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Abstract 
 

This paper considers the optimal cell association and resource allocation for load balancing in 
a heterogeneous cellular network subject to user’s quality-of-service (QoS) constraints. We 
adopt the proportional fairness (PF) utility maximization formulation which also 
accommodates the QoS constraints in terms of minimum rate requirements. With equal 
resource allocation this joint optimization problem is either infeasible or requires relaxation 
that yields a solution which is difficult to implement. Nevertheless, we show that this joint 
optimization problem can be effectively solved without any priori assumption on resource 
allocation and yields a cell association scheme which enforces single BS association for each 
user. We re-formulated the joint optimization problem as a network-wide resource allocation 
problem with cardinality constraints. A reweighted heuristic l1-norm regularization method is 
used to obtain a sparse solution to the re-formulated problem. The cell association scheme is 
then derived from the sparsity pattern of the solution, which guarantees a single BS association 
for each user. Compared with the previously proposed method based on equal resource 
allocation, the proposed framework results in a feasible cell association scheme and yields a 
robust solution on resource allocation that satisfies the QoS constraints. Our simulations 
illustrate the impact of user’s minimum rate requirements on cell association and demonstrate 
that the proposed approach achieves load balancing and enforces single BS association for 
users. 
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1. Introduction 

W ith the proliferation of mobile devices and the continuous emergence of new services, the 
wireless traffic and data rate demands are growing at an unprecedented rate. To meet such 
demands, cellular networks are trending towards increasing heterogeneity. By overlaying 
small cells with macro cells, the heterogeneous cellular networks (HetNets) bring networks 
closer to users and have been shown to boost network throughput [1]. 

The paradigm shift towards heterogeneity brings many new challenges to cellular network 
design. One of the main challenges is to devise a cell association strategy that can actively 
offload users to less congested small cells, which provide more resources to their users [2]. 
Due to the low power nature of small cells, the fraction of user population that is offloaded to 
small cells is often limited under the traditional cell association strategy that allows a user to 
associate itself with the strongest base station (BS) in terms of received power. This results in 
large load disparity across macro and small cells and leads to suboptimal rate distribution 
across network users. On the other hand, the offloaded users usually experience degraded 
Signal-to-Inference-plus-Noise Ratio (SINR) since the strongest BS now contribute to 
interference. To prevent further degradation in user experience, resource allocation schemes 
need to be considered to combat that loss, since user rates are dictated by both the allocated 
resources and the SINR. These strategies are strongly coupled and require solutions from a 
network-wide perspective [3]. 

Fulfilling the user QoS requirements is a challenging task for radio resource management 
(RRM) in HetNets [4]. The load-aware cell association problem is also closely related with 
Quality of Service (QoS) provisioning in HetNets. The user QoS requirements, i.e. minimum 
rate requirements, dictate that users to be offloaded to a small cell with sufficient available 
radio resources. The resource allocation strategy adopted by the BS should also meet the 
distinct QoS requirements of its served users. Therefore, fulfilling the QoS requirements of 
every user requires more sophisticated solutions on cell association and resource allocation. In 
this paper we address this problem and show that the solutions can be readily found. 

1.1 Motivation and Related Work 

The cell association problem in HetNets has received significant recent attention. A game 
theoretical approach has been used to study the network selection problem in [5] which gives a 
solution without requiring coordination among different access networks. In [6], the network 
selection problem is formulated as a non-cooperative game and is shown to converge to the 
Nash Equilibrium. A popular suboptimal approach, referred to as cell range expansion (CRE), 
is used to offload users to small cells using an association bias and is part of 3GPP 
standardization efforts [7]. The coverage areas of small cells are artificially expanded with 
positive biasing factors. The gains from CRE can be increased if suitable interference 
avoidance strategies can be adopted to reduce the interference experienced by offloaded users. 
One such strategy is resource partitioning [8], wherein the transmission of macro tier BSs are 
muted on certain fraction of radio resources and the offloaded users are scheduled in those 
resources. 

One way to find the more theoretically grounded solutions is to solve a system-level 
optimization problem that take into account both the cell association strategy and the resource 
allocation strategy. In [9], a proportional fairness utility maximization problem that takes into 
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account resource allocation and cell association is proposed. With log concave utility the 
optimal resource allocation is shown to be equal allocation. Therefore resource allocation is 
decoupled and the optimization problem is reformulated as a discrete optimization problem 
over cell association and can be tuned into a continuous one by relaxing the constraints. The 
problem is then solved in the dual domain using a subgradient method and the solution is 
rounded to ensure single BS association for users. In [10] a coordinate descent method is used 
to solve the dual problem. The utility maximization formulation is adopted in [11] to analyze 
load balancing and cell dormancy and in [12] to study the optimal cell load levels and the 
optimality conditions. 

