
Chromatic Polynomials of 2-Edge-Coloured Graphs

Iain Beatona Danielle Coxb Christopher Duffyc

Nicole Zolkavichd

Submitted: Aug 14, 2020; Accepted: Aug 24, 2023; Published: Dec 15, 2023

© The authors. Released under the CC BY-ND license (International 4.0).

Abstract

Using the definition of colouring of 2-edge-coloured graphs derived from 2-edge-
coloured graph homomorphism, we extend the definition of chromatic polynomial to
2-edge-coloured graphs. We find closed forms for the first three coefficients of this
polynomial that generalize known results for the chromatic polynomial of a graph.
We classify those graphs that admit a 2-edge-colouring for which the chromatic
polynomial of the graph and the chromatic polynomial of the 2-edge-colouring is
equal. Finally, we examine the behaviour of the roots of this polynomial, highlight-
ing behaviours not seen in chromatic polynomials of graphs.

Mathematics Subject Classifications: 05C20

1 Introduction and Preliminary Notions

A 2-edge-coloured graph G is a triple (Γ, RG, BG) where Γ is a simple graph, RG ⊆ E(Γ),
and BG ⊆ E(Γ) such that RG∩BG = ∅ and RG∪BG = E(Γ). We call G a 2-edge-colouring
of Γ. We call Γ the simple graph underlying G. We note {RG, BG} need not be a partition
of E(Γ); we permit RG = ∅ or BG = ∅. When {RG, BG} is a partition of E(Γ), we say
that G is bichromatic. Otherwise we say G is monochromatic. With each 2-edge-coloured
graph G we associate an edge-colour indication function cG : E(Γ)→ {R,B} defined such
that cG(e) = R (respectively, cG(e) = B) when e ∈ R (respectively, e ∈ B). The set of
such functions is in bijection with the set of 2-edge-coloured graphs that can be obtained
from a fixed underlying graph. When there is no chance for confusion we refer to RG, BG

and cG as R,B and c, respectively. At various points, we will refer to the graph induced
by the set of red edges (respectively blue edges) of G. Such a graph is formed from G
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by removing all blue edges (respectively red) and then removing all isolated vertices. We
denote such a graph as G[RG] (respectively G[BG]).

We assume all graphs are loopless and have no parallel edges. Thus we drop the
descriptor of simple when we refer to simple graphs. In various corners of the literature
[11, 18] 2-edge-coloured graphs are referred to as signified graphs to highlight the absence
of a switching operation as in [12] so as to disambiguate from the notion of signed graph.
Vertex colouring 2-edge-coloured graphs in the sense defined below is not the same as
Zaslavksy’s notion of signed graph colouring

For other graph-theoretic notions not defined we refer the reader to [4]. Throughout we
use Greek majuscules to refer to graphs and Latin majuscules to refer to 2-edge-coloured
graphs.

Let G = (ΓG, RG, BG) and H = (ΓH , RH , BH) be 2-edge-coloured graphs. There is
a homomorphism of G to H when there exists a homomorphism φ : ΓG → ΓH such
that φ : G[RG] → H[RH ] and φ : G[BG] → H[BH ] are both graph homomorphisms.
Equivalently there is a homomorphism of G to H when there exists φ : V (ΓG)→ V (ΓH)
such that φ(u)φ(v) ∈ E(ΓH) and cG(uv) = cH(φ(u)φ(v)) for all uv ∈ E(ΓG). Informally, a
homomorphism of 2-edge-coloured graphs is a vertex mapping that preserves the existence
and colour of each edge. When H has k vertices we call φ a k-colouring of G.

Equivalently one may define colouring without appealing to homomorphism. A k-
colouring of a 2-edge-coloured graph G = (Γ, R,B) can be defined as a function d :
V (G)→ {1, 2, 3, . . . , k} satisfying the following two conditions

1. for all yz ∈ E(Γ), we have d(y) 6= d(z); and

2. for all ux ∈ R and vy ∈ B, if d(u) = d(v) then d(x) 6= d(y).

Such a colouring d defines a homomorphism to the 2-edge-coloured graph H with
vertex set {1, 2, 3, . . . k} in which ij ∈ RH (respectively, ∈ BH) if and only if there is an
edge wx ∈ RG (respectively, ∈ BG) such that d(w) = i and d(x) = j.

The chromatic number of G, denoted χ(G), is the least integer k such that G admits a
k-colouring. Observe that when G is monochromatic the definitions above are equivalent
to the usual definitions for graph homomorphism, k-colouring and chromatic number.
Thus the choice of notation, χ, to denote the chromatic number is appropriate. Below
we introduce the notion of a mixed 2-edge-coloured graph and a corresponding notion of
vertex colouring. For consistency we use the notation χ(·) throughout the manuscript to
refer to chromatic number. In the case of a 2-edge-coloured graph the notation χ(G) is
used in place of the more common notation χ2(G).

For a 2-edge-coloured graph G = (Γ, R,B), the chromatic number of G may differ
vastly from that of Γ. There exist 2-edge-colourings of bipartite graphs that have chro-
matic number equal to their number of vertices For example Kn,n with edges of a perfect
matching red and all remaining edges blue has chromatic number 2n.

Homomorphisms of edge-coloured graphs have received increasing attention in the
literature in recent years. Early work by Alon and Marshall [1] gave an upper bound on
the chromatic number of a 2-edge-coloured planar graph. More recent work has bounded
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the chromatic number of 2-edge-coloured graphs from a variety of graph families [11, 15]
as well as considered questions of computational complexity [5, 6]. The study of these
objects in the context of colourings and homomorphisms is often compared and contrasted
with similar questions for oriented graphs. Our work here continues with this comparison
and seeks analogues to results for the oriented chromatic polynomial introduced in [7].
Of particular interest to this on-going work in comparing 2-edge-coloured graphs and
oriented graphs is our results in Section 3 and their contrasting results in [7]. Together
our work and the work in [7] give an example of results for these two types of graphs
where the results are strikingly dissimilar. We comment more on this in Section 5.

A k-colouring of a 2-edge-coloured graph G is a proper k-colouring of the underlying
graph Γ satisfying extra constraints. Thus the number of k-colourings of G is bounded by
the chromatic polynomial of Γ evaluated at k. We show that the number of k-colourings
of a 2-edge coloured graph G is itself a polynomial in k (Theorem 1 below), which in the
monochromatic case coincides with the chromatic polynomial.

To study the chromatic polynomial for 2-edge-coloured graphs, we introduce a chro-
matic polynomial of a more generalized graph object. A mixed 2-edge-coloured graph
is a pair M = (G,FM) where G is 2-edge-coloured graph with G = (Γ, RG, BG) and
FM ⊆ E(Γ). We consider FM as a set of edges that belong to neither RG nor BG. We
denote by S(M) the graph with vertex set V (Γ) and edge set RG∪BG∪FM . When there
is no chance of confusion we refer to FM as F .

Let M = (G,F ) be a mixed 2-edge-coloured graph with G = (Γ, R,B). We define a
k-colouring of M to be a function d : V (G)→ {1, 2, 3, . . . , k} such that

1. d(u) 6= d(v) for all uv ∈ R ∪B ∪ F ; and

2. for all ux ∈ R and for all vy ∈ B, if d(u) = d(v) then d(x) 6= d(y).

Informally, d is a k-colouring of the 2-edge-coloured graph G with the extra condition
that vertices at the ends of an element of F receive different colours. Notice when F = ∅,
d is a k-colouring of G. When R = B = ∅, d is a k-colouring of the graph with vertex
set V (Γ) and edge set F . The definition of k-colouring for mixed 2-edge-coloured graphs
captures both the definition of k-colouring for 2-edge-coloured graphs and the definition
of k-colouring for graphs.

