A generalization of Stiebitz-type results on graph decomposition

Qinghou Zeng*

Center for Discrete Mathematics Fuzhou University Fuzhou, Fujian 350003, China

zengqh@fzu.edu.cn

Chunlei Zu[†]

School of CyberScience and School of Mathematical Sciences University of Science and Technology of China Hefei, Anhui 230026, China

zucle@mail.ustc.edu.cn

Submitted: Aug 3, 2020; Accepted: May 19, 2021; Published: Jun 18, 2021 © The authors. Released under the CC BY-ND license (International 4.0).

Abstract

In this paper, we consider the decomposition of multigraphs under minimum degree constraints and give a unified generalization of several results by various researchers. Let G be a multigraph in which no quadrilaterals share edges with triangles and other quadrilaterals and let $\mu_G(v) = \max\{\mu_G(u, v) : u \in V(G) \setminus \{v\}\}$, where $\mu_G(u, v)$ is the number of edges joining u and v in G. We show that for any two functions $a, b : V(G) \to \mathbb{N} \setminus \{0, 1\}$, if $d_G(v) \ge a(v) + b(v) + 2\mu_G(v) - 3$ for each $v \in V(G)$, then there is a partition (X, Y) of V(G) such that $d_X(x) \ge a(x)$ for each $x \in X$ and $d_Y(y) \ge b(y)$ for each $y \in Y$. This extends the related results due to Diwan, Liu–Xu and Ma–Yang on simple graphs to the multigraph setting.

Mathematics Subject Classifications: 05C70, 05C07

^{*}Partially supported by NSFC grant 12001106, Youth Foundation of Fujian Province grant JAT190021, and Foundation of Fuzhou University grant GXRC-20059.

[†]Corresponding author. Partially supported by National Key Research and Development Project SQ2020YFA070080, NSFC grant 11622110, and Anhui Initiative in Quantum Information Technologies grant AHY150200.

1 Introduction

All graphs considered in this paper are finite, undirected and may have multiple edges but no loops. Let G be a graph. For a subset $X \subset V(G)$, let G[X] be the subgraph of G induced by X. For each $v \in V(G)$, denote $N_X(v)$ the set of neighbors of v contained in X and $d_X(v)$ the number of edges between v and $X \setminus \{v\}$. When X = V(G), we simplify $N_{V(G)}(v)$ and $d_{V(G)}(v)$ to $N_G(v)$ and $d_G(v)$, respectively. The multiplicity $\mu_G(u,v)$ of two different vertices u and v in G is the number of edges joining u and v, and the weight $\mu_G(v)$ of a vertex v is defined as $\mu_G(v) = \max \{\mu_G(u,v) : u \in V(G) \setminus \{v\}\}$. Call a graph G simple if $\mu_G(v) \leq 1$ for each $v \in V(G)$. By a partition (X, Y) of V(G), we mean that X, Y are two disjoint nonempty sets with $X \cup Y = V(G)$. For a set \mathscr{H} of graphs, we say that a graph is \mathscr{H} -free if it contains no member of \mathscr{H} as a subgraph. We also denote by N the set of nonnegative integers.

Many problems raised in graph theory concern graph partitioning and one popular direction of them is to partition graphs under minimum degree constraints. For a graph G and two functions $a, b: V(G) \to \mathbb{N}$, a partition (X, Y) of V(G) is called an (a, b)-feasible partition if $d_X(x) \ge a(x)$ for each $x \in X$ and $d_Y(y) \ge b(y)$ for each $y \in Y$. In 1996, Stiebitz [15] proved the following celebrated result for simple graphs, solving a conjecture due to Thomassen [16].

Theorem 1 (Stiebitz [15]). Let G be a simple graph and $a, b : V(G) \to \mathbb{N}$ be two functions. If $d_G(x) \ge a(x) + b(x) + 1$ for each $x \in V(G)$, then there is an (a, b)-feasible partition of G.

For special families of simple graphs, the minimum degree condition can be further sharpen (see [4, 6, 7, 8, 11]). In particular, for $s, t \ge 2$, Diwan [4] showed that every simple graph with neither triangles nor quadrilaterals and minimum degree at least s + t - 1 can already force a partition (X, Y) as above. Later, Liu and Xu [8] generalized this result by considering triangle-free simple graphs in which no two quadrilaterals share edges.

Theorem 2 (Liu and Xu [8]). Let G be a triangle-free simple graph in which no two quadrilaterals share edges, and $a, b : V(G) \to \mathbb{N} \setminus \{0, 1\}$ be two functions. If $d_G(x) \ge a(x) + b(x) - 1$ for each $x \in V(G)$, then G admits an (a, b)-feasible partition.

Recently, Ma and Yang [11] obtained the following strengthening of Diwan's result.

Theorem 3 (Ma and Yang [11]). Let G be a quadrilateral-free simple graph and $a, b : V(G) \to \mathbb{N} \setminus \{0, 1\}$ be two functions. If $d_G(x) \ge a(x) + b(x) - 1$ for each $x \in V(G)$, then G admits an (a, b)-feasible partition.

In 2017, Ban [1] proved a conclusion related to Theorem 1 on weighted simple graphs. Later, Schweser and Stiebitz [12] further studied this problem on graphs, and generalized the results of Stiebitz [15] and Liu and Xu [8] from simple graphs to graphs. Very recently, confirming two conjectures of Schweser and Stiebitz, Liu and Xu [9] obtained a graph version of Theorem 2.

The electronic journal of combinatorics $\mathbf{28(2)}$ (2021), #P2.43

Theorem 4 (Liu and Xu [9]). Let G be a triangle-free graph in which no two quadrilaterals share edges, and $a, b : V(G) \to \mathbb{N} \setminus \{0, 1\}$ be two functions. If $d_G(x) \ge a(x) + b(x) + 2\mu_G(x) - 3$ for each $x \in V(G)$, then G admits an (a, b)-feasible partition.

For related problems on graph partitioning under degree constraints or other variances, we refer readers to [2, 3, 5, 10, 13, 14]. In this paper, we consider partitions of graphs and give a unified generalization of Theorems 2, 3 and 4 as well as the result of Diwan [4]. Precisely, we establish the following theorem.

Theorem 5. Let G be a graph in which no quadrilaterals share edges with triangles and other quadrilaterals, and let $a, b : V(G) \to \mathbb{N} \setminus \{0, 1\}$ be two functions. If $d_G(x) \ge a(x) + b(x) + 2\mu_G(x) - 3$ for each $x \in V(G)$, then G admits an (a, b)-feasible partition.

Note that this is tight for cycles in the following two perspectives. Firstly, the ranges of the functions a, b cannot be relaxed to the set of integers at least one by choosing the constant functions a = b - 1 = 1. Secondly, one also cannot lower the degree condition further by choosing the constant functions a = b = 2. We also mention that G is actually $\{K_4^-, C_5^+, K_{2,3}, L_3\}$ -free in Theorem 5, where K_4^- is the graph obtained from K_4 by removing one edge, C_5^+ is the graph obtained from C_5 by adding one edge between two nonadjacent vertices, and L_3 is the graph consisting of two quadrilaterals sharing exactly one common edge. Additionally, we use the condition that G is L_3 -free exactly once (see Claim 14) in our proof; however, this condition is necessary as shown by the graph constructed in [17].

2 Notations and Propositions

Let G be a graph and $f: V(G) \to \mathbb{N}$ be a function. For a subset $X \subseteq V(G)$, we say that (i) X is *f*-nice if $d_X(x) \ge f(x) + \mu_G(x) - 1$ for each $x \in X$, (ii) X is *f*-feasible if $d_X(x) \ge f(x)$ for each $x \in X$, (iii) X is *f*-meager if for each nonempty subset $X' \subseteq X$ there exists a vertex $x \in X'$ such that $d_{X'}(x) \le f(x) + \mu_G(x) - 1$, and (iv) X is *f*degenerate if for each nonempty subset $X' \subseteq X$ there exists a vertex $x \in X'$ such that $d_{X'}(x) \le f(x)$. We have the following propositions immediately from the definitions.

Proposition 6. If $\mu_G(x) \ge 1$ for each $x \in V(G)$, then each f-nice subset is also f-feasible and each f-degenerate subset is also f-meager.

Proposition 7. A subset of V(G) does not contain any f-feasible subset if and only if it is (f-1)-degenerate.

For a graph G and two functions $a, b: V(G) \to \mathbb{N}$, a pair (X, Y) of disjoint subsets of V(G) is called an (a, b)-feasible pair if X is a-feasible and Y is b-feasible; if in addition (X, Y) is a partition of V(G), then we call it an (a, b)-feasible partition. Similarly, a partition (X, Y) of V(G) is called an (a, b)-meager partition if X is a-meager and Y is b-meager. The following proposition due to Schweser and Stiebitz [12] plays a vital role in our proof of Theorem 5.

Proposition 8 (Schweser and Stiebitz [12]). Let G be a graph without isolated vertices, and let $a, b : V(G) \to \mathbb{N}$ be two functions such that $d_G(x) \ge a(x) + b(x) + 2\mu_G(x) - 3$ for each $x \in V(G)$. If G has an (a, b)-feasible pair, then it admits an (a, b)-feasible partition.

