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Abstract 

 
We investigate the optimization of energy consumption in Mobile Cloud environment in this 
paper. In order to optimize the energy consumed by the CPUs in mobile devices, we put 
forward using the asymptotic time complexity (ATC) method to distinguish the 
computational complexities of the applications when they are executed in mobile devices. 
We propose a multi-scale scheme to quantize the channel gain and provide an improved 
dynamic transmission scheduling algorithm when offloading the applications to the cloud 
center, which has been proved to be helpful for reducing the mobile devices energy 
consumption. We give the energy estimation methods in both mobile execution model and 
cloud execution model. The numerical results suggest that energy consumed by the mobile 
devices can be remarkably saved with our proposed multi-scale scheme. Moreover, the 
results can be used as a guideline for the mobile devices to choose whether executing the 
application locally or offloading it to the cloud center. 
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1. Introduction 

Mobile Cloud Computing (MCC) is a new concept of Cloud Computing (CC) with a 
mobility feature, and it can be a way to overcome the limitations of mobile devices, such as 
the low computational power and insufficient memory capabilities. With the booming 
development of mobile communication, various functional applications can be easily 
downloaded from the application venders. At the same time, mobile devices can offload 
some applications over wireless networks to the cloud center for execution, which greatly 
reduces the requirements for storage and computing in mobile devices. 

However, in recent years, the battery capacity is limited and is growing only 5% 
annually. In comparison to the booming mobile applications, the short battery life has 
become the bottleneck of the smart mobile devices [1]-[9]. As a result, special attentions 
have been devoted to decreasing energy consumption of mobile devices under the mobile 
cloud computing scenarios. 

Kumar presented an energy consumption model to analyze whether or not the mobile 
device will offload applications to the cloud by comparing the computation energy in the 
mobile device with the communication energy for offloading applications to the cloud center 
[7], which is illustrated in Fig. 1. In general, the energy consumption of mobile devices 
could be optimized in two aspects. In the mobile execution model (ME model), the dynamic 
operating technique can be used to save the energy, i.e. the CPUs in the mobile devices 
dynamically adjust their operating parameters, such as the clock frequency, the supply 
voltage, etc. according to the computing power required by the applications. In the cloud 
execution model (CE model), the energy cost is mainly determined by the transmission rate 
and the channel states [8]. Normally, higher transmission bit rate in each time slot results in 
larger transmission power consumption in the time slot but less transmission time given the 
certain data size. On the contrary, lower transmission bit rate leads to less transmission 
power but more transmission time. So the minimized total energy consumed in the whole 
transmission time should be the result of carefully choosing (scheduling) of the transmission 
bit rate in each time slot. Meanwhile, the transmission bit rate in each time slot is relevant to 
the channel state. The optimal data transmission scheduling scheme will be the one that the 
transmission bit rate increases when the channel state is good and decreases when the 
channel state is bad. However, the researches in [7] [8] mentioned above mostly consider a 
fixed CPU operating scheme, i.e. CPU running with fixed parameters for a mobile 
application, and a fixed transmission bit rate scheme for the stochastic wireless channel in 
the cloud execution model. 

Zhang revised the energy consumption models for both mobile execution and cloud 
execution by adopting a transmission data scheduling scheme in CE model and a dynamical 
computing model in ME model [9]. However, the ME model in [9] does not observe the 
difference of the computational complexity among various applications, which essentially 
affects the energy consumption while more complex applications usually consume more 
energy by CPUs in the mobile devices. As for the CE model in [9], due to the analyzing 
model used is rather simple, the channel gain was simply quantized into two states: “good” 
and “bad”. We will prove that it will cost unnecessary additional energy when channel gain 
under the middle level is directly quantized to the “bad”. 

The above observations motivated our researches. The contributions of this paper lie in 
two aspects. First, we employ the asymptotic time complexity (ATC) to distinguish the 
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applications’ computation requirements in the ME model to optimize the energy consumed 
by CPUs in mobile devices. Second, we adopt a multi-scale scheme to quantize the channel 
gain instead of dual scale scheme used in [9]. Based on this quantization scheme, we propose 
a new data scheduling method to reduce the energy consumption in the CE model and 
improve the accuracy of energy estimation. We will also prove that although the multi-scale 
quantization scheme adds the complexity of the analyzing model, the optimal energy 
consumption can still be obtained in the closed-form expression and the computing load for 
the system will not increase. 

