) + p0(z + s3) = p0(z) + p1(z), (4)

pH(z + s1) + pH(z + s2) + pH(z + s3) =

{
pH(z) + pH−1(z) if L is odd
pH−1(z) if L is even

, (5)

hold.

Proof. For z = ie1 + je2 +ke3 ∈ TL, let Polz(x) be the polynomial of Definition 20, that
is

Polz(x) =
(1− xi+1)(1− xj+1)(1− xk+1)

(1− x)2
.

We also extend for any integer i the definition of pi(z) as the coefficient of xi in Polz(x).

By an inelegant but simple expansion, one can check the identity

Polz+s1(x) + Polz+s2(x) + Polz+s3(x) =

(
x+ 1 +

1

x

)
Polz(x) + xL+2 − 1

x
.

Extracting the coefficient of xi in the above equality for i ∈ {0, . . . ,H} straightforwardly
gives

pi(z + s1) + pi(z + s2) + pi(z + s3) = pi−1(z) + pi(z) + pi+1(z),

which proves (3). The equality (4) comes from the fact that p−1(z) = 0.

Concerning i = H, we remark that

xL+1Polz(1/x) = −Polz(x),

and hence pL+1−j(z) = −pj(z) for every integer j. In particular, if L = 2H + 1, then
for j = H + 1, we have pH+1(z) = −pH+1(z) and so pH+1(z) = 0. Equality (5) is then
obtained by substituting i = H and pi+1 = 0 in (3). As for L = 2H even, set j = H, and
get pH+1(z) = −pH(z), which implies that only the term pH−1(z) does not disappear in
the right-hand side of the equality. �

Thus, Proposition 17 is naturally extended to any point of TL (not only the ones on
the border).

Theorem 24. Let z be any point of TL and (p0(z), . . . , pH(z)) be the profile of z. Let
us denote fn(z) the number of forward paths in TL starting from z. We have

fn(z) =

H∑
i=0

pi(z)mn(i),

where mn(i) is the number of Motzkin meanders of length n starting at height i and
having an amplitude bounded by L.
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Proof. We only do the proof for the odd case, since the even case is very similar. We
proceed to an induction on n.

For n = 0, we have p0(z) = 1 since it is the constant term in the polynomial
(1−xi+1)(1−xj+1)(1−xk+1)

(1−x)2 . Moreover, m0(i) is equal to 0 if i > 0, and m0(0) = 1. We

consistently find f0(z) = 1.

Let us assume that the equality holds for a given n and for every z′ ∈ TL. We have

fn+1(z) = fn(z + s1) + fn(z + s2) + fn(z + s3)

=
H∑
i=0

(pi(z + s1) + pi(z + s2) + pi(z + s3))mn(i) by induction,

=

H−1∑
i=1

(pi−1(z) + pi(z) + pi+1(z))mn(i)

+ (p0(z) + p1(z))mn(0) + (pH−1(z) + pH(z))mn(H) by Lemma 23.

Collecting terms with respect to pi(z), we get

fn+1(z) = p0(z) (mn(0) +mn(1))

+
H−1∑
j=1

pj(z) (mn(j − 1) +mn(j) +mn(j + 1))

+ pH(z) (mn(H − 1) +mn(H)) ,

which reads fn+1(z) =
∑H

j=0 pj(H)mn+1(j). �

Let us explain why Proposition 17 is a special case of the previous theorem. Given
a point of the border O + `s1 = s1e1 + (L − `)e3 with ` ≤ H = bL/2c, the associated
polynomial is

(1− x`+1)(1− xL−`+1)

1− x
=
(

1 + x+ · · ·+ x`
)

(1− xL−`+1).

But since ` ≤ H, we have L− `+ 1 > H. So the profile of O+ `s1 follows the expansion
of 1 + x+ · · ·+ x`. In other words,

pi(O + `s1) =

{
1 if i ≤ `
0 otherwise

.

We thus recover the formula fn(O + `s1) =
∑`

i=0mn(i).

4.2. Scaffoldings and new bijections

In order to illustrate the following definition, we begin this subsection by explaining
the idea behind the bijection we are going to present next.

By Theorem 24, we know there should be a bijection between the set of triangular
paths starting at z ∈ TL and the set of triplets (m, c) where m is a Motzkin meander of
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↗

↘

→

Figure 14. A zoom on a scaffolding – more specifically it depicts the
function s 7→ δe1+e2+3e3((1, 2), s).

bounded amplitude and c is a cell in the cell representation of z such that h(c) is the
starting height of m. For the sake of example, let us choose L = 5, z = e1 + e2 + 3e3,
c = (f, `) = (1, 2). It corresponds to a specific cell of the profile of z, which is highlighted
in Figure 14.

We now consider a Motzkin path m which we wish to transform into a triangular
path starting at z, in a recursive manner. This transformation will depend on the cell
we have chosen (here (1, 2)). At this point there are naturally three possibilities: m
begins by ↗, by →, or by ↘. The idea is then to map these three possibilities to three
other cells located in the profiles of the neighbors of z. The f -coordinates of these cells
must be respectively 2, 1 and 0. We then use a recursion, which now depends on the
new cell, to find the desired triangular path.

