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Abstract

In this paper, we consider the decomposition of multigraphs under minimum
degree constraints and give a unified generalization of several results by various
researchers. Let G be a multigraph in which no quadrilaterals share edges with
triangles and other quadrilaterals and let µG(v) = max{µG(u, v) : u ∈ V (G) \ {v}},
where µG(u, v) is the number of edges joining u and v in G. We show that for any
two functions a, b : V (G)→ N \ {0, 1}, if dG(v) > a(v) + b(v) + 2µG(v)− 3 for each
v ∈ V (G), then there is a partition (X,Y ) of V (G) such that dX(x) > a(x) for each
x ∈ X and dY (y) > b(y) for each y ∈ Y . This extends the related results due to
Diwan, Liu–Xu and Ma–Yang on simple graphs to the multigraph setting.
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1 Introduction

All graphs considered in this paper are finite, undirected and may have multiple edges
but no loops. Let G be a graph. For a subset X ⊂ V (G), let G[X] be the subgraph of G
induced by X. For each v ∈ V (G), denote NX(v) the set of neighbors of v contained in
X and dX(v) the number of edges between v and X \ {v}. When X = V (G), we simplify
NV (G)(v) and dV (G)(v) to NG(v) and dG(v), respectively. The multiplicity µG(u, v) of two
different vertices u and v in G is the number of edges joining u and v, and the weight
µG(v) of a vertex v is defined as µG(v) = max {µG(u, v) : u ∈ V (G) \ {v}}. Call a graph
G simple if µG(v) 6 1 for each v ∈ V (G). By a partition (X, Y ) of V (G), we mean that
X, Y are two disjoint nonempty sets with X ∪Y = V (G). For a set H of graphs, we say
that a graph is H -free if it contains no member of H as a subgraph. We also denote by
N the set of nonnegative integers.

Many problems raised in graph theory concern graph partitioning and one popular
direction of them is to partition graphs under minimum degree constraints. For a graph
G and two functions a, b : V (G)→ N, a partition (X, Y ) of V (G) is called an (a, b)-feasible
partition if dX(x) > a(x) for each x ∈ X and dY (y) > b(y) for each y ∈ Y . In 1996,
Stiebitz [15] proved the following celebrated result for simple graphs, solving a conjecture
due to Thomassen [16].

Theorem 1 (Stiebitz [15]). Let G be a simple graph and a, b : V (G)→ N be two functions.
If dG(x) > a(x) + b(x) + 1 for each x ∈ V (G), then there is an (a, b)-feasible partition of
G.

For special families of simple graphs, the minimum degree condition can be further
sharpen (see [4, 6, 7, 8, 11]). In particular, for s, t > 2, Diwan [4] showed that every simple
graph with neither triangles nor quadrilaterals and minimum degree at least s+ t− 1 can
already force a partition (X, Y ) as above. Later, Liu and Xu [8] generalized this result
by considering triangle-free simple graphs in which no two quadrilaterals share edges.

Theorem 2 (Liu and Xu [8]). Let G be a triangle-free simple graph in which no two
quadrilaterals share edges, and a, b : V (G) → N \ {0, 1} be two functions. If dG(x) >
a(x) + b(x)− 1 for each x ∈ V (G), then G admits an (a, b)-feasible partition.

Recently, Ma and Yang [11] obtained the following strengthening of Diwan’s result.

Theorem 3 (Ma and Yang [11]). Let G be a quadrilateral-free simple graph and a, b :
V (G)→ N \ {0, 1} be two functions. If dG(x) > a(x) + b(x)− 1 for each x ∈ V (G), then
G admits an (a, b)-feasible partition.

In 2017, Ban [1] proved a conclusion related to Theorem 1 on weighted simple graphs.
Later, Schweser and Stiebitz [12] further studied this problem on graphs, and generalized
the results of Stiebitz [15] and Liu and Xu [8] from simple graphs to graphs. Very recently,
confirming two conjectures of Schweser and Stiebitz, Liu and Xu [9] obtained a graph
version of Theorem 2.
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Theorem 4 (Liu and Xu [9]). Let G be a triangle-free graph in which no two quadrilaterals
share edges, and a, b : V (G) → N \ {0, 1} be two functions. If dG(x) > a(x) + b(x) +
2µG(x)− 3 for each x ∈ V (G), then G admits an (a, b)-feasible partition.

For related problems on graph partitioning under degree constraints or other variances,
we refer readers to [2, 3, 5, 10, 13, 14]. In this paper, we consider partitions of graphs
and give a unified generalization of Theorems 2, 3 and 4 as well as the result of Diwan
[4]. Precisely, we establish the following theorem.

Theorem 5. Let G be a graph in which no quadrilaterals share edges with triangles and
other quadrilaterals, and let a, b : V (G) → N \ {0, 1} be two functions. If dG(x) >
a(x) + b(x) + 2µG(x)− 3 for each x ∈ V (G), then G admits an (a, b)-feasible partition.

Note that this is tight for cycles in the following two perspectives. Firstly, the ranges
of the functions a, b cannot be relaxed to the set of integers at least one by choosing the
constant functions a = b − 1 = 1. Secondly, one also cannot lower the degree condition
further by choosing the constant functions a = b = 2. We also mention that G is
actually {K−4 , C+

5 , K2,3, L3}-free in Theorem 5, where K−4 is the graph obtained from K4

by removing one edge, C+
5 is the graph obtained from C5 by adding one edge between

two nonadjacent vertices, and L3 is the graph consisting of two quadrilaterals sharing
exactly one common edge. Additionally, we use the condition that G is L3-free exactly
once (see Claim 14) in our proof; however, this condition is necessary as shown by the
graph constructed in [17].

2 Notations and Propositions

Let G be a graph and f : V (G) → N be a function. For a subset X ⊆ V (G), we say
that (i) X is f -nice if dX(x) > f(x) + µG(x) − 1 for each x ∈ X, (ii) X is f -feasible if
dX(x) > f(x) for each x ∈ X, (iii) X is f -meager if for each nonempty subset X ′ ⊆ X
there exists a vertex x ∈ X ′ such that dX′(x) 6 f(x) + µG(x) − 1, and (iv) X is f -
degenerate if for each nonempty subset X ′ ⊆ X there exists a vertex x ∈ X ′ such that
dX′(x) 6 f(x). We have the following propositions immediately from the definitions.

Proposition 6. If µG(x) > 1 for each x ∈ V (G), then each f -nice subset is also f -feasible
and each f -degenerate subset is also f -meager.

Proposition 7. A subset of V (G) does not contain any f -feasible subset if and only if it
is (f − 1)-degenerate.

For a graph G and two functions a, b : V (G)→ N, a pair (X, Y ) of disjoint subsets of
V (G) is called an (a, b)-feasible pair if X is a-feasible and Y is b-feasible; if in addition
(X, Y ) is a partition of V (G), then we call it an (a, b)-feasible partition. Similarly, a
partition (X, Y ) of V (G) is called an (a, b)-meager partition if X is a-meager and Y is
b-meager. The following proposition due to Schweser and Stiebitz [12] plays a vital role
in our proof of Theorem 5.
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Proposition 8 (Schweser and Stiebitz [12]). Let G be a graph without isolated vertices,
and let a, b : V (G)→ N be two functions such that dG(x) > a(x) + b(x) + 2µG(x)− 3 for
each x ∈ V (G). If G has an (a, b)-feasible pair, then it admits an (a, b)-feasible partition.

