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Abstract

By a suitable representation in the Euclidean plane, each circulant graph G, i.e.
a graph with a circulant adjacency matrix A(G), reveals its rotational symmetry
and, as the drawing’s most notable feature, a central hole, the so-called geometric
kernel of G.

Every integral circulant graph G on n vertices, i.e. satisfying the additional
property that all of the eigenvalues of A(G) are integral, is isomorphic to some
graph ICG(n,D) having vertex set Z/nZ and edge set {{a, b} : a, b ∈ Z/nZ, gcd(a−
b, n) ∈ D} for a uniquely determined set D of positive divisors of n. A lot of recent
research has revolved around the interrelation between graph-theoretical, algebraic
and arithmetic properties of such graphs. In this article we examine arithmetic
implications imposed on n by a geometric feature, namely the size of the geometric
kernel of ICG(n,D).
Mathematics Subject Classifications: 05C50, 05C62; Secondary 68R10

1 Introduction

A graph G is called circulant if G has a circulant adjacency matrix A(G). Integral
circulant graphs, i.e. circulant graphs additionally satisfying Spec(G) := Spec(A(G)) ⊆ Z,
are fascinating objects since they interconnect graph theory with (linear) algebra and,
in particular, number theory. Algebraic properties of these graphs have been studied
quite intensely in recent years (see [8, 9, 11] for some results and further references).
By the works of So [16] and Klotz and T. Sander [7] each integral circulant graph
ICG(n,D) = (V,E) is characterised by its order n and a non-empty set D ⊆ D(n) :=
{d > 0 : d | n} of positive divisors of n in such a way that V = Z/nZ and E = {{a, b} :
a, b ∈ Z/nZ, gcd(a − b, n) ∈ D}. Since graphs usually are assumed to have no loops, we
require that n /∈ D.
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A motivation for investigating spectra of graphs is to find out to which extent the
eigenvalues of a graph G characterise G. According to a conjecture of So [16] different
integral circulant graphs have different spectra, taking multiplicities of eigenvalues into
account. In [6, Corollaries 11.2 and 11.3] this was confirmed by Klin and Kovács as
a consequence of Zibin’s conjecture for arbitrary circulant graphs, which in turn follows
from work of Muzychuk [10] on the structure of Schur rings over cyclic groups. Indepen-
dently, Dobson and Morris [3] proved Toida’s conjecture by using the classification
of finite simple groups and deduced Zibin’s more general conjecture from it.

As contrasted with those profound tools, T. Sander and the author (see [15], also for
further references) showed that for arbitrary n and so-called multiplicative divisor sets D
in particular simple combinatorial arguments can be used to deal with So’s conjecture.
In [12] the author clarified the interplay between the dimension of the (algebraic) kernel of
ICG(n,D) and the graph itself for all positive integers n and all multiplicative divisor sets
D. In [13] the work on the kernel of integral circulant graphs was extended to non-zero
eigenvalues.

To complement the knowledge on algebraic features of an integral circulant graph
as desribed above, we shall examine a geometric property of ICG(n,D) by looking at a
suitable drawing of the graph and by deducing arithmetic implications imposed on n by
the size of a central hole called the geometric kernel.

In order to visualise the high degree of rotational symmetry of an (integral) circulant
graph G it is appropriate to make a drawing of G by placing its nodes 0, 1, 2, . . . , n−1, say,
equidistantly along the edge of a circle and connect each pair a, b ∈ {0, 1, 2, . . . , n− 1} '
Z/nZ of distinct neighbouring nodes by the line segment ab. A typical example is the
drawing of the graph ICG(12, {2, 4}) as shown in Figure 1.
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Figure 1: Drawing of the integral circulant graph ICG(12, {2, 4})

In [14] we proved that the central hole in the drawing of any circulant graph on n > 3
vertices is a regular n-gon, and we also determined its size. To solve that purely combi-
natorial problem required little more than some elementary geometric arguments. Quite
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differently from that, we shall see that the size of the central hole of an integral circu-
lant graph ICG(n,D) does provide additional information, namely about the arithmetic
nature of n.

Further examples of drawings of integral circulant graphs are displayed in Figure 2.
Apart from the beauty of the visualisations of circulant graphs, to a great extent owing
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Figure 2: Drawings of ICG(48, {2, 3, 4, 24}) and ICG(48, {2, 3, 8, 16})

to the high degree of symmetry, one may notice that the drawings of ICG(12, {2, 4})
and ICG(48, {2, 3, 8, 16}) have a hole in their center, but ICG(48, {2, 3, 4, 24}) is without
central hole (see Figures 1 and 2). Just like the graph spectrum stores information on
the graph, so does the size of the hole in the drawing of an integral circulant graph. In
fact, it is related to arithmetic properties of the graph. A trivial example of this is the
observation that ICG(n,D) is without hole if and only if n

2
∈ D, which implies that n

has to be an even integer. By analogy with the algebraic kernel of such a graph, i.e. the
eigenspace of the eigenvalue 0, and its impact on the graph (see [12]), we call the hole of
the corresponding drawing the graph’s geometric kernel – a rigid definition of this concept
will be given in the following section.