At this point it may be tempting to consider a mixed 2-edge-coloured graph as a 3-
edge-coloured graph. Note however that the definition of vertex colouring given above
for mixed 2-edge-coloured graph does not coincide with the usual definition for vertex
colouring for a 3-edge-coloured graph.

Let M be a mixed 2-edge-coloured graph. In Theorem 1 we show there is a polynomial,
P (G, λ) such that P (M,k) is the number of k-colourings of M . We refer to P (M,λ) as the
chromatic polynomial of M . Notice when FM = ∅, the polynomial P (M,λ) enumerates
colourings of a 2-edge-coloured graph and when R = B = ∅, this polynomial is identically
the chromatic polynomial of the graph with vertex set V (Γ) and edge set F .

Our work proceeds as follows. In Section 2 we study properties of chromatic polyno-
mials of mixed 2-edge-coloured graphs. We use a recurrence reminiscent of the standard
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recurrence for the chromatic polynomial of a graph to give closed forms for the first three
coefficients of this polynomial. These results generalize known results for chromatic poly-
nomials of graphs. As every colouring of a 2-edge-coloured graph is a colouring of the
underlying graph, we are led naturally to considering those 2-edge-coloured graphs that
have the same chromatic polynomial as their underlying graph. We study this problem
in Section 3. We give a full classification of graphs that admit a 2-edge-colouring for
which the chromatic polynomial of the graph and the chromatic polynomial of the 2-
edge-colouring are equal. In Section 4 we study roots of chromatic polynomials of 2-edge-
coloured graphs. We find the closure of the real roots of the 2-edge-coloured chromatic
polynomials to be R and that the non-real roots can have arbitrarily large modulus.

2 The Chromatic Polynomial of a Mixed 2-edge-coloured Graph

Consider the case x = v for condition (2) in the definition of k-colouring of a mixed graph.
When x = v the sequence uvy is a path in which one edge is red and the other is blue.
And so condition (2) enforces that vertices at the end of induced 2-path whose edges are
respectively red and blue receive different colours. Let M = (G,F ) be a mixed 2-edge-
coloured graph with n vertices. An induced path uvy is called an induced bichromatic
2-path when uv ∈ R and vy ∈ B or uv ∈ B and vy ∈ R. Let PM be the set of induced
bichromatic 2-paths of M . If every pair of vertices of M is either adjacent in M or at
the ends of an induced bichromatic 2-path in G, then in any colouring of M each vertex
receives a distinct colour. Thus

P (M,λ) = Πn−1
i=0 (λ− i) = P (Kn, λ) (1)

As every vertex of M receives a distinct colour in every colouring of M , the chromatic
polynomial of such a mixed 2-edge-coloured graph M is exactly that of Kn. We return to
this observation in the proofs of Theorems 2 and 4.

Let x and y be a pair of vertices that are neither adjacent in M nor at the ends of a
bichromatic 2-path in M . The k-colourings of M can be partitioned into those in which x
and y receive the same colour and those in which x and y receive different colours. Thus

P (M,λ) = P (M + xy, λ) + P (Mxy, λ) (2)

where

• M +xy is the mixed 2-edge-coloured graph formed from M by adding xy to F ; and

• Mxy is the mixed 2-edge-coloured graph formed from identifying vertices x and y
and deleting any edge that is parallel with a coloured edge.

See Figure 1 for a sample computation. Elements of R and B are denoted respectively
by dotted and dashed lines. Elements of F are denoted by solid lines. We follow the usual
convention for chromatic polynomials of having the picture of the graph stand in for its
polynomial. Notice that in the third line each of the mixed 2-edge-coloured graphs has
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= +

= + + +

+ + ++=

λ(λ − 1)(λ − 2)(λ − 3)(λ − 4) + 3λ(λ − 1)(λ − 2)(λ − 3) + λ(λ − 1)(λ − 2)=

λ5 − 7λ4 + 18λ3 − 20λ2 + 8λ=

Figure 1: Computing the chromatic polynomial of a mixed 2-edge-coloured graph

the property that two distinct vertices are either adjacent or end vertices of an induced
bichromatic 2-path.

From Equations (1) and (2) we directly obtain the following.

Theorem 1. Let M = (G,F ) be a mixed graph with n vertices.

1. P (M,λ) is a polynomial of degree n in λ;

2. the coefficient of λn is 1; and

3. P (M,λ) has no constant term.

Since P has bounded degree and it interpolates the points (k, P (G, k)) for all k > 0,
it is necessarily unique.

As with chromatic polynomials, the coefficient of λn−1 can be computed directly by
counting a particular set of induced subgraphs.

Theorem 2. For a mixed graph M = (G,F ) the coefficient of λn−1 is given by

− (|RG|+ |BG|+ |FM |+ |PM |) .

Proof. We proceed considering the existence of a counterexample. Let n be the least
integer such that there exists a mixed 2-edge-coloured graph with n vertices such that
the statement of the theorem is false. Among all counterexamples on n vertices, let
M = (G,F ) be a counterexample that maximizes the number of edges in S(M). If
PM 6= ∅, then there exists vertices u and v which are the ends of an induced bichromatic
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path in M . Let M ′ be the mixed 2-edge-coloured graph formed from M by adding uv to
F . We observe that every colouring of M is a colouring of M ′ and also that every colouring
of M ′ is a colouring of M . Thus M and M ′ have the same chromatic polynomial. This
contradicts our choice of M as a counterexample on n vertices with the maximum number
of edges in S(M). Thus we may assume PM = ∅.

We claim there exists a pair of vertices u and v such that u and v are not adjacent
in S(M). If u and v do not exist, then S(M) ∼= Kn and so P (M,λ) = P (Kn, λ). The
coefficient of λn−1 in P (Kn, λ) is given by −

(
n
2

)
[17]. Recall PM = ∅. For M we observe

− (|RG|+ |BG|+ |FM |+ |PM |) = −
(
n

2

)
Thus we consider u, v ∈ V (M) such that u and v are not adjacent in S(M). Let cn−1

be the coefficient of λn−1 in P (M,λ). By Theorem 1, our choice of M , and Equation (2),
we have

cn−1 = − (|RG|+ |BG|+ |FM+uv|+ |PM |) + 1

We observe |FM+uv| = |FM |+ 1. Simplifying yields

cn−1 = − (|RG|+ |BG|+ |FM |+ |PM |) .

Thus M is not a counterexample. And so by choice of M , no counterexample exists.

Corollary 3. For a 2-edge-coloured graph G, the coefficient of λn−1 in P (G, λ) is given
by − (|RG|+ |BG|+ |PG|)

Consider the case in condition (2) in the definition of k-colouring of a mixed 2-edge-
coloured graph where u, v, x and y are distinct vertices in M . For d, a k-colouring of M ,
we must have |{d(u), d(x), d(v), d(z)}| ∈ {3, 4}. As the subgraph induced by {u, v, y, z}
has chromatic number 2 in S(M), such pairs of edges, in a sense, obstruct a colouring of
S(M) from being a colouring of M .

Let M = (G,F ) be a mixed 2-edge-coloured graph. Let Λ be the graph formed from
M by adding to F the edge between any pair of vertices that are the ends of an induced
bichromatic 2-path in M and considering coloured edges in G as edges in Λ. (See Figure
2 for an example)

For ux ∈ R and vy ∈ B we say that ux and vy are pair of obstructing edges when
χ(Λ[u, x, v, y]) = 2. Let OM be the set of pairs of obstructing edges in M .