A few research address QoS-aware load balancing in cellular networks. In [13] QoS-aware 
load balancing is investigated in a macro-only multi-cell networks. A joint optimization 
problem of user association and resource allocation with QoS constraints is proposed in [14] to 
maximize network energy efficiency in an uplink HetNet. However, most of the previous 
work on the load balancing problem in a downlink HetNet does not consider user QoS 
requirements and employs a simple resource allocation strategy such as equal resource 
allocation at base stations. Equal resource allocation is not enough to cope with varying user 
QoS requirements. As mobile networks evolves towards increasing heterogeneity, it is 
important that the heterogeneous mobile networks can provide assurance of quality of 
experience to mobile users in order to satisfy the demand of emerging mobile services. Robust 
radio resource  management schemes must be developed for the increasingly heterogeneous 
cellular networks, and for future mobile networks with convergence of different types of 
devices, protocols and services[15].Traffic balancing and resource allocation are indispensible 
part of radio resource management schemes and it would be suboptimal to address them 
separately as they are strongly coupled. Moreover, these techniques directly influence the rate 
of users and are subject to user QoS constraints. Therefore it would be useful to explore the 
sensitivity of cell association and resource allocation to user QoS requirements. 

1.2 Approach and Organization 

This paper addresses the load balancing problem and analyze joint cell association and 
resource allocation with QoS constraints in downlink HetNets. We adopt the same 
proportional fairness utility function as in [9, 10] to achieve load balancing across macro and 
small cells. A set of minimum rate requirements are used as QoS constraints. We show that 
decoupling the joint optimization problem into a discrete optimization over cell association, 
which assumes equal resource allocation, does not yield feasible solutions under QoS 
constraints. The relaxed optimization cannot be solved in the dual domain using Lagrangian 
dual decomposition. We note that the equal resource allocation strategy is not robust enough to 
cope with user QoS requirements and the fractional user association employed in previous 
works is considered more difficult to implement. Our main contribution is that we propose a 
novel framework to solve the joint optimization problem without any priori assumption on 
resource allocation and the obtained solution on cell association guarantees single BS 
association for each user. Our proposed method differs from existing works which assume a 
resource allocation strategy first and then solve the relaxed cell association subproblem. QoS 
constraints in relation with resource allocation can be incorporated into our proposed 
framework, which is helpful for providing QoS support when offloading users to small cells in 
a heterogeneous cellular network. To do so we re-formulate the joint optimization problem as 
a global resource allocation problem with cardinality constraints, and derive the cell 
association scheme from the sparsity pattern of the resource allocation solution. We 
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re-formulate the constraints of the cell association as the cardinality inequality constraints of 
the resource allocation. Thus the resource allocation and cell association are decoupled, while 
the single-BS association is still enforced. Moreover, in order to obtain a sparse solution on 
resource allocation, we resort to the reweighted heuristic l1-norm regularization method [16,17] 
to solve this convex-cardinality problem, by adding a reweighted regularization term to the 
objective function. We note that a recent work [18] also uses the reweighted heuristic 11-norm 
technique to obtain sparse beamforming vectors when assigning users to a BS cluster in a 
cloud radio access network. The association strategy is directly derived from the sparsity 
pattern of the solutions. The obtained results provide insights for optimal cell association and 
resource allocation to achieve load balancing in HetNets with QoS constraints.  

The rest of the paper is organized as follows. The HetNets system model is described in 
Section 2. Then we analyze the joint optimization problem with QoS constraints and solve our 
re-formulated convex-cardinality problem using reweighted heuristic l1-norm regularization in 
Section 3. In Section 4 numerical results are presented to validate our results. We give our 
conclusion in Section 5. 

2. System Model 
Consider a two-tier downlink heterogeneous cellular network with co-channelly deployed 
macro cell BSs and small cell BSs. The heterogeneous network covers a finite geographic area 
with a total of N users and M cell BSs, which are randomly and independently placed across 
the area. A frequency reuse factor of 1 is assumed across the network. We assume BSs of kth 
(k = 1,2) tier transmit with the same transmit power Pk over the entire bandwidth. We assume 
frequency-flat channels and Rayleigh fading is used to model the random channel gain. 