The purpose of this paper is to investigate properties of the geometric kernels of
integral circulant graphs. In particular, we shall explicitly determine the kernel sizes for
unitary Cayley graphs ICG(n, {1}) in Section 3. In Section 4 we establish formulae for
kernel sizes of graphs ICG(n,D) in general and, given n, identify those graphs having
largest kernel (depending on the residue class of n mod 12). Finally, Section 5 deals with
the average kernel size of graphs ICG(n,D) for fixed n.

the electronic journal of combinatorics 28(3) (2021), #P3.33 3



2 Preliminaries

In order to be able to compare geometric kernels of different circulant graphs we standard-
ised drawings of such graphs in [14], which for integral circulant graphs reads as follows:
The unit circle drawing UCD(n,D) := UCD(ICG(n,D)) of ICG(n,D) is defined as the
subset of the complex plane C characterised by the subsequent construction:

(i) Each vertex j ∈ {0, 1, 2, . . . , n − 1} ' Z/nZ is represented by the corresponding
corner e( j

n
) ∈ C on the unit circle, where e(x) := e2πix for any x ∈ R.

(ii) If {j, k} is an edge, i.e. in case gcd(j − k, n) ∈ D, then {j, k} is represented by the

thread e( j
n
)e( k

n
) defined as the closed line segment between the corners e( j

n
) and

e( k
n
).

(iii) UCD(n,D) := UCD(ICG(n,D)) :=
⋃
{j,k}∈E e(

j
n
)e( k

n
).

Examples of unit circle drawings of some integral circulant graphs are displayed in
Figures 1 and 2. Clearly, UCD(n,D) ⊆ Pn, where Pn ⊆ C denotes the closed convex
regular n-gon formed by the n corners of UCD(n,D) on the unit circle.

We already observed that UCD(n,D) contains a thread running through the origin,
i.e. through the center of UCD(n,D), if and only if n

2
∈ D. In that case UCD(n,D) has

no central hole, and thus we shall require n
2
/∈ D in the sequel. Since we assumed from the

beginning to consider graphs without loops, we have n /∈ D as well. Therefore, we call a
non-empty set D ⊆ D(n) an appropriate divisor set of n if n /∈ D and n

2
/∈ D. All elements

of such a set will be called appropriate divsors of n, and we define D∗(n) := D(n)\{n
2
, n}.

Thus 0 /∈ UCD(n,D) for appropriate divisor setsD ⊆ D∗(n), and in that case, by using
topological terminology, the geometric kernel of ICG(n,D) is defined as the connected
component K0(n,D) := K0(ICG(n,D)), say, of C \UCD(n,D) which contains the origin.

By definition, K0(n,D) is an open set. Since we consider polygons to be closed sets,
we introduce the topological closure K0(n,D) := K0(ICG(n,D)) of K0(ICG(n,D)). The
following result is the specification of [14, Theorem 3.1] to integral circulant graphs.

Theorem 1 ([14, Theorem 3.1]). Let n > 3, and let ∅ 6= D ⊆ D∗(n). Then

m0 = m0(n,D) = m0(ICG(n,D)) := max{1 6 m < n
2

: gcd(m,n) ∈ D} (1)

is well defined, and K0(n,D) is a regular convex n-gon with corners given by the complex
points

cos πm0

n

cos π
n

e
( j
n

)
(j = 0, 1, 2, . . . , n− 1) (2)

if m0 is odd, and with corners

cos πm0

n

cos π
n

e
( 1

n

(
j +

1

2

))
(j = 0, 1, 2, . . . , n− 1) (3)

if m0 is even.
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All corners of a convex regular polygon P lie on the so-called circumscribed circle of P ,
and we denote its circumradius by ρ(P ). According to Theorem 1 we define the kernel
radius

ρ0(n,D) = ρ0(ICG(n,D)) := ρ(K0(n,D))

of ICG(n,D) or UCD(ICG(n,D)), respectively, for any n > 3 and every appropriate
divisor set D of n. Moreover, we set m0(n,D) = m0(ICG(n,D)) = n

2
and ρ0(n,D) =

ρ0(ICG(n,D)) = 0 for divisor sets with n
2
∈ D. Clearly, 0 < ρ0(n,D) 6 1 for any integral

circulant graph ICG(n,D) with appropriate divisor set D. As an immediate consequence
of Theorem 1 we obtain

Corollary 2. For n > 3 and ∅ 6= D ⊆ D(n) we have

ρ0(n,D) =
cos πm0(n,D)

n

cos π
n

.