Let G be a graph and let a, b : V (G)→ N be two functions. For each partition (A,B)
of V (G), we define the weight ω(A,B) of (A,B) as

ω(A,B) = |E(G[A])|+ |E(G[B])|+
∑
u∈A

b(u) +
∑
v∈B

a(v).

Then, for each u ∈ A and v ∈ B, simple calculations show that

ω(A \ {u}, B ∪ {u})− ω(A,B) = dB(u)− dA(u) + a(u)− b(u), (1)

ω(A ∪ {v}, B \ {v})− ω(A,B) = dA(v)− dB(v) + b(v)− a(v) (2)

and

ω(A ∪ {v}\{u}, B ∪ {u}\{v})− ω(A,B)

= dB(u)− dA(u) + a(u)− b(u) + dA(v)− dB(v) + b(v)− a(v)− 2µG(u, v). (3)

3 Proof of Theorem 5

Throughout this section, let G be a {K−4 , C+
5 , K2,3, L3}-free graph and a, b : V (G) →

N\{0, 1} be two functions such that dG(x) > a(x) + b(x) + 2µG(x)−3 for each x ∈ V (G).
Clearly, dG(x) > 1 for each x ∈ V (G). Thus, µG(x) > 1 for each x ∈ V (G). Since there is
no danger of confusion, the reference to G in the subscript of µG will be dropped in the
following proof.

Suppose for a contradiction that G contains no (a, b)-feasible partitions. It follows
from Proposition 8 that there is no (a, b)-feasible pair in G. We may assume that

dG(x) = a(x) + b(x) + 2µ(x)− 3 (4)

for each x ∈ V (G). Otherwise, we can increase a, b to get functions a′, b′ such that a′ > a,
b′ > b and dG(x) = a′(x) + b′(x) + 2µ(x)− 3 for each x ∈ V (G). Clearly, the existence of
an (a′, b′)-feasible partition would guarantee that of an (a, b)-feasible partition in G.

Claim 9. There exists an (a− 1, b− 1)-meager partition in G.

Proof. Observe that there is an a-nice proper subset of V (G). Indeed, for a fixed u ∈ V (G)
and each x ∈ V (G) \ {u}, it follows from (4) that

dV (G)\{u}(x) = dG(x)− µ(u, x) > a(x) + b(x) + µ(x)− 3 > a(x) + µ(x)− 1,

meaning that V (G) \ {u} is a-nice. Let S be a minimum a-nice subset of V (G) and
T = V (G) \ S. Clearly, |S| > 2 and T 6= ∅. Note that S is a-feasible by Proposition 6.
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Since G has no (a, b)-feasible pair, T contains no b-feasible subset. By Proposition 7, T is
(b− 1)-degenerate, and thus is (b− 1)-meager. Take v ∈ S and it follows that S \ {v} is
(a− 1)-meager by the minimality of S. Note that dS(v) > a(v) + µ(v)− 1. This together
with (4) yields that dT∪{v}(v) = dT (v) 6 b(v) +µ(v)− 2. Thus, T ∪{v} is (b− 1)-meager.
If not, then there is a b-nice subset T ′ ⊆ T ∪{v}. Since T is (b−1)-meager, we have v ∈ T ′
and dT∪{v}(v) > dT ′(v) > b(v)+µ(v)−1, a contradiction. Consequently, (S \{v}, T ∪{v})
is an (a− 1, b− 1)-meager partition in G, as desired.

Let P be the family of all (a − 1, b − 1)-meager partitions (A,B) satisfying that
ω(A,B) is maximum. For any (A,B) ∈P, let A− = {u ∈ A | dA(u) 6 a(u) + µ(u)− 2}
and B− = {v ∈ B | dB(v) 6 b(v) + µ(v)− 2}. Note that both A− and B− are nonempty
by the definition of P. So for any v ∈ B−, dA(v) = dG(v) − dB(v) > a(v) + µ(v) − 1,
implying |A| > 2. Similarly, |B| > 2.

Claim 10. For any (A,B) ∈ P, u ∈ A− and v ∈ B−, we have A ∪ {v} is not (a − 1)-
meager and every a-nice subset of A∪ {v} contains u and v; furthermore, B ∪ {u} is not
(b− 1)-meager and every b-nice subset of B ∪ {u} contains u and v.

Proof. Note that ω(A∪{v}, B\{v})−ω(A,B) = dG(v)−2dB(v)+b(v)−a(v) by (2). This
together with (4) and dB(v) 6 b(v)+µ(v)−2 implies that ω(A∪{v}, B\{v})−ω(A,B) > 1.
Thus, (A ∪ {v}, B \ {v}) cannot be an (a− 1, b− 1)-meager partition by the maximality
of ω(A,B). Since B \ {v} is (b− 1)-meager, A∪ {v} cannot be (a− 1)-meager. Similarly,
B ∪ {u} is not (b − 1)-meager. Hence there exist an a-nice subset A′ ⊆ A ∪ {v} and a
b-nice subset B′ ⊆ B ∪ {u}. Since A is (a− 1)-meager and B is (b− 1)-meager, we have
v ∈ A′ and u ∈ B′. Now, we prove that u ∈ A′ and v ∈ B′. If u /∈ A′ and v /∈ B′, then
(A′, B′) is an (a, b)-feasible pair by Proposition 6, a contradiction. Suppose by symmetry
that u ∈ A′ and v /∈ B′. Clearly, B′ ⊆ (B ∪ {u}) \ {v} and dB\{v}(u) = dB∪{u}\{v}(u) >
dB′(u) > b(u)+µ(u)−1. Thus, dA′(u) 6 dA∪{v}(u) = dG(u)−dB\{v}(u) 6 a(u)+µ(u)−2,
a contradiction.

Let A∗ ⊆ A such that A∗ ∩ A− 6= ∅. By Claim 10, B ∪ A∗ is not (b − 1)-meager and
there exists a b-nice subset of B ∪ A∗, indicating that A \ A∗ is (a − 1)-degenerate as G
has no (a, b)-feasible pair. Similarly, if B∗ ⊆ B such that B∗ ∩ B− 6= ∅, then B \ B∗ is
(b− 1)-degenerate. We point out that Claim 10 will be also used in this form frequently.

Claim 11. For any (A,B) ∈P, every vertex in A− is adjacent to every vertex in B−.

Proof. Suppose that there exist u ∈ A− and v ∈ B− such that µ(u, v) = 0. By Claim
10, there is an a-nice subset A′ ⊆ A ∪ {v} such that u ∈ A′, implying that dA′(u) >
a(u) + µ(u) − 1. However, dA′(u) 6 dA∪{v}(u) = dA(u) + µ(u, v) 6 a(u) + µ(u) − 2, a
contradiction.

