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Abstract 
 

Multiview plus depth (MVD) videos are widely used in free-viewpoint TV systems. The 

best-known technique to determine depth information is based on stereo vision. In this paper, 

we propose a novel local stereo matching algorithm which is radiometric invariant. The key 

idea is to use a combined matching cost of intensity and gradient based similarity measure. In 

addition, we realize an adaptive cost aggregation scheme by constructing an adaptive support 

window for each pixel, which can solve the boundary and low texture problems. In the 

disparity refinement process, we propose a four-step post-processing technique to handle 

outliers and occlusions. Moreover, we conduct stereo reconstruction tests to verify the 

performance of the algorithm more intuitively. Experimental results show that the proposed 

method is effective and robust against local radiometric distortion. It has an average error of 

5.93% on the Middlebury benchmark and is compatible to the state-of-art local methods. 
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1. Introduction 

In recent years, three-dimensional TV (3DTV) and free-viewpoint TV (FTV) are promising 

technologies for the next generation of home and entertainment services. The key point in 

3DTV and FTV is calculating depth information of the scenes or objects. Binocular 

stereovision is a popular technique for building a three dimensional description of a scene 

observed from two slightly different viewpoints. By finding correspondent pixels in the 

reference and target images, depth information can be gained through disparity. This process 

is called stereo matching. Stereo matching is a classical and challenging problem in computer 

vision, which has been a hot research focus for a long time. In the last decade, researchers had 

put forward a large number of algorithms to solve this problem, but because of the 

ill-posedness of such a problem, there is not a perfect solution yet. Most stereo matching 

algorithms focus on establishing an energy function and minimizing such an energy function 

to estimate disparities. So, stereo matching is essentially a problem of finding an optimized 

solution. The equation is conducted by establishing reasonable energy functions, adding some 

constraints and adopting an optimization algorithm, which is also the method for solving all 

ill-posed problems. A thorough survey and taxonomy of dense stereo techniques was provided 
by Scharstein and Szeliski [1]. They summarized the stereo matching process into four steps: 

matching cost computation, cost aggregation, disparity computation and disparity refinement. 

They also divided stereo matching algorithms into local methods and global methods 

respectively according to the way of cost aggregation. Global methods can generally acquire a 

higher accuracy, but with less efficiency. On the contrary, local methods are fast and easy to 
realize, while it is difficult to choose a proper matching cost function [2] and construct right 

support windows. 

Matching cost is the similarity measure of corresponding points between the left and right 

images. Most stereo matching algorithms use intensity based similarity measures. For instance, 
the sum of absolute difference (SAD), sum of square difference (SSD) [1], Adapt Weight [3] 

and Segment Support [4] etc. are all in this category. For ideal images, they can produce 

results with high precision, but these methods are very sensitive to the image radiometric 

distortion. When the illumination condition and exposure time change, the accuracy will fall 

down quickly. Thus it is impossible to apply these methods to real images. Fortunately, there 

are some kinds of matching costs which are robust to radiometric distortion. The normalized 
cross-correlation (NCC), Gradient [5][6][7], Rank and Census transform [8][9] are the most 

commonly used ones.  

Local stereo methods need to aggregate single pixels’ matching costs in a support region 

which is defined by a window. Inevitably, they will run into problems when deciding the 

window size to be used. Small windows do not contain enough information and can lead to 

noisy results, while large windows contain enough texture information but encompass pixels 

at different depths near depth discontinuities, resulting the foreground fattening effect. 
Fusiello and Roberto [10] proposed to select a best window among multiple predefined 

windows as the support window; Veksler [11] presented a variable window choosing method 

by exploring a useful range of interesting window shapes and sizes; Zhang [12] constructed a 

cross-based adaptive window for every pixel according to the color correlation of adjacent 
pixels and achieved good results. Qu [13] developed a binary support window by calculating 

the mean intensity in a predefined fixed window, but this binary support window may have a 

disconnected structure and would degrade the accuracy. 
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Global stereo methods consider stereo matching as a labeling problem where the pixels of 

the reference image are nodes and the estimated disparities are labels. They typically skip the 

cost aggregation step and define a global energy function that includes a data term and a 

smoothness term. The former sums pixel-wise matching costs, while the latter supports 

piece-wise smooth disparity selection. The labeling problem is solved by energy function 

minimization, using dynamic programming, graph cuts, or belief propagation. Some newest 

global stereo matching algorithms can be found in [14][15][16][17]. 