Let G be a graph and let $a, b: V(G) \to \mathbb{N}$ be two functions. For each partition (A, B) of V(G), we define the weight $\omega(A, B)$ of (A, B) as

$$\omega(A,B) = |E(G[A])| + |E(G[B])| + \sum_{u \in A} b(u) + \sum_{v \in B} a(v).$$

Then, for each $u \in A$ and $v \in B$, simple calculations show that

$$\omega(A \setminus \{u\}, B \cup \{u\}) - \omega(A, B) = d_B(u) - d_A(u) + a(u) - b(u), \tag{1}$$

$$\omega(A \cup \{v\}, B \setminus \{v\}) - \omega(A, B) = d_A(v) - d_B(v) + b(v) - a(v)$$
(2)

and

$$\omega(A \cup \{v\} \setminus \{u\}, B \cup \{u\} \setminus \{v\}) - \omega(A, B)$$

= $d_B(u) - d_A(u) + a(u) - b(u) + d_A(v) - d_B(v) + b(v) - a(v) - 2\mu_G(u, v).$ (3)

3 Proof of Theorem 5

Throughout this section, let G be a $\{K_4^-, C_5^+, K_{2,3}, L_3\}$ -free graph and $a, b : V(G) \to \mathbb{N} \setminus \{0, 1\}$ be two functions such that $d_G(x) \ge a(x) + b(x) + 2\mu_G(x) - 3$ for each $x \in V(G)$. Clearly, $d_G(x) \ge 1$ for each $x \in V(G)$. Thus, $\mu_G(x) \ge 1$ for each $x \in V(G)$. Since there is no danger of confusion, the reference to G in the subscript of μ_G will be dropped in the following proof.

Suppose for a contradiction that G contains no (a, b)-feasible partitions. It follows from Proposition 8 that there is no (a, b)-feasible pair in G. We may assume that

$$d_G(x) = a(x) + b(x) + 2\mu(x) - 3$$
(4)

for each $x \in V(G)$. Otherwise, we can increase a, b to get functions a', b' such that $a' \ge a$, $b' \ge b$ and $d_G(x) = a'(x) + b'(x) + 2\mu(x) - 3$ for each $x \in V(G)$. Clearly, the existence of an (a', b')-feasible partition would guarantee that of an (a, b)-feasible partition in G.

Claim 9. There exists an (a - 1, b - 1)-meager partition in G.

Proof. Observe that there is an *a*-nice proper subset of V(G). Indeed, for a fixed $u \in V(G)$ and each $x \in V(G) \setminus \{u\}$, it follows from (4) that

$$d_{V(G)\setminus\{u\}}(x) = d_G(x) - \mu(u, x) \ge a(x) + b(x) + \mu(x) - 3 \ge a(x) + \mu(x) - 1,$$

meaning that $V(G) \setminus \{u\}$ is *a*-nice. Let S be a minimum *a*-nice subset of V(G) and $T = V(G) \setminus S$. Clearly, $|S| \ge 2$ and $T \ne \emptyset$. Note that S is *a*-feasible by Proposition 6.

Since G has no (a, b)-feasible pair, T contains no b-feasible subset. By Proposition 7, T is (b-1)-degenerate, and thus is (b-1)-meager. Take $v \in S$ and it follows that $S \setminus \{v\}$ is (a-1)-meager by the minimality of S. Note that $d_S(v) \ge a(v) + \mu(v) - 1$. This together with (4) yields that $d_{T \cup \{v\}}(v) = d_T(v) \le b(v) + \mu(v) - 2$. Thus, $T \cup \{v\}$ is (b-1)-meager. If not, then there is a b-nice subset $T' \subseteq T \cup \{v\}$. Since T is (b-1)-meager, we have $v \in T'$ and $d_{T \cup \{v\}}(v) \ge d_{T'}(v) \ge b(v) + \mu(v) - 1$, a contradiction. Consequently, $(S \setminus \{v\}, T \cup \{v\})$ is an (a-1,b-1)-meager partition in G, as desired.

Let \mathscr{P} be the family of all (a - 1, b - 1)-meager partitions (A, B) satisfying that $\omega(A, B)$ is maximum. For any $(A, B) \in \mathscr{P}$, let $A^- = \{u \in A \mid d_A(u) \leq a(u) + \mu(u) - 2\}$ and $B^- = \{v \in B \mid d_B(v) \leq b(v) + \mu(v) - 2\}$. Note that both A^- and B^- are nonempty by the definition of \mathscr{P} . So for any $v \in B^-$, $d_A(v) = d_G(v) - d_B(v) \geq a(v) + \mu(v) - 1$, implying $|A| \geq 2$. Similarly, $|B| \geq 2$.

Claim 10. For any $(A, B) \in \mathscr{P}$, $u \in A^-$ and $v \in B^-$, we have $A \cup \{v\}$ is not (a - 1)-meager and every a-nice subset of $A \cup \{v\}$ contains u and v; furthermore, $B \cup \{u\}$ is not (b-1)-meager and every b-nice subset of $B \cup \{u\}$ contains u and v.

Proof. Note that $\omega(A \cup \{v\}, B \setminus \{v\}) - \omega(A, B) = d_G(v) - 2d_B(v) + b(v) - a(v)$ by (2). This together with (4) and $d_B(v) \leq b(v) + \mu(v) - 2$ implies that $\omega(A \cup \{v\}, B \setminus \{v\}) - \omega(A, B) \geq 1$. Thus, $(A \cup \{v\}, B \setminus \{v\})$ cannot be an (a - 1, b - 1)-meager partition by the maximality of $\omega(A, B)$. Since $B \setminus \{v\}$ is (b - 1)-meager, $A \cup \{v\}$ cannot be (a - 1)-meager. Similarly, $B \cup \{u\}$ is not (b - 1)-meager. Hence there exist an *a*-nice subset $A' \subseteq A \cup \{v\}$ and a *b*-nice subset $B' \subseteq B \cup \{u\}$. Since A is (a - 1)-meager and B is (b - 1)-meager, we have $v \in A'$ and $u \in B'$. Now, we prove that $u \in A'$ and $v \in B'$. If $u \notin A'$ and $v \notin B'$, then (A', B') is an (a, b)-feasible pair by Proposition 6, a contradiction. Suppose by symmetry that $u \in A'$ and $v \notin B'$. Clearly, $B' \subseteq (B \cup \{u\}) \setminus \{v\}$ and $d_{B \setminus \{v\}}(u) = d_{B \cup \{v\}}(u) \geq d_{B'}(u) \geq b(u) + \mu(u) - 1$. Thus, $d_{A'}(u) \leq d_{A \cup \{v\}}(u) = d_G(u) - d_{B \setminus \{v\}}(u) \leq a(u) + \mu(u) - 2$, a contradiction.

Let $A^* \subseteq A$ such that $A^* \cap A^- \neq \emptyset$. By Claim 10, $B \cup A^*$ is not (b-1)-meager and there exists a *b*-nice subset of $B \cup A^*$, indicating that $A \setminus A^*$ is (a-1)-degenerate as Ghas no (a, b)-feasible pair. Similarly, if $B^* \subseteq B$ such that $B^* \cap B^- \neq \emptyset$, then $B \setminus B^*$ is (b-1)-degenerate. We point out that Claim 10 will be also used in this form frequently.

Claim 11. For any $(A, B) \in \mathscr{P}$, every vertex in A^- is adjacent to every vertex in B^- .

Proof. Suppose that there exist $u \in A^-$ and $v \in B^-$ such that $\mu(u, v) = 0$. By Claim 10, there is an *a*-nice subset $A' \subseteq A \cup \{v\}$ such that $u \in A'$, implying that $d_{A'}(u) \ge a(u) + \mu(u) - 1$. However, $d_{A'}(u) \le d_{A \cup \{v\}}(u) = d_A(u) + \mu(u, v) \le a(u) + \mu(u) - 2$, a contradiction.

Recall that both A^- and B^- are nonempty. By Claim 11, either $|A^-| = |B^-| = 2$ or $\min\{|A^-|, |B^-|\} = 1$ as G is $K_{2,3}$ -free.

Claim 12. For any $(A, B) \in \mathscr{P}$, we have $A \setminus A^- \neq \emptyset$ and $B \setminus B^- \neq \emptyset$.