Recall that both A− and B− are nonempty. By Claim 11, either |A−| = |B−| = 2 or
min{|A−|, |B−|} = 1 as G is K2,3-free.

Claim 12. For any (A,B) ∈P, we have A \ A− 6= ∅ and B \B− 6= ∅.
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Proof. For each u ∈ A−, there exists a b-nice subset B′ ⊆ B ∪ {u} by Claim 10. It
follows that dB′(y) > b(y) + µ(y)− 1 > µ(y) + 1 for each y ∈ B′, implying |NB′(y)| > 2.
If |A−| = |B−| = 2, then we let B− = {v1, v2}. Since G is K−4 -free, v1v2 /∈ E(G) by
Claim 11. Thus, NB′(v1) = NB′(v2) = {u} providing that B = B−. This leads to a
contradiction as vi ∈ B′ for some i = 1, 2, implying B \ B− 6= ∅. Similarly, A \ A− 6= ∅.
If min{|A−|, |B−|} = 1, then we assume that A− = {u}. Clearly, A \ A− 6= ∅ as |A| > 2.
Since A is (a− 1)-meager, there exists x ∈ A \ {u} such that dA\{u}(x) 6 a(x) +µ(x)− 2.
Note that dA\{u}(x) + µ(u, x) = dA(x) > a(x) + µ(x) − 1. It follows that µ(u, x) > 1
and dA(x) 6 a(x) + 2µ(x) − 2, yielding that ux ∈ E(G) and dB(x) = dG(x) − dA(x) >
b(x)− 1 > 1. Suppose that B = B− and z ∈ NB(x). Choose v = z in Claim 10, implying
z ∈ B′. Since |NB′(z)| > 2, there exists z′ ∈ B− \ {z} such that zz′ ∈ E(G). By Claim
11, {u, x, z, z′} forms a K−4 , a contradiction. Thus, B \B− 6= ∅.

For any (A,B) ∈ P, let DA = {u ∈ A | dA(u) 6 a(u) − 1} and DB = {v ∈ B |
dB(v) 6 b(v)− 1}. Clearly, DA ⊆ A− and DB ⊆ B−.

Claim 13. For any (A,B) ∈P, u ∈ A− and v ∈ B−, if either u ∈ DA or v ∈ DB, then
(A ∪ {v} \ {u}, B ∪ {u} \ {v}) ∈P. Moreover, if u ∈ DA, then µ(u, v) = µ(u), dA(u) =
a(u) − 1 and dB(v) = b(v) + µ(v) − 2; if v ∈ DB, then µ(u, v) = µ(v), dB(v) = b(v) − 1
and dA(u) = a(u) + µ(u)− 2.

Proof. Since every a-nice subset of A∪{v} contains u by Claim 10, A∪{v}\{u} is (a−1)-
meager. Similarly, B ∪ {u} \ {v} is (b− 1)-meager. Thus, (A ∪ {v} \ {u}, B ∪ {u} \ {v})
is an (a− 1, b− 1)-meager partition. By (3), ω(A ∪ {v}\{u}, B ∪ {u}\{v})− ω(A,B) =
(dG(u)− 2dA(u) + a(u)− b(u)) + (dG(v)− 2dB(v) + b(v)− a(v))− 2µ(u, v). Suppose by
symmetry that u ∈ DA. Since dA(u) 6 a(u)− 1 and dB(v) 6 b(v) + µ(v)− 2, by (4), we
have

ω(A∪{v}\{u}, B∪{u}\{v})−ω(A,B) > (2µ(u)−1)+1−2µ(u, v) = 2(µ(u)−µ(u, v)) > 0.

By the maximality of ω(A,B), ω(A∪{v}\{u}, B∪{u}\{v}) = ω(A,B). Thus, (A∪{v}\
{u}, B∪{u}\{v}) ∈P, µ(u, v) = µ(u), dA(u) = a(u)−1 and dB(v) = b(v)+µ(v)−2.

By Claim 13, DA = {u ∈ A | dA(u) = a(u)−1} and DB = {v ∈ B | dB(v) = b(v)−1};
in addition, dA(u) > a(u)− 1 and dB(v) > b(v)− 1 for each u ∈ A and v ∈ B.

Claim 14. For any (A,B) ∈P, we have min{|A−|, |B−|} = 1.

Proof. Suppose for a contradiction that A− = {u1, u2} and B− = {v1, v2}. Since G is
K−4 -free, u1u2, v1v2 /∈ E(G) by Claim 11. Note that A ∪ B− is not (a − 1)-meager by
Claim 10. It follows that B \B− is (b− 1)-degenerate as G has no (a, b)-feasible pair and
B \ B− 6= ∅ by Claim 12. Thus, there exists y ∈ B \ B− such that dB\B−(y) 6 b(y)− 1,
implying NB−(y) 6= ∅ as dB(y) > b(y)+µ(y)−1 > b(y). By Claim 11, |NB−(y)| = 1 as G is
K2,3-free, say NB−(y) = {v1}. By symmetry, A\A− is (a−1)-degenerate and there exists
x1 ∈ A \ A− such that dA\A−(x1) 6 a(x1) − 1 and |NA−(x1)| = 1, say NA−(x1) = {u1}.
Clearly, dA\{u1}(x1) = dA\A−(x1) 6 a(x1)− 1 and dB\{v1}(y) = dB\B−(y) 6 b(y)− 1.
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Since G has no (a, b)-feasible partition, either A is (a− 1)-degenerate or B is (b− 1)-
degenerate. We may assume that A is (a−1)-degenerate. Thus, either dA(u1) 6 a(u1)−1
or dA(u2) 6 a(u2) − 1. If dA(u1) 6 a(u1) − 1, then we set u := u1 and x := x1. If
dA(u1) > a(u1), then dA(u2) 6 a(u2) − 1. Clearly, A \ {u2} is (a − 1)-degenerate. Thus,
there exists x2 ∈ A \ {u2} such that dA\{u2}(x2) 6 a(x2) − 1. Note that dA\{u2}(u1) =
dA(u1) > a(u1) as u1u2 /∈ E(G). Thus, x2 6= u1 and x2 ∈ A\A−. Note also that dA(x2) >
a(x2) + µ(x2)− 1 > a(x2). This implies u2x2 ∈ E(G). Set u := u2 and x := x2. In both
cases, we have ux ∈ E(G), dA(u) 6 a(u)−1 and dA\{u}(x) 6 a(x)−1. Since G is C+

5 -free,
we have xv1, uy /∈ E(G). By Claim 13, (A0, B0) := (A∪ {v1} \ {u}, B ∪ {u} \ {v1}) ∈P.
Observe that dA0(x) = dA\{u}(x) 6 a(x) − 1 and dB0(y) = dB\{v1}(y) 6 b(y) − 1. Thus,
x ∈ A−0 and y ∈ B−0 , yielding xy ∈ E(G) by Claim 11. It follows that {u1, u2, v1, v2, x, y}
contains an L3, a contradiction.