To address the above matching cost computation and window size selection problems, this 

paper proposes a stereo matching algorithm based on an improved gradient cost and adaptive 

cost aggregation. Our main contributions are twofold: First, we improve the gradient matching 

cost by incorporating the phase information and proposed a hybrid cost function which 

combines gradient and color matching cost. Second, we develop a four-step disparity 

refinement method to eliminate mismatches. 

The remaining portions of this paper are organized as follows: We first propose our method 

and describe the algorithm thoroughly in section 2. Section 3 presents the experimental results 

and we finally conclude our work in section 4. 

2. Proposed Method 

According to Scharstein and Szeliski’s taxonomy, stereo matching process can be concluded 

into the following four steps: matching cost computation, cost aggregation, disparity 

computation and disparity refinement. We will follow this classification to describe our 

algorithm in detail. The outline of the proposed algorithm is shown in Fig. 1. Given two 

rectified images, we first calculate the corresponding gradient images, which is the 

prerequisite for computing matching cost. Then an adaptive window is constructed for every 

pixel to meet the need of cost aggregation. After this, by using the Winner-Takes-All strategy, 

the initial disparity maps are gained. At last, the final depth images are produced after disparity 

refinement. 
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Fig. 1. Outline of the proposed algorithm. 

 

2.1 Matching cost computation 

Matching cost is the similarity measure of corresponding points between the left and right 

images. Using different cost functions will get different disparity discriminations. As we 

discussed before, gray or color intensity-based matching costs are very sensitive to radiometric 
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distortion and noise, while gradient-based matching costs are more robust to these factors and 

have been widely used. 

The gradient of an image corresponds to the direction along which the gray value of the 

image changes most remarkably. In other words, the change of image intensity can be 

described by image gradient. Mathematically, image gradient is defined as the first-order 

partial derivatives of image intensity with respect to x and y, which are represented as a vector: 

x

y
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G x
G

IG

y

 
   
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                                                             (1) 

where I(x, y) is the image intensity of an anchor pixel (x, y). In practical applications, G can be 

calculated by convolving the image with gradient masks. Here we just use the simplest 

gradient mask: 

 

1

1 0 1 ,    0

 1

x yG G

 
 

  
 
  

                                                       (2) 

Thus, we can get the gradient images of both left and right images:  
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gradient matching cost function 
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The above cost function only considers the modulus information of the gradient vector. 

Here, we develop an improved cost function which incorporates the gradient phase, similar to 

[6]. Using the gradient vector’s two components Gx and Gy, the modulus and the phase are 

computed as: 

2 2

x y
m G G                                                             (4) 
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                                                          (5) 

Generally, the modulus m represents the rate of change and the phase  represents its 

direction. To show them intuitively, Fig. 2 gives an example of the computed m and  for 

Tsukuba image. We can see that gradient values can reflect the image edges or skeleton to 

some extent as well as the differences between m and . 
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                                          (a)                                                                     (b) 

Fig. 2. (a) Modulus of gradient; (b) Phase of gradient. 

 

As m and  provide different information about the neighborhood of a pixel, they have 

different invariance properties with respect to radiometric distortion. For instance, neither the 

modulus nor the phase is affected by additive (offset) changes in the input images, while 

multiple variations (gain) affect the modulus but not the phase. So, it is more proper to 

consider them separately. Our method is based on this idea. To make full use of the gradient 

information, we combine the modulus and phase linearly with a weight parameter α, forming 

our new cost function: 

          
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where, 
c

m  and 
c

  are the modulus and phase of the gradient operator applied to each color 

band c∈{R, G, B} respectively; α is the weight of modulus with a range of [0, 1]. Considering 

the π-periodicity property of the phase, we employ f to normalize it into single period: 
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                                           (7) 

Because we have used a weight parameter α, it is easy to adjust the algorithm’s performance 

by changing the value of α. This is important as different lighting and exposure time can lead 

to different degrees of radiometric distortion and noise. From (6), we can see that the larger α 

is, the bigger effect the modulus will have. On the contrary, the phase will dominate if α is 

small. According to the radiometric distortion degree, the proper value of α can be set 

empirically.  