The electronic journal of combinatorics $\mathbf{28(2)}$ (2021), #P2.43

Proof. For each $u \in A^-$, there exists a *b*-nice subset $B' \subseteq B \cup \{u\}$ by Claim 10. It follows that $d_{B'}(y) \ge b(y) + \mu(y) - 1 \ge \mu(y) + 1$ for each $y \in B'$, implying $|N_{B'}(y)| \ge 2$. If $|A^-| = |B^-| = 2$, then we let $B^- = \{v_1, v_2\}$. Since *G* is K_4^- -free, $v_1v_2 \notin E(G)$ by Claim 11. Thus, $N_{B'}(v_1) = N_{B'}(v_2) = \{u\}$ providing that $B = B^-$. This leads to a contradiction as $v_i \in B'$ for some i = 1, 2, implying $B \setminus B^- \neq \emptyset$. Similarly, $A \setminus A^- \neq \emptyset$. If $\min\{|A^-|, |B^-|\} = 1$, then we assume that $A^- = \{u\}$. Clearly, $A \setminus A^- \neq \emptyset$ as $|A| \ge 2$. Since *A* is (a-1)-meager, there exists $x \in A \setminus \{u\}$ such that $d_{A \setminus \{u\}}(x) \le a(x) + \mu(x) - 2$. Note that $d_{A \setminus \{u\}}(x) + \mu(u, x) = d_A(x) \ge a(x) + \mu(x) - 1$. It follows that $\mu(u, x) \ge 1$ and $d_A(x) \le a(x) + 2\mu(x) - 2$, yielding that $ux \in E(G)$ and $d_B(x) = d_G(x) - d_A(x) \ge$ $b(x) - 1 \ge 1$. Suppose that $B = B^-$ and $z \in N_B(x)$. Choose v = z in Claim 10, implying $z \in B'$. Since $|N_{B'}(z)| \ge 2$, there exists $z' \in B^- \setminus \{z\}$ such that $zz' \in E(G)$. By Claim 11, $\{u, x, z, z'\}$ forms a K_4^- , a contradiction. Thus, $B \setminus B^- \neq \emptyset$.

For any $(A, B) \in \mathscr{P}$, let $D_A = \{u \in A \mid d_A(u) \leq a(u) - 1\}$ and $D_B = \{v \in B \mid d_B(v) \leq b(v) - 1\}$. Clearly, $D_A \subseteq A^-$ and $D_B \subseteq B^-$.

Claim 13. For any $(A, B) \in \mathscr{P}$, $u \in A^-$ and $v \in B^-$, if either $u \in D_A$ or $v \in D_B$, then $(A \cup \{v\} \setminus \{u\}, B \cup \{u\} \setminus \{v\}) \in \mathscr{P}$. Moreover, if $u \in D_A$, then $\mu(u, v) = \mu(u)$, $d_A(u) = a(u) - 1$ and $d_B(v) = b(v) + \mu(v) - 2$; if $v \in D_B$, then $\mu(u, v) = \mu(v)$, $d_B(v) = b(v) - 1$ and $d_A(u) = a(u) + \mu(u) - 2$.

Proof. Since every a-nice subset of $A \cup \{v\}$ contains u by Claim 10, $A \cup \{v\} \setminus \{u\}$ is (a-1)-meager. Similarly, $B \cup \{u\} \setminus \{v\}$ is (b-1)-meager. Thus, $(A \cup \{v\} \setminus \{u\}, B \cup \{u\} \setminus \{v\})$ is an (a-1, b-1)-meager partition. By (3), $\omega(A \cup \{v\} \setminus \{u\}, B \cup \{u\} \setminus \{v\}) - \omega(A, B) = (d_G(u) - 2d_A(u) + a(u) - b(u)) + (d_G(v) - 2d_B(v) + b(v) - a(v)) - 2\mu(u, v)$. Suppose by symmetry that $u \in D_A$. Since $d_A(u) \leq a(u) - 1$ and $d_B(v) \leq b(v) + \mu(v) - 2$, by (4), we have

$$\omega(A\cup\{v\}\setminus\{u\},B\cup\{u\}\setminus\{v\})-\omega(A,B) \geqslant (2\mu(u)-1)+1-2\mu(u,v)=2(\mu(u)-\mu(u,v)) \geqslant 0.$$

By the maximality of $\omega(A, B)$, $\omega(A \cup \{v\} \setminus \{u\}, B \cup \{u\} \setminus \{v\}) = \omega(A, B)$. Thus, $(A \cup \{v\} \setminus \{u\}, B \cup \{u\} \setminus \{v\}) \in \mathscr{P}$, $\mu(u, v) = \mu(u)$, $d_A(u) = a(u) - 1$ and $d_B(v) = b(v) + \mu(v) - 2$. \Box

By Claim 13, $D_A = \{u \in A \mid d_A(u) = a(u) - 1\}$ and $D_B = \{v \in B \mid d_B(v) = b(v) - 1\}$; in addition, $d_A(u) \ge a(u) - 1$ and $d_B(v) \ge b(v) - 1$ for each $u \in A$ and $v \in B$.

Claim 14. For any $(A, B) \in \mathscr{P}$, we have $\min\{|A^-|, |B^-|\} = 1$.

Proof. Suppose for a contradiction that $A^- = \{u_1, u_2\}$ and $B^- = \{v_1, v_2\}$. Since G is K_4^- -free, $u_1u_2, v_1v_2 \notin E(G)$ by Claim 11. Note that $A \cup B^-$ is not (a - 1)-meager by Claim 10. It follows that $B \setminus B^-$ is (b - 1)-degenerate as G has no (a, b)-feasible pair and $B \setminus B^- \neq \emptyset$ by Claim 12. Thus, there exists $y \in B \setminus B^-$ such that $d_{B \setminus B^-}(y) \leqslant b(y) - 1$, implying $N_{B^-}(y) \neq \emptyset$ as $d_B(y) \ge b(y) + \mu(y) - 1 \ge b(y)$. By Claim 11, $|N_{B^-}(y)| = 1$ as G is $K_{2,3}$ -free, say $N_{B^-}(y) = \{v_1\}$. By symmetry, $A \setminus A^-$ is (a - 1)-degenerate and there exists $x_1 \in A \setminus A^-$ such that $d_{A \setminus A^-}(x_1) \leqslant a(x_1) - 1$ and $|N_{A^-}(x_1)| = 1$, say $N_{A^-}(x_1) = \{u_1\}$. Clearly, $d_{A \setminus \{u_1\}}(x_1) = d_{A \setminus A^-}(x_1) \leqslant a(x_1) - 1$ and $d_{B \setminus \{v_1\}}(y) = d_{B \setminus B^-}(y) \leqslant b(y) - 1$.

Since G has no (a, b)-feasible partition, either A is (a - 1)-degenerate or B is (b - 1)-degenerate. We may assume that A is (a - 1)-degenerate. Thus, either $d_A(u_1) \leq a(u_1) - 1$ or $d_A(u_2) \leq a(u_2) - 1$. If $d_A(u_1) \leq a(u_1) - 1$, then we set $u := u_1$ and $x := x_1$. If $d_A(u_1) \geq a(u_1)$, then $d_A(u_2) \leq a(u_2) - 1$. Clearly, $A \setminus \{u_2\}$ is (a - 1)-degenerate. Thus, there exists $x_2 \in A \setminus \{u_2\}$ such that $d_{A\setminus\{u_2\}}(x_2) \leq a(x_2) - 1$. Note that $d_{A\setminus\{u_2\}}(u_1) = d_A(u_1) \geq a(u_1)$ as $u_1u_2 \notin E(G)$. Thus, $x_2 \neq u_1$ and $x_2 \in A \setminus A^-$. Note also that $d_A(x_2) \geq a(x_2) + \mu(x_2) - 1 \geq a(x_2)$. This implies $u_2x_2 \in E(G)$. Set $u := u_2$ and $x := x_2$. In both cases, we have $ux \in E(G)$, $d_A(u) \leq a(u) - 1$ and $d_{A\setminus\{u\}}(x) \leq a(x) - 1$. Since G is C_5^+ -free, we have $xv_1, uy \notin E(G)$. By Claim 13, $(A_0, B_0) := (A \cup \{v_1\} \setminus \{u\}, B \cup \{u\} \setminus \{v_1\}) \in \mathscr{P}$. Observe that $d_{A_0}(x) = d_{A\setminus\{u\}}(x) \leq a(x) - 1$ and $d_{B_0}(y) = d_{B\setminus\{v_1\}}(y) \leq b(y) - 1$. Thus, $x \in A_0^-$ and $y \in B_0^-$, yielding $xy \in E(G)$ by Claim 11. It follows that $\{u_1, u_2, v_1, v_2, x, y\}$ contains an L_3 , a contradiction.

For any $(A, B) \in \mathscr{P}$, define $A^{=} = \{x \in A \mid d_A(x) = a(x) + \mu(x) - 1\}$ and $B^{=} = \{y \in B \mid d_B(y) = b(y) + \mu(y) - 1\}$. A path *xuvy* is called a *special path* with respect to (A, B), if $u \in A^-$, $v \in B^-$, $x \in A^=$ and $y \in B^=$.

Claim 15. For any special path xuvy with respect to $(A, B) \in \mathscr{P}$, if either $u \in D_A$ or $v \in D_B$, then either $vx \in E(G)$ or $uy \in E(G)$. Moreover, if $vx \in E(G)$, then $N_{A=}(u) = \{x\}$; if $uy \in E(G)$, then $N_{B=}(v) = \{y\}$.