Using the notion of obstructing edges, we find a closed form for the coefficient of λn−2

of a chromatic polynomial of a mixed 2-edge-coloured graph.

Theorem 4. For M = (G,F ) a mixed 2-edge-coloured graph, the coefficient of λn−2 in
P (M,λ) is given by(

|RG|+ |BG|+ |PM |+ |FM |
2

)
− |TS(M)| − |PM | − |OM |,

where TS(M) is the set of induced subgraphs of S(M) isomorphic to K3.
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Figure 2: Λ (right) constructed from M (left)

Proof. We proceed considering the existence of a counterexample. Let n be the least
integer such that there exists a mixed 2-edge-coloured graph with n vertices such that
the statement of the theorem is false. Among all counterexamples on n vertices, let
M = (G,F ) be a counterexample that maximizes the number of edges in S(M).

As in the proof of Theorem 2 we may assume PM = ∅.
We claim there exists a pair of vertices u and v such that u and v are not adjacent

in S(M). If u and v do not exist, then S(M) ∼= Kn and so P (M,λ) = P (Kn, λ). The

coefficient of λn−2 in P (Kn, λ) is given by
((n

2)
2

)
−
(
n
3

)
[17]. For M we observe((n

2

)
2

)
−
(
n

3

)
=

(
|RG|+ |BG|+ |PM |+ |FM |

2

)
− |TS(M)|

=

(
|RG|+ |BG|+ |PM |+ |FM |

2

)
− |TS(M)| − |PM | − |OM |.

This last equality follows by observing PM = ∅ (by hypothesis) and OM = ∅ when
M is complete. This equality contradicts our choice of M , and so we conclude that such
vertices u and v exist.

Thus we consider u, v ∈ V (M) such that u and v are not adjacent in S(M). Let cn−2

be the coefficient of λn−2 in P (M,λ). By Theorem 2, our choice of M and Equation (2)
we have

cn−2 =

(
|RG|+ |BG|+ |PM |+ |FM+uv|

2

)
−
(
|TS(M+uv)|+ |PM |+ |OM+uv|

)
− (|RGuv |+ |BGuv |+ |FMuv |+ |PMuv |) .

Observe |FM+uv| = |FM | + 1. Let C be the set of common neighbours of u and
v in S(M). We observe |TS(M+uv)| = |TS(M)| + |C| and |RGuv | + |BGuv | + |FMuv | =
|RG|+ |BG|+ |FM | − |C|. Thus

cn−2 =

(
|RG|+ |BG|+ |PM |+ |FM |+ 1

2

)
−
(
|TS(M)|+ |PM |+ |OM+uv|

)
− (|RG|+ |BG|+ |FM |+ |PMuv |) .

Since PM = ∅, a pair of obstructing edges, (ux, vy) in M , is not obstructing in M +uv
if and only if xy /∈ F and one of uy or vx is contained in F . Let OuvM be the set of
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such obstructing edges. Therefore |OM+uv| = |OM | − |OuvM |. Notice now that every
element of OuvM contributes an element of PGuv that was not an element of PM . Thus
|PMuv | = |PM |+ |OuvM |.

Substituting yields

cn−2 =

(
|RG|+ |BG|+ |PM |+ |FM |+ 1

2

)
−
(
|TS(M)|+ |PM |+OM − |OuvM |

)
− (|RG|+ |BG|+ |FM |+ |PM |+ |OuvM |)

=

(
|RG|+ |BG|+ |PM |+ |FM |+ 1

2

)
− (|RG|+ |BG|+ |FM |+ |PM |)

−
(
|TS(M)|+ |PM |+ |OM |

)
=

(
|RG|+ |BG|+ |PM |+ |FM |

2

)
−
(
|TS(M)|+ |PM |+ |OM |

)
.

Thus M is not a counterexample. And so by choice of M , no counterexample exists.

Corollary 5. For a 2-edge-coloured graph G = (Γ, R,B), the coefficient of λn−2 in
P (G, λ) is given by (

|RG|+ |BG|+ |PG|
2

)
− |TΓ| − |PG| − |OG|.

Alternatively, like the chromatic polynomial of a graph, one may approach the con-
struction of the chromatic polynomial of a mixed 2-edge-coloured graph by the considering
sums of chromatic polynomials of graphs whose chromatic number is equal to the number
of vertices.

Recall that in the third line of Figure 1, each of the mixed 2-edge-coloured graphs has
the property that two distinct vertices are end vertices of either an edge or an induced
bichromatic 2-path. From this we notice the chromatic polynomial of a mixed 2-edge-
coloured graph on n vertices can be expressed in terms of chromatic polynomials of mixed
2-edge-coloured graphs having this property:

P (M,λ) =
n∑
t=1

w(t)P (Kt, λ), (3)

where w(t) is the number of partitions of V into t sets of vertices such that vertices in
the same set can receive the same colour in a vertex colouring of M . With this approach,
the results above can be obtained directly by counting various obstructing substructures.

Consider computing cn−1 with this method. From Equation 3 we have

cn−1 = [λn−1]
n∑
t=1

w(t)P (Kt, λ) = w(n)[λn−1]P (Kn, λ) + w(n− 1)[λn−1]P (Kn−1, λ).

the electronic journal of combinatorics 30(4) (2023), #P4.40 8



We compute w(n− 1) by counting the number of ways to partition the vertices of M into
n−1 sets of vertices that can receive the same colour in a vertex colouring of M . As there
are n vertices in M , a partition into n−1 sets consists of n−2 singletons and a set with two
elements. The set of two elements can consist of any pair of vertices of M that are non-
adjacent and are not the ends of a bichromatic 2-path. There are |RG|+|BG|+|PM |+|FM |
such pairs. And so w(n − 1) =

(
n
2

)
− (|RG| + |BG| + |PM | + |FM |). Since w(n) = 1 and

[λn−1]P (Kn, λ) = −
(
n
2

)
we have

cn−1 = w(n)[λn−1]P (Kn, λ) +

((
n

2

)
− (|RG|+ |BG|+ |PM |+ |FM |)

)
[λn−1]P (Kn−1, λ)

= −
(
n

2

)
+

(
n

2

)
− (|RG|+ |BG|+ |PM |+ |FM |)

= −(|RG|+ |BG|+ |PM |+ |FM |)

Using this method one can similarly obtain Theorem 4.

3 Chromatically Invariant 2-edge-coloured Graphs

Consider a 2-edge-coloured graph G = (Γ, R,B). By definition every colouring of G is
necessarily a colouring of Γ. Thus for each integer k > 1 we have P (Γ, k) > P (G, k).
In this section we study the structure of 2-edge-coloured graphs G for which P (Γ, λ) =
P (G, λ). We refer to such 2-edge-coloured graphs as chromatically invariant. Trivially,
every 2-edge-coloured graph in which R = ∅ or B = ∅ is chromatically invariant. We refer
to those chromatically invariant 2-edge-coloured graphs with R,B 6= ∅ as non-trivially
chromatically invariant. We begin by providing a forbidden subgraph characterisation of
chromatically invariant 2-edge-coloured graphs.

Lemma 6. Let G be a 2-edge-coloured graph. If PG = OG = ∅, then G is chromatically
invariant.

Proof. Let G = (Γ, R,B) be a 2-edge-coloured graph such that PG = OG = ∅. For each
k > 1, let CG,k be the set of k-colourings of G. Similarly, let CΓ,k be the set of k-colourings
of Γ. Recalling the definition of k-colouring of a 2-edge-coloured graph, it follows directly
that CG,k ⊆ CΓ,k. To complete the proof it suffices to show CΓ,k ⊆ CG,k.