For any (A,B) ∈P, define A= = {x ∈ A | dA(x) = a(x) + µ(x)− 1} and B= = {y ∈
B | dB(y) = b(y) +µ(y)− 1}. A path xuvy is called a special path with respect to (A,B),
if u ∈ A−, v ∈ B−, x ∈ A= and y ∈ B=.

Claim 15. For any special path xuvy with respect to (A,B) ∈ P, if either u ∈ DA

or v ∈ DB, then either vx ∈ E(G) or uy ∈ E(G). Moreover, if vx ∈ E(G), then
NA=(u) = {x}; if uy ∈ E(G), then NB=(v) = {y}.

Proof. Suppose that vx, uy /∈ E(G). We may assume by symmetry that u ∈ DA. By
Claim 13, (A1, B1) := (A∪{v}\{u}, B∪{u}\{v}) ∈P, µ(u, v) = µ(u), dA(u) = a(u)−1
and dB(v) = b(v) + µ(v) − 2. This together with dA1(v) = dG(v) − dB(v) − µ(u, v) and
dB1(u) = dG(u)− dA(u)−µ(u, v) implies v ∈ A−1 and u ∈ B−1 . Since x ∈ A= and y ∈ B=,
we have dA1(x) = dA(x)−µ(u, x) = a(x)+µ(x)−1−µ(u, x) and dB1(y) = dB(y)−µ(v, y) =
b(y) + µ(y)− 1− µ(v, y), indicating x ∈ A−1 and y ∈ B−1 . This contradicts Claim 14.

Suppose that vx ∈ E(G) and there exists x′ ∈ NA=(u) \ {x}. Clearly, x′uvy forms
another special path with respect to (A,B). It follows that either uy ∈ E(G) or vx′ ∈
E(G). In both cases, we can find a K−4 , a contradiction. Similarly, if uy ∈ E(G), then
NB=(v) = {y}.

Claim 16. For any (A,B) ∈ P, let u ∈ A− and v ∈ B−. If u ∈ DA and x ∈ NA=(u)
with vx /∈ E(G), then (A ∪ {v} \ {x}, B ∪ {x} \ {v}) ∈ P; if v ∈ DB and y ∈ NB=(v)
with uy /∈ E(G), then (A ∪ {y} \ {u}, B ∪ {u} \ {y}) ∈P.

Proof. Assume that u ∈ DA and x ∈ NA=(u) with vx /∈ E(G). We first show that
B ∪ {x} \ {v} is (b − 1)-meager. If not, then there is a b-nice subset B′ ⊆ B ∪ {x} \
{v}. This implies that x ∈ B′ as B is (b − 1)-meager. Since vx /∈ E(G) and x ∈ A=,
dB′(x) 6 dB∪{x}\{v}(x) = dB(x) = dG(x) − dA(x) = b(x) + µ(x) − 2, contradicting with
x ∈ B′. Now, we prove that A ∪ {v} \ {x} is (a − 1)-meager. Otherwise, there is an
a-nice subset A′ ⊆ A ∪ {v} \ {x}. Since A is (a − 1)-meager, we have v ∈ A′ and
dA′(v) > a(v) + µ(v) − 1. Note that dB(v) = b(v) + µ(v) − 2 by Claim 13 as u ∈ DA.
It follows that dA′(v) 6 dA∪{v}\{x}(v) = dA(v) = a(v) + µ(v) − 1 as vx /∈ E(G). Thus,
dA′(v) = dA(v), implying u ∈ A′ as uv ∈ E(G). The fact dA′(u) 6 dA∪{v}\{x}(u) =
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dA(u) + µ(u, v) − µ(u, x) 6 a(u) + µ(u) − 2 also indicates that u /∈ A′, a contradiction.
Therefore, (A∪{v}\{x}, B∪{x}\{v}) is an (a−1, b−1)-meager partition. With simple
calculations, we have ω((A∪ {v} \ {x}, B ∪ {x} \ {v})) = ω(A,B) in view of (3) and (4).
Thus, (A ∪ {v} \ {x}, B ∪ {x} \ {v}) ∈ P. Similarly, if v ∈ DB and y ∈ NB=(v) with
uy /∈ E(G), then (A ∪ {y} \ {u}, B ∪ {u} \ {y}) ∈P.

Fix a partition (A,B) ∈P. By Claim 14, we may assume by symmetry that

A− = {u} and |B−| > |A−|.

By Claim 10, B ∪{u} is not (b− 1)-meager. Since G has no (a, b)-feasible pair, A \ {u} is
(a−1)-degenerate, implying that there exists x1 ∈ A\{u} such that dA\{u}(x1) 6 a(x1)−1.
Note that dA(x1) > a(x1) + µ(x1)− 1 as x1 ∈ A \A− and dA\{u}(x1) = dA(x1)− µ(u, x1).
It follows that µ(u, x1) = µ(x1), dA\{u}(x1) = a(x1) − 1 and dA(x1) = a(x1) + µ(x1) − 1.
Hence,

x1 ∈ NA=(u).

Recall that either A is (a − 1)-degenerate or B is (b − 1)-degenerate. It follows that
either DA 6= ∅ or DB 6= ∅. In what follows, we may assume that

DB 6= ∅. (5)

Otherwise, let DB = ∅. Clearly, B is b-feasible and A is (a − 1)-degenerate. Thus,
DA = {u}. If |B−| = 1, then the case can be reduced to (5) by symmetry as DA 6= ∅.
Suppose that |B−| > 2 and v1, v2 ∈ B−. Since G is K−4 -free, either x1v1 /∈ E(G) or
x1v2 /∈ E(G) by Claim 11. By symmetry, assume that x1v1 /∈ E(G). Clearly, (A2, B2) :=
(A∪{v1} \ {u}, B ∪{u} \ {v1}) ∈P, µ(u, v) = µ(u) and dB(v) = b(v) +µ(v)− 2 for each
v ∈ B− by Claim 13. It is easy to check that v1 ∈ A−2 , x1 ∈ DA2 ⊆ A−2 and u ∈ B−2 . Thus,
B−2 = {u} by Claim 14. Again, this can be reduced to (5) as |B−2 | = 1 and DA2 6= ∅.

For each v ∈ DB and the fixed vertex x1, let Av = A∪{v}\{x1} andBv = B∪{x1}\{v}.

Claim 17. For each v ∈ DB, if x1v /∈ E(G), then (i) µ(v) = 1; (ii) (Av, Bv) ∈ P,
u ∈ A−v , v ∈ A=

v and x1 ∈ B−v .

Proof. (i) By Claim 13, (A3, B3) := (A ∪ {v} \ {u}, B ∪ {u} \ {v}) ∈ P, µ(v) = µ(u, v)
and dA(u) = a(u) + µ(u) − 2 as v ∈ DB. Recall that dA\{u}(x1) = a(x1) − 1. Thus,
dA3(x1) = dA\{u}(x1) = a(x1)− 1 as x1v /∈ E(G), yielding x1 ∈ DA3 . Note that dB3(u) =
dG(u)− dA(u)− µ(u, v) = b(u) + µ(u)− 1− µ(u, v). This implies u ∈ B−3 as µ(u, v) > 1.
Applying Claim 13 with (A3, B3) ∈ P, x1 ∈ DA3 and u ∈ B−3 , we have dB3(u) =
b(u) + µ(u)− 2. It follows that µ(u, v) = 1, implying µ(v) = 1.

