Simplicial Dollar Game
Abstract
The dollar game is a chip-firing game introduced by Baker as a context in which to formulate and prove the Riemann-Roch theorem for graphs. A divisor on a graph is a formal integer sum of vertices. Each determines a dollar game, the goal of which is to transform the given divisor into one that is effective (nonnegative) using chip-firing moves. We use Duval, Klivans, and Martin's theory of chip-firing on simplicial complexes to generalize the dollar game and results related to the Riemann-Roch theorem for graphs to higher dimensions. In particular, we extend the notion of the degree of a divisor on a graph to a (multi)degree of a chain on a simplicial complex and use it to establish two main results. The first of these generalizes the fact that if a divisor on a graph has large enough degree (at least as large as the genus of the graph), it is winnable; and the second generalizes the fact that trees (graphs of genus 0) are exactly the graphs on which every divisor of degree 0, interpreted as an instance of the dollar game, is winnable.