Let c be a k-colouring of Γ. Consider ux ∈ R and vy ∈ B such that c(u) = c(v). If
u = v, then xy ∈ E(Γ) as PG = ∅. Thus c(x) 6= c(y).

Consider now the case where u 6= v. Since OG = ∅ it follows that
|{c(u), c(x), c(v), c(y)}| ∈ {3, 4}. Thus c(x) 6= c(y). Therefore c ∈ CG,k and so it fol-
lows CΓ,k ⊆ CG,k.

Theorem 7. A 2-edge-coloured graph G = (Γ, R,B) is chromatically invariant if and
only if G contains no induced bichromatic 2-path and G contains no induced bichromatic
copy of 2K2.
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Proof. Let G = (Γ, R,B) be a 2-edge-coloured graph.
Assume G is non-trivial chromatically invariant. For a contradiction, we first assume

PG 6= ∅. Consider uvw ∈ PG. Let k be the least integer such that there is a k-colouring c
of Γ for which c(u) = c(v). Let CΓ,k be the set of k-colourings of Γ. Let CG,k be the set of
k-colourings of G. By construction, c ∈ CΓ,k but c /∈ CG,k. By the argument in the proof
of Lemma 6, we have CG,k ⊆ CΓ,k. Therefore |CG,k| < |CΓ,k|. Thus P (G, k) < P (Γ, k),
which implies P (G, λ) 6= P (Γ, λ).

Assume now G contains an induced bichromatic copy of 2K2. Let ux ∈ R and vy ∈ B
be such that G[u, x, v, y] is a bichromatic copy of 2K2. Let k be the least integer such
that there is a k colouring c of Γ for which c(u) = c(v) and c(x) = c(y). A contradiction
follows as in the previous paragraph.

Assume PG = ∅ and G contains no induced bichromatic copy of 2K2. By Lemma 6 it
suffices to show OG = ∅. Consider ux ∈ R and vy ∈ B such that u 6= v, y and x 6= v, y.
Since G contains no induced bichromatic copy of 2K2, there exists an edge with an end
in {u, x} and an end in {v, y}. Without loss of generality, assume uv ∈ R. Since PG = ∅
and vy ∈ B it follows that uy ∈ E(Γ). Therefore Γ[u, v, x, y] contains a copy of K3. Thus
{ux, vy} is not a pair of obstructing edges. Therefore OG = ∅. The result follows by
Lemma 6.

Theorem 7 gives a full characterization of chromatically invariant 2-edge-coloured
graphs. This characterization allows us to further characterize these 2-edge-coloured
graphs by way of pairs of independent sets.

Theorem 8. A 2-edge-coloured graph G = (Γ, R,B) is chromatically invariant if and only
if for every disjoint pair of non-empty independent sets I1 and I2 in Γ, the 2-edge-coloured
subgraph induced by I1 and I2 is monochromatic.

Proof. Let G = (Γ, R,B) be a 2-edge-coloured graph and let I1 and I2 be disjoint non-
empty independent sets of Γ.

Assume G is chromatically invariant. Thus by Theorem 7, it follows that G has no
induced bichromatic 2-path and no induced bichromatic copy of 2K2. If G[I1 ∪ I2] has
at most one edge, then the result holds – necessarily this subgraph is monochromatic.
Otherwise, assume e = u1u2 and f = v1v2 are edges of G[I1 ∪ I2] with u1, v1 ∈ I1 and
u2, v2 ∈ I2. Assume, without loss of generality, e ∈ R and f ∈ B.

We first show that e and f have a common end point. Recall G contains no induced
bichromatic copy of 2K2. Thus if e and f do not have a common end point, then, without
loss of generality, we have u1v2 ∈ E(Γ). If u1v2 ∈ R then u1v2v1 ∈ P . Similarly, if
u1v2 ∈ B, then v2u1v1 ∈ P . However, we have P = ∅. Therefore e and f have a common
end point.

If e and f have a common endpoint, then ef ∈ P . However, we have P = ∅. Therefore
e and f do not have a common end point, a contradiction. Therefore the 2-edge-coloured
subgraph induced by I1 and I2 is monochromatic.

Assume G is not chromatically invariant. By Theorem 7 we have that P 6= ∅ or G
contains an induced bichromatic copy of 2K2. In either case we find a pair of disjoint
independent sets I1, I2 such that G[I1 ∪ I2] is not monochromatic.

the electronic journal of combinatorics 30(4) (2023), #P4.40 10



Corollary 9. If G is a 2-edge-coloured chromatically invariant graph, then every induced
subgraph of G is chromatically invariant.

We turn now to the problem of classifying those graphs which admit a non-trivial
chromatically invariant 2-edge-colouring. We begin by fully classifying those graphs that
admit a chromatically invariant 2-edge-colouring in which every vertex is incident with
both a red and blue edge. We use this classification to then give a full classification of
graphs that admit a non-trivial chromatically invariant 2-edge-colouring.

Recall a graph Γ is a join when V (Γ) has a partition {X, Y } such that xy ∈ E(Γ)
for all x ∈ X and y ∈ Y . For Γ1 = Γ[X] and Γ2 = Γ[Y ] we say that Γ is the join of Γ1

and Γ2 and we write Γ = Γ1 ∨ Γ2. We call an edge uv ∈ V (Γ1 ∨ Γ2) a joining edge when
u ∈ V (Γ1) and v ∈ V (Γ2).

Lemma 10. Let Γ1 and Γ2 be graphs such that each of Γ1 and Γ2 have no isolated vertices.
The graph Γ1 ∨ Γ2 admits a non-trivial chromatically invariant 2-edge colouring in which
every vertex is incident with at least one red edge and one blue edge.

Proof. Let J be the set of joining edges of Γ1∨Γ2. LetR = E(Γ1)∪E(Γ2) andB = J . Since
each of Γ1 and Γ2 have no isolated vertices, each vertex of Γ1∨Γ2 is incident with at least
one red edge and one blue edge. For any pair of disjoint independent sets I1, I2 ⊂ V (Γ)
we have I1, I2 ⊂ V (Γ1) or I1, I2 ⊂ V (Γ2) or I1 ⊂ V (Γ1) and I2 ⊂ V (Γ2). In the latter case
all edge between I1 and I2 are monochromatic. For the former cases the result follows
by observing that the 2-edge-coloured graph (Γ, R,B) satisfies the hypothesis of Theorem
8.

Lemma 11. Let G = (Γ, R,B) be a non-trivial chromatically invariant 2-edge-coloured
graph. If there exists graphs Γ1 and Γ2 such that Γ = Γ1 ∨ Γ2 and neither of Γ1 or Γ2 is
a join, then all of the joining edges of Γ1 ∨ Γ2 have the same colour in G.

Proof. Let Γ1 and Γ2 be graphs that are not joins. Let Γ = Γ1 ∨ Γ2. Let G = (Γ, R,B)
be non-trivial chromatically invariant 2-edge-coloured graph.

We first show that for any pair y1, y2 ∈ V (Γ2) there is a sequence of independent sets
I1, I2, . . . , I` such that y1 ∈ I1, y2 ∈ I` and Ii ∩ Ii+1 6= ∅ for all 1 6 i 6 ` − 1. Since Γ2

is not a join, its complement, Γ2, is connected. Therefore there is a path from y1 to y2

in Γ2. The edges of such a path form a sequence of independent sets in Γ2: I1, I2, . . . , I`
such that y1 ∈ I1, y2 ∈ I` and Ii ∩ Ii+1 6= ∅ for all 1 6 i 6 `.