(ii) Recall that dA(u) = a(u) + µ(u) − 2 and µ(u, v) = µ(v) = 1. Since v ∈ DB and
x1 ∈ A=, we have dAv(u) = dA(u) + µ(u, v) − µ(u, x1) = a(u) + µ(u) − 1 − µ(u, x1),
dAv(v) = dG(v)− dB(v) = a(v) and dBv(x1) = dG(x1)− dA(x1) = b(x1) + µ(x1)− 2. Now,
we show that Bv is (b − 1)-meager. If not, then there exists a b-nice subset B′ ⊆ Bv.
Since B is (b − 1)-meager, we have x1 ∈ B′ and dBv(x1) > dB′(x1) > b(x1) + µ(x1) − 1,
a contradiction. Next, we prove that Av is (a− 1)-meager. Otherwise, there is an a-nice
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subset A′ ⊆ Av. Since A is (a − 1)-meager, we have v ∈ A′ and dAv(v) > dA′(v) >
a(v) +µ(v)− 1 = a(v). This implies that dAv(v) = dA′(v). Thus, u ∈ A′ as uv ∈ E(G). It
follows that dAv(u) > dA′(u) > a(u) +µ(u)− 1, a contradiction. Therefore, (Av, Bv) is an
(a − 1, b − 1)-meager partition. Simple calculations together with (3) and (4) show that
ω(Av, Bv) = ω(A,B), implying (Av, Bv) ∈ P. Moreover, u ∈ A−v , v ∈ A=

v and x1 ∈ B−v
by noting that µ(u, x1) > 1 and µ(v) = 1.

Now, we conclude that DB is an independent set. Otherwise, there is an edge vv′

contained in G[DB]. Since G is K−4 -free, we have x1v, x1v
′ /∈ E(G). By Claim 17,

µ(v) = 1 and (Av, Bv) ∈ P. It follows that dBv(v′) = dB(v′) − µ(v, v′) = b(v′) − 2,
contradicting Claim 13.

Note that B \DB is (b−1)-degenerate by Claim 10 as B \DB 6= ∅ by Claim 12. Thus,
there exists y ∈ B \DB such that dB\DB

(y) 6 b(y)− 1.

Claim 18. For each y ∈ B \DB satisfying dB\DB
(y) 6 b(y)− 1, we have |NDB

(y)| = 1.

Proof. Note that dB(y) = dB\DB
(y) + dDB

(y) > b(y) as y ∈ B \ DB. It follows that
dDB

(y) > 1. This together with Claim 11 yields that 1 6 |NDB
(y)| 6 2 as G is K2,3-

free. Suppose that NDB
(y) = {v1, v2} and v1v2 /∈ E(G) as DB is independent. Clearly,

dB(y) = dB\DB
(y) + dDB

(y) 6 b(y) − 1 + µ(v1, y) + µ(v2, y). Since G is {C+
5 , K2,3}-free,

x1v1, x1v2, x1y /∈ E(G). By Claim 17, (Av1 , Bv1) ∈ P, u ∈ A−v1 and v1 ∈ A=
v1

. Note also
that v2 ∈ DBv1

as dBv1
(v2) = dB(v2) = b(v2) − 1. Since dBv1

(y) = dB(y) − µ(v1, y) 6
b(y)− 1 + µ(v2, y) 6 b(y) + µ(y)− 1, we have either y ∈ B−v1 or y ∈ B=

v1
. If y ∈ B−v1 , then

uy ∈ E(G) by Claim 11; if y ∈ B=
v1

, then v1uv2y forms a special path with respect to
(Av1 , Bv1), indicating that either uy ∈ E(G) or v1v2 ∈ E(G) by Claim 15. In both cases,
{u, v1, v2, y} contains a K−4 , a contradiction.

By Claim 18, we can fix such a vertex y ∈ B \DB and assume that

NDB
(y) = {v1}

for some vertex v1 ∈ DB. It follows that dB(y) = dB\DB
(y)+dDB

(y) 6 b(y)−1+µ(v1, y) 6
b(y) + µ(y) − 1, thus either y ∈ B− \ DB or y ∈ B=. If y ∈ B− \ DB, then uy ∈ E(G)
by Claim 11. If y ∈ B=, then x1uv1y forms a special path with respect to (A,B). Since
v1 ∈ DB, we have either x1v1 ∈ E(G) or uy ∈ E(G) by Claim 15. Hence, we conclude

either x1v1 ∈ E(G) or uy ∈ E(G). (6)

Claim 19. If uy ∈ E(G), then µ(x1) = 1; if x1v1 ∈ E(G), then y ∈ B=, µ(v1, y) =
µ(y) = 1, dB(y) = b(y) and dB\DB

(y) = b(y)− 1.

Proof. If uy ∈ E(G), then x1v1, x1y /∈ E(G) as G is K−4 -free. By Claim 17, (Av1 , Bv1) ∈
P, u ∈ A−v1 and dAv1

(u) = a(u) + µ(u) − 1 − µ(u, x1). Note that y ∈ DBv1
as dBv1

(y) =
dB\DB

(y) 6 b(y) − 1. It follows that dAv1
(u) = a(u) + µ(u) − 2 by Claim 13, implying

µ(u, x1) = 1. The desired result follows by noting that µ(x1) = µ(u, x1).
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If x1v1 ∈ E(G), then uy, x1y /∈ E(G) as G is K−4 -free. Clearly, y ∈ B=, µ(y) = µ(v1, y)
and dB\DB

(y) = b(y)− 1. By Claim 16, (A4, B4) := (A ∪ {y} \ {u}, B ∪ {u} \ {y}) ∈P.
Note that dA4(x1) = dA\{u}(x1) = a(x1)− 1 and dB4(v1) = dB(v1) + µ(u, v1)− µ(v1, y) 6
b(v1) +µ(v1)−2. Thus, x1 ∈ DA4 and v1 ∈ B−4 . By Claim 13, dB4(v1) = b(v1) +µ(v1)−2,
indicating µ(v1, y) = 1. Thus, µ(y) = µ(v1, y) = 1, dB(y) = b(y) and dB\DB

(y) =
b(y)− 1.

Now, we may further assume that

|DB| > 2. (7)

Otherwise, DB = {v1} as v1 ∈ DB. If uy ∈ E(G), then u ∈ A−v1 and x1, y ∈ DBv1
by

Claim 17 and the proof of Claim 19. Thus, A−v1 = {u} by Claim 14 and |DBv1
| > 2. If

x1v1 ∈ E(G), then v1 ∈ B−4 and x1, y ∈ DA4 by the proof of Claim 19. Again, B−4 = {v1}
by Claim 14 and |DA4| > 2. Thus, we can reduce both cases to (7), as desired.