Proof. Suppose that $vx, uy \notin E(G)$. We may assume by symmetry that $u \in D_A$. By Claim 13, $(A_1, B_1) := (A \cup \{v\} \setminus \{u\}, B \cup \{u\} \setminus \{v\}) \in \mathscr{P}, \ \mu(u, v) = \mu(u), \ d_A(u) = a(u) - 1$ and $d_B(v) = b(v) + \mu(v) - 2$. This together with $d_{A_1}(v) = d_G(v) - d_B(v) - \mu(u, v)$ and $d_{B_1}(u) = d_G(u) - d_A(u) - \mu(u, v)$ implies $v \in A_1^-$ and $u \in B_1^-$. Since $x \in A^=$ and $y \in B^=$, we have $d_{A_1}(x) = d_A(x) - \mu(u, x) = a(x) + \mu(x) - 1 - \mu(u, x)$ and $d_{B_1}(y) = d_B(y) - \mu(v, y) = b(y) + \mu(y) - 1 - \mu(v, y)$, indicating $x \in A_1^-$ and $y \in B_1^-$. This contradicts Claim 14.

Suppose that $vx \in E(G)$ and there exists $x' \in N_{A^{=}}(u) \setminus \{x\}$. Clearly, x'uvy forms another special path with respect to (A, B). It follows that either $uy \in E(G)$ or $vx' \in E(G)$. In both cases, we can find a K_4^- , a contradiction. Similarly, if $uy \in E(G)$, then $N_{B^{=}}(v) = \{y\}$.

Claim 16. For any $(A, B) \in \mathscr{P}$, let $u \in A^-$ and $v \in B^-$. If $u \in D_A$ and $x \in N_{A^=}(u)$ with $vx \notin E(G)$, then $(A \cup \{v\} \setminus \{x\}, B \cup \{x\} \setminus \{v\}) \in \mathscr{P}$; if $v \in D_B$ and $y \in N_{B^=}(v)$ with $uy \notin E(G)$, then $(A \cup \{y\} \setminus \{u\}, B \cup \{u\} \setminus \{y\}) \in \mathscr{P}$.

Proof. Assume that $u \in D_A$ and $x \in N_{A=}(u)$ with $vx \notin E(G)$. We first show that $B \cup \{x\} \setminus \{v\}$ is (b-1)-meager. If not, then there is a b-nice subset $B' \subseteq B \cup \{x\} \setminus \{v\}$. This implies that $x \in B'$ as B is (b-1)-meager. Since $vx \notin E(G)$ and $x \in A^=$, $d_{B'}(x) \leq d_{B\cup\{x\}\setminus\{v\}}(x) = d_B(x) = d_G(x) - d_A(x) = b(x) + \mu(x) - 2$, contradicting with $x \in B'$. Now, we prove that $A \cup \{v\} \setminus \{x\}$ is (a-1)-meager. Otherwise, there is an a-nice subset $A' \subseteq A \cup \{v\} \setminus \{x\}$. Since A is (a-1)-meager, we have $v \in A'$ and $d_{A'}(v) \geq a(v) + \mu(v) - 1$. Note that $d_B(v) = b(v) + \mu(v) - 2$ by Claim 13 as $u \in D_A$. It follows that $d_{A'}(v) \leq d_{A\cup\{v\}\setminus\{x\}}(v) = d_A(v) = a(v) + \mu(v) - 1$ as $vx \notin E(G)$. Thus, $d_{A'}(v) = d_A(v)$, implying $u \in A'$ as $uv \in E(G)$. The fact $d_{A'}(u) \leq d_{A\cup\{v\}\setminus\{x\}}(u) =$

 $d_A(u) + \mu(u, v) - \mu(u, x) \leq a(u) + \mu(u) - 2 \text{ also indicates that } u \notin A', \text{ a contradiction.}$ Therefore, $(A \cup \{v\} \setminus \{x\}, B \cup \{x\} \setminus \{v\})$ is an (a - 1, b - 1)-meager partition. With simple calculations, we have $\omega((A \cup \{v\} \setminus \{x\}, B \cup \{x\} \setminus \{v\})) = \omega(A, B)$ in view of (3) and (4). Thus, $(A \cup \{v\} \setminus \{x\}, B \cup \{x\} \setminus \{v\}) \in \mathscr{P}$. Similarly, if $v \in D_B$ and $y \in N_{B^{-}}(v)$ with $uy \notin E(G)$, then $(A \cup \{y\} \setminus \{u\}, B \cup \{u\} \setminus \{y\}) \in \mathscr{P}$. \Box

Fix a partition $(A, B) \in \mathscr{P}$. By Claim 14, we may assume by symmetry that

$$A^{-} = \{u\} \text{ and } |B^{-}| \ge |A^{-}|.$$

By Claim 10, $B \cup \{u\}$ is not (b-1)-meager. Since G has no (a, b)-feasible pair, $A \setminus \{u\}$ is (a-1)-degenerate, implying that there exists $x_1 \in A \setminus \{u\}$ such that $d_{A \setminus \{u\}}(x_1) \leq a(x_1) - 1$. Note that $d_A(x_1) \geq a(x_1) + \mu(x_1) - 1$ as $x_1 \in A \setminus A^-$ and $d_{A \setminus \{u\}}(x_1) = d_A(x_1) - \mu(u, x_1)$. It follows that $\mu(u, x_1) = \mu(x_1), d_{A \setminus \{u\}}(x_1) = a(x_1) - 1$ and $d_A(x_1) = a(x_1) + \mu(x_1) - 1$. Hence,

$$x_1 \in N_{A^=}(u).$$

Recall that either A is (a-1)-degenerate or B is (b-1)-degenerate. It follows that either $D_A \neq \emptyset$ or $D_B \neq \emptyset$. In what follows, we may assume that

$$D_B \neq \emptyset. \tag{5}$$

Otherwise, let $D_B = \emptyset$. Clearly, B is b-feasible and A is (a - 1)-degenerate. Thus, $D_A = \{u\}$. If $|B^-| = 1$, then the case can be reduced to (5) by symmetry as $D_A \neq \emptyset$. Suppose that $|B^-| \ge 2$ and $v_1, v_2 \in B^-$. Since G is K_4^- -free, either $x_1v_1 \notin E(G)$ or $x_1v_2 \notin E(G)$ by Claim 11. By symmetry, assume that $x_1v_1 \notin E(G)$. Clearly, $(A_2, B_2) :=$ $(A \cup \{v_1\} \setminus \{u\}, B \cup \{u\} \setminus \{v_1\}) \in \mathscr{P}, \ \mu(u, v) = \mu(u)$ and $d_B(v) = b(v) + \mu(v) - 2$ for each $v \in B^-$ by Claim 13. It is easy to check that $v_1 \in A_2^-, x_1 \in D_{A_2} \subseteq A_2^-$ and $u \in B_2^-$. Thus, $B_2^- = \{u\}$ by Claim 14. Again, this can be reduced to (5) as $|B_2^-| = 1$ and $D_{A_2} \neq \emptyset$.

For each $v \in D_B$ and the fixed vertex x_1 , let $A_v = A \cup \{v\} \setminus \{x_1\}$ and $B_v = B \cup \{x_1\} \setminus \{v\}$.

Claim 17. For each $v \in D_B$, if $x_1 v \notin E(G)$, then (i) $\mu(v) = 1$; (ii) $(A_v, B_v) \in \mathscr{P}$, $u \in A_v^-$, $v \in A_v^-$ and $x_1 \in B_v^-$.

Proof. (i) By Claim 13, $(A_3, B_3) := (A \cup \{v\} \setminus \{u\}, B \cup \{u\} \setminus \{v\}) \in \mathscr{P}, \ \mu(v) = \mu(u, v)$ and $d_A(u) = a(u) + \mu(u) - 2$ as $v \in D_B$. Recall that $d_{A \setminus \{u\}}(x_1) = a(x_1) - 1$. Thus, $d_{A_3}(x_1) = d_{A \setminus \{u\}}(x_1) = a(x_1) - 1$ as $x_1 v \notin E(G)$, yielding $x_1 \in D_{A_3}$. Note that $d_{B_3}(u) = d_G(u) - d_A(u) - \mu(u, v) = b(u) + \mu(u) - 1 - \mu(u, v)$. This implies $u \in B_3^-$ as $\mu(u, v) \ge 1$. Applying Claim 13 with $(A_3, B_3) \in \mathscr{P}, \ x_1 \in D_{A_3}$ and $u \in B_3^-$, we have $d_{B_3}(u) = b(u) + \mu(u) - 2$. It follows that $\mu(u, v) = 1$, implying $\mu(v) = 1$.