As color intensities of an image directly reflect the brightness of pixels, using the gradient 

similarity alone may lose lots of details of the scene. Thus, we propose a combination of the 

color based SAD cost and the improved gradient cost, which is simple but very effective as it 

can yield more reliable similarity measure by compensating one another. The color based SAD 

matching cost can be represented as: 
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Then we use a robust function to normalize the costs into [0, 1]: 
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                                                 (9) 

where λ is a controlling parameter. The final integrated matching cost of pixel p corresponding 

to disparity d is defined as: 
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In this way, both  ,G p d  and  ,C p d  are in the range of [0, 1] and their contributions to 

the final cost can be adjusted by setting different values of λc and λG. The proper values of 

these parameters can be got empirically. 

2.2 Adaptive window construction 

As the identification ability of single pixel’s matching cost is weak, we need to propagate the 

adjacent pixels’ matching costs and aggregate them to improve accuracy. The neighborhood 

region is determined by a local support window and the pixels in the window will be included 

for aggregation. So, it is natural to ask how large the window should be. In fact, a fixed 

window can never get satisfactory results, because image regions with different characters 

need different windows. In textureless regions, larger windows are needed to provide enough 

pixels. On the contrary, regions with high texture and depth discontinuities need smaller 

windows to avoid being over-smoothed. To address this problem, Zhang proposed a 

cross-based adaptive window construction method which can alter the window’s shape and 

size adaptively. Such a cross-based support region is achieved by expanding a cross-shaped 

skeleton around each pixel p to create four segments  , , ,
p p p p

h h v v
   

, defining two sets of 

pixels H(p), V(p) in the horizontal and vertical directions. More details about the method can 

be found in [12]. In their original implementation, only one threshold for color similarity and 

one threshold for spatial closeness are used, which cannot satisfy all cases. Motivated by [18], 

we present a modification of the original cross-based support region approach in this paper. 

q

pH(p)

V(p)

U(p)

H(q)

 
Fig. 3. Construction process of the adaptive window. 

 

The key idea of the cross-based support region is to decide an upright cross for every pixel p 

in the input image, which is based on the color similarity and spatial closeness. As is shown in 

Fig. 3, the pixel-wise adaptive cross consists of two orthogonal line segments, intersecting at 

the anchor pixel p. We use H(p) and V(p) to represent the horizontal and vertical segments 

respectively. Thus, four arms: left, right, up and down are constructed for each pixel and 

represented as  , , ,
p p p p

h h v v
   

. By changing the length of the arms adaptively, we can 
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effectively capture an adaptive support region for each pixel. Here, we use enhanced rules to 

decide each pixel’s arm length. Just taking p’s left arm as an example, it stops when it finds an 

endpoint pixel pi that violates one of the three following rules: 

1. 
1 1

( , )  and ( , (1,0))
c i c i i
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predefined color thresholds and spatial thresholds. Rule 1 restricts the color difference 

between pi and p as well as pi and its predecessor pi +(1, 0) on the same arm. This prevents the 

arm to span over the edges in the image. Rule 2 and 3 provide multiple choices for the arm 

length. In textureless regions, we use larger threshold L1 and 
1
 to guarantee enough pixels. 

But when the arm length exceeds a smaller value L2, Rule 3 will play its role by using a much 

stringent threshold τ2 to make sure that the arm will extend only in regions with very similar 

colors. 

After the above process, we can get the end pixels of the four arms:  , , ,
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                           (11) 

Finally, by iteratively applying this approach for every pixel q along V(p), we can get the local 

support window U(p): 

 
( )

( )
q V p

U p H q


                                                   (12) 

Fig. 4 shows an example of the adaptive local support windows, which approximates local 

image structures appropriately. 

 
Fig. 4. Example of the adaptive local support windows 

2.3 Cost aggregation 

Traditional local algorithms only take the reference image’s support region into account. In 

contrast, we will symmetrically consider support regions of both target and reference images. 

Considering two corresponding pixels p=(x, y) and pd=(x-d, y) in the reference and target 
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images, then we can acquire two local support regions U(p) and U′(pd). We will combine them 

to define the union support region: 

            , | , , , '   
d

U p x y x y U p x d y U pd                        (13) 

After the support region being prepared, the aggregation matching cost of p is computed as 

follows: 

(p)

1
( ) ( , )

d

d

q U

E p e q d
N 

                                                  (14) 

where N is the number of total pixels in the support region Ud(p), and e(q, d) is the raw per 

pixel’s matching cost corresponding to disparity d. At last, we employ the Winner-Takes-All 

(WTA) strategy to select the best disparity with the lowest matching cost in the disparity 

range: 

max0

0
arg min ( )( )

d
d d

d E pp
 

                                                  (15) 

where  max
0,  d d  represents the disparity range,  0

d p  is chosen as the initial disparity of 

p. 