The rest of the paper is organized as follows. In section 2, we give the application profile 
model, the mobile execution energy model and the cloud execution energy model 
respectively. In section 3, we propose a new data scheduling scheme in the CE model and 
provide the closed-form solutions for the optimal energy consumption of two models. 
Section 4 discusses the numerical results and presents a guideline for the mobile devices to 
choose executing the application locally or offloading it to the cloud center. 

 

 
Fig. 1. Mobile application executed in two modes: the mobile execution and cloud execution. 

2. System Model 
In this section, we present the energy model with a modified application profile for the 

applications executed on the mobile devices. Then, we give the transmission energy model 
with a multi-state quantized channel. 

2.1 Mobile Application Profile 
Many details have influence on energy consumption of a mobile application, and here are 

two aspects that should be taken into consideration [9]: 
• Input data size L: The number of data bits as the input for the application; 
• Application completion deadline T: The delay deadline before which the application 

should be completed. 
Normally, energy consumption is proportional to the input data size and inversely 

proportional to the completion deadline of the application. 
However, the distinction among different applications on energy cost cannot be ignored. 

Numerical calculation applications can be accomplished with relatively fewer instructions, 
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without occupying too much resource of CPUs. Whereas, applications like image retrieval or 
voice recognition require more instructions to get results, even with the same size of input data, 
which thereby occupy more resource of CPUs and cost more energy. 

Since the CPU resource occupied by a mobile application is hard to calculate precisely, 
the asymptotic time complexity (ATC) is employed to distinguish different applications in 
energy cost. ATC is described by the function O(r(m)), where m is the size of the input data, 
e.g., the length of a voice section to be recognized, and r(m) is a function of m representing the 
running time. ATC is the upper bound for an algorithm’s running time when the input size goes 
to infinity with O (·) as the special notation indicating the upper bound [10]. ATC is usually 
expressed by one of the following equations according to the complexity of the applications: 
1, log(𝑚),𝑚,𝑚 × 𝑙𝑜𝑔(𝑚),𝑚𝑎,𝑎𝑚 , etc.[10] For example, ATC of the voice recognition 
application is 𝑚2 in normal cases, where m is the length of the input voice [11]. 

As such, the modified application profile can be denoted as A(L, T, O(r(m))). 

2.2 Mobile Execution Energy Model 
It is indicated that the CPUs tend to dominate the energy consumption of the mobile 

devices [7]. When the application is executed on the mobile device, the energy consumed by 
the CPU is mainly determined by the workload [9], which is measured by the number of the 
CPU cycles required by the applications. Denoting the number of CPU cycles as W, then W is 
a random variable depending on the input data size and the complexity of the algorithm in the 
application. In CMOS circuits, the energy 𝜀𝜔  consumed in the ωth (ω≤W) CPU cycle is 
proportional to 𝑉2, where V is the supply voltage to the chip [12] [13]. Moreover, it has been 
observed that when operating at low voltage limits, the clock frequency of the chip, 𝑓, is 
approximately linear proportional to V [12]. Therefore, the energy consumed in the ωth CPU 
cycle can be expressed as, 

𝜀𝜔(ƒ𝜔) = 𝑘 ∗ ƒ𝜔
2                                   (1) 

where k is the energy coefficient depending on the chip architecture [13]. The computation 
energy consumed in all W cycles is denoted as 𝜀𝑚 = ∑ 𝜀𝜔(ƒ𝜔)𝑊

𝜔=1 . 
In the ME model, the total energy consumption can be minimized by optimally 

configuring the clock frequency of the chip via dynamic voltage scaling (DVS) method [14]. 
Note that a CPU can reduce its energy consumption substantially by running the application 
slowly. However, the application execution has to meet the delay deadline T, which suggests 
that the clock frequency cannot be constantly low. Hence, the clock frequency should be tuned 
to minimize the total energy consumption while meeting the application delay deadline. By 
this way, the minimum energy consumption in ME model is given by, 

𝜀𝑚∗ = min 𝜳∈𝜱{𝜀𝑚(𝐿,𝑇,𝑂(𝑟(𝑚)),𝜳)}                        (2) 
where 𝜳 = {𝑓1,𝑓2 , … ,𝑓𝑊} is any clock-frequency vector that meets the delay deadline, 𝜱 is 
the set of all feasible clock-frequency vectors, and 𝜀𝑚(𝐿,𝑇,𝑂(𝑟(𝑚)) is the total energy 
consumption of mobile device. 