Let D = DB ∪{y}. It follows from (6) and (7) that ND(v) = ∅ for each v ∈ DB \ {v1}
as G is {K−4 , C+

5 }-free and DB is independent. This implies that dB\D(v) = dB(v) =
b(v) − 1 > 1, i.e., B \ D 6= ∅. By Claim 10, B \ D is (b − 1)-degenerate. Thus, there
exists z ∈ B \D such that dB\D(z) 6 b(z)−1. This together with dB(z) > b(z) gives that
ND(z) 6= ∅ and

dB(z) = dB\D(z) + dD(z) 6 b(z)− 1 +
∑

x∈ND(z)

µ(x, z). (8)

In what follows, we proceed our proof by considering ND(z) according to (6).
Case 1. x1v1 ∈ E(G). By Claim 19, we have y ∈ B=, µ(y) = 1, dB(y) = b(y) and

dB\DB
(y) = b(y)− 1. We first establish the following easy but useful claim.

Claim 20. (i) There exists w ∈ NA=(x1) such that uw /∈ E(G), µ(x1, w) = µ(w) and
dA\{u,x1}(w) = a(w)− 1. (ii) If there exists y′ ∈ NB=(y), then v1y

′ ∈ E(G).

Proof. (i) Let U = {u, x1}. Clearly, A \ U 6= ∅ as dA\U(x1) = dA\{u}(x1) = a(x1)− 1 > 1.
By Claim 10, A \U is (a− 1)-degenerate, implying that there exists w ∈ A \U such that
dA\U(w) 6 a(w) − 1. It follows that dU(w) = dA(w) − dA\U(w) > a(w) + µ(w) − 1 −
(a(w) − 1) = µ(w) > 1, i.e., NU(w) 6= ∅. Thus, |NU(w)| = 1 as G is K−4 -free, implying
dU(w) 6 µ(w). Then dU(w) = µ(w), dA(w) = a(w) + µ(w)− 1 and dA\U(w) = a(w)− 1.
Since w ∈ A= and NA=(u) = {x1} by Claim 15, we have uw /∈ E(G), x1w ∈ E(G) and
µ(x1, w) = µ(w).

(ii) Suppose that y′ ∈ NB=(y) such that v1y
′ /∈ E(G). Since G is {K−4 , C+

5 }-free,
we have x1y, uy, uy

′ /∈ E(G). By Claim 13, we have (A5, B5) := (A ∪ {v1} \ {u}, B ∪
{u} \ {v1}) ∈ P together with the following formulas: (i) dA5(v1) = dA(v1) − µ(u, v1) =
a(v1) + µ(v1) − 2; (ii) dB5(u) = dB(u) − µ(u, v1) 6 b(u) + µ(u) − 2; (iii) dA5(x1) =
dA(x1)+µ(v1, x1)−µ(u, x1) 6 a(x1)+µ(x1)−1; (iv) dB5(y) = dB(y)−µ(v1, y) = b(y)−1;
(v) dB5(y

′) = dB(y′) = b(y′) + µ(y′)− 1. It follows that v1 ∈ A−5 , u ∈ B−5 , x1 ∈ A−5 ∪ A=
5 ,

y ∈ DB5 ⊆ B−5 and y′ ∈ B=
5 . By Claim 14, A−5 = {v1}, implying x1 ∈ A=

5 . Thus,
x1v1yy

′ forms a special path with respect to (A5, B5). By Claim 15, either x1y ∈ E(G) or
v1y
′ ∈ E(G) as y ∈ DB5 , a contradiction.
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Now, we consider ND(z) and assert that v1 /∈ ND(z). Otherwise, let v1z ∈ E(G).
Clearly, uw, uy, uz, wy, x1y, wv1, x1z /∈ E(G) and NDB

(z) = {v1} as G is {K−4 , C+
5 }-free.

We focus on the partition (A4, B4) = (A ∪ {y} \ {u}, B ∪ {u} \ {y}) ∈ P defined in
the second part of the proof of Claim 19. Clearly, x1, y ∈ DA4 ⊆ A−4 , v1 ∈ B−4 and
w ∈ A=

4 as dA4(w) = dA(w) = a(w) + µ(w) − 1. Note that dB4(z) = dB(z) − µ(y, z) 6
b(z)− 1 +

∑
x∈NDB

(z) µ(x, z) by (8). It follows that z ∈ B=
4 as NDB

(z) = {v1} and z /∈ B−4
by Claim 14. Then wx1v1z forms a special path with respect to (A4, B4). By Claim 15,
either wv1 ∈ E(G) or x1z ∈ E(G) as x1 ∈ DA4 , a contradiction. We further show that
there exists v ∈ DB \ {v1} such that v ∈ ND(z). Otherwise, ND(z) = {y}. In view of (8),
we know z ∈ B− ∪ B=. If z ∈ B−, then {u, v1, x1, y, z} contains a C+

5 as uz ∈ E(G) by
Claim 11. Thus, z ∈ NB=(y), implying v1 ∈ ND(z) by Claim 20(ii), a contradiction.

Claim 21. ND(z) = {v, y} with µ(z) = 1 and dB(z) = b(z) + 1.

Proof. Note that 1 6 |NDB
(z)| 6 2 as G is K2,3-free. Note that x1v, x1y, x1z, wv, v1v, vy /∈

E(G) as G is {K−4 , C+
5 }-free. By Claim 17, µ(v) = µ(u, v) = 1 and (Av, Bv) ∈P; more-

over, u ∈ A−v and x1 ∈ B−v . Note also that dAv(w) = dA(w) − µ(x1, w) = dA\{u,x1}(w) =
a(w) − 1. Thus, u,w ∈ A−v and x1 ∈ B−v , implying B−v = {x1} by Claim 14. If
|NDB

(z)| = 2, then there exists v′ ∈ DB \ {v1, v} such that x1v
′, vv′ /∈ E(G) as G is

K−4 -free. Note that dBv(v′) = dB(v′) = b(v′) − 1, indicating v′ ∈ DBv ⊆ B−v , a contra-
diction. Hence, NDB

(z) = {v}. This implies that 1 6 |ND(z)| 6 2. If |ND(z)| = 1, then
dBv(z) = dB(z)−µ(v, z) = dB\D(z) 6 b(z)−1, thus z ∈ DBv ⊆ B−v , a contradiction. Thus,
we conclude that ND(z) = {v, y}. Observe that z ∈ B \ B−; otherwise, {u, v1, x1, y, z}
contains a C+

5 as uz ∈ E(G) by Claim 11. Note that µ(v) = µ(y) = 1 by Claims 17 and
19 as x1v, uy /∈ E(G). Hence, b(z) + µ(z) − 1 6 dB(z) 6 b(z) + 1 by (8), giving that
µ(z) 6 2. If µ(z) = 2, then dB(z) = b(z) + 1 and z ∈ B=. It follows that z ∈ NB=(y),
implying v1z ∈ E(G) by Claim 20(ii), a contradiction. Hence, µ(z) = 1 and z /∈ B=,
indicating dB(z) = b(z) + 1.

u

v

v1

x1w y
z

A−

A=

DB

B=

(A,B)

u

u′

x1

v
z′

v1yz

DAv

A=
v

B−v

B=
v

(Av, Bv)

y

u

v1

z′
v x1

u′

z

DA7

A=
7

B−7

B=
7

(A7, B7)

Figure 1: Partitions in P

Note that (Av, Bv) ∈P by Claim 17; additionally, u ∈ A−v , v ∈ A=
v and x1 ∈ B−v . In

what follows, we show that B−v = {x1}, u,w ∈ DAv , v1 ∈ NB=
v

(x1) with dBv\{x1}(v1) =
b(v1)− 1, y ∈ NB=

v
(v1) with dBv\{x1,v1}(y) = b(y)− 1, and v ∈ NA=

v
(u) with dAv\DAv

(v) =

the electronic journal of combinatorics 28(2) (2021), #P2.43 11



a(v)− 1. If so, we may view Bv, Av as the new parts A, B by the symmetry between the
functions a, b, and make sure that we are still in Case 1 as v1u ∈ E(G).