2.4 Disparity refinement 

The disparity maps obtained after the previous three processes still contain some mismatches 

and unreliable values. For further refinement, post-processing steps are required. Our 

post-processing consists of four steps: 

First, we apply a 5×5 median filter to both dL and dR which represent the left and right 

disparity maps respectively for removing isolated outliers. 

Second, we implement the common reliable tool: left-right consistency check. A pixel p is 

characterized as valid if the constraint: ( ) ( ( ),  0)
L R L

d p d p d p   holds true. Otherwise, p 

will be marked invalid and needs to be handled if the constraint is violated. Furthermore, the 

invalid disparities can be classified into two classes: occlusions and mismatches. We employ 

Hirschmüller’s approach to decide an invalid point is either occlusion or mismatch [19]. 

Third, we present a disparity refinement method based on the local disparity histogram to 

recover the invalid disparities. For a pixel p in the disparity image, we build a local disparity 

histogram  p
d  in the neighborhood region of p, and count the times that every disparity 

occurs. Thereby, there will be dmax+1 bins corresponding to each disparity. Here, we do not 

need to seek for a new neighborhood region, but to reuse the previous local support region 

U(p) for pixel p. Thus, this process will not add much computation cost. Let H(i) be the length 

of the ith bin, i = 0 to dmax. We calculate d
*
 as a disparity with the maximum normalized 

histogram: 

max
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( )
i

H i
h i i to d

H i
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*
arg max ( )

i
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In statistic, this disparity value is the local optimal one, and 
*

( )h d  represents its confidence 

level. The initial disparity 
0
( )d p  of pixel p is replaced by the new value 

*
d  if 

*
( )h d  is greater 

than 
h

 ; otherwise, it is left unchanged: 
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* *
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        otherwise
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where  0,  1
h
   is a confidence threshold. This step is repeated iteratively until there are no 

more updates to disparities in the map. 

At last, as the invalid disparities may remain unchanged in step 3, there are still some invalid 

points need to be filled. We then introduce an interpolation strategy which treats occlusion and 

mismatch points differently. Interpolation is performed by propagating valid disparities to 

neighboring invalid disparities areas. For invalid pixel p, we find the nearest valid pixels along 

8 directions and their disparities 
pid  are stored. The final disparity of p is created by: 

seclow     if p is occluded,

med         if p is mismatched.

pi

p

pi

d
d

d





                                   (19) 

If p is occluded, we select the second lowest value ( seclow 
pi

d ) to get rid of the preference 

to foreground or background. If p is mismatched, the median ( med 
pi

d ) is used which can 

maintain discontinuities in cases where the mismatched area is located at the boundary. 

Experiments show it can get better results. 

3. Experimental Results and Discussions 

3.1 Accuracy of the proposed algorithm 

This section presents experimental results as we have programmed and implemented the 

algorithm in C++. To verify the performance of the proposed method, our experiments are 
based on the rectified stereo images from the Middlebury stereo benchmark [20]. It offers 4 

pairs of stereo images: Tsukuba, Venus, Teddy and Cones, with the sizes of 384×288, 

434×383, 450×375 and 450×375 respectively. The disparity ranges of them are also given, 

which are: 0-15, 0-19, 0-59 and 0-59 pixels correspondingly. By comparing the results with 

the ground truth disparity images, we can get the quantified errors and make objective 

evaluation. The parameters in the algorithm are set as in Table 1, which are kept constant if no 

special declaring. 
 

Table 1. Parameter settings for all experiments 

α λC λG L1 L2 τ1 τ2 τh 

0.12 35 5 36 18 5 18 0.5 

 

Fig. 5 shows the experimental results of our method on all four stereo pairs of the 

Middlebury stereo database. The left most column contains the left original images of the four 

stereo pairs. The ground truth disparity images are shown in the second column, our estimated 

disparity images are displayed in the third column, and the forth column gives the error maps 

computed with the ground truth. In the error maps, the white regions denote correctly 

calculated disparity values which do not differ for more than 1 pixel from the ground truth. 