Remark 3. Given a regular n-gon with circumradius ρcirc and inradius ρin, elementary
geometry tells us that ρin = ρcirc · cos π

n
. By Corollary 2 this implies that the inradius

of K0(n,D) equals cos πm0(n,D)
n

. Because of this simple relation between the two radii we
shall only consider the circumradius ρ0(n,D) in the sequel.

These results show that the kernel radius, as well as the corresponing inradius, is a
strictly decreasing function with respect to m0 (in the range 0 < m0 6 n

2
). Therefore

m0(n,D) as well as ρ0(n,D) may both serve as measures for the size of the geometric
kernel of ICG(n,D). The following two sections reveal that the size of the geometric
kernel, in terms of m0(n,D) or in terms of the kernel radius ρ0(n,D), has arithmetic
consequences for n.

3 Geometric kernels of unitary Cayley graphs

Let us start with a subclass of integral circulant graphs, namely so-called unitary Cayley
graphs Xn := Cay(Z/nZ, Un), where Un denotes the group of units in the ring Z/nZ,
i.e. the set of primitive residues mod n. It is well known that the unitary Cayley graph
Xn on n vertices is isomorphic to the special integral circulant graph with the trivial
divisor set D = {1} (see [7] for basics of unitary Cayley graphs and their relation to
integral circulant graphs). The following result shows two facts in this subclass of integral
circulant graphs: The kernel radius of Xn is minimal for all n 6≡ 2 mod 4 and next to
minimal for n ≡ 2 mod 4, i.e. m0(Xn) is (almost) maximal, and it determines the residue
class of n mod 4.

Theorem 4. For a unitary Cayley graph Xn with n > 3 we have

m0(Xn) := m0(ICG(n, {1})) =


n−1

2
if n ≡ 1 mod 2,

n
2
− 1 if n ≡ 0 mod 4,

n
2
− 2 if n ≡ 2 mod 4.
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Proof. By definition we have m0(Xn) = max{1 6 m < n
2

: gcd(m,n) = 1}. For odd
n = 2q + 1, say, we obtain gcd

(
n−1

2
, n
)

= gcd(q, 2q + 1) = 1, hence m0(Xn) = n−1
2

. For
n = 4q, it follows that gcd

(
n
2
− 1, n

)
= gcd(2q−1, 4q) = gcd(2q−1, q) = 1, and therefore

m0(Xn) = n
2
− 1. Finally, for n = 4q + 2 we have gcd

(
n
2
− 1, n

)
= gcd(2q, 4q + 2) =

gcd(2q, 2) = 2, but gcd
(
n
2
− 2, n

)
= gcd(2q − 1, 4q + 2) = gcd(2q − 1, 4) = 1, which

implies m0(Xn) = n
2
− 2.

By a simple monotonicity argument we obtain

Corollary 5. For n > 3 and any D ⊆ D∗(n) with 1 ∈ D we have

m0(n,D) = m0(Xn) =

{
n−1

2
if 2 - n,

n
2
− 1 if 4 | n.

Proof. Clearly, UCD(n,D1) ⊆ UCD(n,D2) for appropriate divisor sets D1 ⊆ D2 of n,
which implies m0(n,D1) 6 m0(n,D2). Since 1 ∈ D by assumption, it follows that
m0(n,D) > m0(Xn). By the definition of appropriate divisor sets D and according to
Theorem 4, we have m0(n,D) 6 n−1

2
= m0(Xn) for odd n and m0(n,D) 6 n

2
−1 = m0(Xn)

for even n. Hence the result follows.

4 The kernel radius of ICG(n,D) and arithmetic features of n

Now we turn our attention to integral circulant graphs ICG(n,D) in general, i.e. n > 3
is an arbitrary integer and D = {d1, d2, . . . , dr}, say, is any appropriate divisor set of n.
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Figure 3: ICG(32, {3}) with three components, each isomorphic to ICG(3, {1})

It is well known that ICG(n,D) is connected if and only if g = gcd(d1, . . . , dr) = 1 (see
[2]). In fact, ICG(n,D) consists of g isomorphic connected components (see [16]), all of
which are isomorphic to ICG(n

g
, 1
g
D), where cD denotes elementwise multiplication ofD by
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c. Examples are ICG(12, {2, 4}) with two components, both isomorphic to ICG(6, {1, 2})
(cf. Figure 1), and ICG(32, {3}) with three components of type ICG(3, {1}) in Figure 3.