(ii) Recall that $d_A(u) = a(u) + \mu(u) - 2$ and $\mu(u, v) = \mu(v) = 1$. Since $v \in D_B$ and $x_1 \in A^=$, we have $d_{A_v}(u) = d_A(u) + \mu(u, v) - \mu(u, x_1) = a(u) + \mu(u) - 1 - \mu(u, x_1)$, $d_{A_v}(v) = d_G(v) - d_B(v) = a(v)$ and $d_{B_v}(x_1) = d_G(x_1) - d_A(x_1) = b(x_1) + \mu(x_1) - 2$. Now, we show that B_v is (b-1)-meager. If not, then there exists a b-nice subset $B' \subseteq B_v$. Since B is (b-1)-meager, we have $x_1 \in B'$ and $d_{B_v}(x_1) \ge d_{B'}(x_1) \ge b(x_1) + \mu(x_1) - 1$, a contradiction. Next, we prove that A_v is (a-1)-meager. Otherwise, there is an a-nice

subset $A' \subseteq A_v$. Since A is (a-1)-meager, we have $v \in A'$ and $d_{A_v}(v) \ge d_{A'}(v) \ge a(v) + \mu(v) - 1 = a(v)$. This implies that $d_{A_v}(v) = d_{A'}(v)$. Thus, $u \in A'$ as $uv \in E(G)$. It follows that $d_{A_v}(u) \ge d_{A'}(u) \ge a(u) + \mu(u) - 1$, a contradiction. Therefore, (A_v, B_v) is an (a-1, b-1)-meager partition. Simple calculations together with (3) and (4) show that $\omega(A_v, B_v) = \omega(A, B)$, implying $(A_v, B_v) \in \mathscr{P}$. Moreover, $u \in A_v^-$, $v \in A_v^=$ and $x_1 \in B_v^-$ by noting that $\mu(u, x_1) \ge 1$ and $\mu(v) = 1$.

Now, we conclude that D_B is an independent set. Otherwise, there is an edge vv' contained in $G[D_B]$. Since G is K_4^- -free, we have $x_1v, x_1v' \notin E(G)$. By Claim 17, $\mu(v) = 1$ and $(A_v, B_v) \in \mathscr{P}$. It follows that $d_{B_v}(v') = d_B(v') - \mu(v, v') = b(v') - 2$, contradicting Claim 13.

Note that $B \setminus D_B$ is (b-1)-degenerate by Claim 10 as $B \setminus D_B \neq \emptyset$ by Claim 12. Thus, there exists $y \in B \setminus D_B$ such that $d_{B \setminus D_B}(y) \leq b(y) - 1$.

Claim 18. For each $y \in B \setminus D_B$ satisfying $d_{B \setminus D_B}(y) \leq b(y) - 1$, we have $|N_{D_B}(y)| = 1$.

Proof. Note that $d_B(y) = d_{B\setminus D_B}(y) + d_{D_B}(y) \ge b(y)$ as $y \in B \setminus D_B$. It follows that $d_{D_B}(y) \ge 1$. This together with Claim 11 yields that $1 \le |N_{D_B}(y)| \le 2$ as G is $K_{2,3}$ -free. Suppose that $N_{D_B}(y) = \{v_1, v_2\}$ and $v_1v_2 \notin E(G)$ as D_B is independent. Clearly, $d_B(y) = d_{B\setminus D_B}(y) + d_{D_B}(y) \le b(y) - 1 + \mu(v_1, y) + \mu(v_2, y)$. Since G is $\{C_5^+, K_{2,3}\}$ -free, $x_1v_1, x_1v_2, x_1y \notin E(G)$. By Claim 17, $(A_{v_1}, B_{v_1}) \in \mathscr{P}, u \in A_{v_1}^-$ and $v_1 \in A_{v_1}^=$. Note also that $v_2 \in D_{Bv_1}$ as $d_{Bv_1}(v_2) = d_B(v_2) = b(v_2) - 1$. Since $d_{Bv_1}(y) = d_B(y) - \mu(v_1, y) \le b(y) - 1 + \mu(v_2, y) \le b(y) + \mu(y) - 1$, we have either $y \in B_{v_1}^-$ or $y \in B_{v_1}^=$. If $y \in B_{v_1}^-$, then $uy \in E(G)$ by Claim 11; if $y \in B_{v_1}^=$, then v_1uv_2y forms a special path with respect to (A_{v_1}, B_{v_1}) , indicating that either $uy \in E(G)$ or $v_1v_2 \in E(G)$ by Claim 15. In both cases, $\{u, v_1, v_2, y\}$ contains a K_4^- , a contradiction.

By Claim 18, we can fix such a vertex $y \in B \setminus D_B$ and assume that

$$N_{D_B}(y) = \{v_1\}$$

for some vertex $v_1 \in D_B$. It follows that $d_B(y) = d_{B \setminus D_B}(y) + d_{D_B}(y) \leq b(y) - 1 + \mu(v_1, y) \leq b(y) + \mu(y) - 1$, thus either $y \in B^- \setminus D_B$ or $y \in B^-$. If $y \in B^- \setminus D_B$, then $uy \in E(G)$ by Claim 11. If $y \in B^-$, then x_1uv_1y forms a special path with respect to (A, B). Since $v_1 \in D_B$, we have either $x_1v_1 \in E(G)$ or $uy \in E(G)$ by Claim 15. Hence, we conclude

either
$$x_1v_1 \in E(G)$$
 or $uy \in E(G)$. (6)

Claim 19. If $uy \in E(G)$, then $\mu(x_1) = 1$; if $x_1v_1 \in E(G)$, then $y \in B^=$, $\mu(v_1, y) = \mu(y) = 1$, $d_B(y) = b(y)$ and $d_{B \setminus D_B}(y) = b(y) - 1$.

Proof. If $uy \in E(G)$, then $x_1v_1, x_1y \notin E(G)$ as G is K_4^- -free. By Claim 17, $(A_{v_1}, B_{v_1}) \in \mathscr{P}$, $u \in A_{v_1}^-$ and $d_{A_{v_1}}(u) = a(u) + \mu(u) - 1 - \mu(u, x_1)$. Note that $y \in D_{B_{v_1}}$ as $d_{B_{v_1}}(y) = d_{B\setminus D_B}(y) \leqslant b(y) - 1$. It follows that $d_{A_{v_1}}(u) = a(u) + \mu(u) - 2$ by Claim 13, implying $\mu(u, x_1) = 1$. The desired result follows by noting that $\mu(x_1) = \mu(u, x_1)$.

If $x_1v_1 \in E(G)$, then $uy, x_1y \notin E(G)$ as G is K_4^- -free. Clearly, $y \in B^=$, $\mu(y) = \mu(v_1, y)$ and $d_{B \setminus D_B}(y) = b(y) - 1$. By Claim 16, $(A_4, B_4) := (A \cup \{y\} \setminus \{u\}, B \cup \{u\} \setminus \{y\}) \in \mathscr{P}$. Note that $d_{A_4}(x_1) = d_{A \setminus \{u\}}(x_1) = a(x_1) - 1$ and $d_{B_4}(v_1) = d_B(v_1) + \mu(u, v_1) - \mu(v_1, y) \leq b(v_1) + \mu(v_1) - 2$. Thus, $x_1 \in D_{A_4}$ and $v_1 \in B_4^-$. By Claim 13, $d_{B_4}(v_1) = b(v_1) + \mu(v_1) - 2$, indicating $\mu(v_1, y) = 1$. Thus, $\mu(y) = \mu(v_1, y) = 1$, $d_B(y) = b(y)$ and $d_{B \setminus D_B}(y) = b(y) - 1$.

Now, we may further assume that

$$|D_B| \geqslant 2. \tag{7}$$

Otherwise, $D_B = \{v_1\}$ as $v_1 \in D_B$. If $uy \in E(G)$, then $u \in A_{v_1}^-$ and $x_1, y \in D_{B_{v_1}}$ by Claim 17 and the proof of Claim 19. Thus, $A_{v_1}^- = \{u\}$ by Claim 14 and $|D_{B_{v_1}}| \ge 2$. If $x_1v_1 \in E(G)$, then $v_1 \in B_4^-$ and $x_1, y \in D_{A_4}$ by the proof of Claim 19. Again, $B_4^- = \{v_1\}$ by Claim 14 and $|D_{A_4}| \ge 2$. Thus, we can reduce both cases to (7), as desired.

Let $D = D_B \cup \{y\}$. It follows from (6) and (7) that $N_D(v) = \emptyset$ for each $v \in D_B \setminus \{v_1\}$ as G is $\{K_4^-, C_5^+\}$ -free and D_B is independent. This implies that $d_{B\setminus D}(v) = d_B(v) = b(v) - 1 \ge 1$, i.e., $B \setminus D \ne \emptyset$. By Claim 10, $B \setminus D$ is (b - 1)-degenerate. Thus, there exists $z \in B \setminus D$ such that $d_{B\setminus D}(z) \le b(z) - 1$. This together with $d_B(z) \ge b(z)$ gives that $N_D(z) \ne \emptyset$ and

$$d_B(z) = d_{B\setminus D}(z) + d_D(z) \le b(z) - 1 + \sum_{x \in N_D(z)} \mu(x, z).$$
(8)

In what follows, we proceed our proof by considering $N_D(z)$ according to (6).

Case 1. $x_1v_1 \in E(G)$. By Claim 19, we have $y \in B^=$, $\mu(y) = 1$, $d_B(y) = b(y)$ and $d_{B\setminus D_B}(y) = b(y) - 1$. We first establish the following easy but useful claim.