Hence, the objective for minimizing the energy consumption is turned into finding out the 
fittest clock-frequency vector under the constrained time T. This optimization problem will be 
discussed in Section 3. 

2.3 Cloud Execution Energy Model 
To simplify the cloud execution energy model, we make some assumptions as follows [8], [9]: 

 
First, we assume that the binary executable file for the application has been replicated on 
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the cloud center initially. Second, the display and network interface of the mobile device can 
be turned off when it is idle during the cloud execution. Hence, we only consider 
communication energy consumption of the cloud execution. Third, the receiving power is 
much lower than the transmission power. So we do not consider the scheduling of the output 
results from the cloud. Fourth, we assume that the channel between the mobile device and the 
cloud side is stochastic fading, and the current channel state information (CSI) is known to the 
transmitter. In addition, we don't consider any security issues on the cloud platform. Thus, the 
extra energy caused by operations concerning security, e.g., encryption and trust checking, is 
not taken into account. 

As such, we only consider the optimal scheduling of input data transmission to achieve 
the minimum energy consumption on the mobile device. The optimization problem will be 
demonstrated in the following two sections. 

2.3.1 Transmission Model 
Under the assumptions above, the energy consumed by mobile device in CE model is 

mainly determined by the data transmission. Normally, the consumed energy is affected by the 
data size L and the delay deadline T in the application profile. The shorter the delay deadline or 
the larger the data size is, the more energy will be consumed for transmission. Besides, 
channel states, especially the path loss and multipath effect, also have an influence on the 
transmission energy. To simplify this model, we only consider the path loss, which is 
measured by the channel gain, in CE model. Since there is no closed-form expression between 
time delay and related transmission power in the wireless networks [15], approximating 
models should be built for practical system design. 

In our designed model, the data transmission time is divided into T slots (from T to 1) and 
we adopt a monomial energy-bit function in [9] [16] and [17] to demonstrate the energy 
consumed per transmission time slot. Specifically, the energy consumed to transmit 𝑆𝑡  bits of 
data in the tth (t≤T) time slot is a convex monomial function, which denotes as, 

𝜀𝑐(𝑆𝑡 ,𝑔(𝑡)) = 𝜆 𝑆𝑡𝑛

𝑔(𝑡)
                                  (3) 

where n denotes the monomial order and 2 ≤n ≤5, depending on the modulation and encoding 
scheme. 𝜆 denotes the energy coefficient and 𝑔(𝑡) is the value of the channel gain at tth time 
slot. It is shown by [18] and [19] that the monomial function is fairly close to the power model 
indicated by Shannon’s formula if choosing an appropriate coefficient λ and order n. We 
present approximation method to obtain 𝜆 and n in the Appendix. 

During the deadline T, the total energy consumed by the mobile device to transmit all L 
bits of data is ∑ 𝜀𝑐(𝑆𝑡 ,𝑔(𝑡))𝑇

𝑡=1 . It can be seen that the energy cost is mainly determined by 
the transmission rate and channel state. The minimized total energy consumption in the whole 
transmission time should be the result of carefully choosing the transmission bit rate in each 
time slot. We denote the optimal energy model for transmission as, 

𝜀𝑐∗ = min𝑺𝒕���⃗ ∈𝜰��⃗ {𝜀𝑐(𝐿,𝑇), 𝑆𝑡���⃗ }                            (4) 
where 𝑺𝒕���⃗ = {𝑆1, 𝑆2 , … , 𝑆𝑇}  is any data transmission scheduling that meets the data size 
requirement L, 𝜰��⃗  is the set of all feasible data scheduling vectors, and 𝜀𝑐(𝐿,𝑇) is the total 
energy consumption for a successful transmission by the mobile device. 