A simple geometric consideration reveals that the incircle radii of the geometric kernels
of ICG(n,D) and its components ICG(n

g
, 1
g
D) coincide, while ρ0(n,D) < ρ0(n

g
, 1
g
D) in

case g > 1 (cf. Remark 3 for details). The corresponding relation between m0(n,D) and
m0(n

g
, 1
g
D) is provided by formula (ii) of

Proposition 6. Let n > 3 be an integer, and let D = {d1, d2, . . . , dr} ⊆ D∗(n) with
g := gcd(d1, d2, . . . , dr). Then we have

(i) m0(n,D) = maxd∈Dm0(n, {d});

(ii) m0(n,D) = g ·m0(n
g
, 1
g
D).

Proof. Clearly

{1 6 m < n
2

: gcd(m,n) ∈ D} =
⋃
d∈D

{1 6 m < n
2

: gcd(m,n) = d}

=
⋃
d∈D

{1 6 m′g < n
2

: gcd(m′g, n
g
g) = d

g
g}

=
⋃
d∈D

g · {1 6 m′ < n
2g

: gcd(m′, n
g
) = d

g
}

= g · {1 6 m′ < n
2g

: gcd(m′, n
g
) ∈ 1

g
D}.

(4)

Taking maxima on both sides of the first equality implies (i), and taking maxima of the
first and the last term in (4) proves (ii).

If n = p > 3 is a prime, there is only one possible appropriate divisor set, namely
D = {1}. This means that ICG(p,D) = Xp (see Theorem 4). For prime powers n = pk,
we have

Theorem 7. Let pk > 3 be a prime power, and let D ⊆ D∗(pk) with minD = pk1. Then

m0(pk,D) =

{
1
2

(
pk − pk1

)
for p > 3,

2k−1 − 2k1 for p = 2.

Proof. Obviously, the greatest common divisor g of the elements of D satisfies g = pk1 .
By Proposition 6(ii) we obtain

m0(pk,D) = pk1m0(pk−k1 , 1
pk1
D),

where 1 ∈ 1
pk1
D, 1

pk1
D ⊆ D∗(pk−k1) and k − k1 > 2, since D ⊆ D∗(pk). In particular

4 | pk−k1 in case p = 2. Thus Corollary 5 yields

m0(pk,D) = pk1m0(Xpk−k1 ) =

{
pk1 · 1

2

(
pk−k1 − 1

)
= 1

2

(
pk − pk1

)
for p > 3,

2k1 ·
(
2k−k1−1 − 1

)
= 2k−1 − 2k1 for p = 2.
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For arbirary integers n and primes p let ep(n) > 0 denote the order of p in n.

Theorem 8. Let n > 3 be an arbitrary integer, and let D ⊆ D∗(n). Then

m0(n,D) =
1

2

(
n−min

d∈D
γn,d d

)
, (5)

where

γn,d =


1 if e2(d) = e2(n),
4 if e2(d) = e2(n)− 1,
2 if e2(d) 6 e2(n)− 2.

Proof. Given any d ∈ D, it follows from Proposition 6(ii) and Theorem 4 that

m0(n, {d}) = d ·m0(n
d
, {1}) = d ·m0(Xn

d
) =


d (n

d
− 1)/2 if n

d
≡ 1 mod 2,

d
(
n
2d
− 1
)

if n
d
≡ 0 mod 4,

d
(
n
2d
− 2
)

if n
d
≡ 2 mod 4,

= 1
2
(n− γn,d d).

Then Proposition 6(i) proves (5).

For given n, we shall determine the integral circulant graphs on n vertices having the
largest geometric kernel. To this end we define

M0(n) := min{m0(n,D) : D ⊆ D∗(n), D 6= ∅},
R0(n) := max{ρ0(n,D) : D ⊆ D∗(n), D 6= ∅}.

Theorem 9. Let n > 3 be an integer and ∅ 6= D ⊆ D∗(n). For n different from a power
of 2, we denote by p1 the smallest odd prime divisor of n. Then

M0(n) =


1
2
(1− 1

p1
)n if n ≡ 1 mod 2,

1
2
(1− 2

p1
)n if n ≡ j mod 12 for some j ∈ {0, 2, 6, 10},

1
4
n if n ≡ 4 mod 12 or n ≡ 8 mod 12,

(6)

and

R0(n) =


sin π

2p1
/ cos π

n
if n ≡ 1 mod 2,

sin π
p1
/ cos π

n
if n ≡ j mod 12 for some j ∈ {0, 2, 6, 10},

√
2

2
/ cos π

n
if n ≡ 4 mod 12 or n ≡ 8 mod 12.

(7)

The unique singleton divisor sets giving these maximal values of the kernel radius, i.e.
the minimal values of m0(n,D), are D = { n

p1
}, D = { n

2p1
}, and D = {n

4
} according to the

three subcases.