Recall that µ(v) = µ(y) = 1. Since G is {K−4 , C+
5 }-free, we have x1v, x1y, vy, uy /∈

E(G). Note that dAv(w) = dA\{u,x1}(w) = a(w) − 1 and dBv(v1) = dB(v1) + µ(x1, v1) =
b(v1) − 1 + µ(x1, v1) 6 b(v1) + µ(v1) − 1. It follows that w ∈ DAv and v1 ∈ B−v ∪ B=

v .
Since u,w ∈ A−v and x1 ∈ B−v , we have B−v = {x1} and v1 ∈ B=

v by Claim 14. Thus,
dBv(v1) = b(v1) + µ(v1) − 1 and µ(x1, v1) = µ(v1). This implies that dBv\{x1}(v1) =
dBv(v1)−µ(x1, v1) = b(v1)−1 and dBv\{x1,v1}(y) = dB(y)−µ(v1, y) = b(y)−1. In addition,
NA−v

(v) = {u} as G is C+
5 -free and dAv\DAv

(v) = dAv(v)− µ(u, v) = a(v)− 1. It remains
to show that u ∈ DAv . By Claim 10, Av \DAv is (a − 1)-degenerate. Thus, there exists
w′ ∈ Av \ DAv such that dAv\DAv

(w′) 6 a(w′) − 1 and |NDAv
(w′)| = 1 by Claim 18. We

may assume that NDAv
(w′) = {u1} and u /∈ DAv . Clearly, u1v1 /∈ E(G) and w′ 6= u as G is

K−4 -free. Now, we may view Bv, Av as the new parts A, B by the symmetry between the
functions a, b, and x1, u1, v1 play the roles in (Bv, Av) that u, v, x1 occupied in the original
partition (A,B), respectively. Let A6 = Av ∪ {v1} \ {u1} and B6 = Bv ∪ {u1} \ {v1}.
By Claim 17, we have µ(u1) = 1, (A6, B6) ∈ P, v1 ∈ A−6 and x1 ∈ B−6 . Note that
dA6(w

′) = dAv\DAv
(w′) 6 a(w′) − 1 and dB6(y) = dBv(y) − µ(v1, y) = b(y) − 1. Thus,

v1, w
′ ∈ A−6 and x1, y ∈ B−6 . This contradicts Claim 14. Hence, u ∈ DAv .

Now, we consider the partition (Bv, Av), which satisfies all the conditions of Case 1
by the above argument. We mention that x1, u, v1, v, y play the roles in (Bv, Av) that
u, v1, x1, y, w occupied in the original partition (A,B), respectively. By Claim 21, we may
assume that there exist u′ ∈ DAv \{u} and z′ ∈ Av \(DAv ∪{v}) such that NDAv∪{u}(z

′) =
{v, u′}, µ(u′) = µ(z′) = 1 and dAv(z′) = a(z′) + 1.

Let A7 = Av ∪ {y} \ {u′} and B7 = Bv ∪ {u′} \ {y}. Since G is {K−4 , C+
5 }-free, we

know that u′y, u′u, u′v1, u
′v, x1y, uy, vy /∈ E(G). Then we have the following equalities:

(i) dA7(y) = dAv(y) = dG(y) − dBv(y) = a(y) − 1; (ii) dA7(u) = dAv(u) = a(u) − 1;
(iii) dA7(v) = dAv(v) = a(v); (iv) dB7(u

′) = dBv(u′) = dG(u′) − dAv(u′) = b(u′); (v)
dB7(x1) = dBv(x1) + µ(u′, x1) = b(x1) + µ(x1) − 1; (vi) dB7(v1) = dBv(v1) − µ(v1, y) =
b(v1) + µ(v1) − 2. We claim that (A7, B7) ∈ P. Clearly, A7 is (a − 1)-meager. If not,
then there is an a-nice subset A′ ⊆ A7. Since Av is (a − 1)-meager, we have y ∈ A′ and
dA7(y) > dA′(y) > a(y)+µ(y)−1 = a(y), a contradiction. Now we prove that B7 is (b−1)-
meager. If not, then there is a b-nice subset B′ ⊆ B7. Since Bv is (b− 1)-meager, we have
u′ ∈ B′ and dB7(u

′) > dB′(u
′) > b(u′) +µ(u′)− 1 = b(u′). Thus, dB7(u

′) = dB′(u
′) = b(u′),

implying x1 ∈ B′ as x1u ∈ E(G). Then, dB7(x1) > dB′(x1) > b(x1) + µ(x1) − 1. It
follows that dB7(x1) = dB′(x1) = b(x1) + µ(x1) − 1, implying v1 ∈ B′ as v1x1 ∈ E(G).
Hence, dB7(v1) > dB′(v1) > b(v1) + µ(v1) − 1, a contradiction. Thus, (A7, B7) is an
(a− 1, b− 1)-meager partition. By (3) and (4), ω(A7, B7) = ω(A,B), as claimed.

Note that u, y ∈ DA7 , v ∈ A=
7 , v1 ∈ B−7 and u′, x1 ∈ B=

7 . In what follows, we prove
that B−7 = {v1}, x1 ∈ NB=

7
(v1) with dB7\{v1}(x1) = b(x1) − 1, and v ∈ NA=

7
(u) with

dA7\DA7
(v) = a(v)− 1, If so, we may view B7, A7 as the new parts A, B by the symmetry

between the functions a, b, and again we are still in Case 1 as x1u ∈ E(G).
By Claim 14, B−7 = {v1}. Now, we show that dB7\{v1}(x1) = b(x1) − 1. Note that

dB7\{v1}(x1) = dB7(x1)−µ(v1, x1) = b(x1) +µ(x1)−1−µ(v1, x1) > b(x1)−1. It suffices to
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prove that dB7\{v1}(x1) 6 b(x1)−1. Suppose for a contradiction that dB7\{v1}(x1) > b(x1).
By Claim 10, B7 \ {v1} is (b− 1)-degenerate as G has no (a, b)-feasible pair. This implies
that there exists y′′ ∈ B7 \ {v1} such that dB7\{v1}(y