Hence, the objective for minimizing the energy consumption in CE model is to find out 
the fittest data scheduling scheme meeting the data size and the delay deadline requirement. 
This optimization problem will be discussed in Section 4. 
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2.3.2 Wireless Channel Model 
We only consider the slow fading in the wireless channel model. The Markov chain 

model has been proved to be a successful mathematical tool to describe a stochastic wireless 
channel when the fading is slow [20]. The study in [21] suggests that a first-order Markov 
chain model is quite accurate and remains insensitive to different coding and modulation 
schemes. For this reason, the channel state was modeled as a first-order Markov chain in [9], 
where the channel gain was quantized into two states: “good” and “bad”. Although the 
dual-state Markov method helps to simplify the energy model, it causes the large quantization 
error and leads to unnecessary energy cost as well. It is demonstrated in [22] that multi-state 
Markov model works better in terms of capturing the statistics of deep shadowing and 
increasing the accuracy of estimating the channel performance. As a result, we adopt a 
multi-state Markov model as our wireless channel model, and we present some results of this 
channel model in Section 4.  

The quantization of channel gain using a uniform quantizer with K states is denoted by, 
𝑔�(𝑡) = arg    min𝑔𝑘∈{𝑔1,𝑔2,…,𝑔𝐾}|𝑔(𝑡) − 𝑔𝑘|                      (5) 

where the channel gain at time slot t is quantized to the one element of the set 
{𝑔1,𝑔2 , … ,𝑔𝐾} depending on its value. The set {𝑔1,𝑔2 , … ,𝑔𝐾} constitutes a Markov state 
space. 

In the first-order Markov model, the current channel state is relevant to the last one. The 
probability of the channel gain from the ith state to the jth state is denoted as 𝑃𝑖𝑗, and the state 
transition probability matrix (TPM) P is, 

𝑷 = �

𝑃11 𝑃12
𝑃21 𝑃22

⋯ 𝑃1𝐾
⋯ 𝑃2𝐾

⋮ ⋮
𝑃𝐾1 𝑃𝐾2

𝑃𝑖𝑗 ⋮
… 𝑃𝐾𝐾

�                               (6) 

 The stationary probabilities 𝑃(𝑗)  of the channel gain at the state 𝑔𝑗  is the solution of 
the following linear system, 

�
𝑃(𝑗) = ∑(𝑃𝑖𝑗 ∗ 𝑃(𝑖))

∑𝑃(𝑗) = 1
�                                 (7) 

 
3. Optimal Computation Energy in ME Model  

In this section, we focus on the problem of minimizing the energy consumption in ME 
model. As demonstrated before, the objective is to set the clock frequency of chip properly to 
achieve the optimal computation energy consumption. 

As is mentioned in section 2, the total computation energy 𝜀𝑚 = ∑ εω(ƒω)𝑊
ω=1  is related 

to the total number of CPU cycles required by the application W, which is a random variable 
with an empirical distribution [8] [9] [23], and generally proportional to the input data size and 
the complexity of the application. Hence, we map ATC complexity of the application into the 
virtual data size of the application. It follows, 

𝑊 = 𝐺(𝐿) ∗ 𝑋                                       (8) 
where G(L) is the equivalent data size mapped from the ATC complexity and L is actual input 
data size of the application. G(L) takes the following expressions according to the complexity 
of the application, 1, 𝑙𝑜𝑔𝐿 , 𝐿, 𝐿 × log𝐿, 𝐿𝑎 ,𝑎𝐿  [24] [25] (e.g., for the voice recognition 
algorithm, G(L)= 𝐿2). X is a Gamma distributed random variable [23], and its probability 
distribution function (PDF) is given by, 

p𝑥(𝑥) = 1
𝛽∗𝛤(𝛼) �

𝑥
𝛽
�
𝛼−1

𝑒−
𝑥
𝛽,      for  𝑥 > 0                       (9) 
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where α and β are the shape parameter and scale parameter of this distribution respectively. 
The cumulative distribution function (CDF) of X 𝐹𝑋(𝑥) = P[𝑋 ≤ 𝑥] and the complementary 
cumulative distribution function (CCDF) of X 𝐹𝑋𝑐(𝑥) = 1− 𝐹𝑋(𝑥)  can be obtained from 
p𝑥(𝑥).  