Claim 20. (i) There exists $w \in N_{A^{=}}(x_1)$ such that $uw \notin E(G)$, $\mu(x_1, w) = \mu(w)$ and $d_{A \setminus \{u, x_1\}}(w) = a(w) - 1$. (ii) If there exists $y' \in N_{B^{=}}(y)$, then $v_1 y' \in E(G)$.

Proof. (i) Let $U = \{u, x_1\}$. Clearly, $A \setminus U \neq \emptyset$ as $d_{A \setminus U}(x_1) = d_{A \setminus \{u\}}(x_1) = a(x_1) - 1 \ge 1$. By Claim 10, $A \setminus U$ is (a - 1)-degenerate, implying that there exists $w \in A \setminus U$ such that $d_{A \setminus U}(w) \le a(w) - 1$. It follows that $d_U(w) = d_A(w) - d_{A \setminus U}(w) \ge a(w) + \mu(w) - 1 - (a(w) - 1) = \mu(w) \ge 1$, i.e., $N_U(w) \neq \emptyset$. Thus, $|N_U(w)| = 1$ as G is K_4^- -free, implying $d_U(w) \le \mu(w)$. Then $d_U(w) = \mu(w)$, $d_A(w) = a(w) + \mu(w) - 1$ and $d_{A \setminus U}(w) = a(w) - 1$. Since $w \in A^=$ and $N_{A=}(u) = \{x_1\}$ by Claim 15, we have $uw \notin E(G)$, $x_1w \in E(G)$ and $\mu(x_1, w) = \mu(w)$.

(ii) Suppose that $y' \in N_{B^{=}}(y)$ such that $v_1y' \notin E(G)$. Since G is $\{K_4^-, C_5^+\}$ -free, we have $x_1y, uy, uy' \notin E(G)$. By Claim 13, we have $(A_5, B_5) := (A \cup \{v_1\} \setminus \{u\}, B \cup \{u\} \setminus \{v_1\}) \in \mathscr{P}$ together with the following formulas: (i) $d_{A_5}(v_1) = d_A(v_1) - \mu(u, v_1) = a(v_1) + \mu(v_1) - 2$; (ii) $d_{B_5}(u) = d_B(u) - \mu(u, v_1) \leqslant b(u) + \mu(u) - 2$; (iii) $d_{A_5}(x_1) = d_A(x_1) + \mu(v_1, x_1) - \mu(u, x_1) \leqslant a(x_1) + \mu(x_1) - 1$; (iv) $d_{B_5}(y) = d_B(y) - \mu(v_1, y) = b(y) - 1$; (v) $d_{B_5}(y') = d_B(y') = b(y') + \mu(y') - 1$. It follows that $v_1 \in A_5^-$, $u \in B_5^-$, $x_1 \in A_5^- \cup A_5^-$, $y \in D_{B_5} \subseteq B_5^-$ and $y' \in B_5^-$. By Claim 14, $A_5^- = \{v_1\}$, implying $x_1 \in A_5^-$. Thus, x_1v_1yy' forms a special path with respect to (A_5, B_5) . By Claim 15, either $x_1y \in E(G)$ or $v_1y' \in E(G)$ as $y \in D_{B_5}$, a contradiction. Now, we consider $N_D(z)$ and assert that $v_1 \notin N_D(z)$. Otherwise, let $v_1z \in E(G)$. Clearly, $uw, uy, uz, wy, x_1y, wv_1, x_1z \notin E(G)$ and $N_{D_B}(z) = \{v_1\}$ as G is $\{K_4^-, C_5^+\}$ -free. We focus on the partition $(A_4, B_4) = (A \cup \{y\} \setminus \{u\}, B \cup \{u\} \setminus \{y\}) \in \mathscr{P}$ defined in the second part of the proof of Claim 19. Clearly, $x_1, y \in D_{A_4} \subseteq A_4^-$, $v_1 \in B_4^-$ and $w \in A_4^-$ as $d_{A_4}(w) = d_A(w) = a(w) + \mu(w) - 1$. Note that $d_{B_4}(z) = d_B(z) - \mu(y, z) \leq$ $b(z) - 1 + \sum_{x \in N_{D_B}(z)} \mu(x, z)$ by (8). It follows that $z \in B_4^-$ as $N_{D_B}(z) = \{v_1\}$ and $z \notin B_4^$ by Claim 14. Then wx_1v_1z forms a special path with respect to (A_4, B_4) . By Claim 15, either $wv_1 \in E(G)$ or $x_1z \in E(G)$ as $x_1 \in D_{A_4}$, a contradiction. We further show that there exists $v \in D_B \setminus \{v_1\}$ such that $v \in N_D(z)$. Otherwise, $N_D(z) = \{y\}$. In view of (8), we know $z \in B^- \cup B^-$. If $z \in B^-$, then $\{u, v_1, x_1, y, z\}$ contains a C_5^+ as $uz \in E(G)$ by Claim 11. Thus, $z \in N_{B^-}(y)$, implying $v_1 \in N_D(z)$ by Claim 20(ii), a contradiction.

Claim 21. $N_D(z) = \{v, y\}$ with $\mu(z) = 1$ and $d_B(z) = b(z) + 1$.

Proof. Note that $1 \leq |N_{D_B}(z)| \leq 2$ as G is $K_{2,3}$ -free. Note that $x_1v, x_1y, x_1z, wv, v_1v, vy \notin E(G)$ as G is $\{K_4^-, C_5^+\}$ -free. By Claim 17, $\mu(v) = \mu(u, v) = 1$ and $(A_v, B_v) \in \mathscr{P}$; moreover, $u \in A_v^-$ and $x_1 \in B_v^-$. Note also that $d_{A_v}(w) = d_A(w) - \mu(x_1, w) = d_{A\setminus\{u,x_1\}}(w) = a(w) - 1$. Thus, $u, w \in A_v^-$ and $x_1 \in B_v^-$, implying $B_v^- = \{x_1\}$ by Claim 14. If $|N_{D_B}(z)| = 2$, then there exists $v' \in D_B \setminus \{v_1, v\}$ such that $x_1v', vv' \notin E(G)$ as G is K_4^- -free. Note that $d_{B_v}(v') = d_B(v') = b(v') - 1$, indicating $v' \in D_{B_v} \subseteq B_v^-$, a contradiction. Hence, $N_{D_B}(z) = \{v\}$. This implies that $1 \leq |N_D(z)| \leq 2$. If $|N_D(z)| = 1$, then $d_{B_v}(z) = d_B(z) - \mu(v, z) = d_{B\setminus D}(z) \leq b(z) - 1$, thus $z \in D_{B_v} \subseteq B_v^-$, a contradiction. Thus, we conclude that $N_D(z) = \{v, y\}$. Observe that $z \in B \setminus B^-$; otherwise, $\{u, v_1, x_1, y, z\}$ contains a C_5^+ as $uz \in E(G)$ by Claim 11. Note that $\mu(v) = \mu(y) = 1$ by Claims 17 and 19 as $x_1v, uy \notin E(G)$. Hence, $b(z) + \mu(z) - 1 \leq d_B(z) \leq b(z) + 1$ by (8), giving that $\mu(z) \leq 2$. If $\mu(z) = 2$, then $d_B(z) = b(z) + 1$ and $z \in B^-$. It follows that $z \in N_B = (y)$, implying $v_1z \in E(G)$ by Claim 20(ii), a contradiction. Hence, $\mu(z) = 1$ and $z \notin B^-$, indicating $d_B(z) = b(z) + 1$.

Figure 1: Partitions in \mathscr{P}

Note that $(A_v, B_v) \in \mathscr{P}$ by Claim 17; additionally, $u \in A_v^-$, $v \in A_v^=$ and $x_1 \in B_v^-$. In what follows, we show that $B_v^- = \{x_1\}$, $u, w \in D_{A_v}$, $v_1 \in N_{B_v^-}(x_1)$ with $d_{B_v \setminus \{x_1\}}(v_1) = b(v_1) - 1$, $y \in N_{B_v^-}(v_1)$ with $d_{B_v \setminus \{x_1, v_1\}}(y) = b(y) - 1$, and $v \in N_{A_v^-}(u)$ with $d_{A_v \setminus D_{A_v}}(v) = b(v_1) - 1$.

The electronic journal of combinatorics $\mathbf{28(2)}$ (2021), #P2.43

a(v) - 1. If so, we may view B_v , A_v as the new parts A, B by the symmetry between the functions a, b, and make sure that we are still in Case 1 as $v_1 u \in E(G)$.