Proof. Theorem 8 implies that

M0(n) = min
D⊆D∗(n)
D6=∅

1
2

(
n−min

d∈D
γn,d d

)
= 1

2

(
n− max

D⊆D∗(n)
D6=∅

min
d∈D

γn,d d
)

= 1
2

(
n− max

d∈D∗(n)
γn,d d

)
= 1

2

(
n−max

d|n
d<n2

γn,d d
)
.

(8)
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In case n ≡ 1 mod 2, we have γn,d = 1, thus maxd|n, d<n
2
γn,d d = maxd|n, d<n

2
d = n

p1
,

which by use of (8) verifies (6) and also shows that D = { n
p1
} is the unique corresponding

singleton divisor set for odd n.
We continue with the case n ≡ 0 mod 12. It follows that 3 | n, hence p1 = 3. Theorem

8 implies that

γn,d d =


d if e2(d) = e2(n),
4d if e2(d) = e2(n)− 1,
2d if e2(d) 6 e2(n)− 2,

(9)

where the maximal appropriate divisor d equals n
3
, n

2·3 or n
2·2 according to the three sub-

cases. Therefore, γn,d d equals n
3
, 2n

3
or n

2
accordingly. This implies that max γn,d d = 2n

3
,

which by (8) confirms (6) for 12 | n. The case n ≡ 6 mod 12 gives the same result be
the same argument, where the third subcase in (9) does not occur, since here 4 - n. The
identical reasoning works for n ≡ 2 mod 12 and n ≡ 10 mod 12 (again 4 - n), but now
3 - n and consequently 3 has to be replaced by the smallest odd prime divisor p1 of n.

We are left with the cases n ≡ 4 mod 12 and n ≡ 8 mod 12, thus 4 | n but 3 - n.
Hence either n is a power of 2 or p1 > 5. Under these conditions max γn,d d is obtained
by the third subcase in (9) with d = n

2·2 , and this completes the proof of (6).
Finally, (7) is an immediate consequence of Corollary 2 and (6), applying the trigono-

metric identity cos(π
2
− x) = sin x and cos π

4
=
√

2
2

.

As a first consequence of Theorem 9 we obtain that the kernel radii of integral circulant
graphs are uniformly bounded by

√
3

2
+ O( 1

n2 ).

Corollary 10. Let n > 3 be an integer. Then

(i) M0(n) > 1
6
n with equality if and only if 6 | n;

(ii) R0(n) <
√

3
2

+ 5
n2 .

Proof. We observe that p1 = 3 yields the smallest possible value 1
6
n of M0(n) in (the

second subcase of) (6). This requires 3 | n, thus n ≡ 0 mod 12 or n ≡ 6 mod 12, which
confirms (i).

Since trivally R0(n) 6 1 and the right-hand side of (ii) is greater than 1 for n 6 6,
we may assume that n > 6. Looking at the Taylor expansion of cosine one easily verifies
that in this range (

cos
π

n

)−1

< 1 +
10√
3n2

.

By (i) and Corollary 2 it follows that

R0(n) =
cos πM0(n)

n

cos π
n

<

(
1 +

10√
3n2

)
cos

π

6
=

√
3

2
+

5

n2
.

Theorem 9 also implies that the sizes of geometric kernels of certain integral circu-
lant graphs ICG(n,D) all by themselves reveal information about the residue class of n
mod 12 and the smallest odd prime divisor of n. Notice, however, that there is no such
information in case n is divisible by 4.
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Corollary 11. Let n > 18 be an integer and ∅ 6= D ⊆ D∗(n).

(i) If m0(n,D) < 1
3
n or if ρ0(n,D) > 1

2
(1 + 5

n2 ), then n is even.

(ii) If m0(n,D) < 1
4
n or if ρ0(n,D) >

√
2

2
(1 + 5

n2 ), then n ≡ 2 mod 4 or 12 | n.

(iii) For odd n the smallest prime divisor p1 of n satisfies

p1 6 min
{ 1

1− 2m0(n,D)
n

,
π

2ρ0(n,D)

(
1 +

5

n2

)}
<

8

5ρ0(n,D)
.

(iv) For n ≡ 2 mod 4 the smallest odd prime divisor p1 of n satisfies

p1 6 min
{ 2

1− 2m0(n,D)
n

,
π

ρ0(n,D)

(
1 +

5

n2

)}
<

16

5ρ0(n,D)
.

Proof. The Taylor expansion of cosine gives that for n > 18(
cos

π

n

)−1

< 1 +
5

n2
. (10)

For odd n with smallest prime factor p1, Theorem 9 implies that

m0(n,D) >M0(n) =
1

2

(
1− 1

p1

)
n >

1

2

(
1− 1

3

)
n =

1

3
n

and, by virtue of (10), that

ρ0(n,D) 6 R0(n) =
sin π

2p1

cos π
n

6
sin π

6

cos π
n

<
1

2

(
1 +

5

n2

)
.