Let SINRij be the SINR of user i if it is associated BS j. Then the value of SINRij is 

SINRij = PjhijZij
−αj

∑ Pkhikk≠j Zik−αk+σ2
                                             (1) 

where hij is the channel power gain, αj is the path loss factor, Zij denotes the distance 
between user i and BS j, and σ2  denotes the background noise power level. With 
frequency-flat channels the SINR remains constant during the cell association phase. We 
assume Shannon capacity is achieved for wireless links. We denote the achievable rate(in 
terms of bps/Hz) by cij, which is then 

cij = log2(1 + SINRij)                                               (2) 
Each user must be assigned to one BS. Since each BS generally serves more than one user, 

a user only gets a fraction of radio resources from its serving BS. Let yij be the portion of 
resources allocated to user i by BS j. Hence the long term rate of user i associated to BS j, 
denoted as Rij, is defined as: 

Rij = yijcij                                                           (3) 
The overall rate of user i, denoted as Ri, is given by 

Ri = ∑ Rijj                                                            (4) 
We use a binary cell association indicator xij (1 or 0)to denote whether or not user i is 

associated with BS j. To make sure each user is assigned to exactly one BS, xij must satisfy 
∑ xijj =1                                                               (5) 
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The requirement on unique association for user is also reflected on the resource allocation. 
If user i is associated with BS j, yij is strictly positive between 0 and 1. Otherwise yij equals to 
zero. We note that in order to enforce unique association for each user, the resource allocation 
indicator set {yij} forms a sparse matrix, with exactly one nonzero element per row. 

We use a set of minimum long term rate requirements as the user QoS requirements. The 
long term rate of user k in the network must satisfy  

Rk = ∑ Rkjj = ∑ ykjckjj ≥ θk                                          (6) 

3. Problem Formulation 
To achieve load balancing, this paper adopts a proportional fair network utility optimization 
framework of maximizing the sum of utilities across all network users. In [9, 10, 11, 12] a 
proportionally fair objective function (log-utility) is chosen as the utility function and the 
problem is formulated as the maximization of the sum of each user's utility. In this paper we 
also adopt the log utility function.  

We first consider the optimization problem without QoS constraints. We follow the 
problem formulation in [9, 10]. The cell association and resource allocation problems can be 
interpreted as finding the optimal set {xij} and {yij} for the following optimization problem: 

maximizex,y     ∑ log�∑ yijcijj �i                                                    (7) 
subject to         ∑ xijj = 1                                                                          

      ∑ yiji ≤ 1  
0 ≤ yij ≤ xij, xij ∈ {0,1} 

This problem is a combinatorial optimization problem with coupled variable x and y. 
Brutal force search method would require solving MN convex problems with all possible x. 
The computation is essentially impossible for even a modest-sized cellular network. In [9], it is 
shown that for a given set of users associated with a BS, the optimal resource allocation is 
equal allocation. Let Kj denote the load of BS j, the optimization problem is then formulated as 
follows: 

maximizex        ∑ ∑ xij log�cij�ji − ∑ Kj log�Kj�j                           (8) 
 subject to         ∑ xijj = 1                                                                     

∑ xiji = Kj  
∑ Kjj = M  
xij ∈ {0,1} 

Therefore the problem is formulated as a discrete optimization problem over cell 
association. The discrete optimization can be further relaxed into a continuous one by allowing 
fractional user association (FUA). As shown in [9, 10], the relaxed optimization problem is 
formulated as 

maximizex        ∑ ∑ xij log�cij�ji − ∑ Kj log�Kj�j                           (9) 
subject to         ∑ xijj = 1                                    

∑ xiji = Kj  
∑ Kjj ≤ M  

0 ≤ xij ≤ 1 
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Its dual problem can be decomposed into two convex problems, which are solved 
separately by each user and BS. The obtained solution is then rounded to ensure unique 
association for each user. 

