
With particular relevance in automotive industrialization,
industrial quality assurance tools have been developed [1], [2].
Among these tools end-of-line (EOL) testing systems stand out
to be indispensable as before selling a product to a customer,
these systems ensure that the product undergoes a series of
validation tests.

Given the growing demands connected with quality and
reliability standards and the huge amount of data generated by
the massive realization of EOL tests, this data can be treated
through artificial intelligence/ machine learning algorithms [3],
to improve the industrialization significantly. With the latest
technological advances that have been made in the areas of
Machine Learning (ML), and Computer Science (CS) as well
as the increased usage of sensors and monitoring systems,
predictive maintenance (PdM) approaches can be applied in
any industrial equipment [4].

Analyzing the results obtained from logfiles (which store
the information from testing processes) allows for a better
understanding on the evolution of the data, which can indicate
patterns and trends. Detecting such patterns and trends can
help in the preventive detection of system disruptions before
a fault occurs in the system, or corrective maintenance after
detecting a fault in the system. Having this type of benefits
connected to the manufacturing/testing of products allows
industries to forecast maintenance issues related to their EOL
systems.

This paper is a review of Machine Learning and Deep
Learning techniques applied to EOL testing systems. The role
of optimizing this systems with use of such techniques, is that
it may help address the production line issues by notifying
operators early that preventive actions shall be taken prior to
a production stop or discarding a product [5]. Regarding the
structure of this review, the following sections will describe
the functionality of some ML algorithms and DP architectures
together with some applications seen mainly in automotive
industry, in EOL testing systems. Section III provides an
introduction to machine learning in industry, where some of

the most common algorithms will be introduced; Section IV is
structured the same way as the previous section but regarding
the most common deep learning architectures; Section VI
draws the main conclusions from the review.

This section exposes the methodology adopted by this
review. The goal of the review is to answer the following
questions:

Q1. How does machine learning impact the future of end
of line testing systems?

Q2. What are the most common applications of these
technologies in the manufacturing environment?

To answer these questions, this scientific review adopted
a systematic methodology. The information collected was
obtained from different papers on the following websites:
Science Direct, Ieeexplorer, Springer Online, Willey, and
Google Scholar. The search query used was: (“Industry 4.0”
AND (“Machine learning” OR “Deep Learning”) AND “End
of Line Testing Systems” AND (“smart manufacturing” OR
“predictive maintenance” OR “preventive maintenance”) AND
“Big Data” AND “automotive Industry”). Occasionally, some
books and other websites were also considered. Overall, 180
articles were gathered. As for the inclusion criteria, the papers
and works obtained from applying the query in the cited
websites, written in English, and published from 2010, were
selected. As the areas of ML and DL are in constant devel-
opment, the search considered the latest papers about these
technologies to avoid outdated information. After applying the
exclusion criteria, a list with the research results was obtained,
which returned 180 publications. The exclusion criteria are the
following:

1. Posts with duplicate content were removed - a total of 8
papers;

2. After analyzing the title, abstract, and conclusions, 137
publications were discarded;

3. Publications were excluded due to their content (less
relevant or not contextualizing with the topic of this review)
- a total of 6 papers.
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After applying the methodology, 29 scientific papers were
left cited in this review. The diagram presented in Figure
3 represents the entire flow performed in this review, as
recommended by PRISMA (Preferred Reporting Items for
Systematic Reviews and Meta-Analyses) [6]. Figure 1, shows
the reviewed papers according to their published year.

Fig. 1. Year of all the publications reviewed

Figure 2 presents the number of times a specific algorithm
or architecture was considered in the reviewed papers. The
most reviewed algorithm was the k-nn (k-nearest neighbor)
algorithm, and the most viewed architectures were CNN (con-
volution neural networks), RNN (recurrent neural networks),
and DT (digital twin).

Fig. 2. Algorithms and Architectures reviewed

Table I summarizes the papers considered. Column 1 iden-
tifies the article’s author, column 2 indicates the methodology
used in the work, and column 3 refers to the application used.