Instead, if the estimated disparity differs for more than 1 pixel from the ground truth value, it is 

marked as an error and displayed in black and gray, where black represents the errors in the 

non-occluded regions, and gray represents errors in the occluded regions. Table 2 lists the 

objective evaluation of ours and other methods with the error threshold: δd = 1 pixel, which 
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means bad pixels are those whose absolute disparity errors are above 1 pixel. Columns Nonocc, 

All and Disc represent the percentage of bad pixels for pixels in non-occluded regions, for all 

pixels and for pixels in regions near depth discontinuities.  
From overall performance, the proposed method achieves satisfactory results. Our 

algorithm correctly estimates the disparities of both textureless and textured surfaces. For 

instance, the large uniform surfaces in stereo pairs Venus and Teddy are successfully 

recovered while preserving the disparity edges well. For quantified comparison, the proposed 
method outperforms many classical global and local methods, like Enhanced BP [21], GC+occ 

[22], SemiGlob [18], AdaptWeight [3] and so on. Although the NonLocalFilter [2] and 

P-linearS [23] methods have lower average error than ours, but these methods have not 

consider image amplitude distortion and are sensitive to radiometric difference as they are 

intensity-based algorithms. In the next subsection, we will demonstrate our method’s 

robustness to image radiometric distortion thoroughly. 

 

    
(a) Experiment results of Tsukuba 

    
(b) Experiment results of Venus 

    
(c) Experiment results of Teddy 

    
(d) Experiment results of Cones 

Fig. 5. Experimental results on Middlebury datasets. From left to right in each row are the original left 

images, the ground truth disparity maps, the produced disparity maps by our algorithm and the error 

maps respectively. 
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Table 2. Objective evaluation of matching results. 

 

Algorithms 
Tsukuba Venus Teddy Cones Avg. 

Error nonocc all disc nonocc all disc nonocc all disc nonocc all disc 

NonLocaltFilter[2] 1.47 1.85 7.88 0.25 0.42 2.60 6.01 11.6 14.3 2.87 8.45 8.10 5.48 

P-LinearS[23] 1.10 1.67 5.92 0.53 0.89 5.71 6.69 12.0 15.9 2.60 8.44 6.71 5.69 

Proposed 1.46 1.92 6.80 0.36 0.53 2.41 6.61 12.1 15.3 4.08 9.99 9.55 5.93 

AdaptWeight[3] 1.38 1.85 6.90 0.71 1.19 6.13 7.88 18.3 18.6 3.97 9.79 8.26 6.67 

Enhanced BP[21] 0.94 1.73 5.05 0.35 0.86 4.34 8.11 13.3 18.5 5.09 11.1 11.0 6.69 

SemiGlob[18] 3.26 3.96 12.8 1.00 1.57 11.3 6.02 12.2 16.3 3.06 9.75 8.90 7.50 

GC+occ[22] 1.19 2.01 6.24 1.64 2.19 6.75 11.2 17.4 19.8 5.36 12.4 13.0 8.26 

 

To clarify the function of our improved gradient matching cost, we conduct a quantitative 

comparison test of the proposed method with the traditional method of only using modulus 

information. In addition, to eliminate interferences and show the effect of our four-step 

disparity refinement method, we use the results without disparity refinement. For simplicity, 

we only present the errors of the estimated disparities of non-occluded regions in Table 3. It is 

clear to see that our proposed matching cost imrpove the resulsts a lot. Also, compared with 

the results after disparity refinement in Table 2, the effectiveness of our refinement method is 

obvious too as the error percentages of disparity maps without refinement are much higher in 

non-occluded areas.  

 
Table 3. Comparison of the proposed matching cost with traditional gradient cost 

 

Methods 

(without refinement) 
Tsukuba Venus Teddy Cones 

Proposed cost 3.05 2.25 9.51 5.09 

Traditional cost 4.69 3.76 12.4 8.61 

 

3.2 Sensitivity to radiometric distortion 

To test stereo algorithms’ sensitivity to radiometric differences, Hirschmüller and Scharstein 
[20] created 6 datasets: Art, Books, Dolls, Moebius, Laundry and Reindeer, which are shown 

in Fig. 6 as well as their ground truth disparity maps. We also present the disparity maps 

produced by the proposed method. Each dataset is taken using three different exposures and 

under three different configurations of the light sources. Thus, there will be 9 different image 

combinations that exhibit significant radiometric differences. To demonstrate the performance 

under radiometric distortion of the proposed method, we keep the right image unchanged and 

alter the exposure and lighting conditions of the left image. Thus we can consider the two 

factors separately. We show the experimental results of “Reindeer” as an example in Fig. 7. 