When an application is executed in multi-cores, according to the models in [26] [27], 
the tasks generated from each application are queued and processed in a First-In-First-Out 
(FIFO) manner. Cores of the CPU offer approximately the same amount of computations for 
these tasks，i.e., an application can be effectively decomposed into independent parallel 

tasks. Under this circumstance，the parallelism of multi-cores will be fully utilized, and the 
computation load of a core is expressed as below, 

 ( )
N

G L XW
N
∗

=                                  (10)  

where N  is the number of the cores in the mobile device. Especially, 1N =  represents that 
an application is only executed in one single core.  
Then, from Eq. (10), CDF and CCDF of NW  are given by, 

𝐹𝑊𝑁
(𝜔) = 𝐹𝑋(𝑁 ∗ 𝜔 𝐺(𝐿)⁄ )   

𝐹𝑊𝑁
𝑐 (𝜔) = 𝐹𝑋𝑐(𝑁 ∗ 𝜔/𝐺(𝐿))                          (11) 

A certain application process cannot always occupy the core in a multi-task system. 
Hence, the soft real-time requirement model [23] is adopted here. In this model, each 
application meets its deadline with a probability ρ by allocating finite CPU cycles. This 
probability ρ is called the application completion probability (ACP), which is usually assumed 
to be very close to 1 [13]. As 𝐹𝑊�𝑊𝜌� = 𝜌, the allocated CPU cycles 𝑊𝜌 is given by, 

𝑊𝜌 = 𝐹𝑊𝑁
−1 (𝜌)                                  (12) 

Substituting Eq. (11) into Eq. (12), we get, 
𝑊𝜌 = 𝐺(𝐿) ∗ 𝐹𝑋−1(𝜌)                               (13) 

Therefore, the total energy consumption in the ME model expressed by Eq. (2) is 
modified as, 

min   𝜀𝑚 = 𝑘′ ∗ ∑ 𝐹𝑊𝑁
𝑐 (𝜔) ∗ ƒ𝜔

2𝑊𝜌
𝜔=1                          (14) 

s. t.       ∑ 1
ƒ𝜔

𝑊𝜌
𝜔=1 ≤ 𝑇                                    (15) 

ƒ𝜔 > 0                                      (16) 
where 𝑘′ is the amendment of 𝑘 in Eq.(1), depending on the number of cores in a CPU and 
the architecture of the mobile devices. Eq. (15) corresponds to the delay constraint. This 
optimization problem can be solved analytically by Lagrange multiplier method, and the result 
is given by, 

𝜀𝑚∗ = 𝑘′
𝑇2
∗ �∑ [𝐹𝑊𝑁

𝑐 (𝜔)]
1
3

𝑊𝜌
𝜔=1 �

3
                           (17) 

Proposition 3.1: ∑ [𝐹𝑊𝑐 (𝜔)]
1
3

𝑊𝜌
𝜔=1  in Eq. (17) is proportional to the data size. i.e., 

∑ [𝐹𝑊𝑁
𝑐 (𝜔)]

1
3

𝑊𝜌
𝜔=1 ~ G(L). 

Proof: Assuming 𝑇𝜌 = 𝐹𝑋−1(𝜌), Eq.(13) is modified as, 
𝑊𝜌 = 𝐺(𝐿) ∗ 𝑇𝜌                                  (18) 

Substituting Eq.(11) and Eq.(18) into ∑ [𝐹𝑊𝑁
𝑐 (𝜔)]

1
3

𝑊𝜌
𝜔=1 , we get, 
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� [𝐹𝑊𝑁
𝑐 (𝜔)]

1
3

𝑊𝜌

𝜔=1
= � �� [𝐹𝑊𝑁

𝑐 (𝐺(𝐿) ∗ 𝑡 + 𝑖)]
1
3

𝐺(𝐿)

i=i
�

𝑇𝜌−1

t=0
 

= ∑ �∑ [𝐹𝑋𝑐(𝑡 + 𝑖/𝐺(𝐿))]
1
3

𝐺(𝐿)
i=i �𝑇𝜌−1

t=0                  (19) 
According to the mean value theorem, there exists an η (1/ G(L)＜η＜1) so that 

� �� [𝐹𝑋𝑐 �𝑡 +
𝑖

𝐺(𝐿)�]
1
3

𝐺(𝐿)

i=i
�

𝑇𝜌−1

t=0
= � (𝐺(𝐿) ∗ [𝐹𝑋𝑐(𝑡 + 𝜂)]

1
3)

𝑇𝜌−1

t=0
 

= 𝐺(𝐿) ∗ ∑ [𝐹𝑋𝑐(𝑡 + 𝜂)]
1
3

𝑇𝜌−1
t=0             (20) 

If the value of G(L) is large enough, η is independent from G(L). ∑ [𝐹𝑋𝑐(𝑡 + 𝜂)]
1
3

𝑇𝜌−1
t=0  is 

thereby independent from G(L). Thus, ∑ [𝐹𝑊𝑁
𝑐 (ω)]

1
3

Wρ
ω=1 ~ G(L) is proved. 