Of course there are several choices for these new cells. For example, if m begins by
↗, we have 3 choices: there are 2 cells in the top floor of z + s1, 1 cell in the top floor
of z + s2, and 0 cell in the top floor of z + s3. Following Figure 14, we choose the cell
(2, 2) from the cell representation of z+s1. The triangular path we would like to output
will begin by s1 (because the chosen cell is in the profile of z + s1), and the rest will be
computed by recursion.

A scaffolding is precisely the data which dictates the choice of the new cells for the
whole lattice. More precisely, it indicates in which cell we have to go when we consider
a specific cell in some profile, and a particular step in {↗,→,↘}.

Definition 25 (Scaffolding). Let us fix L the size of the triangular lattice, and let H be
bL/2c.

For a height f ∈ {0, . . . ,H}, we say that a step s ∈ {↗,→,↘} is an allowed step
from height f if it is a possible step from height f in a Motzkin meander. Precisely, the
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only restrictions are that (f, s) cannot be equal to (0,↘) nor (H,↗), and furthermore,
if L is even, (f, s) cannot be equal to (H,→).

For z ∈ TL, we define the set

A(z) := {(c, s) ∈ C(z)× {↗,→,↘} : s is an allowed step from h(c)},

where C(z) is the cell representation of z (see Definition 22). For i ∈ {1, 2, 3}, we also
introduce the notation

Ci(z) := {(si, c) : c ∈ C(z)}.
The set Ci(z) is thus a subset of F ×C(z), having same cardinality as C(z), since all the
elements of Ci(z) have the same first coordinate si.

A scaffolding is a collection of functions (δz)z∈TL, such that for each z ∈ TL, the
function

δz : A(z)→ C1(z + s1) ∪ C2(z + s2) ∪ C3(z + s3)

is a bijection. Furthermore, for every (c, s) ∈ A(z) with (σ, c′) = δz(c, s), we have the
restriction

h(c′) =

 h(c) + 1 if s =↗
h(c) if s =→

h(c)− 1 if s =↘
.

An entire scaffolding is shown by Figure 25.

Proposition 26. For any L ≥ 0, there exists a scaffolding.

Proof. Let us consider any point z of TL, and let f ′ be an integer in {0, . . . ,H}.

Consider the sets

Uf ′(z) := {(c,↗) ∈ A(z) : h(c) = f ′ − 1},
Ff ′(z) := {(c,→) ∈ A(z) : h(c) = f ′},
Df ′(z) := {(c,↘) ∈ A(z) : h(c) = f ′ + 1},
Ci,f ′(z) := {(si, c′) ∈ Ci(z) : h(c′) = f ′} for i ∈ {1, 2, 3}.

By Lemma 23, we have∣∣Uf ′(z) ∪ Ff ′(z) ∪ Df ′(z)∣∣ =
∣∣C1,f ′(z + s1) ∪ C2,f ′(z + s2) ∪ C3,f ′(z + s3)

∣∣ .
We can then choose any bijection bf ′ between these two sets and define δz(c, s) for every
(c, s) ∈ Uf ′(z) ∪ Ff ′(z) ∪ Df ′(z) as bf ′(c, s).

Doing so for every f ′ ∈ {0, . . . ,H} enables to cover every pair (c, s) ∈ A(z), and thus
successfully define δz on the set of such triplets.

The required bijectivity of δz is straightforward (because bf ′ is also bijective). �

Once we fix a scaffolding for our triangular lattice, one can describe a bijection between
triangular paths and Motzkin paths. The bijection is given by Algorithms 2 and 3.
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if s =↗
if s =→
if s =↘

Figure 15. A random scaffolding for T3.

Algorithm 2: Bijection from Motzkin paths to triangular paths, given
a scaffolding (δz)z∈TL (for scaffolding, see Definition 25).

metadata : a s c a f f o l d i n g δz
input : a Motzkin path m
output : a t r i a n g u l a r path p s t a r t i n g at O
n ← l ength o f m;
p ← empty path ;
z ← O ;
c ← unique c e l l o f he ight 0 in the c e l l r e p r e s e n t a t i o n o f z ;
for i from 1 to n
do (σ , c ) ← δz ( c , m[ i ] ) ;

add σ to the end o f p ;
z ← z + σ ;

return p ;

Algorithm 3: Bijection from triangular paths to Motzkin paths, given
a scaffolding (δz)z∈TL (for scaffolding, see Definition 25).

metadata : a s c a f f o l d i n g δz
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Figure 16. The Motzkin paths and the triangular paths of length 3
in correspondence under Algorithms 2 and 3, given the scaffolding of
Figure 15.

input : a t r i a n g u l a r path p s t a r t i n g at O
output : a Motzkin path m
n ← l ength o f p ;
m ← empty path ;
z ← O +

∑n
i=1 p [ i ] ;

c ← unique c e l l o f he ight 0 in the c e l l r e p r e s e n t a t i o n o f z ;
for i decreasing from n to 1
do ( c , s ) ← δ−1z (p [ i ] , c ) ;

add s to the beg inning o f m;
z ← z − p [ i ] ;

return m;

Theorem 27. Let (δz)z∈TL be a scaffolding. Algorithms 2 and 3 give two inverse
bijections between the set of Motzkin paths of length n with bounded amplitude L and
the set of triangular paths of TL of length n starting at O.