Data-driven approaches using machine learning techniques
are found to offer promising potential for improved quality
control in manufacturing [7]. One of the industry’s main

Fig. 3. Review methodology flow diagram adapted from PRISMA [6]

challenges is processing and analyzing large data sets, prefer-
ably in real-time. Currently, there are infinite applications
of ML algorithms in the industry, from which PdM is the
most common form of optimization regarding product manu-
facturing. Other applications that directly impact a product’s
reliability are shown to be: either improving industrialization
resources, predicting/preventing disruptions and helping with
maintenance as shown in [8] and [9]. Nevertheless, eventual
approaches will require methods of gathering, treating, and
analyzing data. This data usually comes from log files obtained
from the production process in EOL systems. The importance
of treating this log files has shown to significantly improve the
manufacturing processes: making it cheaper, more efficient,
less time-consuming, and overall resource-friendly. Before
diving into the algorithms, it is also worth mentioning that
each algorithm is based on the learning type adopted by
the machine. These so-called learning types are supervised
learning, unsupervised learning, self-supervised learning, and
there are also new emerging ways of learning. Each of the

3. Machine Learning in Industry 
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TABLE I
SUMMARY OF THE REVIEWED PAPERS

Author Methodology Application
Theirssler et al. [3] ML PdM for automotive systems
Vicêncio et al. [4] Data-Driven ML PdM for EOL systems
Hirsch et al. [7] ML (ensemble learning) Increase prediction performance
Zhang et al. [8] Data-Driven ML PdM of industrial equipment
Yan et al. [9] Data-Driven ML Challenges and applications for PdM
Del Rosso et al. [10] ML EOL fault detection
Verdier and Ferreira [11] Adaptive Mahalanobis Distance and KNN Fault detection
Zhou et al. [12] KNN Fault isolation
Wang et al. [13] RF Product quality prediction
Guo et al. [14] RF + DT Fault diagnosis
Jalal et al. [15] SVM Product Modeling
Bodendorf et al. [16] ML Estimate product cost
Oh et al. [17] SVM Real-time quality assessment
Elsisi et al. [18] Deep Learning Energy management
Espinosa et al. [19] ML + DL Error detection
Vater et al. [20] CNN Error detection and correction
Park and Yun [21] CNN Anomaly detection
Huang et al. [22] RNN Fault detection
Peng et al. [23] LSTM PdM under imperfect CSI
Lindemann et al. [24] LSTM Anomay detection
Wang et al. [25] GAN Data augmentation
Balderas et al. [26] DT + Simulink model Printed Circuit Board design and processing
Aheleroff et al. [27] DT DT as a serice

types of learning mentioned allows teaching the machine. The
algorithm learns through a network (or model) using known
examples in the first case. Thus, it can perform classifications
or regressions (supervised learning). In the second case, the
machine generates clusters that label unlabeled data (unsuper-
vised learning) or even allow the machine to label the data by
itself and make predictions (self-supervised learning).

This algorithm is a supervised learning classification type.
This algorithm has been enhanced since its reveal [28]. The
user defines the number of neighbors considered when clas-
sifying a new point, see Figure 4. The uncategorized point
is classified as a member of the most crowded class in the
neighborhood. The K-nn algorithm might not be the best
method to classify massive datasets as it decreases run time
speed. Still, it is worth looking at how it helps solve problems
in the industry due to its simplicity.

Applications: The K-nn algorithm has played an important
role in an EOL quality control procedure based on vibrational
analysis [10]. The product under study in this particular paper
was induction motors. Some features from the testing process
were selected and fed into a classification model based on
k-nn. This model was able to identify mechanical failures
such as damaged bearings or rotor faults. Mainly, K-nn has
been exploited for fault detection and isolation in different
production lines throughout the industry [11], [12]. This type
of application can be developed for end-of-line testing systems
to detect defective anomalies.