From Proposition 3.1, Eq. (17) is rewritten as, 
𝜀𝑚∗ ≈ 𝑀

𝑇2
∗ [𝐺(𝐿)]3                               (21) 

where M is a constant depending on k’, ρ, α and β. Once the application profile is given, the 
optimal energy consumed in the ME model can be easily obtained from Eq. (21). 

4. Optimal Energy Consumption in CE Model 
In this section, we focus on scheduling the data transmission to minimize the energy 

consumption for offloading the application to the cloud center with a delay constraint. 
Different from the work in [9], we adopt a multi-state Markov chain as the channel model to 
reduce the quantization errors of the channel gain. 

As is noted in section 2, energy consumption in any time slot is a convex monomial 
function depending on the size of transmission data and the wireless channel gain, which is 
constant during a time slot. Average total transmission energy is given by 𝜆 ∗ 𝔼[∑ 𝑆𝑡𝑛

𝑔�(𝑡)
𝑇
𝑡=1 ]. 

The optimization problem in Eq. (4) is modified as, 
min   𝜆 ∗ 𝔼[∑ 𝑆𝑡𝑛

𝑔�(𝑡)
𝑇
𝑡=1 ]                               (22) 

s. t.  ∑ 𝑆𝑡 = 𝐿𝑇
𝑡=1                                    (23) 
𝑆𝑡≥0                                      (24) 

where Eq. (23) corresponds to the data size constraint.  
The channel states are stochastic and the future states are unknown to the transmitter. 

Consequently, Lagrange multiplier method used in last section is not suitable under this 
circumstance. This problem can be solved by the dynamic programming (DP) method [28] 
which is used to obtain an optimized strategy by using a multi-step decision process. The 
decision process is divided into T steps (T time slots in time axis), and the parameters involved 
are defined as follows: 

• State variable 𝐿𝑡: The amount of the data remaining unsent at time t; 
• Decision 𝑆𝑡: The optimal decision in step t . Specifically, it is the size of the scheduled 

data to be transmitted during time slot t; 
• State transition equation: The equation to describe how the state will be changed after 

the decision made in each step. Here, it is: 𝐿𝑡 − 𝐿𝑡−1 = 𝑆𝑡; 
• Value function 𝐽𝑡(𝐿𝑡 ,𝑔�(𝑡)) : The objective function to describe the effect of the 

decision. Here, the objective is to minimize the energy consumption and the corresponding 
value function is designed as, 
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 𝐽𝑡(𝐿𝑡 ,𝑔�(𝑡)) = 𝑜𝑝𝑡{𝑆𝑡,..,𝑆1}𝜆 ∗ 𝑆𝑡𝑛 𝑔�(𝑡)⁄ + 𝔼�𝐽𝑡−1�𝐿𝑡−1 ,𝑔�(𝑡 − 1)�� 
The optimization problem in Eq. (22) is thereby modified as, 

𝐽𝑡�𝐿𝑡,𝑔�(𝑡)� = �𝑚𝑖𝑛0≤𝑆𝑡≤𝐿𝑡
�𝜆 ∗ 𝑆𝑡𝑛 𝑔�(𝑡)⁄ + 𝔼�𝐽𝑡−1�𝐿𝑡 − 𝑆𝑡 ,𝑔�(𝑡 − 1)��� , 𝑡 ≥ 2 

𝜆 ∗ 𝐿1𝑛 𝑔�(1)⁄ , 𝑡 = 1
�      

(25) 
In the first time slot (Step 1), 𝑆1 = 𝐿1 , the corresponding value function 

is： 𝐽1�𝐿1,𝑔�(1)� = 𝜆 ∗ 𝐿1𝑛 𝑔�(1)⁄ . In the second time slot (Step 2), State transition equation is: 
𝐿1 = 𝐿2 − 𝑆2. Given the channel gain as 𝑔𝑘 , the corresponding value function is, 