BIJECTIONS BETWEEN TRIANGULAR WALKS AND MOTZKIN PATHS 29

Proof. At the end of Algorithm 2, note that the height of the ending cell is 0, since
variable f keeps track of the height of the input Motzkin path (because of the last
restriction of Definition 25) and a Motzkin path always ends at height 0. Moreover,
because the polynomial (1 − xi+1)(1 − xj+1)(1 − xk+1)/(1 − x)2 always has a constant
term equal to 1, by Definition 20, we have p0(z) = 1 for every z ∈ TL. But ` is always
between 1 and pf (z), so at the end of Algorithm 2, ` must be 1.

Thus, the values of z and c are the same at the end of Algorithm 2 and at the
beginning of Algorithm 3. From this point, it is easy to see that the loop of Algorithm 3
reverses what the loop of Algorithm 2 did. Therefore the two algorithms are mutual
inverse bijections. �

Remark 28. If we omit the cost of a precalculation (which is the construction of a
scaffolding which can be made in O(L4) time), both algorithms have a linear-time com-
plexity.

The scaffolding bijection of Subsection 4.4 does not require any precalculation (which
can be costly if L is large) and it still has a linear-time complexity.

Remark 29. If two Motzkin paths m and m′ share a common prefix of length j, then the
two corresponding triangular paths under Algorithm 2 will also share a common prefix
of length j. The converse is not true.

This property is not shared by the exponential bijection of Figure 12. This is why this
bijection is not a particular case of the scaffolding bijections.

Remark 30. No scaffolding is necessary if we wish to sample a random forward path
under the uniform distribution, given a uniform random Motzkin path of bounded am-
plitude.

Indeed, since any scaffolding is suitable to have a bijection, one can pick this scaffold-
ing at random, on the fly. To do so, at each step of the loop in Algorithm 2, we choose
δz(c,m[i]) as one of the cells with height h′ belonging to C(z+ s1)∪C(z+ s2)∪C(z+ s3),
where h′ = h(c) + 1 if m[i] =↗, h′ = h(c) if m[i] =→, or h′ = h(c) − 1 if m[i] =↘.
This choice must be uniform among all cells of height h′.

4.3. Two direct bijective proofs of Mortimer and Prellberg’s theorem

We mention two ways to extend this to a bijection between bounded Motzkin paths
with bicolored (black and white) edges and triangular paths (potentially including for-
ward and backward steps), which provides a direct combinatorial interpretation of The-
orem 3.

The first method is as mentioned at the end of Section 3: Starting with a bicolored
Motzkin path, use the scaffolding bijection above to send the Motzkin path to a forward
path, and map the colors to a direction vector based on the order in which they appear
(black → F and white → B). Then, using the bijection of Theorem 6, send the forward
path to a path with that direction vector.



30 BIJECTIONS BETWEEN TRIANGULAR WALKS AND MOTZKIN PATHS

f + ` = x1 + x2

f = `

` = min{x1, x2}

` = 0

f = `+ x3

`

f

Figure 17. Left. The shape of the cell representation from Proposi-
tion 31 of a point x1e1 + x2e2 + x3e3. Right. The associated cell repre-
sentation of T5.

For the second method we start by defining a reverse scaffolding

δz : A(z)→ C1(z + s1) ∪ C2(z + s2) ∪ C3(z + s3),

where each Ci(z) is defined by

Ci(z) := {(si, c) : c ∈ C(z)}.

We define δz symmetrically to δz reflected about the midline of TL passing though
O = x3e3. To be precise, if z = x1e1 + x2e2 + x3e3, let z′ = x2e1 + x1e2 + x3e3 and
δz′(a) = (sj , c). Then we define δz(a) := (s4−j , c). This is possible because the cell
representation of z′ is necessarily the same as that of z. The bijection then runs as
follows: starting with a bicolored Motzkin path, we apply the scaffolding δz when there
is a black step, and we apply the reverse scaffolding δz when there is a white step. An
advantage of that second version is that it takes linear time to apply.

4.4. A canonical scaffolding in terms of colored trapeziums

In this section we provide an explicit scaffolding which yields a bijection between
bounded Motzkin paths and triangular paths which takes linear time to compute (it
does not depend on L). First we define a new cell representation for TL.

Proposition 31. For every z ∈ TL, the set

C(z) :=
{

(f, `) ∈ Z2 | max(0, f − x3) ≤ ` ≤ min(f, x1, x2, x1 + x2 − f)
}

is a cell representation of z (see Definition 22).
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Input: a pair ((f, `), s) ∈ A(z).