3.1 Cell Association with QoS Constraints 

We now add QoS constraints to the optimization problem (8). With equal resource allocation, 
the minimum rate requirement (6) of user k is then  

Rk = ∑ Rkjj = ∑ xkjckj
∑ xiji

≥ θkj                                         (10) 

The optimization problem is formulated as 
maximizex        ∑ ∑ xij log�cij�ji − ∑ Kj log�Kj�j                          (11) 
subject to         ∑ xijj = 1                                  

∑ xiji = Kj  
∑ Kjj = M  
xij ∈ {0,1} 
∑ xijcij

Kj
≥ θij   

The inequality constraint function of (11) is a linear combination of linear-fractional 
functions and is quasiconvex. Its domain �x�xij ∈ {0,1}� is not a convex set. The resulting 
optimization problem is not convex. The feasibility of the problem is very limited.  
Theorem 1:The optimization problem (11) is strictly infeasible if there exist more than M cell 
edge users whose SINR satisfy maxj Cij < 2θi.  
Proof: To satisfy the constraints in (11) every user should be associated with exactly one BS. 
If there are more than M cell edge users in the networks, at least 2 of them will be associated 
with the same BS. Suppose there are two cell edge users associated with BS ℓ and their SINR 
satisfy maxj Cij < 2θi, following (10), the load Kℓ of the BS satisfies 

Kℓ ≤
ciℓ
θi
≤ maxj Cij

θi
< 2                                                     (12) 

This contradicts the assumption .Therefore single BS association requirement cannot be 
satisfied and the problem is infeasible. 

We comment that for a HetNet with N users and M BSs, generally there are quite a few cell 
edge users with low SINR, since typically N ≫ M. Then in many cases the optimization 
problem (11) is infeasible. This means that with equal resource allocation we cannot obtain a 
practical cell association scheme which enforces unique association for users by solving the 
optimization problem (11). 

If FUA is allowed as proposed in [9, 10], the relaxed optimization (9) with QoS constraints 
can be tuned into a convex optimization problem since the quasiconvex inequality constraints 
(10) can be replaced by a convex inequality constraint [16]. The feasibility of the relaxed 
optimization  

find       x, K                                                                        (13) 
subject to     ∑ xijj = 1                           

∑ xiji = Kj  
∑ Kjj ≤ M  

0 ≤ xij ≤ 1  
∑ xijcij

Kj
≥ θij   
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is also a convex feasibility problem. The feasibility of the problem is dependent on the rate 
cij and the minimum rate requirement θi. However, even if the problem is feasible, FUA 
requires a user to be simultaneously associated with multiple BSs and is difficult to implement. 
With QoS constraints FUA is more frequent because if the equally allocated portion of 
resources from a serving BS is not enough to satisfy the QoS constraints, the user has to ask for 
more resources from other BSs. The physical relaxation of constraints also results in an upper 
bound on the cell association problem with equal resource allocation. 

We also note that the dual problem of the relaxed optimization (9) with QoS constraints (10) 
cannot be decomposed due to the coupling QoS constraint. To see that we can write the 
Lagrangian function as 

ℒ(X, K, λ, µ, ν) = ∑ ∑ xij log�cij�ji − ∑ Kj log�Kj�j − ∑ λi �∑
xijcij
Kjj − θi� − ∑ µj�∑ xij −iji

Kj� − ν�∑ Kj − Mj �                                                                             (14) 
which is not separable. This means that under QoS constraints we cannot follow the 

fractional-rounding approach in [9, 10, 11] to obtain a unique BS association scheme by 
rounding the solutions of the dual problem.  

In general we show that with the assumption of equal resource allocation it is difficult to 
find a practical solution on the cell association problem under QoS constraints. To enforce 
single BS association and satisfy user QoS requirements, a robust resource allocation strategy 
which is sensitive to user SINR is needed. 

3.2 Problem Reformulation as a Convex-Cardinality Problem 

Without the assumption of equal resource allocation we now revisit the optimization problem 
(7) under QoS constraints (6). It can be noted from the utility maximization problem that the 
objective function of (7) does not include the cell association indicator x. Furthermore, the two 
constraints in relation to cell association indicator x 

    ∑ xijj = 1                                                                         (15) 
0 ≤ yij ≤ xij, xij ∈ {0,1}                                                (16) 

can be interpreted as requirements for single BS association for users. Under single BS 
association, the resource allocation indictor y under single BS association is sparse, with 
exactly one nonzero element for each row of y. The coupled inequality constraint function (16) 
indicates that the cell association indicator x is exactly the sparsity pattern of the resource 
allocation indicator y, and along with the equality constraint (15), single BS association is 
enforced. This motivate us to re-formulate the single BS association requirement as the 
constraints on the resource allocation indicator y . The following theorem inherits the single 
BS association merit: 
Theorem 2: Let card(y) denote the cardinality of the resource allocation indicator y. Single 
BS association is enforced if y satisfies: 