These inequalities prove (i).
By (i) we know that n is even under any of the two assumptions of (ii). If such an

even integer satisfies n 6≡ 2 mod 4 and 12 - n, i.e. n ≡ 4 mod 12 or n ≡ 8 mod 12, then
Theorem 9 implies m0(n,D) >M0(n) = 1

4
n and, again using (10),

ρ0(n,D) 6 R0(n) =

√
2

2 cos π
n

<

√
2

2

(
1 +

5

n2

)
.

These inequalities confirm (ii).
For an odd n with smallest prime factor p1 it follows from (6) that m0(n,D) >M0(n) =

1
2
(1− 1

p1
)n, and by (7), (10) and sin x 6 x that

ρ0(n,D) 6 R0(n) =
sin π

2p1

cos π
n

<
π

2p1

(
1 +

5

n2

)
<

8

5p1

.

These inequalities imply (iii). With respect to (iv) we similarly obtain that m0(n,D) >
M0(n) = 1

2
(1− 2

p1
)n and that

ρ0(n,D) 6 R0(n) =
sin π

p1

cos π
n

<
π

p1

(
1 +

5

n2

)
<

16

5p1

.
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5 The kernel radius on average

Given a positive integer n the kernel radii ρ0(n,D) may vary quite a lot for different
divisor sets D. Therefore, we finally address the problem of the kernel radius on average.

The number of divisor sets D of n naturally depends on the number of positive divisors
of n, denoted by τ(n). The divisor function τ(n) is well studied in number theory. While it
possesses the useful arithmetic property of being multiplicative, i.e. τ(m ·n) = τ(m) · τ(n)
for all coprime m and n, its growth behaviour is rather erratic: τ(p) = 2 for all primes p,
but τ(n) tends to infinity on certain subsequences of (highly composite) positive integers
n. This is expressed by saying that τ(n) does not have a normal order, i.e. there is no
function f(n) satisfying “reasonable” smoothness criteria, e.g. monotonicity, such that
(1− ε)f(n) < τ(n) < (1 + ε)f(n) for any ε > 0 and almost all n (cf. [4, Chapter 4.4] or [5,
Chapters 22.11 and 22.13]). However, log τ(n) does have a normal order (see Proposition
12).

Although we have infinitely many of them, primes are “rare” among the positive
integers. Using elementary combinatorial arguments much weaker than the prime number
theorem (cf. [1] or [5, Theorem 6] the claim can be made precise by the statement that
the relative frequency of primes among positive integers below a bound N tends to 0:

lim
N→∞

|{p 6 N : p prime}|
|{1, 2, 3, . . . , N}|

= lim
N→∞

|{p 6 N : p prime}|
N

= 0. (11)

More generally, given any increasing sequence (an)n=1,2,3,... of positive integers such that

limN→∞
|{an6N : n=1,2,3,...}|

N
= α exists, α is called the asymptotic density of the sequence.

Clearly, 0 6 α 6 1. In particular the sequence of primes has asymptotic density 0 by (11).
Any statement which is true for all positive integers in a sequence of asymptotic density 1
is said to hold for almost all positive integers. In this case the so-called exceptional set of
positive integers, i.e. those for which the statement does not hold, has asymptotic density
0.

Since the irregular oscillation of the divisor function will have consequences in our
setting, we record the well-known correlating properties of τ(n) in

Proposition 12 (cf. [1, Theorem 13.12] or [5, Theorem 432]). Given any ε > 0, we have

(log n)log 2−ε < τ(n) < (log n)log 2+ε

for almost all positive integers n, where log denotes the natural logarithm.

In order to apply results on τ(n) for our purposes, we define for n > 3

τ ∗(n) :=

{
τ(n)− 1 if n is odd,
τ(n)− 2 if n is even.

Clearly τ ∗(n) = |D∗(n)|. Consequently,

|{D ⊆ D∗(n) : D 6= ∅}| = 2τ
∗(n) − 1. (12)
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Given any fixed n > 3, this implies that

m0(n) :=
1

2τ∗(n) − 1

∑
D⊆D∗(n)
D6=∅

m0(n,D)

is the arithmetic mean of m0(n,D) over all non-empty D ⊆ D∗(n). By definition we have
0 < m0(n,D) < n

2
for all n and D, so trivially

0 <
m0(n)

n
<

1

2
(n > 3).

Before we prove in Theorem 15 below that m0(n)
n

usually lies arbitrarily close to 1
2

for
sufficiently large n, let us look at some exceptional integers n.