′′) 6 b(y′′) − 1. Clearly, y′′ 6= x1
and dB7(y

′′) > b(y′′) + µ(y′′) − 1. Note also that dB7(y
′′) = dB7\{v1}(y

′′) + µ(v1, y
′′) 6

b(y′′) − 1 + µ(y′′). Thus, dB7(y
′′) = b(y′′) + µ(y′′) − 1 and y′′ ∈ B=

7 . Then vuv1y
′′ forms

a special path with respect to (A7, B7). By Claim 15, either v1v ∈ E(G) or uy′′ ∈ E(G)
as u ∈ DA7 . In either case, we have a K−4 , a contradiction. It remains to prove that
dA7\DA7

(v) = a(v) − 1. By Claim 11, we have NDA7
(v) = {u} as G is C+

5 -free. Thus,
dA7\DA7

(v) = dA7(v)− µ(u, v) = a(v)− 1 (by noting that µ(v) = 1), as desired.
Now, we consider the partition (B7, A7), and v1, u, x1, v play the roles in (B7, A7)

that u, v1, x1, y occupied in the original partition (A,B), respectively. We show that
u′z, uz′ ∈ E(G); if so, then {u, v, z, u′, z′} contains a C+

5 , a contradiction. Recall that
µ(z) = 1 and dB(z) = b(z)+1 by Claim 21. If u′z /∈ E(G), then dB7(z) = dBv(z)−µ(y, z) =
dB(z)− µ(v, z)− µ(y, z) = b(z)− 1, implying z ∈ DB7 . Thus, u, y ∈ A−7 and v1, z ∈ B−7 ,
contradicting Claim 14. Next, we show that uz′ ∈ E(G). Since G is K2,3-free, yz′ /∈ E(G).
Note that µ(z′) = 1 and dAv(z′) = a(z′) + 1. Thus, dA7(z

′) = dAv(z′) − µ(u′, z′) = a(z′),
implying z′ ∈ A=

7 . By Claim 20(ii), uz′ ∈ E(G) as z′ ∈ NA=
7

(v). Thus, we complete the
proof of Case 1.

Case 2. uy ∈ E(G). Clearly, x1v1 /∈ E(G) and NDB
(y) = {v1}. By Claims 17 and

19, µ(v1) = µ(x1) = 1. Note that 1 6 |ND(z)| 6 2 as G is K2,3-free. If |ND(z)| = 2,
then yz ∈ E(G); otherwise, we have z ∈ B \DB such that dB\DB

(z) 6 b(z)− 1, implying
|NDB

(z)| = 1 by Claim 18, a contradiction. It follows that v1z /∈ E(G) as G is K−4 -free.
Thus, there exists v ∈ DB \ {v1} such that vz ∈ E(G) and {u, v, v1, y, z} contains a C+

5 ,
a contradiction. Hence, |ND(z)| = 1 and dB(z) 6 b(z)− 1 + µ(z) by (8).

Claim 22. ND(z) = {v2} for some v2 ∈ DB \ {v1}.

Proof. Suppose not. Clearly, z ∈ B= as G is K−4 -free. It follows that dB\D(z) = b(z)− 1
and dD(z) = µ(z). If ND(z) = {v1}, then x1uv1z forms a special path with respect
to (A,B). Since v1 ∈ DB, either x1v1 ∈ E(G) or uz ∈ E(G) by Claim 15, implying
a K−4 in both cases, a contradiction. If ND(z) = {y}, then dB(z) = b(z) + µ(z) −
1 and µ(y, z) = µ(z). Since G is {K−4 , C+

5 }-free, we have x1v1, x1y, x1z, v1z /∈ E(G).
By Claim 17, (Av1 , Bv1) ∈ P, u ∈ A−v1 , v1 ∈ A=

v1
and x1 ∈ DBv1

⊆ B−v1 . Note that
dBv1

(y) = dB(y) − µ(v1, y) = dB\DB
(y) 6 b(y) − 1. It follows that y ∈ DBv1

⊆ B−v1 .
Thus, A−v1 = {u} by Claim 14. Since G is C+

5 -free, we have NDBv1
(z) = {y}. Thus,

dBv1\DBv1
(z) = dBv1

(z) − µ(y, z) = dB(z) − µ(y, z) = b(z) − 1. Moreover, v1 ∈ A=
v1

with

dAv1\{u}(v1) = dAv1
(v1) − µ(u, v1) = a(v1) − 1. Now, we view Av1 Bv1 as the new parts

A, B and the case can be reduced to Case 1 as v1y ∈ E(G). In fact, v1, u, y, z play
the roles in (Av1 , Bv1) that x1, u, v1, y occupied in the original partition (A,B) of Case 1,
respectively.

Let Z := {z∗ ∈ B \D : dB\D(z∗) 6 b(z∗)− 1}. Clearly, z ∈ Z ⊆ B− ∪ B=. By Claim
22, for each z∗ ∈ Z, we may assume that ND(z∗) = {v∗} for some v∗ ∈ DB \ {v1}. Now,
we show that uz∗ ∈ E(G) for each z∗ ∈ Z. If z∗ ∈ B−, then we’re done by Claim 11.
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Thus, z∗ ∈ B= and x1uv
∗z∗ forms a special path with respect to (A,B). By Claim 15,

either x1v
∗ ∈ E(G) or uz∗ ∈ E(G). If x1v

∗ ∈ E(G), then the case can be reduced to Case
1, where z∗ and v∗ play the roles of y and v1. Thus, we conclude that uz∗ ∈ E(G) for
each z∗ ∈ Z.

Note that ND∪Z(y) = NDB
(y) as yz∗ /∈ E(G) for each z∗ ∈ Z. Thus, dB\(D∪Z)(y) =

dB\DB
(y) = b(y) − 1 > 1, i.e., B \ (D ∪ Z) 6= ∅. By Claim 10, B \ (D ∪ Z) is (b − 1)-

degenerate. Hence, there exists z′ ∈ B\(D∪Z) such that dB\(D∪Z)(z
′) 6 b(z′)−1, implying

|ND∪Z(z′)| > 1 by noting that dB(z′) > b(z′). Since u is adjacent to each vertex in D∪Z,
we have |ND∪Z(z′)| 6 2 as G is K2,3-free. If |ND∪Z(z′)| = 2, then ND∪Z(z′) * DB by Claim
18. It is easy to check that G contains a K−4 or C+

5 , a contradiction. Let ND∪Z(z′) = {y′}.
If y′ ∈ D, then dB\D(z′) = dB\(D∪Z)(z

′) 6 b(z′) − 1, indicating z′ ∈ Z, a contradiction.
Thus, y′ ∈ Z and dB\(DB∪{y′})(z

′) = dB\(D∪Z)(z
′) 6 b(z′) − 1. Now, we may view y′, z′

and DB ∪{y′} as the new y, z and D, respectively. Since uy′ ∈ E(G), we are still in Case
2. By Claim 22, we have NDB∪{y′}(z

′) ⊆ DB. This leads to a contradiction as y′ /∈ DB,
completing the proof of Case 2. Thus, we complete the proof of Theorem 5.
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