Compare ` with x1 + x2 − f

s =→s =↘

Compare ` with f

s =↗

Return (s2, (f − 1, ` − 1)) Return (s1, (f − 1, `))

Compare ` with x1 + x2 − f

` = f ` < f

Compare f with x1 + x2

Return (s1, (f + 1, ` + 1))

Return (s1, (f + 1, `)) Return (s2, (f + 1, ` − 1))

` = x1 + x2 − f

` = x1 + x2 − f − 1

f = x1 + x2 f < x1 + x2

Compare ` with x2

Return (s2, (f + 1, ` + 1)) Return (s3, (f + 1, `))

` = x2 ` < x2

Compare ` with fReturn (s1, (f, `))

` < x1 + x2 − f` = x1 + x2 − f

Return (s3, (f, `))

Compare ` with x1

` = f` < f

Return (s1, (f, ` + 1))

Return (s2, (f, `))

` = x1 ` < x1

Compare f with x1

Return (s2, (f + 1, `))

f = x1 − 1 f ≥ x1

x2 = f

Compare x2 with f

x2 > f

1 2

3 4

5 6

7 8

9

10

11 12

` < x1 + x2 − f − 1

Figure 18. A diagram defining the scaffolding δz.

Proof. Set z = x1e1 + x2e2 + x3e3, so x1 + x2 + x3 = L. Recall that for

pf (z) = [yf ](1 + · · ·+ yx1)(1 + · · ·+ yx2)(1− yx3+1),

for 2f ≤ L. For x3 ≥ x1 + x2, an expansion of the two first factors shows that the
numbers pf (z) are

1, 2, . . . ,min(x1, x2) + 1,min(x1, x2) + 1, . . . ,min(x1, x2) + 1︸ ︷︷ ︸
repeated max(x1,x2)−min(x1,x2)+1 times

,min(x1, x2), . . . , 2, 1,

for f = 0, 1, . . . , x1 +x2. So, if we simply define C(z) := {(f, `) | 0 ≤ ` ≤ pf (z)−1} with
h((f, `)) = f , then C(z) can alternatively be written as

C(z) =
{

(f, `) ∈ Z2 | 0 ≤ ` ≤ min(f, x1, x2, x1 + x2 − f)
}
.

For x3 < x1+x2, it suffices to remove from C(z) any points (f, `) for which (f, `−x3−1)
belongs to C(z), as this corresponds to multiplying the polynomial by (1− yx3+1). This
yields the above general formula for C(z). �

Examples of the cell representation of Proposition 31 are shown in Figure 17.
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f

`

f

11

`

f

s1

s2

s3

`

δz

↗

→

↘

4

`

f

2

6

`

f

9

11

12

10

8

7

`

f

10

2

8

9

4

7

12

6

C(z)

C(z)

C(z)

C(z + s3)

C(z + s2)

C(z + s1)

Figure 19. A geometric depiction of the bijection δz in the case x1 = 8,
x2 = 13, L = 37. On the left, there are three copies of of C(z) while on
the right we have C(s1 +z), C(s2 +z) or C(s3 +z). Each case in Figure 18
is represented by a colored zone with labels matching the numbers shown
in Figure 18. Cells for which the given step is not allowed are colored in
red. The grey polygon on each of the cell representations is the outline
of C(z) (equivalently, the pentagon delimited by the lines ` = 0, f = `,
` = 8, f + ` = 21 and f = `+ 16).

Finally it remains to define a scaffolding

δz : A(z)→ C1(z + s1) ∪ C2(z + s2) ∪ C3(z + s3),
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f

`

f

`

f

s1

s2

s3

`

δz

↗

→

↘

4

`

f

2

6

`

f

9

12

10

8

7

`

f

10

2

8

9

4

7

12

6

C(z)

C(z)

C(z)

C(z + s3)

C(z + s2)

C(z + s1)

1

5

5

1

Figure 20. The bijection δz in the case x1 = 13, x2 = 7, L = 36. In
comparaison with Figure 19, this decomposition features the case where
L is even, but most importantly, the case where x1 > x2 + 1.

where we recall that A(z) and Ci(z) are defined by

A(z) := {(c, s) ∈ C(z)× {↗,→,↘} : s is an allowed step from h(c)}.
Ci(z) := {(si, c) : c ∈ C(z)}.

We define δz by the procedure shown in Figure 18. Under this procedure there are 12
different cases, shown by the colored boxes labeled from 1 to 12.

In the following theorem we show that this is indeed a bijection. We give a geometric
interpretation of this bijection in two specific cases in Figures 19 and 20.
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Theorem 32. For each z ∈ TL, the function δz defined by the procedure in Figure 18
is a bijection from A(z) to C1(z + s1) ∪ C2(z + s2) ∪ C3(z + s3).

Proof. To see that this is a bijection, is suffices to show that each element of C1(z+s1)∪
C2(z + s2) ∪ C3(z + s3) is covered exactly once by δz.