Consider v ∈ V (Γ1) and y1, y2 ∈ V (Γ2). Since Γ = Γ1 ∨ Γ2, we have vy1, vy2 ∈ E(Γ).
Let I1, I2, . . . , I` be a sequence of independent sets in such that y1 ∈ I1, y2 ∈ I` and
Ii ∩ Ii+1 6= ∅ for all 1 6 i 6 `− 1. By Lemma 8 edges between Ii and v all have the same
colour. Since Ii ∩ Ii+1 6= ∅, all of the edges between Ii+1 and v all have that same colour.
Since v is adjacent to every vertex in Γ2 it follows that the edges between I1 and v have
the same colour as those between I` and v. Therefore every joining edge with an end at
v has the same colour.

Similarly, for any u ∈ V (Γ2), every joining edge with an end at u has the same colour
in G. Thus it follows that all of the joining edges of Γ1 ∨ Γ2 have the same colour in
G.
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Lemma 12. If G = (Γ, R,B) is a chromatically invariant 2-edge-coloured graph in which
every vertex is incident with a red edge and a blue edge, then Γ is a join.

Proof. Let G = (Γ, R,B) be a minimum counterexample with respect to number of ver-
tices. We first show that there exists a vertex v ∈ V (Γ) such that every vertex of G − v
is incident with both a red edge and a blue edge.

If no such vertex exists, then for every x ∈ V (Γ) there exists y ∈ V (Γ) such that
xy ∈ E(Γ) and the edge xy is the only one of its colour incident with y. We proceed
in cases based on the existence of a pair u, v ∈ V (Γ) such that uv is the only one of its
colour incident with u and the only one of its colour incident with v.

If such a pair exists, then, without loss of generality, let uv be red. Since G has no
induced bichromatic 2-path, NG[B](u) = NG[B](v). If V (Γ) = {u, v} ∪NG[B](u), then Γ is
a join. As such the set Q = V (Γ)\

(
{u, v} ∪NG[B](u)

)
is non-empty. Notice that as G has

no induced bichromatic 2-path, all edges between Q and NG[B](u) are blue. Since every
vertex of G is incident with both a red and a blue edge, it follows that every vertex of Q
is incident with a red edge in the 2-edge-coloured graph G[Q]. As Γ is not a join, there
exists q ∈ Q and x ∈ NG[B](u) such that qx /∈ E(Γ). Let rq be a red edge in G[Q]. Notice
rx /∈ E(Γ), as otherwise such an edge is blue in G and so xrq is an induced bichromatic
2-path in G. Therefore the subgraph induced by {u, x, q, r} is a bichromatic copy of 2K2.
This is a contradiction as G is chromatically invariant. Therefore no such pair u, v exists.

Since no such pair u, v exists, there is a maximal sequence of vertices of Γ: u1, u2, . . . uk
such that uiui+1 ∈ E(Γ) and the edge uiui+1 is the only one of its colour incident with
ui+1 for all 1 6 i 6 k − 1. We further note that, without loss of generality, vertices with
an even index are adjacent with a single red edge and vertices with an odd index (other
that u1) are incident with a single blue edge. Thus u1, u2, . . . , uk is an path whose edges
are alternately red and blue. If k > 4, then since G has no induced bichromatic 2-path,
we have u2u4 ∈ E(Γ). However, this edge is either a second red edge incident with u2 or
a second blue edge incident with u4. This is a contradiction, and so k = 3.

Since this path was chosen to be maximal, it follows that the edge between u1 and u3

is the only one of its colour incident with u1. Since u1u2 is red, it follows that u1u3 is
blue. But then u3 is incident with two blue edges: u2u3 and u1u3. This is a contradiction.
And so there exists a vertex v ∈ V (Γ) such that every vertex of G − v is incident with
both a red edge and a blue edge.

Consider v ∈ V (Γ) such that every vertex of G − v is incident with both a red edge
and a blue edge. By Lemma 11, G−v is a chromatically invariant 2-edge-coloured graph.
By the minimality of G, we have that (Γ− v) is a join. Therefore V (Γ − v) admits a
partition {X1, X2, . . . , Xk} such that (Γ− v) [Xi] is not a join for each 1 6 i 6 k and for
each 1 6 i < j 6 k we have (Γ− v) [Xi ∪Xj] = (Γ− v) [Xi] ∨ (Γ− v) [Xj].

Notice for any 1 6 i 6 k that if v is adjacent to every vertex of Xi, then Γ is necessarily
a join. Thus, for every for every 1 6 i 6 k vertex v is not adjacent to at least one vertex
of Xi.

By hypothesis, v in incident with a red edge and a blue edge. Let vr and vb be such
edges for some r, b ∈ V (Γ). We proceed in cases based on the location of r and b within
the partition {X1, X2, . . . , Xk} of V (Γ− v).

the electronic journal of combinatorics 30(4) (2023), #P4.40 12



Consider, without loss of generality, r, b ∈ X1. Notice that by Theorem 9 and Lemma
11, for every 1 6 i < j 6 k, the joining edges of (Γ− v) [Xi ∪ Xj] = (Γ− v) [Xi] ∨
(Γ− v) [Xj] are the same colour. Since each of r and b are adjacent to every vertex of
X2, then either vry or vby is an induced bichromatic 2-path for every y ∈ X2. (Whether
or not vry or vby is an induced bichromatic 2-path depends on the colour of the joining
edges between X1 and X2 ). Since G is chromatically invariant, by Theorem 7 no such
path can be exist And so v is adjacent to every vertex in X2, a contradiction.

Consider, without loss of generality, r ∈ X1 and b ∈ X2. Further assume without loss
of generality that all of the joining edges of (Γ− v) [X1∪X2] = (Γ− v) [X1]∨ (Γ− v) [X2]
are red. Since Γ is not a join, there is at least one vertex of X1, say x1, that is not adjacent
to v. However, x1bv is an induced bichromatic 2-path. Since G is chromatically invariant,
by Theorem 7 no such path can be exist. This is a contradiction.

Together Lemmas 10 and 12 imply the following characterization of those graphs
which admit non-trivial chromatically invariant 2-edge-colourings in which every vertex
is incident with at least one edge of each colour.

Theorem 13. A graph Γ admits a non-trivial chromatically invariant 2-edge-colouring
in which every vertex is incident with both a red edge and a blue edge if and only if Γ is
the join of two graphs having no isolated vertices.

Using this characterization we find a full characterization for the set of graphs that
admit a non-trivial chromatically invariant 2-edge-colouring. To do so we require the
following lemmas.

Lemma 14. Let G = (Γ, R,B) be a non-trivial chromatically invariant 2-edge-coloured
graph with no isolated vertices. Let VB be the set of vertices that are incident with only blue
edges and whose neighbours are only incident with blue edges. The set VB is independent
in Γ.

Proof. Let G be a non-trivial chromatically invariant 2-edge-coloured graph with no iso-
lated vertices. Let u, v ∈ VB. Notice

∅ = NG[R](u) = NG[R](v) =
⋃

w∈N(u)

NG[R](w) =
⋃

w∈N(v)

NG[R](w)

Since G is non-trivially chromatically invariant, there exists xy ∈ E such that xy ∈ R.
By hypothesis, x, y 6∈ NG[R](u) ∪ NG[R](v). By hypothesis, if uv ∈ E, then uv ∈ B.
However, in this case {uv, xy} ∈ OG, contradicting the statement of Theorem 7.