0 ≤ yij ≤ 1                                                             (17) 
∑ yijj > 0                                                              (18) 

card(y) ≤ N                                                            (19) 
Proof: Consider y ∈ R+

N×M. The constraint (17) and (18) indicate that there must be at least 
one positive element for each row of y, therefore card(yi) ≥ 1 . If card(yi) > 1 , then 
card(y) = ∑ card(yi) > 𝑁i . This violates (19). Now we have card(yi) = 1 and obtain a 
solution of y with exactly one nonzero element in each row, which enforces single BS 
association for each user. 
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The constraints of the cell association indicator x can now be replaced by the 
corresponding constraints of resource allocation indicator y. Hence cell association is 
decoupled from the optimization problem. Note that the inequality constraint (18) can be 
readily replaced by the QoS constraint (6) since cij  and θi  are all positive and yij  is 
nonnegative. 

 We now re-formulate the utility maximization problem with QoS constraints as  
 

maximizey             ∑ log�∑ yijcijj �i                                                       (20) 
subject to              ∑ yiji ≤ 1                                          

          0 ≤ yij ≤ 1                
           ∑ yijcijj ≥ θi             
           card(y) ≤ N             

Note that the optimization problem (11) with equal resource allocation can be considered 
as a special case of our proposed optimization problem (20) by substituting yij with xij

Kj
. The 

resulting problem is a utility maximization problem over resource allocation only and can be 
interpreted as a network-wide resource allocation problem. The cell association strategy can 
be directly derived from the solution of (20), since the cell association indictor is the sparsity 
pattern of the resource allocation indicator. Theoretically the problem (20) is equivalent to the 
original coupled maximization problem (7). However it is a continuous optimization problem 
and is a convex problem with a cardinality constraint. Convex-cardinality problems are 
frequently addressed in modern optimization theories and this motivates us to turn to the 
reweighted heuristic l1-norm method that works well on these problems. 

3.3 The Reweighted Heuristic l1-norm Regularization 

We use  ‖. ‖1  to denote the l1-norm function. Under the basic l1-norm regularization 
method[16], the cardinality constraint (19) is replaced by extracting regularization term β‖y‖1 
from the objective function. The basic l1-norm regularization can be further refined as the 
reweighted l1-norm regularization[17] by replacing  β‖y‖1 with a weighted regularization 
term ∑βi |yi|. The regularized problem is formulized as 
 

maximizey       ∑ log�∑ yijcijj �i − ∑ ∑ βij�yij�ji                                         (21) 
 subject to        ∑ yiji ≤ 1                                   

0 ≤ yij ≤ 1       
∑ yijcijj ≥ θi        

where βij is the constant weight associated with the resource allocation variable yij. With 
large values of the weight βij , some elements of y with are heavily penalized. This results in a 
lower cardinality of the solution.  

The regularized optimization problem (21) is strictly convex. Its feasibility problem can be 
written as 

 
find           y                                                                               (22) 

subject to          ∑ yiji ≤ 1                                      
0 ≤ yij ≤ 1     
∑ yijcijj ≥ θi  
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We now compare the feasibility of the regularized optimization with the feasibility of the 
relaxed optimization with FUA. Let xij

Kj
= yij and substitute all xij in (13) and we have the 

feasibility problem of relaxed optimization as: 
find           y                                                                                 (23) 

subject to       ∑ K jyijj = 1                                
∑ yiji = 1         
∑ Kjj ≤ M        
0 ≤ Kjyij ≤ 1 
∑ yijcijj ≥ θi   

The feasible set on y of (23) is strictly a subset of the feasible set of (22). This means we are 
more likely to find a feasible solution by solving the regularized optimization (20) than solving 
the relaxed optimization. 