First, we claim that C1(z + s1) is covered by cases 2, 3, 8, 9 and 11. Note that
C(z+s1) = {(f ′, `′) ∈ Z2 | max(0, f ′−x3+1) ≤ `′ ≤ min(f ′, 1+x1, x2, 1+x1+x2−f ′)}.
In particular, the pairs (f ′, `′) ∈ C(z + s1) covered by each of the five cases are those
satisfying the following:

• Case 2: `′ = 1 + x1 + x2 − f ′ 6= 0.
• Case 3: `′ = 0 = 1 + x1 + x2 − f ′ (this case only occurs if x1 + x2 ≤ x3 i.e.,

2(x1 + x2) ≤ L ).
• Case 8: `′ ≤ x1 and `′ < x1 + x2 − f ′.
• Case 9: `′ ≤ x1 and `′ = x1 + x2 − f ′.
• Case 11: `′ = x1 + 1 ≤ x1 + x2 − f ′ (this case only occurs for x1 < x2).

Next, we show that the set C2(z + s2) is covered by cases 1, 4, 5, 7 and 10. We have

C(z + s2) = {(f ′, `′) ∈ Z2 | max(0, f ′ − x3) ≤ `′ ≤ min(f ′, x1 − 1, x2 + 1, x1 + x2 − f ′)}.

In particular, the pairs (`′, f ′) ∈ C(z + s2) covered by each of the five cases are those
satisfying the following:

• Case 1: f ′ = x1 and `′ = x2 (this case only occurs if x2 ≤ x1 − 1).
• Case 4: `′ = x1 + x2 − f ′ ≤ x2 − 1.
• Case 5: `′ = x2 + 1 (this case only occurs if x2 + 1 ≤ x1 − 1).
• Case 7: `′ = f ′ ≤ x2 − 1.
• Case 10: `′ ≤ x1 + x2 − f ′ − 1, x2, f

′ − 1 or `′ = f = x2 (the latter case only
occurs for x2 ≤ x1 − 1).

Finally, we show that the set C3(z + s3) is covered by cases 6 and 12. Note that

C(z+ s3) = {(f ′, `′) ∈ Z2|max(0, f ′− x3− 1) ≤ `′ ≤ min(f ′, x1, x2− 1, x1 + x2− 1− f ′).

In particular, the pairs (f ′, `′) ∈ C(z + s3) covered by each of the five cases are those
satisfying the following:

• Case 6: `′ ≤ f ′ − 1.
• Case 12: `′ = f ′.

We thus have dealt with every element of C1(z + s1) ∪ C2(z + s2) ∪ C3(z + s3). �

Note that the rules in the definition of δz only depend on x1, x2, f and `, but not L.
As a consequence, this bijection can be applied to any Motzkin path to yield a path in
the 1/6-plane, and if L is the minimum sidelength of a triangle containing the resulting
path then L is the amplitude of the Motzkin path.
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5. Generalization to further dimension

This section explains to what extent the results of the previous sections can be gen-
eralized. In fact, there is a natural extension of triangular paths to higher dimension
(already introduced by [15]) for which there still exists a bijective correspondence be-
tween forward and backward paths. More surprisingly, we can find in dimension 3 a
new bijection between two families of lattice walks, which is an analogue of the bijection
between triangular paths and Motzkin path of bounded amplitude.

5.1. What can be extended in any dimension

5.1.1. Definition. For dimension d, let (e1, e2, e3, . . . , ed+1) denote the standard basis
of Rd+1. For some L ∈ N, we define the subset Sd,L of Nd+1 as the simplicial section of
side length L of the integer lattice:

Sd,L = {x1 e1 + · · ·+ xd+1 ed+1 : x1, . . . , xd+1 ∈ N, x1 + · · ·+ xd+1 = L}.

We will consider walks in this simplex using forward steps sj = ej−ej−1 for 1 ≤ j ≤ d+1
(with the convention that s0 = sd+1) and backward steps −sj . Paths of Sd,L only using
forward steps are again called forward paths. The origin of Sd,L, denoted O, is defined
as Led+1. The triangular lattice TL can be recovered by setting d = 2 – in other words
TL = S2,L.

As in the triangle case, forward paths of Sd,L starting from O form a subfamily of
Standard Young Tableaux. Precisely, they are in bijection with standard Young tableaux
with d rows or less with an extra restriction: for i > L, if there is a cell with label `
at position i in the top row of the Young tableau, then there is a cell at position i− L
in the bottom row of the Young tableau with a label less than `. The enumeration of
standard Young tableaux with a bounded number of rows is the object of a very active
research – see [13] for a survey.

5.1.2. Equinumeracy of forward and backward paths. Defining direction vector
as in Definition 5, the equivalent of Theorem 6 still holds:

Theorem 33. Given two sequences W and W ′ of {F ,B}n, the set of paths in Sd,L of
direction vector W are in bijection with the set of pyramid paths of direction vector W ′.

We can use the same proof almost verbatim. In fact, the bijection uses swap flips,
defined exactly as in Definition 10:

(sj , sk)←→ (sk, sj) if j 6= k,

(sk, sk)←→ (sk−1, sk−1) otherwise.

where, by convention, s0 = sd+1.
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walks must end
on this line

L

Figure 21. Left. The Pyramid S3,3. Right. The waffle W12.