Lemma 15. Let G = (Γ, R,B) be a non-trivial chromatically invariant 2-edge-coloured
graph with no isolated vertices. Let u ∈ V . If NG[R](u) = ∅ and there exists v ∈ N(u) such
that NG[R](v) 6= ∅, then u is adjacent to all vertices of Γ that are in the same component
of G[R] as v.
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Proof. Let G be a non-trivial chromatically invariant 2-edge-coloured graph with no iso-
lated vertices. Let u ∈ V such that NG[R](u) = ∅ with v ∈ N(u) such that NG[R](v) 6= ∅.
Let J be the component of G[R] that contains v.

Consider x ∈ J , and let y1, . . . , y`−1, y` = x be a path of vertices from v to x in J . Note
that every edge in this path is red. We will now show through induction that there is a
blue edges from u to every vertex in this path. First, suppose uy1 /∈ B. Then uvy1 ∈ PG,
contradicting the statement of Theorem 7. Now suppose for some k > 1 that uyk ∈ B.
To reach a contradiction, suppose uyk+1 /∈ B. Then uykyk+1 ∈ PG, contradicting the
statement of Theorem 7. Thus by induction, u is adjacent to each of y1, . . . , y`−1, y`.
Therefore u is adjacent to x.

Theorem 16. A graph Γ admits a non-trivial chromatically invariant 2-edge-colouring if
and only if there exists non-empty V1, V2 ⊂ V (Γ) such that

• V1 ∩ V2 = ∅,

• Γ[V1] has at least one edge,

• Γ[V1 ∪ V2] = Γ[V1] ∨ Γ[V2], and

• V \ (V1 ∪ V2) is an independent set and has no neighbours in V1.

Proof. First, we show that every graph with this structure admits a non-trivial chromat-
ically invariant 2-edge-colouring. Assume Γ has the structure as outlined in the theorem.
Without loss of generality, assume Γ has no isolated vertices. Consider the 2-edge-coloured
graph G obtained by colouring all edges in Γ[V1] red and all other edges blue. Using The-
orem 8 we prove such a 2-edge-coloured graph is chromatically invariant.

Let I1 and I2 be a disjoint pair of non-empty independent sets in Γ. And consider a
pair of edges u1u2, v1v2 with u1, v1 ∈ I1 and u2, v2 ∈ I2. We claim cG(v1v2) = cG(u1u2).
By symmetry, it suffices to prove that if cG(u1u2) = R, then cG(v1v2) = R.

If cG(u1u2) = R, then u1, u2 ∈ V1. Since Γ[V1 ∪ V2] = Γ[V1] ∨ Γ[V2], then v1, v2 /∈ V2.
Since V \ (V1 ∪ V2) is an independent set and has no neighbours in V1, it follows that
v1, v2 ∈ V1. Therefore cG(v1v2) = R.

By Theorem 8, G is chromatically invariant.
We now show that every non-trivial chromatically invariant 2-edge-coloured graph

has the structure outlined in the theorem. For a fixed Γ, Let GΓ be the set of non-trivial
chromatically invariant 2-edge-coloured graphs whose underlying graph is Γ. Assume GΓ

is non-empty.
Consider G ∈ GΓ. If all vertices are incident with a red edge and a blue edge in G,

then the result follows from Theorem 13 with V \ (V1 ∪ V2) = ∅.
Otherwise assume all elements of GΓ have a vertex incident with edges of exactly one

colour. Without loss of generality, assume this colour is blue. That is, every non-trivial
chromatically invariant 2-edge-colouring of Γ in GΓ has a vertex incident with only blue
edges.

Consider G ∈ GΓ that minimizes the number of components of G[RG]. That is, let G
be a non-trivial chromatically invariant 2-edge-coloured graph that minimizes the number
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of components in the subgraph induced by the red edges of G among all 2-edge-coloured
graphs whose underlying graph is Γ. Define the following sets, which form a partition of
V .

• VG,s – the set of vertices incident with only blue edges and whose neighbours are
incident with only blue edges

• VG,w – the set of vertices incident with only blue edges, but have at least one
neighbour incident with a red edge

• VG,r – the set of vertices incident with a red edge

By Lemma 14, VG,s is an independent set. By construction, VG,s has no neighbours in
VG,r.

If Γ[VG,w ∪ VG,r] = Γ[VG,w] ∨ Γ[VG,r], then the result follows by letting V1 = VG,r and
V2 = VG,w.

By hypothesis, G[RG] has at least one component. Suppose G[RG] has one component.
By definition, each vertex in VG,w is adjacent to some vertex in VG,r. Therefore, each
vertex in VG,w is adjacent to some vertex in the one component of G[RG]. By Lemma
15 each vertex in VG,w is adjacent to every vertex in the one component of G[RG]. Thus
Γ[VG,w ∪ VG,r] = Γ[VG,w] ∨ Γ[VG,r] and the result follows.

We claim that if Γ[VG,w ∪ VG,r] 6= Γ[VG,w] ∨ Γ[VG,r] then G does not minimize the
number of components of G[RG]. That is, if Γ[VG,w ∪ VG,r] 6= Γ[VG,w] ∨ Γ[VG,r] then there
exists G′ ∈ GΓ such that G′[RG′ ] has fewer components than G[RG].

Assume G[RG] has k > 1 components and Γ[VG,w ∪ VG,r] 6= Γ[VG,w] ∨ Γ[VG,r]. Since
Γ[VG,w ∪VG,r] 6= Γ[VG,w]∨Γ[VG,r] there exists a pair of non-adjacent vertices u ∈ VG,w and
v ∈ VG,r.

Let J1, J2, . . . Jk be the set of components of G[RG]. Since u has at least one neighbour
incident to a red edge, we may order these components such that there exists 1 < t < k
such that in Γ u has a neighbour in each of J1, J2, . . . Jt and no neighbour in each of
Jt+1, Jt+2, . . . Jk. In other words, in Γ, u has neighbour in each of J1, J2, . . . Jt and none
of Jt+1, Jt+2, . . . Jk. By Lemma 15 u is adjacent to every vertex in each of J1, J2, . . . Jt.

Consider 1 6 i 6 t, t+1 6 j 6 k and vertices x ∈ Ji and y ∈ Jj. We claim xy ∈ E(Γ),
which in turn implies Γ[Ji ∪ Jj] = Ji ∨ Jj.

By hypothesis ux ∈ B. By hypothesis, y is incident with a red edge e ∈ E(Jj). Since
G is chromatically invariant, there is an edge between at least one end of e and one end
of ux. By construction, such an edge must be blue and must have an end at x. This edge
is in a bichromatic 2-path with e. Since G is chromatically invariant, by Theorem 7 this
bichromatic 2-path is not induced. And so there must be a blue edge between both ends
of e and x. Therefore for every vertex x ∈ Ji and y ∈ Jj there is a blue edge between
them. Therefore Γ[Ji ∪ Jj] = Ji ∨ Jj.

Consider the 2-edge-coloured graph G′ formed from G as follows:

• cG′(e) = B for all e ∈ J1, J2, . . . Jt

• cG′(e) = cG(e), otherwise.
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Notice that the only red edges of G′ are contained in Jt+1, Jt+2, . . . Jk. And so G′ has
fewer components in G′[RG′ ] than does G[RG]. We show G′ is a non-trivially chromatically
invariant 2-edge-colouring of Γ.

Let xyz be a 2-path in G′ such that cG′(xy) = R and cG′(yz) = B. Therefore there
exists t+ 1 6 j 6 k such that x, y ∈ Jj. Since G is chromatically invariant and all edges
other than those in J1, J2, . . . Jt have the same colour in G and in G′, we may assume
there exists 1 6 i 6 t such that z ∈ Ji. Recall, Γ[Ji ∪ Jj] = Ji ∨ Jj. And so zx ∈ E.
Therefore G′ has no induced bichromatic 2-path.