We can now analyze the optimality condition of the convex optimization problem (21). For 
a given value of  β , the regularized optimization problem of (21) is a constrained convex 
optimization problem. Let f(y) =  −∑ log�∑ yijcijj �i + ∑ ∑ βij�yij�ji   . We can now vectorize 
the optimization problem. Let yi denote the ith element of the solution, i ∈ ℒ = {1,2, … , N ×
M} . Let Α = {n|(n mod M) = (i mod M), n ∈ ℒ, n ≠ i}  and 
B = {m|k × M < 𝑖 < (k + 1) × M, k × M < m < (k + 1) × M, m ∈ ℒ, m ≠ i} . Suppose y∗ 
is a local optimal point, then  y∗ satisfies the Karush-Kuhn-Tucker (KKT) condition: 

0 ≤ yi∗ ≤ 1 
∑ yn∗n∈Α + yi∗ ≤ 1,     

∑ ym∗ cmm∈Β + yi∗ci ≥ θi  
λi, ui,ϕi, νi  ≥ 0 
λiyi∗ = 0 

ui(yi∗ − 1) = 0 
ϕi(∑ yn∗n∈Α + yi∗ − 1) = 0  

νi(θi − ∑ ym∗ cmm∈Β − yi∗ci ) = 0  
∇if(y∗) + ∑ (−i λi + ui+ϕi − ciνi) = 0                                    (24) 

Although the objective function  f(y) contains a l1 norm function which is usually non 
smooth, we note that any feasible y is strictly nonnegative. Then the regularization term  can 
be written as 

∑ βi|yi|i = ∑ βiyii                                                       (25) 
Now we have a continuously differentiable objective function f(y) and its first order partial 

derivative ∇if(y) can be formulated as 
∇if(y) = βi −

ci
∑ ymcmm∈Β +yici

                                              (26) 

Substitute (26) into (24) and we now have the optimality condition with relation to β  as: 
βi −

ci
∑ ym∗ cmm∈Β +yi

∗ci
+ ∑ (−i λi + ui+ϕi − ciνi) = 0                   (27) 

It can be observed from (27) that larger values of β lead to smaller values of yi and result in 
a higher sparsity of the solution. In order to choose appropriate values of β and  achieve the 
desired sparsity of the solution, we adopt the reweighted heuristic l1 norm approach proposed 
in [17,18]. In the heuristc approach the regularization parameter β can be found heuristically 
by iteratively updating β  and solving the corresponding problem (21). The iteration can be 
stopped when a solution of (21) with the desired sparsity pattern is found.  

In each iteration, the weight βij is updated acoording to 
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βij = 1
�yij�+τ

                                                          (28) 

where τ > 0 is a constant small factor and yij is the solution obtained from the previous 
iteration. It can be seen from (28) that βij is inversely proportional to yij and heavy penalities 
are given to small yij, which is further reduced in the iteration. 

As shown in [17], the reweighting iteration process is robust to the choice of the constant 
factor τ.  In addition, in order to determine whether or not the obtained solution satisfy the 
cardinality constraint, we define an arbitrarily small cardinality threshold ε and if yij ≤ ε then 
yij = 0 . Thus we have card(y) = ∑ ∑ 1(yij >ji ε) . The cell association strategy can be 
directly obtained  by rounding the solution.The reweighted heuristic algorithm is described in 
Table 1. 

Table 1. Reweighted Heuristic l1-norm Regularization Method 
Step 1:Initialization: Set βij = 1,∀i, j. Choose τ > 0 and ε > 0 
Step 2: Determine the feasibility of QoS requirements by solving the convex feasibility 
problem (22). 
Step 3: If problem (21) is feasible 
Repeat 
solve the convex problem (21) and find the solution y 
update βij according to (28) 
until card(y) = ∑ ∑ 1(yij > 𝜀)ji ≤ N 
End if 
Step 4:Set the cell association indicator xij according to : 

xij = �
1, if j = j(i)

0, if j ≠ j(i), where j(i) = arg maxj yij                                            (29) 

 
Since βij is initialized to 1, the first iteration is the basic l1 norm regularization. If the 

obtained solution does not satisfy the cardinality constraint, our algorithm iteratively updates 
the weight βij and increases the relative weight on small yij until the cardinality constraint is 
satisfied. 

From the heuristic algorithm we obtain a solution of resource allocation with desired 
sparsity, which leads to load balancing across the networks. The corresponding cell 
association is guaranteed to be a single BS association for every user. 

Due to the regularization item the obtained solution is suboptimal. It can be interpreted as a 
tradeoff between the feasibility in terms of the required sparsity and the optimality of the 
solution. From our numerical results we show that the obtained cell association achieves close 
to optimal performance in load balancing. 