5.2. Dimension 3

It turns out that forward paths in dimension 3 are equinumerous with another family
of paths, as in the two dimensional case. We will show this inductively, then give a
bijection analogous to those in Section 4.

In dimension 3, the set

S3,L = {x1 e1 + x2 e2 + x3 e3 + x4 e4 : x1, x2, x3, x4 ∈ N, x1 + x2 + x3 + x4 = L}

is a pyramidal lattice, as shown by Figure 21 (left). We denote by F the set of forward
steps, i.e., F = {e1−e4, e2−e1, e3−e2, e4−e3}, and we denote by B the set of backward
steps, i.e., B = −F . A pyramidal walk is a walk in S3,L using steps in F ∪ B.

By reducing the dimension of the recurrence using the bijection between forward and
backward paths, we find a family of paths in bijection with pyramidal walks:

Theorem 34. Define the waffle WL of size L by

WL = {(i, j) ∈ N : j ≤ i ≤ L− j}

(see Figure 21 (right) for a picture). For (i, j) ∈WL, the number wn,i,j of square lattice
walks in WL, starting at (i, j) and ending on the y-axis is given by

wn,i,j = pn,i,j − pn,i−1,j−1,

where pn,i,j is the number of forward (or equally backward) pyramid paths of length n
starting at the point (i− j)e1 + je2 + (L− i)e4.

Proof. We prove this using an inductive approach. We define qn,i,j to be the number
of such paths starting at the point (i − j)e1 + je2 + e3 + (L − i − 1)e4 (this is 0 if the
starting point is outside the region).
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Considering the first step in a forwards path of length n + 1 starting at (i − j)e1 +
je2 + (L− i)e4 yields the following equation for n, i, j ≥ 0 satisfying i ≤ j ≤ L:

pn+1,i,j = pn,i+1,j + pn,i,j+1 + qn,i−1,j−1.

Using the same method for backward paths yields

pn+1,i,j = pn,i−1,j + pn,i,j−1 + qn,i,j .

Canceling the q terms, we obtain the following equation as long as 1 ≤ j ≤ i ≤ L:

pn+1,i,j − pn+1,i−1,j−1 = pn,i+1,j + pn,i,j+1 − pn,i−2,j−1 − pn,i−1,j−2.
Finally, writing wn,i,j := pn,i,j − pn,i−1,j−1, we have the following recurrence for w:

wn+1,i,j = wn,i+1,j + wn,i,j−1 + wn,i,j+1 + wn,i−1,j ,

which has only positive coefficients. By analysing this equation on the boundary, we
deduce that it holds for 0 ≤ j ≤ i ≤ L + 1, if we define wn,i,j = 0 for i, j outside this
region. Finally the initial condition for w0,i,j follows from p0,i,j = 1 for 0 ≤ j ≤ i ≤ L:

w0,i,j = 0, for 1 ≤ j ≤ i ≤ L,
w0,i,0 = 1, for 0 ≤ i ≤ L,

w0,L+1,j = −1, for 1 ≤ j ≤ L+ 1,

w0,L+1,0 = 0.

These initial conditions along with the recurrence uniquely define the terms wn,i,j . Now,
by symmetry, wn,i,j = −wn,L+1−j,L+1−i, and in particular, wn,i,L+1−i = 0, so we only
need to consider the region i + j ≤ L. Within this region, all terms are positive,
so wn,i,j can be understood combinatorially. The combinatorial interpretation of the
recurrence is precisely the statement of the theorem: wn,i,j is the number of square
lattice walks starting at (i, j) and ending on the y-axis, which are confined to the region
WL = {(i, j) ∈ N : i ≤ j ≤ L− i}. �

In particular, pn,0,0 = wn,0,0.

Remark 35. If we apply the transformation (x, y) 7→ (x − y, y) to waffle walks, we
remark that pyramidal walks starting at O are in bijection with Gouyou-Beauchamps
walks, i.e. walks with North-West, West, East, South-East steps, going from (0, 0) to a
point on the x-axis and confined in the part of the positive quarter of plane below the line
x + 2y = L. This is consistent with the fact that standard Young tableaux with 4 rows
or less are in bijection with Gouyou-Beauchamps walks returning to the x-axis confined
in the quarter of plane [11].

More generally, the following proposition relates the enumeration of pyramid walks
starting at any point to waffle walks.

Proposition 36. The number pn(z) of length n pyramid walks starting at a point z =
x1e1 + x2e2 + x3e3 + x4e4 is equal to the number of length n waffle walks starting at a
point in the set W (z), defined by

W (z) := {(x1 + x3 + p− q, p+ q) : p, q ∈ N, p ≤ min(x2, x4), q ≤ min(x1, x3)}.
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Figure 22. The sets C(z) and W (z) for z = 4e1 + e2 + 3e3 + 4e4.

Now, we will give a bijective proof of this. The proof is via a scaffolding, analogous
to Definition 25. Again, before we define scaffolding we define the profile of a point.