The random forest (RF) algorithm used for classification
and regression tasks. Even though it can solve both types of
problems, it is not as accurate with regression tasks. Proposed
in [29], it operates by constructing several decision trees

Fig. 4. K-Nearest Neighbours, k = 3

while the training occurs. In classification tasks, the class is
determined by the class of the most trees. On the other hand,
for regression tasks, the returned prediction is the average
prediction of the individual trees, see Figure 5.

Applications: The random forest algorithm has been in-
tegrated with a Bayesian Optimization for product quality
prediction [13]. The authors conclude that fewer but critical
features handled by RF-Bayesian optimization can realize
satisfactory forecast accuracy as well as cost-effective com-
puting time. This type of application is seen quite often in
automated production line systems, it is a powerful application
of ML potential to provide managerial insights and operational
guidance for product quality prediction and control the real-
life process industry. Another application of RF can be seen

3.1 K-Nearest Neighbors 

3.2 Random Forest Algorithm 
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Fig. 5. An example of random forest algorithm

in [14], where an improved RF algorithm was combined with
a digital twin (DT is also reviewed in the DP section, Section
IV) for fault diagnosis of intelligent production lines. This
architecture was verified through a case study of an automobile
rear axle assembly line, with the aim to simulate fault data that
is usually difficult to obtain in an actual production line to train
a reliable fault diagnosis model.

Support vector machine (SVM) is a supervised machine
learning method that analyzes data and recognizes patterns.
This method can help to solve classification problems or be
used in regression analysis [15]. The built model assigns
new samples or data points to the existing categories for
a given set of training examples. It can be thought of as
a constructed hyperplane in a high-dimensional space that
separates different types of data samples [30]. The points
closest to the hyperplane are called the support vector points,
and the distance of the vectors from the hyper plane is called
the margin, see Figure 6. SVM is used as a regression model
analyzer, when the data is continuous, usually denoted as SVR.

Applications: Bodendorf and Franke [16] use SVR with
other machine learning algorithms such as k-nn, linear regres-
sion, and decision tree to estimate product costs in the early
product design phase in the automotive industry. The authors
conclude that all the machine learning approaches used to
predict costs showed good metric values, proving to be much
more efficient than traditional spreadsheet-based cost analysis,
supporting the decision-making of costs.

Oh et al. [17] used an adaptive SVM-based real-time quality
assessment for the primer-sealer dispensing process of the
sunroof assembly line. This work proposed a framework
to preprocess the data for an SVM-based decision-making
algorithm. This adaptive process is a feedback control that
ensures the effectiveness of the SVM, meaning that there

Fig. 6. Support Vector Machine hyperplane example

was integrated an adaptive loop with human-expert judgment
such that when the system detects an anomaly, the human
expert would intervene and adequately update the database
for effective use of the SVM.

Deep learning is a specific area of ML, similar to “a new
take on learning representations from data that emphasizes on
learning successive layers of increasingly meaningful repre-
sentations” [31]. This area has been gaining popularity thanks
to its promising performance and results. ANNs (Artificial
neural networks) have brought a handful of benefits, and
there are many types of these Neural Networks, ranging from
Convolution Neural Networks, Long Short Term Memory
Networks, Generative Adversarial Networks, Recurrent Neural
Networks, and others.

Deep learning has been used effectively by enterprises
and big companies to save resources and reduce the time
needed to complete tasks. An example of such capabilities
of saving energy or managing it for smart buildings in the
industry is shown in [18]. It is interesting to see the variety of
applications of such technologies that can be integrated into
the automotive industry production lines, despite the number
of robotic systems that help factories to create their products,
workers still need to help assemble some tasks. Because oper-
ators are human, and physical fatigue is commonly provoked
by repetitive tasks, which can interfere with the assembly
production line and possible hazards, more specifically, the
assembly of electrical harnesses of engines, even though it
should be an easy task to perform, there is still a probability
of encountering components that have been badly connected.
A sound detection system based on deep learning approaches
was proposed in [19] to identify click-sounds produced when
electrical harnesses are connected, so when electrical harnesses
are badly connected, the click-sound should be different from
the standard one making it recognizable for the machine.