Recall that $\mu(v) = \mu(y) = 1$. Since G is $\{K_4^-, C_5^+\}$ -free, we have $x_1v, x_1y, vy, uy \notin C_5$ E(G). Note that $d_{A_v}(w) = d_{A \setminus \{u, x_1\}}(w) = a(w) - 1$ and $d_{B_v}(v_1) = d_B(v_1) + \mu(x_1, v_1) = d_{A \setminus \{u, x_1\}}(w)$ $b(v_1) - 1 + \mu(x_1, v_1) \leq b(v_1) + \mu(v_1) - 1$. It follows that $w \in D_{A_v}$ and $v_1 \in B_v^- \cup B_v^=$. Since $u, w \in A_v^-$ and $x_1 \in B_v^-$, we have $B_v^- = \{x_1\}$ and $v_1 \in B_v^-$ by Claim 14. Thus, $d_{B_v}(v_1) = b(v_1) + \mu(v_1) - 1$ and $\mu(x_1, v_1) = \mu(v_1)$. This implies that $d_{B_v \setminus \{x_1\}}(v_1) = b(v_1) + \mu(v_1) - 1$ $d_{B_v}(v_1) - \mu(x_1, v_1) = b(v_1) - 1$ and $d_{B_v \setminus \{x_1, v_1\}}(y) = d_B(y) - \mu(v_1, y) = b(y) - 1$. In addition, $N_{A_v}(v) = \{u\}$ as G is C_5^+ -free and $d_{A_v \setminus D_{A_v}}(v) = d_{A_v}(v) - \mu(u, v) = a(v) - 1$. It remains to show that $u \in D_{A_v}$. By Claim 10, $A_v \setminus D_{A_v}$ is (a-1)-degenerate. Thus, there exists $w' \in A_v \setminus D_{A_v}$ such that $d_{A_v \setminus D_{A_v}}(w') \leq a(w') - 1$ and $|N_{D_{A_v}}(w')| = 1$ by Claim 18. We may assume that $N_{D_{A_v}}(w') = \{u_1\}$ and $u \notin D_{A_v}$. Clearly, $u_1v_1 \notin E(G)$ and $w' \neq u$ as G is K_4^- -free. Now, we may view B_v , A_v as the new parts A, B by the symmetry between the functions a, b, and x_1, u_1, v_1 play the roles in (B_v, A_v) that u, v, x_1 occupied in the original partition (A, B), respectively. Let $A_6 = A_v \cup \{v_1\} \setminus \{u_1\}$ and $B_6 = B_v \cup \{u_1\} \setminus \{v_1\}$. By Claim 17, we have $\mu(u_1) = 1$, $(A_6, B_6) \in \mathscr{P}, v_1 \in A_6^-$ and $x_1 \in B_6^-$. Note that $d_{A_6}(w') = d_{A_v \setminus D_{A_v}}(w') \leq a(w') - 1$ and $d_{B_6}(y) = d_{B_v}(y) - \mu(v_1, y) = b(y) - 1$. Thus, $v_1, w' \in A_6^-$ and $x_1, y \in B_6^-$. This contradicts Claim 14. Hence, $u \in D_{A_v}$.

Now, we consider the partition (B_v, A_v) , which satisfies all the conditions of Case 1 by the above argument. We mention that x_1, u, v_1, v, y play the roles in (B_v, A_v) that u, v_1, x_1, y, w occupied in the original partition (A, B), respectively. By Claim 21, we may assume that there exist $u' \in D_{A_v} \setminus \{u\}$ and $z' \in A_v \setminus (D_{A_v} \cup \{v\})$ such that $N_{D_{A_v} \cup \{u\}}(z') =$ $\{v, u'\}, \mu(u') = \mu(z') = 1$ and $d_{A_v}(z') = a(z') + 1$.

Let $A_7 = A_v \cup \{y\} \setminus \{u'\}$ and $B_7 = B_v \cup \{u'\} \setminus \{y\}$. Since G is $\{K_4^-, C_5^+\}$ -free, we know that $u'y, u'u, u'v_1, u'v, x_1y, uy, vy \notin E(G)$. Then we have the following equalities: (i) $d_{A_7}(y) = d_{A_v}(y) = d_G(y) - d_{B_v}(y) = a(y) - 1$; (ii) $d_{A_7}(u) = d_{A_v}(u) = a(u) - 1$; (iii) $d_{A_7}(v) = d_{A_v}(v) = a(v)$; (iv) $d_{B_7}(u') = d_{B_v}(u') = d_G(u') - d_{A_v}(u') = b(u')$; (v) $d_{B_7}(x_1) = d_{B_v}(x_1) + \mu(u', x_1) = b(x_1) + \mu(x_1) - 1$; (vi) $d_{B_7}(v_1) = d_{B_v}(v_1) - \mu(v_1, y) =$ $b(v_1) + \mu(v_1) - 2$. We claim that $(A_7, B_7) \in \mathscr{P}$. Clearly, A_7 is (a - 1)-meager. If not, then there is an *a*-nice subset $A' \subseteq A_7$. Since A_v is (a - 1)-meager, we have $y \in A'$ and $d_{A_7}(y) \ge d_{A'}(y) \ge a(y) + \mu(y) - 1 = a(y)$, a contradiction. Now we prove that B_7 is (b-1)meager. If not, then there is a *b*-nice subset $B' \subseteq B_7$. Since B_v is (b-1)-meager, we have $u' \in B'$ and $d_{B_7}(u') \ge b(u') + \mu(u') - 1 = b(u')$. Thus, $d_{B_7}(u') = d_{B'}(u') = b(u')$, implying $x_1 \in B'$ as $x_1u \in E(G)$. Then, $d_{B_7}(x_1) \ge d_{B'}(x_1) \ge b(x_1) + \mu(x_1) - 1$. It follows that $d_{B_7}(x_1) = d_{B'}(x_1) = b(x_1) + \mu(x_1) - 1$, implying $v_1 \in B'$ as $v_1x_1 \in E(G)$. Hence, $d_{B_7}(v_1) \ge d_{B'}(v_1) \ge b(v_1) + \mu(v_1) - 1$, a contradiction. Thus, (A_7, B_7) is an (a - 1, b - 1)-meager partition. By (3) and (4), $\omega(A_7, B_7) = \omega(A, B)$, as claimed.

Note that $u, y \in D_{A_7}, v \in A_7^=, v_1 \in B_7^-$ and $u', x_1 \in B_7^=$. In what follows, we prove that $B_7^- = \{v_1\}, x_1 \in N_{B_7^-}(v_1)$ with $d_{B_7 \setminus \{v_1\}}(x_1) = b(x_1) - 1$, and $v \in N_{A_7^-}(u)$ with $d_{A_7 \setminus D_{A_7}}(v) = a(v) - 1$, If so, we may view B_7, A_7 as the new parts A, B by the symmetry between the functions a, b, and again we are still in Case 1 as $x_1 u \in E(G)$.

By Claim 14, $B_7^- = \{v_1\}$. Now, we show that $d_{B_7 \setminus \{v_1\}}(x_1) = b(x_1) - 1$. Note that $d_{B_7 \setminus \{v_1\}}(x_1) = d_{B_7}(x_1) - \mu(v_1, x_1) = b(x_1) + \mu(x_1) - 1 - \mu(v_1, x_1) \ge b(x_1) - 1$. It suffices to

prove that $d_{B_7 \setminus \{v_1\}}(x_1) \leq b(x_1) - 1$. Suppose for a contradiction that $d_{B_7 \setminus \{v_1\}}(x_1) > b(x_1)$. By Claim 10, $B_7 \setminus \{v_1\}$ is (b-1)-degenerate as G has no (a, b)-feasible pair. This implies that there exists $y'' \in B_7 \setminus \{v_1\}$ such that $d_{B_7 \setminus \{v_1\}}(y'') \leq b(y'') - 1$. Clearly, $y'' \neq x_1$ and $d_{B_7}(y'') \geq b(y'') + \mu(y'') - 1$. Note also that $d_{B_7}(y'') = d_{B_7 \setminus \{v_1\}}(y'') + \mu(v_1, y'') \leq b(y'') - 1 + \mu(y'')$. Thus, $d_{B_7}(y'') = b(y'') + \mu(y'') - 1$ and $y'' \in B_7^=$. Then vuv_1y'' forms a special path with respect to (A_7, B_7) . By Claim 15, either $v_1v \in E(G)$ or $uy'' \in E(G)$ as $u \in D_{A_7}$. In either case, we have a K_4^- , a contradiction. It remains to prove that $d_{A_7 \setminus D_{A_7}}(v) = a(v) - 1$. By Claim 11, we have $N_{D_{A_7}}(v) = \{u\}$ as G is C_5^+ -free. Thus, $d_{A_7 \setminus D_{A_7}}(v) = d_{A_7}(v) - \mu(u, v) = a(v) - 1$ (by noting that $\mu(v) = 1$), as desired.

Now, we consider the partition (B_7, A_7) , and v_1, u, x_1, v play the roles in (B_7, A_7) that u, v_1, x_1, y occupied in the original partition (A, B), respectively. We show that $u'z, uz' \in E(G)$; if so, then $\{u, v, z, u', z'\}$ contains a C_5^+ , a contradiction. Recall that $\mu(z) = 1$ and $d_B(z) = b(z)+1$ by Claim 21. If $u'z \notin E(G)$, then $d_{B_7}(z) = d_{B_v}(z)-\mu(y,z) =$ $d_B(z) - \mu(v, z) - \mu(y, z) = b(z) - 1$, implying $z \in D_{B_7}$. Thus, $u, y \in A_7^-$ and $v_1, z \in B_7^-$, contradicting Claim 14. Next, we show that $uz' \in E(G)$. Since G is $K_{2,3}$ -free, $yz' \notin E(G)$. Note that $\mu(z') = 1$ and $d_{A_v}(z') = a(z') + 1$. Thus, $d_{A_7}(z') = d_{A_v}(z') - \mu(u', z') = a(z')$, implying $z' \in A_7^-$. By Claim 20(ii), $uz' \in E(G)$ as $z' \in N_{A_7^-}(v)$. Thus, we complete the proof of Case 1.