Definition 37 (Profile). For a point z = x1e1 +x2e2 +x3e3 +x4e4, we define the profile
C(z) of z by

C(z) := {(p, q) ∈ N2 : p ≤ min(x2, x4), q ≤ min(x1, x3)}.

We have a natural bijection hz : C(z)→W (z) defined by hz(p, q) := (x1+x3+p−q, p+q).

For z ∈ S3,L, we define the set

A(z) := {(c, s) ∈ C(z)× {↑,→, ↓,←} : s is an allowed step from hz(c)}.

For i ∈ {1, 2, 3, 4}, we also introduce the notation

Ci(z) := {(si, c) : c ∈ C(z)}.

The set Ci(z) is thus a subset of F ×C(z), having same cardinality as C(z), since all the
elements of Ci(z) have the same first coordinate si.

Definition 38 (Scaffolding). Let us fix the size L of the pyramid. A scaffolding is a
collection of functions (δz)z∈S3,L, such that for each z ∈ S3,L, the function

δz : A(z)→ C1(z + s1) ∪ C2(z + s2) ∪ C3(z + s3) ∪ C4(z + s4)

is a bijection and whenever δz(c, s) = (sj , cj), we have hz(c) + s = hz+sj (cj).

Figure 23 shows an example of the sets W (z) and C(z).

An explicit scaffolding δz is given in Figure 23. The proof of the bijectivity of δz is
omitted (because of its tediousness — it is a case-by-case proof, similar to the one of
Theorem 32), but some particular configuration is illustrated by Figure 24.

Given such a scaffolding, a bijection for each point zc ∈ S3,L from the set of waffle
walks starting at a point in the set W (zc) to the set of pyramid walks starting at zc is
given by Algorithm 4.
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Input: a pair ((p, q), s) ∈ A(z).

Compare p with x2

s =↓
s =→

Compare p with x2

s =↑
Compare p with 0

Return (s1, (p − 1, q))

Return (s4, (p, q − 1))

p > 0
p = 0

Compare q with 0

Return (s1, (p, q))

p = x2

p < x2

q > 0 q = 0

Return (s3, (p, q))

Return (s4, (p + 1, q − 1))

Compare q with x1

Return (s3, (p, q + 1))

Return (s4, (p + 1, q))

q < x1q = x1

p < x2p = x2

Compare q with x1

Return (s2, (p + 1, q))

Return (s1, (p, q + 1))

q < x1q = x1

Compare q with x1

Return (s2, (p, q))

s =←

q < x1
q = x1

Compare p with 0

Return (s4, (p, q)) Return (s1, (p − 1, q + 1))

p = 0 p > 0

12113

4

10

5

61

2
9

7

8

Figure 23. A diagram defining the scaffolding δz.

Algorithm 4: Bijection from waffle paths to pyramid paths, given a
scaffolding (δz)z∈S3,L (for scaffolding, see Definition 38).

metadata : a s c a f f o l d i n g δz
input : A po int (pc, qc) ∈ C(zc) , a w a f f l e path w s t a r t i n g at hzc(pc, qc)
output : a pyramid path y s t a r t i n g at zc .
n ← l ength o f w ;
y ← empty path ;
z ← zc ;
p ← pc ;
q ← qc ;
for i from 1 to n
do (σ , p , q ) ← δz ( f , q , w[ i ] ) ;

add σ to the end o f y ;
z ← z + σ ;

return y ;

In the following corollary of Theorem 34, we enumerate pyramidal walks starting
at O using the relation pn,0,0 = wn,0,0, which relates their enumeration to that of waffle
walks. This partially answers another open question of Mortimer and Prellberg [15,
Section 4.1].
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↑ → ↓ ←

2 5

6

10
2

4

4 7

78 59

6

10

s1 s2 s3 s4

89

δz

Figure 24. A geometric representation of δz for x1 = 8, x2 = 4, x3 = 6
and x4 = 7. The numbers of the colored zones match with cases of the
diagram of Figure 23.

Corollary 39. The generating function

P (t) =

∞∑
t=0

pn,0,0t
n

for pyramid walks starting in a corner is given by

P (t) =
1

(L+ 4)2

L+4∑
1≤j<k≤L+3

2-j,k

(αk + α−k − αj − α−j)2(2 + αj + α−j)(2 + α−k + αk)

1− (αj + α−j + αk + α−k)t
,

where α = e
iπ
L+4 .

Proof. To prove this, we relate walks confined to the waffle to unconfined walks using the
reflection principle [10], which is possible because the waffle WL forms a Weyl chamber
of some reflection group.

Let (x, y) be a point inside the waffle, let Ω be the set of unconstrained square lattice
walks starting at (x, y) and let Ω′ be the set of walks in the waffle starting at (x, y). Let
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`1, `2 and `3 be the lines just outside the boundary of WL, defined by y = −1, y−x = −1
and x+ y = L+ 1 respectively. We consider the involution f : Ω \ Ω′ → Ω \ Ω′ defined
by reflecting the section of the walk after its first intersection with one of the lines `1,
`2 and `3 in that line.