3.3 Support Vector Machines 

4. Deep Learning 
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Before diving into the deep learning section, its important
to consider artificial neural networks (ANNs). A definition
appreciated by many is the one from Howard Rheingold,

“The neural networks is this kind of technology that
is not an algorithm, it is a network that has weights
on it, and you can adjust the weights so that it learns.
You teach it through trials.”

This quote provides a good description of ANN’s functioning,
in essence, it describes what it is all about. Neural networks
are composed of an input layer, hidden layers, and an output
layer, see Figure 7.

Fig. 7. Neural Network

These layers are composed of perceptrons (mathematical’s
model of neurons). Figure 8 illustrates a neuron, where the
activation function f(X) calculates the output neuron (one
input of the next layer). This evaluation depends on the bias
and the weighted sum input. Each input variable has a weight
assigned to it that is forwarded to the function, adjusted, and
passed to the activation function.

Fig. 8. Perceptron

The classic network learns using the backpropagation
method of fine-tuning the weights where they are adjusted
based on the last iteration error to match what the operator
is seeking. This process allows ANN the ability to learn and
generalize from data, that is, to mimic the human capability
to learn. Now that it is more clear how ANNs work, this
technology has been implemented to automate specific tasks
and overall to optimize production’s pace, resources, and

so on. After ANNs, deep learning took place, and what
was before a Multi-Layer Perceptron can now be put into
successive layers reflecting new models.

Activation Functions: Activation functions are crucial for
determining the progress of a model. Because deep learning
benefits with the use of multiple layers of representations
[31], it is clear that there must be a type of transformation
within layers. Otherwise, the layer could only learn linear
transformations [32]. So to benefit from deep representations,
a non-linear or activation function is needed. As an example,
the ReLU or Rectified Linear Unit decides whether a neuron
should be activated or not. It works is by mapping the input
directly into output in case it is positive. Otherwise, the
output will be zero. There have been some changes to it, so
LeakyReLU came up, but both versions are popularly used.
LeakyReLU it is just a change to how ReLU previously reacted
to negative inputs. Instead of transforming negative inputs into
an output of zero, the LeakyReLU allows that input some
slight transformation, usually multiplying it by a constant,
represented by α in Figure 9.

Fig. 9. ReLU and LeakyReLU

The following activation functions are Sigmoid and Tanh.
The Sigmoid function is shaped like an S, it exists between
values from 0 to 1, and it is mainly used for basic predictions
since predictions range between 0 and 1. This function is
used in ML for tasks like logistic regression and basic neural
network implementation [33].

Tanh is similar to the sigmoid function, also having the S
shape. It converts any input’s real valueto an output in the
range [−1, 1], see Figure 10.

Fig. 10. Sigmoid and Tanh

1) Convolutional Neural Networks: The term convolutional
neural networks often referred to as “CNN”, is one of the most

4.1 Artificial Neural Networks 
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popular architectures of Deep Neural Networks. This network
is usually composed of dense, fully connected, convolution,
and max-pooling layers (see Figure 111). The fundamental
difference between a densely connected and convolution layer
is that dense layers learn global patterns in their input feature
space [34] (for example, patterns involving all pixels of a
certain image). In contrast, convolution layers learn local
patterns (in this case, the features represent patterns such as
eyes, nose, ears), Figure 12. The max-pooling layers are a way
of aggressively down-sampling the extracted feature maps for
better overall performance.

Applications: CNNs are the core of computer vision as it
learns features and recognizes patterns. Valter et al. [20] used
an Edge-/Cloud-Architecture and a CNN to detect defects in
real-time production. Throughout the production line, the tests
consisted in finding anomalies. This architecture can detect
anomalies in production line systems and identify the cause
of the defection itself. Defects are classified by a convolutional
neural network (CNN) and corrected (depending on the defect
type) by an automated rework. The implementation of this
methodology brought significant advantages, one of them
being the reduction time on processing which leads to reduced
expenses.