The computational complexity largely depends on the number of reweighting iterations 
needed until the solution satisfies the cardinality constraint, as in each iteration a standard 
convex optimization problem is solved. Since the weight βij  is updated iteratively and 
inversely proportional to the obtained yij, in a few iterations the small yij is reduced below the 
cardinality threshold ε . Thus it only takes a few  reweighting iterations until the algorithm 
reaches convergence. 
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3.4 Discussion 

The main point of this paper is that a viable single BS association strategy can be found by 
formulating a global resource allocation problem and solving the regularized form of the 
problem. There is no priori restriction on resource allocation. Hence the cell association 
problem based on equal resource allocation in previous work [9, 10] can be considered as a 
special case of our formulated problem. With QoS constraints our formulated problem is more 
likely to yield a feasible solution that achieves load balancing. The regularized optimization 
can be interpreted as a bi-criterion problem. The log-concave proportional fairness function 
encourages cell edge users to select small BSs as their candidate serving BSs, since there are 
more resources available at these BSs. One the other hand, the regularization item encourages 
a user to ask for more resources from one of its candidate serving BS by inducing a sparse 
solution on resource allocation. For any user, the resources allocated from all BSs form a 
sparse vector with exactly one large element and the rest smaller than the threshold ε. Then the 
user selects the BS from which it receives the largest portion of resources. Hence a single BS 
association strategy is obtained. 

 Moreover, our method can be extended to cases with more general proportional fairness 
utility functions. In [19, 20] it has been shown that proportional fairness can be achieved if the 
utility function is concave, monotonically increasing and continuously differentiable. With 
more general utility functions the optimal resource allocation would not be an equal resource 
allocation. Hence there is no predetermined restriction on resource allocation. In our method 
the convex-cardinality reformulation of the utility maximization problem is independent of the 
utility function and yields a robust resource allocation solution which guarantees single BS 
association. It can be used to derive cell association and resource allocations schemes for the 
general utility maximization problem. 

4. Numerical Results 
We validate our results in a two tier cellular heterogeneous networks with a finite cell 
coverage area of the size 1000m × 1000m. The numbers of macro BSs, small cell BSs and 
UEs are fixed to {1,5,50}. We assume the location of the macro BS is fixed, and the locations 
of the small cell BSs as well as users are randomly and independently distributed across the 
area. This corresponds to the operator deployed macro cell and customer deployed small cells. 
The transmit power of macro and small cell BSs are fixed to {50,30} dBm respectively. The 
random channel gains are assumed to be Rayleigh distributed with E[H] = 1. Path loss factor 
is assumed to be 4 for all the wireless links. Without loss of generality, thermal noise is 
neglected. The cardinality threshold ε is set to 10-5. A minimum long term rate requirements of 
θ ≥ 0.08 bps/Hz is chosen as the QoS constraint. 

Fig. 1 depicts the cell association schemes for various cell association schemes. In Fig. 1 (a) 
the max SINR scheme is depicted. Due to the large power difference between macro cell and 
small cells, many users are associated with the macro BS, while most of the small cells BSs 
(SBS) remain lightly loaded. In Fig. 1 (b) the association scheme obtained via 
fractional-rounding method is depicted. Since there is no minimum rate requirement for users, 
fractional-rounding method can be used to obtain a single BS association strategy with equal 
resource allocation and more users are offloaded to small cell BSs, resulting in more balanced 
loads. Fig. 1 (c) depicts the fractional user association scheme under minimum rate constraints. 
With minimum rate constraints fractional-rounding method is no longer viable. The relaxation 
of fractional user association and the assumption of equal resource allocation result in many 
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users simultaneously asking for resources from multiple cells. Fig. 1 (d) depicts the cell 
association scheme obtained from the reweighted heuristic l1-norm regularized optimization 
with QoS constraints. The result provides a single BS association for users and achieves a 
similar performance in load balancing compared with the fractional rounding approach. Note 
that the cell association in Fig. 1 (d) is different from that in Fig. 1 (b), although both 
guarantee single BS association. That shows the impact of minimum rate constraints on cell 
association. The QoS constraints dictate that a user must be assigned to the BS with sufficient 
resources to meet the rate requirements. 

 
(a) max-SINR association 

 

 
(b) fractional-rounding without QoS constraints 
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(c) fractional user association with QoS constraints     

 
(d) regularized association with QoS contraints 

 

Fig. 1.  Different cell association strategies in a two-tier HetNets. The solid lines represent the 
association between users and the macro cell, while the dashed lines represent the association between 

users and the small cells. 
 