Case 2. $uy \in E(G)$. Clearly, $x_1v_1 \notin E(G)$ and $N_{D_B}(y) = \{v_1\}$. By Claims 17 and 19, $\mu(v_1) = \mu(x_1) = 1$. Note that $1 \leq |N_D(z)| \leq 2$ as G is $K_{2,3}$ -free. If $|N_D(z)| = 2$, then $yz \in E(G)$; otherwise, we have $z \in B \setminus D_B$ such that $d_{B \setminus D_B}(z) \leq b(z) - 1$, implying $|N_{D_B}(z)| = 1$ by Claim 18, a contradiction. It follows that $v_1z \notin E(G)$ as G is K_4^- -free. Thus, there exists $v \in D_B \setminus \{v_1\}$ such that $vz \in E(G)$ and $\{u, v, v_1, y, z\}$ contains a C_5^+ , a contradiction. Hence, $|N_D(z)| = 1$ and $d_B(z) \leq b(z) - 1 + \mu(z)$ by (8).

Claim 22. $N_D(z) = \{v_2\}$ for some $v_2 \in D_B \setminus \{v_1\}$.

Proof. Suppose not. Clearly, $z \in B^=$ as G is K_4^- -free. It follows that $d_{B\setminus D}(z) = b(z) - 1$ and $d_D(z) = \mu(z)$. If $N_D(z) = \{v_1\}$, then x_1uv_1z forms a special path with respect to (A, B). Since $v_1 \in D_B$, either $x_1v_1 \in E(G)$ or $uz \in E(G)$ by Claim 15, implying a K_4^- in both cases, a contradiction. If $N_D(z) = \{y\}$, then $d_B(z) = b(z) + \mu(z) - 1$ and $\mu(y, z) = \mu(z)$. Since G is $\{K_4^-, C_5^+\}$ -free, we have $x_1v_1, x_1y, x_1z, v_1z \notin E(G)$. By Claim 17, $(A_{v_1}, B_{v_1}) \in \mathscr{P}$, $u \in A_{v_1}^-$, $v_1 \in A_{v_1}^=$ and $x_1 \in D_{B_{v_1}} \subseteq B_{v_1}^-$. Note that $d_{B_{v_1}}(y) = d_B(y) - \mu(v_1, y) = d_{B\setminus D_B}(y) \leq b(y) - 1$. It follows that $y \in D_{B_{v_1}} \subseteq B_{v_1}^-$. Thus, $A_{v_1}^- = \{u\}$ by Claim 14. Since G is C_5^+ -free, we have $N_{D_{B_{v_1}}}(z) = \{y\}$. Thus, $d_{B_{v_1}\setminus D_{B_{v_1}}}(z) = d_{B_{v_1}}(z) - \mu(y, z) = d_B(z) - \mu(y, z) = b(z) - 1$. Moreover, $v_1 \in A_{v_1}^=$ with $d_{A_{v_1}\setminus\{u\}}(v_1) = d_{A_{v_1}}(v_1) - \mu(u, v_1) = a(v_1) - 1$. Now, we view A_{v_1} B_{v_1} as the new parts A, B and the case can be reduced to Case 1 as $v_1y \in E(G)$. In fact, v_1, u, y, z play the roles in (A_{v_1}, B_{v_1}) that x_1, u, v_1, y occupied in the original partition (A, B) of Case 1, respectively. □

Let $Z := \{z^* \in B \setminus D : d_{B \setminus D}(z^*) \leq b(z^*) - 1\}$. Clearly, $z \in Z \subseteq B^- \cup B^=$. By Claim 22, for each $z^* \in Z$, we may assume that $N_D(z^*) = \{v^*\}$ for some $v^* \in D_B \setminus \{v_1\}$. Now, we show that $uz^* \in E(G)$ for each $z^* \in Z$. If $z^* \in B^-$, then we're done by Claim 11.

Thus, $z^* \in B^=$ and $x_1uv^*z^*$ forms a special path with respect to (A, B). By Claim 15, either $x_1v^* \in E(G)$ or $uz^* \in E(G)$. If $x_1v^* \in E(G)$, then the case can be reduced to Case 1, where z^* and v^* play the roles of y and v_1 . Thus, we conclude that $uz^* \in E(G)$ for each $z^* \in Z$.

Note that $N_{D\cup Z}(y) = N_{D_B}(y)$ as $yz^* \notin E(G)$ for each $z^* \in Z$. Thus, $d_{B\setminus (D\cup Z)}(y) = d_{B\setminus D_B}(y) = b(y) - 1 \ge 1$, i.e., $B \setminus (D \cup Z) \ne \emptyset$. By Claim 10, $B \setminus (D \cup Z)$ is (b-1)-degenerate. Hence, there exists $z' \in B \setminus (D \cup Z)$ such that $d_{B\setminus (D\cup Z)}(z') \le b(z') - 1$, implying $|N_{D\cup Z}(z')| \ge 1$ by noting that $d_B(z') \ge b(z')$. Since u is adjacent to each vertex in $D \cup Z$, we have $|N_{D\cup Z}(z')| \le 2$ as G is $K_{2,3}$ -free. If $|N_{D\cup Z}(z')| = 2$, then $N_{D\cup Z}(z') \not\subseteq D_B$ by Claim 18. It is easy to check that G contains a K_4^- or C_5^+ , a contradiction. Let $N_{D\cup Z}(z') = \{y'\}$. If $y' \in D$, then $d_{B\setminus D}(z') = d_{B\setminus (D\cup Z)}(z') \le b(z') - 1$, indicating $z' \in Z$, a contradiction. Thus, $y' \in Z$ and $d_{B\setminus (D_B\cup \{y'\})}(z') = d_{B\setminus (D\cup Z)}(z') \le b(z') - 1$. Now, we may view y', z' and $D_B \cup \{y'\}$ as the new y, z and D, respectively. Since $uy' \in E(G)$, we are still in Case 2. By Claim 22, we have $N_{D_B\cup \{y'\}}(z') \subseteq D_B$. This leads to a contradiction as $y' \notin D_B$, completing the proof of Case 2. Thus, we complete the proof of Theorem 5.

Acknowledgements

The authors would like to thank Prof. Jie Ma for helpful comments and discussions. The authors are also grateful to the referees for their careful reading and helpful suggestions.

References

- [1] A. Ban, Decomposing weighted graphs, J. Graph Theory 86 (2017) 250–254.
- [2] A. Ban and N. Linial, Internal partitions of regular graphs, J. Graph Theory 83 (2016) 5–18.
- [3] C. Bazgan, Zs. Tuza and D. Vanderpooten, Efficient algorithms for decomposing graphs under degree constraints, Discrete Appl. Math. 155 (2007) 979–988.
- [4] A. Diwan, Decomposing graphs with girth at least five under degree constraints, J. Graph Theory 33 (2000) 237–239.
- [5] S. Fujita, R. Li and G. Wang, Decomposing edge-colored graphs under color degree constraints, Combin. Probab. Comput. 28 (2019) 755–767.
- [6] J. Hou, H. Ma, J. Yu and X. Zhang, On partitions of $K_{2,3}$ -free graphs under degree constraints, Discrete Math. 341 (2018) 3288–3295.
- [7] A. Kaneko, On decomposition of triangle-free graphs under degree constraints, J. Graph Theory 27 (1998) 7–9.
- [8] M. Liu and B. Xu, On partitions of graphs under degree constraints, Discrete Appl. Math. 226 (2017) 87–93.
- [9] M. Liu and B. Xu, On a conjecture of Schweser and Stiebitz, Discrete Appl. Math. 295 (2021) 25–31.
- [10] L. Lovász, On decomposition of graphs, Studia Sci. Math. Hungar. 1 (1966) 237–238.

- [11] J. Ma and T. Yang, Decomposing C_4 -free graphs under degree constraints, J. Graph Theory 90 (2019) 13–23.
- [12] T. Schweser and M. Stiebitz, Partitions of multigraphs under minimum degree constraints, Discrete Appl. Math. 257 (2019) 269–275.
- [13] J. Sheehan, Graph decomposition with constraints on the minimum degree, Discrete Math. 68 (1988) 299–307.
- [14] J. Song and B. Xu, Partitions of graphs and multigraphs under degree constraints, Discrete Appl. Math. 279 (2020) 134–145.
- [15] M. Stiebitz, Decomposing graphs under degree constraints, J. Graph Theory 23 (1996) 321–324.
- [16] C. Thomassen, Graph decomposition with constraints on the connectivity and minimum degree, J. Graph Theory 7 (1983) 165–167.
- [17] C. Zu, A note on partitions of graphs under degree constraints, Discrete Appl. Math. 283 (2020) 631–633.