2) Recurrent Neural Networks: Recurrent neural network
(RNN) architecture allows sequence processing. Basically, it
processes sequences by iterating through sequence elements
and maintaining a state that contains information relative to
what it has seen so far, working as a loop [35] (Figure 13).

Applications: This type of Neural Network, RNN, has been
applied to production line systems for anomaly detection [21].
The assembly of a surface-mounted device machine manufac-
tures various products on a flexible manufacturing line. The
paper proposed an anomaly detection model that can adapt
to the various manufacturing environments in a really fast
manner.The model is based on a Recurrent Neural Network
(RNN) Encoder–Decoder with operating machine sounds.
Another fault detection example can be seen in [22], where
the manufactured products are motors. The proposed two-
stage machine learning analysis architecture can accurately
predict the motor fault modes only by using motor vibration
time-domain signals without any complicated preprocessing.
This architecture is composed of a RNN-based Variational
Autoencoder (VAE).

3) Long Short Term Memory Networks: Long Short Term
Memory (LSTM) network is a change to the standard feedfor-
ward neural network. The LSTM unit comprises cells with
an input gate, an output gate, and a forget gate [36]. A
chain of these units forms the LSTM architecture composes
different memory blocks called a cell. The called gates of
LSTM perform individual tasks. Figure 14 illustrates an LSTM
unit structure [37].

The forget gate gets rid of no longer useful information in
the cell.

1Convolutional neural network, learn convolutional neu-
ral network from basic and its implementation in keras.
https://towardsdatascience.com/covolutional-neural-networkcb0883dd6529

Applications: Regarding LSTM applications in industry,
Peng et al. [23] use the multiple-input multiple-output tech-
nique from fifth-gen communication systems (5G) the employ
an LSTM to compensate the negative effects of imperfect
channel state information (CSI) in the practical radio fre-
quency systems. This CSI imperfection is usually caused
by the channel estimation error and the transmission and
processing delay, knowing that imperfect CSI severely reduces
the system secrecy capacity. An LSTM-based predictor and
compensation scheme were designed to alleviate negative
effects effectively.

LSTM is also used for anomaly detection seen in [24]. The
cited paper presents a novel detection and prediction procedure
based on a LSTM architecture to cooperatively predict process
outputs and anomalies by using two separate but interacting
models. This interesting application of LSTM allows a solution
for short-term as well as long-term anomalies.

4) Generative Adversarial Networks: The generative ad-
versarial networks (GANs) are composed of a generator and
a discriminator networks (often referred to as adversaries). Its
essence is to train the generator network to be able to fool
the discriminator network, and thus the architecture allows
the generator to evolve towards generating increasingly better
forms of input [38]. It is worth mentioning that the discrimina-
tor network is constantly adapting to the gradually improving
capabilities of the mentioned generator. The main issue of
GANs is its dynamic system where the optimization process
does not seek a minimization but instead an equilibrium
between two forces, making them notoriously difficult to train.

Applications: Wong et al. [25] introduce a generative ad-
versarial framework based on a game theory for data augmen-
tation. Data augmentation is a strategy used to extend datasets
by applying data augmentation techniques such as cropping,
padding, and flipping, enabling practitioners to significantly
increase the diversity of data available for training models
without the need to collect new data samples. This particular
technique, increases the diversity of available data, which can
be used as a self-learning technique in production lines where
the data is scarce. Applying diversity in datasets could find
potential unidentified anomaly samples, reducing their impact
if such anomalies are detected in a production line.

Digital Twin is an emerging technology that has brought
many benefits since its usage [39]. The digital twin is a virtual
representation that serves as the real-time digital counterpart
of a physical object or process, working like a computer
program that uses real-world data to create simulations [40].
These simulations can simulate how a product or process will
perform. Figure 15 from [41] illustrates the manufacturing
process of digital twin models.