Example 13. Consider n = 3p for primes p > 5. The appropriate divisors of n are 1, 3, p.
Hence τ ∗(n) = 3, and we have 2τ

∗(n) − 1 = 7 appropriate divisor sets, namely four with
least element 1, two with least element 3 and one with least element p. Since n is odd,
all γn,d = 1 in Theorem 8. Consequently we obtain by (5) that

m0(3p)

3p
=

1

7 · 3p · 2
(
4 · (3p− 1) + 2 · (3p− 3) + (3p− p)

)
=

1

2
− 5

21p
− 1

42
<

1

2
− 1

42
.

This shows that the sequence
(m0(3p)

3p

)
p=5,7,11,13,...

stays away from 1
2

for primes p→∞.

Proposition 14. Let n > 3 and let 1 = d1 < d2 < . . . < dτ∗(n) <
n
2

be all of the
appropriate divisors of n. Then we have

2τ
∗(n)

2τ∗(n) − 1

τ∗(n)∑
i=1

di
2i

6
n

2
−m0(n) 6 4 · 2τ

∗(n)

2τ∗(n) − 1

τ∗(n)∑
i=1

di
2i
. (13)

Proof. We have by Theorem 8 and (12) that

m0(n) =
1

2τ∗(n) − 1

∑
D⊆D∗(n)
D6=∅

1

2

(
n−min

d∈D
γn,d d

)
=
n

2
− 1

2τ∗(n) − 1

∑
D⊆D∗(n)
D6=∅

min
d∈D

γn,d d.

Since 1 6 γn,d 6 4, it follows that

1

2τ∗(n) − 1

∑
D⊆D∗(n)
D6=∅

min
d∈D

d 6
n

2
−m0(n) 6

1

2τ∗(n) − 1

∑
D⊆D∗(n)
D6=∅

4 ·min
d∈D

d. (14)

We have∑
D⊆D∗(n)
D6=∅

min
d∈D

d =
∑

D⊆D∗(n)
D6=∅

minD =

τ∗(n)∑
i=1

∑
D⊆D∗(n)
minD=di

minD

=

τ∗(n)∑
i=1

di
∣∣{D ⊆ D∗(n) : minD = di}

∣∣ =

τ∗(n)∑
i=1

di2
τ∗(n)−i.

Integrating this identity in (14) yields (13).
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Example 13 shows that there are infinitely many, i.e. arbitrarily large n satisfying
m0(n)
n

< 1
2
− 1

42
. This reveals that the next result cannot hold for more than almost all

integers n.

Theorem 15. For any ε > 0 and almost all n > 3 we have

1

2
− 2−(logn)log 2−ε

<
m0(n)

n
<

1

2
. (15)

Remark 16.

(i) Clearly, any function of type nκ with (small) real κ > 0 is growing faster than any
function of type (log n)K with (large) K if n→∞. Functions of type C(logn)δ with
real C > 1 and 0 < δ < 1 are lying inbetween these two classes of functions and
belong to the standard fine-tuning accessories of analytic number theory to compare
and classify the growth of arithmetic functions.

(ii) Theorem 15 certainly implies that given any ε > 0 the set {n > 3 : 1
2
−ε < m0(n)

n
< 1

2
}

has asymptotic density one. However our statement about the set of integers n > 3

satisfying (15) is much stronger, since it tells us that 1
2
−ε < m0(n)

n
< 1

2
still holds for

almost all n even if we shrink the interval in the specified manner with increasing
n.

Proof of Theorem 15. Let 1 = d1 < d2 < . . . < dτ∗(n) < . . . < dτ (n) = n be all positive
divisors of n, the first τ ∗(n) of them being the appropriate ones. By Proposition 14 we
know that

m0(n)

n
>

1

2
− 2τ

∗(n)

2τ∗(n) − 1
· 4

n

τ∗(n)∑
i=1

di
2i

>
1

2
− 8

n

τ∗(n)∑
i=1

di
2i

(16)

for all n > 3. We have d | n for some d <
√
n if and only if n

d
| n with n

d
>
√
n, giving

an even number of divisors of n. There is an additional divisor
√
n if n happens to be a

square, and τ(n) is odd exactly in this special situation. If n is not a square, i.e. τ(n) is
even, the smallest divisor d >

√
n of n is d τ(n)

2
+1

. If n is a square, i.e. τ(n) is odd, the

smallest divisor d >
√
n of n is d τ(n)+1

2
+1

. Combining the two cases, d = dd τ(n)
2
e+1

is the

smallest divisor d >
√
n of any n > 3. Since di <

n
2

for i 6 τ ∗(n), we obtain

τ∗(n)∑
i=1

di
2i

=

τ∗(n)∑
i=1

di6
√
n

di
2i

+

τ∗(n)∑
i=1

di>
√
n

di
2i
<
√
n

τ∗(n)∑
i=1

1

2i
+

n

2

τ∗(n)∑
i=d τ

(n)
2
e+1

1

2i

<
√
n
∞∑
i=1

1

2i
+

n

2

∞∑
i=d τ

(n)
2
e+1

1

2i
=
√
n+

n

2
· 2−d

τ(n)
2
e <
√
n+

n

2
τ(n)
2

+1

(17)
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for all n > 3. Then (16) and Proposition 12 finally imply that