Fig. 2 shows the load situations among different association schemes. In max SINR 
association scheme the loads among the macro cell and small cells are very unbalanced. In the 
other three association schemes the load on the macro cell is reduced, which suggests the 
proportional fairness objective function leads to more balanced loads across the network. 
Compared with fractional-rounding scheme without minimum rate requirements, the 
regularized association with minimum rate constraints yields a very similar performance in 
load balancing. However, in fractional user association (FUA), the number of users served by 
the small cells is much larger. This shows that under the minimum rate requirement and equal 
resource allocation some users are simultaneously associated with multiple BSs, including 
small cell BSs and the macro cell BS. To implement this association coordination among small 
cells or between the macro cell and small cells is needed and that also introduces more 
operational overhead.  
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Fig. 2. Number of users served per tier in a two-tier HetNets. In regularized association and fractional 

user association a minimum long term rate θ ≥ 0.08 bps/Hz is required. 
 

Fig. 3 shows the cumulative distribution function (CDF) of the resource allocation variable 
yij obtained from our regularized optimization with QoS constraints. The majorities (more 
than 80%) of the values are kept below 10-8 and the rest are kept within the range of 10-2 and 1. 
Note that in the HetNets consisting of 6 cells, single BS association for users would require 
that about 83% (or 5

6
 ) of the values of the resource allocation variables are very small. Our 

solution obtained from the regularized optimization is a sparse solution and satisfy the 
requirement. 

 
Fig. 3. The CDFs of resource allocation variable obtained from our regularized optimization in a 

two-tier HetNets consisting of 50 users,1 macrocell and 5 small cells. 
 

Fig. 4 shows the CDFs of long term user rates with different association schemes. The 
simulation is done across more than 2000 different realizations of random two-tier HetNets. In 
max SINR association the distribution of user rates are quite uneven, resulting in a large rate 
gap between cell edge users and high rate users. The fractional-rounding method with equal 
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resource allocation offers substantial rate improvement to low rate users and guarantees single 
BS association for users. However, it is not enough to satisfy the minimum rate requirement as 
the bottom 15% of the user rates are lower than that. With the minimum rate requirement, our 
regularized approach guarantees single BS association for users, achieves similar performance 
in user fairness and increases rates of cell edge users to satisfy the rate requirement. Note that 
there is a rate decrease for high rate users since more resources are allocated to cell edge users 
to satisfy the rate requirement. The fractional user association method, which allows multiple 
BS association for users, satisfies the rate requirement and achieves a higher overall rate 
compared with fractional-rounding method and our regularized optimization approach, due to 
the relaxation of single BS association constraints. That shows relaxing the single BS 
association constraints results in a higher bound on the network performance. 

 
Fig. 4. The CDFs of long term user rates in a two-tier HetNet consisting of 50 users,1 macrocell and 5 

small cells. The minimum rate requirement is 0.08bps/Hz. 
 

Fig. 5 shows the average number of reweighting iterations until convergence versus 
different choice of τ . We run 200 trials for each choice of τ. As we can see, the impact of 
different choices of τ  on the number of reweighting iterations is very limited. Since the first 
iteration is the basic l1 norm regularization with β initialized to 1, our algorithm usually 
converges after few iterations of  reweighting process. That shows our algorithm is reasonably 
robust to the choice of  τ and the computational complexity is low. 
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Fig. 5. The average number of reweighting iterations until convergence versus different choices of τ. 

The cardinality threshold is 10-5. 

5. Conclusion 
In this paper, we investigate the load balancing problem with minimum rate requirements in a 
heterogeneous cellular network. We incorporate the minimum rate constraints with a utility 
maximization problem that considers cell association and resource allocation jointly. Then we show that 
with the assumption of equal resource allocation and the requirement of single BS association for users 
the maximization problem is often infeasible. The relaxation of constraints, which allows multiple BS 
association for users, yields a solution that is difficult to implement. To address this we proposes a novel 
framework that eliminates any priori assumption on resource allocation and guarantees single BS 
association for users. We reformulate the joint maximization problem into a global resource allocation 
problem with cardinality constraints. The reweighted heuristic l1-norm regularization method is then 
used to obtain a solution with desired sparsity. A cell association scheme is then derived from the 
sparsity pattern of the solution, which guarantees a single BS association for users.  

The main benefit of our approach is that we do not take any priori assumption on resource allocation 
and our approach can work with a variety of objective functions. Our approach can be extended to load 
balancing problems with other QoS constraints that can be presented in a convex form. Our results are 
helpful to design a cell association and resource allocation scheme that can accommodate realistic user 
QoS requirements. 
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