Figure 15 shows one digital twin configuration that focuses
on the manufacturing portion of a specific product’s life cycle.
When developing a digital twin, the key is to seek this
integration and iterative quality of the physical and digital
representations, creating a loop from the physical world to the

4.2 Digital Twin 
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Fig. 11. An example of a CNN

Fig. 12. Hierarchy of local patterns representative of a high-level concept the
“cat” from [31]

Fig. 13. A Recurrent Network

digital world and back. The product under the manufacturing
environment combines advanced techniques with the IoT that
helps with tasks such as allowing communication analysis.
This feedback and information are used to implement further
intelligent actions in the physical production line.

Applications: In 2017, Vachálek et al. [43] presented a
digital twin of an industrial production line. The concept
focuses on optimizing production processes of the physical
environment using the virtual one. They perform new tests and
norms before submitting the physical environment changes.

Balderas el at. [26] use of a Digital-Twin that integrates
a metaheuristic optimization and a direct model for printed
circuit boards (PCB) design and processing focused on the
drilling process of the manufacturing of such products. The
authors conclude that using this type of optimization on DT
technology allows for more production at a faster pace.

In [27], Aheleroff et al. developed a DT reference model
that can be accessed as an online service. This type of model
allowed for considerable advantages, including smart sched-
uled maintenance, real-time monitoring, remote controlling,
and predicting functionalities.

After revisioning the mentioned papers and based on the
information retrieved from the research, it is now possible to
answer the questions presented in section II, which are:

Q1. How does machine learning impact the future of end-
of-line testing systems?

Q2. What are the most common applications of these
technologies in the manufacturing environment?

Some applications have shown that by exploiting data from
quality control procedures, selecting relevant features, and
finding patterns related to faults and anomalies, it is possible
to isolate and correct most of them, also simulate fault data
which is difficult to obtain in an actual production line. The
revisioned papers show that these technologies also estimate
product costs and reduce processing time (which reduces
expenses). Based on this information, to answer question
Q1, ML impacts the future of end-of-line testing systems by
assessing predictive maintenance, product quality assurance,
demand forecasting, predicting safety issues, and escalating

5. Discussion of Papers Reviewed 
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Fig. 14. LSTM gates

Fig. 15. Manufacturing process digital twin model [42]

resources. Specifically, PdM allows EoL systems to avoid
critical equipment downtime with proactive monitoring of a
production line’s critical devices. Product quality assurance
tools grant that potential product quality issues are identified in
early stages of the manufacturing process. To forecast demand
is also one of the ways that ML impacts the future of EoL sys-
tems by accurately predicting product demand to reduce costs

and increase profits. Finally, to answer the second question,
Q2, the most common applications of ML technologies in the
manufacturing environment are related to anomaly detection,
anomaly isolation, anomaly correction, proactive maintenance,
escalating resources, and reducing production time. These ad-
vantages, coupled with the manufacturing environment, allow
EoL systems to be more productively accurate, reliable, and
less expensive. Another pertinent observation drawn from the
revision is the exponential paper’s growth using ML in end-
of-line systems in recent years.

This paper reviewed and contextualized the state-of-the-
art of ML algorithms, particularly deep learning techniques,
throughout the industry, aiming to optimize EOL testing
systems mainly in the automotive industry. It is common to see
various ML algorithms and deep learning architectures used
in the industry. The most common applications reviewed aim
to help operators make decisions, predict disruptions, predict
maintenance, identify defects and anomalies. Having this type
of advantage set to testing environments, it is possible to
leverage the product’s quality and the functionality of the tests.

Industry has shown that the way forward is to follow
PdM approaches based on information collected throughout
production. The use o ML and DL allows to innovate every
aspect of business such as: design smart products, run smart
factories, forecast demand, ensure quality, manage the supply
chain, reduce production downtime, reduce the impact of
anomalies and understand complex multi-stage processes.

ML’s capability will boost quality on factory production
lines. In particular, decision-making based on data interpre-
tation is becoming a reality in informed production lines,

6. Concluding Remarks and Future Trends 
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e.g., decisions based on data obtained from end-of-line test-
ing. These actions will lead to better results, cost savings,
and competitive advantages. To conclude, ML is becoming
indispensable for the industry, and its future competitiveness
depends on it.
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