Let e, f be a 2K2 with e red and f blue in G′. Arguing as above, we may assume
there exists t+ 1 6 j 6 k and 1 6 i 6 t such that e ∈ Jj and f ∈ Ji. However, as above,
Γ[Ji ∪ Jj] = Ji ∨ Jj. And so this bichromatic copy of 2K2 is not induced.

By Theorem 7, G′ is a non-trivial chromatically invariant 2-edge-colouring of Γ. How-
ever, G′ ∈ GΓ and G′[RG′ ] has fewer components than G[RG]. This contradicts the
assumption that G was the element of GΓ that minimized the number of components of
G[RG].

4 Roots of Chromatic Polynomials of 2-edge-coloured Graphs

The coefficients of a graph polynomial such as the chromatic polynomial capture structural
properties of the graph (see e.g., Theorems 2 and 4 above for two coefficients of the
chromatic polynomial of a 2-edge-coloured graph). Locating the roots of a polynomial in
the complex plane gives information about its coefficients (see e.g., [10]), which motivates
the study of how the roots of chromatic polynomials are distributed. A root of a chromatic
polynomial of a graph is called a chromatic root.

See Figure 4 for the chromatic roots of all connected graphs on six vertices obtained
by computer search. We call a root of a chromatic polynomial of a 2-edge-coloured graph
a monochromatic root if the graph is monochromatic and a bichromatic root if the graph
is bichromatic. See Figure 3 for the bichromatic roots of all connected 2-edge-coloured
graphs on 6 vertices obtained by computer search. Recall the chromatic polynomial of a
monochromatic graph is simply the chromatic polynomial of the underlying graph. There-
fore the collection of all chromatic roots is exactly the collection of all monochromatic
roots. In this section we provide results on bichromatic roots.

We begin with a study of the real roots. The real chromatic roots are always positive
[17] as the coefficients of the chromatic polynomial of a graph alternate in sign and there
are no real roots in (0, 1) ∪ (1, 32

27
]. In contrast we will show the bichromatic roots are

dense in R and the collection of all rational bichromatic roots is Z. For n > 1, let Kr
n and

Kb
n denote monochromatic copies of Kn with red and blue edges, respectively. For a pair

of 2-edge-coloured graphs G = (ΓG, RG, BG) and H = (ΓH , RH , BH), let G ∪ H denote
the disjoint union of G and H.

Theorem 17. Let G = (Γ, R,B) be a 2-edge-coloured graph on n vertices such that
χ(G) = n. We have

P (G ∪Kr
2 , λ) = λ(λ− 1) · · · (λ− n+ 1)(λ2 − λ− 2|B|).
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Figure 3: Bichromatic roots of all con-
nected 2-edge-coloured graphs on six
vertices

Figure 4: Chromatic roots of all con-
nected graphs on six vertices

Proof. Let G = (Γ, R,B) be a 2-edge-coloured graph on n vertices such that χ(G) = n.
For fixed k > 0, we construct a k-colouring of G ∪Kr

2 by first colouring vertices G and
then those of Kr

2 . As χ(G) = n, any k-colouring assigns each vertex of G a unique colour.
There are k(k − 1) · · · (k − |V | + 1) such colourings. We can then colour vertices of Kr

2

with any two different colours unless there exists b ∈ B whose ends have been assigned
those two colours. Thus each b ∈ B prohibits two possible colourings of the Kr

2 . Therefore
given any k-colouring of G there are k2 − k − 2|B| such colourings of Kr

2 . And so

P (G ∪Kr
2 , λ) = λ(λ− 1) · · · (λ− n+ 1)(λ2 − λ− 2|B|).

Corollary 18. Let n > 1 be an integer. We have

P (Kb
n ∪Kr

2 , λ) = λ(λ− 1) · · · (λ− n)(λ+ n− 1).

Theorem 19. The closure of the rational bichromatic roots is Z.

Proof. By Theorem 1, for any 2-edge-coloured graph G, the leading coefficient of P (G, λ)
is 1. Therefore by the rational root theorem, any rational root of a 2-edge-coloured graph
chromatic polynomial must be an integer. Let m > 0 be an integer By Corollary 18, we
have

P (Kb
m+1 ∪Kr

2 , λ) = λ(λ− 1) · · · (λ− (m+ 1))(λ+m).

We observe P (Kb
m+1 ∪K2

r , λ) has roots at λ = −m, 0, 1, . . . ,m,m+ 1.

Theorem 20. The closure of the real bichromatic roots is R.

Proof. For any r ∈ R let d(r) = r − brc. Furthermore let

A =

{
1−
√

1 + 8m

2
: m ∈ N

}
.
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Let G be a 2-edge-colouring of a complete graph such that |B| = m. By Theorem 17
each element of A is a real root of P (G ∪Kr

2 , λ). We first show that for any r ∈ R and
ε > 0, there exists an a ∈ A such that |d(r)− d(a)| < ε.

Let f(m) = 1−
√

1+8m
2

and M = 2
ε2

. Note that |f(m + 1) − f(m)| < ε for m > M .
Furthermore f(m) → −∞ as m → ∞. Thus for any s 6 f(M), there exists an m > M
such that f(m + 1) 6 s 6 f(m) 6 r. This implies |s − f(m)| < ε. Furthermore
|d(s)−d(f(m))| < ε. By choosing s 6 f(M) such that d(s) = d(r) and let a = f(m) ∈ A.
It then follows that |d(r)− d(a)| < ε.

Let Ga be a 2-edge-coloured graph such that P (Ga, λ) has a real root at a. Let Ha be
the 2-edge-coloured graph formed the join of Ga and any 2-edge-coloured Kn, where all
of the joining edges are red. We have

P (Ha, λ) = λ(λ− 1) · · · (λ− n+ 1)P (Ga, λ− n).

Consider n = brc − bac. As r = d(r) + brc and a + n = d(a) + bac + n = d(a) + brc
we have

|r − (a+ n)| = |d(r) + brc − (d(a) + brc)| = |d(r)− d(a)| < ε.

Thus Ha has a root at a+ n.

We turn now to study complex roots of chromatic polynomials of 2-edge-coloured
graphs. We show they may have arbitrarily large modulus. To do this we study the limit
of the complex roots of a 2-edge-coloured complete bipartite graph.

Let pn(z) =
∑k

j=1 αj(z)λj(z)n. Beraha, Kahne and Weiss studied the limits of the
complex roots of such functions (as arising in recurrences). They fully classified those
values that occur as limits of roots of a family of polynomials. See [3] for a full statement
of the Bereha-Kahane-Weiss Theorem.

A limit of roots of a family of polynomials Pn is a complex number, z, for which there
are sequences of integers (nk) and complex numbers (zk) such that zk is a zero of Pnk

,
and zk → z as k → ∞. The Bereha-Kahane-Weiss Theorem requires non-degeneracy
conditions: no αi is identically 0, and λi 6= ωλk for any i 6= k and any root of unity ω.
The Bereha-Kahane-Weiss Theorem implies that the limit of roots of Pn(z) are precisely
those complex numbers z such that one of the following hold:

• one of the |λi(z)| exceeds all others and αi(z) = 0; or

• |λ1(z)| = |λ2(z)| = · · · = λ`(z) > |λj(z)| for `+ 1 6 j 6 k for some ` > 2.