1

2
− m0(n)

n
<

8√
n

+ 2−
τ(n)
2

+2

<
8√
n

+ 2−
1
2

(logn)log 2− ε2 +2 = 2−
logn
2 log 2

+3 + 2−
1
2

(logn)log 2− ε2 +2 < 2−(logn)log 2−ε

for almost all n, where the last inequality can be verified for all sufficiently large n by
careful comparison of the three exponents. This completes the proof of our theorem.

By analogy with the definition of m0(n) let

ρ0(n) :=
1

2τ∗(n) − 1

∑
D⊆D∗(n)
D6=∅

ρ0(n,D)

for any fixed n > 3, i.e. the average of all kernel radii. Since 0 < ρ0(n,D) 6 1 for all
n > 3 and all divisor sets D of n, we trivially have 0 < ρ0(n) 6 1 (n > 3).

Corollary 17. For any ε > 0 and almost all n > 3 we have 0 < ρ0(n) < 2−(logn)log 2−ε
.

Proof. Let ε > 0 be given. According to Theorem 15

n

2
− n

2(logn)log 2− ε4
< m0(n) <

n

2
(18)

for almost all n. Let n > 3 be any integer satisfying (18), and let ∆ε(n) denote the set of
all non-empty divisor sets D ⊆ D∗(n) such that

m0(n,D) <
n

2
− n

2(logn)log 2− ε2
. (19)

Since m0(n,D) < n
2

by definition, we obtain

m0(n) =
1

2τ∗(n) − 1

∑
D⊆D∗(n)
D6=∅

m0(n,D) =

=
1

2τ∗(n) − 1

( ∑
D∈∆ε(n)

m0(n,D) +
∑

D⊆D∗(n)
D6=∅, D/∈∆ε(n)

m0(n,D)

)

<
1

2τ∗(n) − 1

(
|∆ε(n)|

(n
2
− n

2(logn)log 2− ε2

)
+
(

2τ
∗(n) − 1− |∆ε(n)|

)n
2

)
=
n

2
− n

(2τ∗(n) − 1) · 2(logn)log 2− ε2
|∆ε(n)|.

Together with the lower bound in (18) it follows that

|∆ε(n)| < (2τ
∗(n) − 1) · 2(logn)log 2− ε2−(logn)log 2− ε4 < (2τ

∗(n) − 1) · 2−(logn)log 2− ε2 ,
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if n is sufficiently large. This, Corollary 2, (19) and basic properties of cosine and sine
imply for sufficiently large n satisfying (18), i.e. for almost all n, that

0 < ρ0(n) =
1

2τ∗(n) − 1

∑
D⊆D∗(n)
D6=∅

cos πm0(n,D)
n

cos π
n

=
1

(2τ∗(n) − 1) cos π
n

( ∑
D∈∆ε(n)

cos
πm0(n,D)

n
+

∑
D⊆D∗(n)

D6=∅, D/∈∆ε(n)

cos
πm0(n,D)

n

)

6
1

(2τ∗(n) − 1) cos π
n

( ∑
D∈∆ε(n)

1 +
∑

D⊆D∗(n)
D6=∅, D/∈∆ε(n)

cos

(
π

n

(n
2
− n

2(logn)log 2− ε2

)))

6
1

(2τ∗(n) − 1) cos π
n

(
|∆ε(n)|+

∑
D⊆D∗(n)
D6=∅

cos
(π

2
− π

2(logn)log 2− ε2

))

<
1

cos π
n

(
2−(logn)log 2− ε2 + sin

π

2(logn)log 2− ε2

)
< 2 ·

(
2−(logn)log 2− ε2 +

2π

2(logn)log 2− ε2

)
< 2−(logn)log 2−ε

.

In continuation of Example 13 the following shows that Corollary 17 cannot hold for
more than almost all n.

Example 18. For all n = 3p with a prime p > 5, thus τ ∗(n) = 3, we have by Corollary
2 and Theorem 8 that

ρ0(3p) =
1

2τ∗(3p) − 1

∑
D⊆D∗(3p)
D6=∅

ρ0(3p,D)

>
1

7
· ρ0(3p, {p}) =

1

7
·

cos πm0(3p,{p})
3p

cos π
3p

>
1

7
· cos

π · 1
2
(3p− p)
3p

=
1

7
· cos

π

3
=

1

14
.
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