Obviously, the qualities of the produced disparity maps are very stable throughout the 

experiments, which can show the strong robustness of the proposed method. 
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Fig. 6. More experimental results without radiometric difference. From top to down are accordingly the 

Art, Books, Dolls, Moebius, Laundry, and Reindeer stereo datasets. From left to right are the original 

color images, ground truth and disparity maps produced by the proposed method. 
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Fig. 7. Experimental results of the Reindeer pairs by the proposed method with radiometric difference. 

The first row are the left images under three different exposures and the second row are the 

cooresponding disparity maps. The third row are the left images under three different light conditions 

with the cooresponding disparity maps shown in the last row. 

 

As the sensitivity to radiometric distortion is mainly affected by the similarity measure or 

matching cost, we test three different matching costs including our proposed one. To highlight 

our proposed matching cost, all of the three compared methods use the adaptive window based 

cost aggregation to exclude the influence of aggregation ways. The resulting curves are shown 

in Fig. 8. The experiments cover all 3×3 combinations of exposure and light changes which 

are represented as 1/1 to 3/3. The error rates are the average of all 6 datasets. Seeing from the 

plots, in every exposure and lighting configuration, the proposed method has the best 

performance while the SAD method is the worst one. All of the 3 methods have better 
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performance when the two images are under the same exposure and lighting configurations 

than when they are under different exposure and lighting configurations. The SAD method is 

very sensitive to radiometric distortion as its error percentage rise dramatically when left/right 

images are under different configurations. The gradient method is much better but still not 

satisfactory. The proposed method is very robust to radiometric distortion as its error rates 

keep in a low level and vary little throughout when exposure and lighting condition differs. 

This is because SAD is an intensity based similarity measure and depends on pixels’ color or 

gray intensities which are hypersensitive to radiometric difference. Instead, the proposed 

method utilizes the gradient information and designs a new matching cost function by 

integrating the gradient modulus and phase. Hence, our method is not sensitive to color 

variance and keeps strong robustness to radiometric distortion. 
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Fig. 8. Performance comparison under 3×3 left/right image combinations that differ in exposure and 

lighting conditions. (a). Different lightings; (b). Different exposures. 
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3.3 Stereo scene reconstruction 

There are many applications for stereo matching, and three dimension (3D) scene 

reconstruction is an important one. By re-projecting an image pixel to the 3D space using its 

depth information, we can reconstruct a complete 3D object model from the 2D images. The 

quality of scene reconstruction is influenced by the accuracy of acquired depth map to a large 

extent. To illustrate the quality of the derived matching results, we present reconstructed views 

of the previous test images in Fig. 9 in order to gain a further impression of the accuracy and 

details of the computed depth information. The reconstructing results show that our estimated 

depth maps are competent to 3D reconstruction tasks. 

  

  
Fig. 9. 3D scene reconstruction results by using the produced disparity images. 

5. Conclusion 

This paper presents a novel stereo matching method based on a combined cost function and 

adaptive window cost aggregation. The improved cost function integrates both modulus and 

phase components of the gradient vector and then combines them with SAD cost, leading to a 

superior accuracy. In order to address the window size selecting problem, we introduce an 

adaptive window solution. The algorithm constructs an adaptive support region for every pixel 

according to the local color similarity and spatial closeness. Thus, every pixel can get a proper 

support region for aggregation. In addition, this support region can be reused in the later 

disparity refinement step. We explore a four-step refinement process, including median filter, 
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left-right consistence checking, invalid pixels recovering and holes filling. We evaluate our 

algorithm on the stereo pairs from the Middlebury database. The proposed algorithm matches 

textureless as well as textured surfaces equally well and can preserve depth discontinuities at 

the same time. The experimental result comparisons have demonstrated that the proposed 

method outperforms many local and global methods. Furthermore, the proposed algorithm 

handles well with radiometric differences, showing strong robustness to radiometric distortion 

of input images. 

Though the proposed method achieves good performance, there are still some aspects to be 

improved, such as redundancy among the disparity search range, more sophisticated disparity 

refinement process and parallel implementation for the proposed method will be considered in 

the next step research. 
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