Theorem 21. Non-real bichromatic roots can have arbitrarily large modulus.

Proof. Let n > 5 be an integer. Consider K2,n−2 with partition {X, Y } with X = {u, v}.
Let G = (K2,n−2, R,B) such that three of the edges incident with v are blue and all other
edges are red. Let x, y, z ∈ Y be the vertices of G that are adjacent to v by a blue edge.
In any k-colouring c, we have c(u) 6= c(v). Further, for each w ∈ Y \ {x, y, z} we must
have c(w) 6= c(x), c(y), c(z). We proceed to count the number of k-colourings of G based
on the cardinality of |{c(x), c(y), c(z)}|.
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When |{c(x), c(y), c(z)}| = 3, there are

k(k − 1)(k − 2)(k − 3)(k − 4)(k − 5)n−5

k-colourings of G. When |{c(x), c(y), c(z)}| = 2, there are

3k(k − 1)(k − 2)(k − 3)(k − 4)n−5

k-colourings of G. Finally, when |{c(x), c(y), c(z)}| = 1, there are

k(k − 1)(k − 2)(k − 3)n−5

k-colourings of G. Thus

P (G,λ) = (λ− 2)(λ− 3)(λ− 4)(λ− 5)n−5 + 3(λ− 2)(λ− 3)(λ− 4)n−5 + λ(λ− 1)(λ− 2)(λ− 3)n−5

= λ(λ− 1)(λ− 2)(λ− 3)
(
(λ− 3)n−6 + 3(λ− 4)n−5 + (λ− 4)(λ− 5)n−5

)
.

Consider the polynomial g(n, λ) = (λ− 3)n−6 + 3(λ− 4)n−5 + (λ− 4)(λ− 5)n−5. We may
express this polynomial as:

p(n, z) = α1(z)(λ1(z))n−6 + α2(z)(λ2(z))n−5 + α3(z)(λ3(z))n−5.

Here the non-degeneracy conditions hold for p(n, z). Applying the Bereha-Kahne-Weiss
Theorem and setting |λ1(z)| = |λ3(z)| > |λ4(z)| we solve for z = a+ bi such that |z−3| =
|z− 5| > |z− 4|. One can verify when a = 4 we have |z− 3| = |z− 5| and |z− 5| > |z− 4|
for all values of b. Thus the curve z = 4 + bi is a limit of the roots for 2-edge-coloured
chromatic polynomial of K2,n−2. As there are no restrictions on b, it then follows that
P (G, λ) can have complex roots of arbitrarily large modulus.

Consider our above K2,`−2 with partition {X, Y } with X = {u, v} and the 2-edge-
coloured graph G` = (K2,`−2, R,B) such that three of the edges incident with v are blue
and all other edges are red. Let Hn,` be the 2-edge-coloured graph formed by G` by
joining G` with a copy of Kr

n such that all joining edges are blue. Every vertex of Kr
n

requires a distinct colour and the joining edges are all blue. Therefore no vertex of G can
be assigned any of the n colours appearing on the vertices of Kr

n. Thus

P (Hn,`, λ) = λ(λ− 1) · · · (λ− (n− 1))P (G`, λ− n)

Taken with Theorem 21, this implies that the curve f(n, b) = 4 + n + bi is also limit
of the roots for n > 1. See Figures 5 and 6 for a plot of the roots of these polynomials.

From the plots in Figure 5 and Figure 6 one can see that the closure of the roots
contain an infinite number of vertical curves crossing the real axis at integer values of
at least 4. The real and complex chromatic roots (and hence monochromatic roots) are
dense in the complex plane [19]. It remains to be seen if bichromatic roots are dense in
the complex plane.

the electronic journal of combinatorics 30(4) (2023), #P4.40 19



Figure 5: Complex chromatic roots of
the 2-edge coloured K2,n−2

Figure 6: Complex chromatic roots of
Hn,` for ` = 6, . . . , 18, n = 1, . . . , 18

5 Further Remarks

The results and methods in Section 2 closely resemble results and methods for the chro-
matic polynomial – Equations 1 and 2 both hold for the chromatic polynomial of a graph.
We note, however, that the standard delete and contract technique for the chromatic
polynomial of a graph does not apply, in general, for 2-edge-coloured graphs. Deleting
a coloured edge, in some sense, forgets the colour of the adjacency between a pair of
vertices – important information for a vertex colouring a 2-edge-coloured graph. For ex-
ample, proceeding via deletion/contraction for a bichromatic 2-path results in polynomial
x(x− 1)2, instead of the correct polynomial (x)(x− 1)(x− 2). Thus the chromatic poly-
nomial of a 2-edge-coloured graph does not arise as an evaluation of the Tutte polynomial
of its underlying graph. A modified notion of deletion/contraction would be needed, and
perhaps an augmenting of the 2-edge-coloured graphs by weights, for it to be possible for
the chromatic polynomial of a 2-edge-coloured graph to satisfy a full deletion-contraction
recurrence, applicable to any edge. (Compare the vertex weights that enable a deletion-
contraction relation to be derived for calculating the U-polynomial of a graph via the
W-polynomial of a vertex-weighted graph in [14])

We note however that in a mixed 2-edge-coloured graphs one can apply the standard
delete and contract technique to the set F to reduce the chromatic polynomial of a mixed
2-edge-coloured graph to a sum of chromatic polynomials of 2-edge-coloured graphs.

The results and methods in Section 2 closely mirror those for the oriented chromatic
polynomial in [7]. Such a phenomenon has been observed in past study of the chromatic
number oriented graphs and 2-edge-coloured graphs, thus motivating our study of the
chromatic polynomial of 2-edge-coloured graphs. In [16] Raspaud and Sopena give an
upper bound for the chromatic number of an orientation of a planar graph. And in [1] Alon
and Marshall use the same techniques to derive the same upper bound for the chromatic
number of a 2-edge-coloured planar graph. In this latter work, Alon and Marshall profess
the similarity of their techniques to those appearing in [16], yet see no way to derive one
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set of results from the other. In the following years Nešetřil and Raspaud [13] showed
these results were in fact special cases of a more general result for (m,n)-coloured mixed
graphs – graphs in which there are m different arc colours and n different edge colours.
Note this use of the term “mixed” is different than that introduced above.

As opposed to the uncoloured adjacency permitted above, every adjacency in an
(m,n)-coloured mixed graph is assigned a colour. Ordinary graphs are (0, 1)-mixed
graphs, oriented graphs are (1, 0)-mixed graphs and 2-edge-coloured graphs (0, 2)-mixed
graphs. By way of homomorphism, one can define, for each (m,n) 6= (0, 0), a notion of
proper vertex colouring for (m,n)-mixed graphs that generalizes graph colouring, oriented
graph colouring and 2-edge-coloured graph colouring.

As our results in Section 2 closely mirror those in [7] for oriented graphs, we expect
that the results in Section 2 are in fact special cases of a more general result for the,
to be defined, chromatic polynomial of an (m,n)-mixed graph. Showing such a result
would require successfully generalizing the notions of obstructing arcs/edges as well as
the notions of 2-dipath and bichromatic 2-path. This latter problem is considered in [2].

Unlike past work unifying oriented and 2-edge-coloured graphs, we do not see how
to take an approach that is common to both types of graph when considering chromatic
invariance. The classification of chromatically invariant oriented graphs given in [7] bears
little resemblance to the statement of Theorem 16. This is due to the fact that the family
of graphs that admit an orientation with no induced 2-dipath differs drastically from the
family that admit a non-trivial 2-edge-colouring with no induced bichromatic 2-path (see
[9] and [8])
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