Now, define

TL := ((2L+ 8)Z)× ((2L+ 8)Z) ∪ (L+ 4 + (2L+ 8)Z)× (L+ 4 + (2L+ 8)Z)

AL := TL ∪ ((−1,−3) + TL) ∪ ((−4,−2) + TL) ∪ ((−3, 1) + TL)

BL := ((−1, 1) + TL) ∪ ((0,−2) + TL) ∪ ((−3,−3) + TL) ∪ ((−4, 0) + TL) .

Then the involution f sends walks in Ω \ Ω′ ending at a point in AL to walks ending
at a point in BL and vice-versa. The only walks in Ω′ ending at a point in AL (or
BL) are those ending at (0, 0). Hence the number of waffle walks of a given length
from (x, y) to (0, 0) is equal to the number of (uncontrained) walks of the same length
from (x, y) to a point in AL minus the number of such walks from (x, y) to a point
in BL. By shifting the starting point, this is the number of walks from a point in
{(x, y), (x+ 1, y+ 3), (x+ 4, y+ 2), (x+ 3, y− 1)} to a point in TL minus the number of
walks from a point in {(x+ 1, y− 1), (x, y+ 2), (x+ 3, y+ 3), (x+ 4, y)} to a point in TL.
These numbers can easily be computed using the generating function for unconstrained
walks, and doing so yields the formula in the statement of the theorem. As an example,
we show how to compute the generating function for walks from (x, y) to a point in TL
counted by length.

Let F (t, a, b) be the generating function for walks starting at (x, y) with walks of
length n ending at (x1, y1) contributing ax1by1tn. We want to sum the coefficients where
the powers x1 and y1 of a and b are both multiples of 2L+ 8 or both L+ 4 more than
multiples of 2L + 8. For those where both x1 and y1 are multiples of 2L + 8, This is

achieved by setting α = e
iπ
L+4 , and writing the sum

1

(2L+ 8)2

∑
1≤j,k≤2L+7

F (t, αj , αk),

as the contribution to this sum from a monomial ax1by1tn is

tn

 1

2L+ 8

∑
1≤j≤2L+7

αx1j

 1

2L+ 8

∑
1≤k≤2L+7

αy1k

 ,

which is 0 unless x1 and y1 are both multiples of 2L+8, in which case it is tn. Similarly,
the generating function for the cases where x1 − L − 4 and y1 − L − 4 are multiples of
2L+ 8 is

1

(2L+ 8)2

∑
1≤j,k≤2L+7

(−1)j+kF (t, αj , αk).

Similarly, one can write expressions for the generating function of walks from any given
point to a point in TL. Adding and subtracting these as appropriate yields the desired
result. �
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6. Conclusion

To sum up, we have found several bijections between forward triangular walks and
Motzkin path with bounded amplitude, answering thus Mortimer and Prellberg’s open
question [15].

There were some interesting consequences from this discovery. First, by looking for a
bijection, we discovered an unexpected symmetry property between forward and back-
ward paths (Theorem 6). Second, we refined Mortimer and Prellberg’s results by con-
sidering triangular walks starting not only at the origin, but at any point in the triangle
(Theorem 24). Finally, by mimicking the proof of the first sections, we managed to
extend some of our results to larger dimensions. In particular, we discovered a new
bijective correspondence in dimension 3 (Theorem 34), enabling in the process to find
an expression for the generating function of pyramid walks (Corollary 39), which was
also an open question in Mortimer and Prellberg’s paper.

However, we still do not know if there exists a bijection between triangular walks in
dimension d ≥ 4 and some class of walks in dimension d− 1. It seems like our two- and
three-dimensional argument (more precisely, the one in the proofs of Proposition 17 and
Theorem 34) does not work anymore. We leave the question of Mortimer and Prellberg
about the enumeration of triangular walks in higher dimension as an open question.

There is another conjecture from a different paper that may relate to this current
work: the three authors of [3] conjecture that there exists a length-preserving involution
on double-tandem walks that exchanges xstart − xmin and yend − ymin, while preserving
ystart − ymin and xend − xmin (point (xstart, ystart) denotes the starting point, and xmin
and ymin are respectively the minimal x- and y-coordinates during the walk). It may be
interesting to see if techniques of Section 2 facilitate the discovery of this involution.

Finally, this paper shows two examples of bijections where there is a trade-off between
domain and endpoint constraints:

• The one between triangular paths and Motzkin paths transform two-dimensional
walks with no constraint on the endpoint into one-dimensional walks which must
finish at the origin;
• the one between pyramid paths and waffle walks transform three-dimensional

walks with no constraint on the endpoint into two-dimensional walks which must
end on one of the axis.

This is somehow reminiscent of [6, 5]. We wonder whether there are some other examples
of this phenomenon, or even a generic framework for such bijections.
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[1] Jérémie Bettinelli, Éric Fusy, Cécile Mailler, and Lucas Randazzo. A bijective study of basketball
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