𝐽2(𝐿2 ,𝑔�(2) = 𝑔𝑘) = 𝑚𝑖𝑛0≤𝑆2≤𝐿2 𝜆 ∗ 𝑆2
𝑛 𝑔𝑘⁄ + 𝔼[𝜆 ∗ (𝐿2 − 𝑆2)𝑛 𝑔�(1)⁄ ] 

= 𝑚𝑖𝑛0≤𝑆2≤𝐿2 𝜆 ∗ 𝑆2
𝑛 𝑔𝑘⁄ + 𝜆 ∗ (𝐿2 − 𝑆2)𝑛 ∗ ∑ 𝑃𝑘𝑖/𝐾

𝑖=1 𝑔𝑖     (26) 
Define, 

𝜉2:𝑘 = ∑ 𝑃𝑘𝑖/𝐾
𝑖=1 𝑔𝑖                               (27) 

where subscript :k represents that the channel gain is 𝑔𝑘 .  
Eq. (26) is modified as, 

𝐽2(𝐿2,𝑔�(2) = 𝑔𝑘) = 𝑚𝑖𝑛0≤𝑆2≤𝐿2 𝜆 ∗ 𝑆2
𝑛 𝑔𝑘⁄ + 𝜆 ∗ 𝜉2:𝑘 ∗ (𝐿2 − 𝑆2)𝑛        (28) 

Proposition 4.1: If the channel gain in time slot t（ t≥2）is 𝑔𝑖 and the value function is, 
𝐽𝑡(𝐿𝑡 ,𝑔�(𝑡) = 𝑔𝑖) = 𝑚𝑖𝑛0≤𝑆𝑡≤𝐿𝑡 𝜆 ∗ 𝑆𝑡

𝑛 𝑔𝑖⁄ + 𝜆 ∗ 𝜉𝑡:𝑖 ∗ (𝐿𝑡 − 𝑆𝑡)𝑛          (29) 

When the channel gain in time slot t+1 is 𝑔𝑘 , then the value function is, 
𝐽𝑡+1(𝐿𝑡+1,𝑔�(𝑡 + 1) = 𝑔𝑘) = 𝑚𝑖𝑛0≤𝑆𝑡+1≤𝐿𝑡+1 𝜆 ∗ 𝑆𝑡+1

𝑛 𝑔𝑘⁄ + 𝜆 ∗ 𝜉𝑡+1:𝑘 ∗ (𝐿𝑡+1 − 𝑆𝑡+1)𝑛  (30) 
Proof: 
𝜆 ∗ 𝑆𝑡𝑛 𝑔𝑖⁄ + 𝜆 ∗ 𝜉𝑡:𝑖 ∗ (𝐿𝑡 − 𝑆𝑡)𝑛 is a convex function of 𝑆𝑡 , let it's derivative equal to 0, 

we have  
𝜆 ∗ 𝑛 ∗ 𝑆𝑡𝑛−1 𝑔𝑖⁄ − 𝜆 ∗ 𝑛 ∗ 𝜉𝑡:𝑖 ∗ (𝐿𝑡 − 𝑆𝑡)𝑛−1 = 0               (31) 

And the optimal decision  𝑆𝑡∗ is, 
𝑆𝑡∗ = 𝐿𝑡

�1+(𝑔𝑖∗𝜉𝑡:𝑖)−1 (𝑛−1)⁄ �                           (32) 
Substituting (32) into (29), we get 

𝐽𝑡(𝐿𝑡 ,𝑔�(𝑡) = 𝑔𝑖) = 𝜆 ∗ 𝐿𝑡𝑛 ∗ �
1

�(𝑔𝑖)1 (𝑛−1)⁄ +(𝜉𝑡:𝑖)−1 (𝑛−1)⁄ �
�
𝑛−1

             (33) 

In time slot t+1 ，given the channel gain is 𝑔𝑘 , the value function 𝐽𝑡+1 is given by, 
𝐽𝑡+1(𝐿𝑡+1,𝑔�(𝑡 + 1) = 𝑔𝑘) = 𝑚𝑖𝑛0≤𝑆𝑡+1≤𝐿𝑡+1 𝜆 ∗ 𝑆𝑡+1

𝑛 𝑔𝑘⁄ + 𝜆 ∗ 𝔼[ 𝐽𝑡(𝐿𝑡 ,𝑔�(𝑡) = 𝑔𝑖)       

= 𝑚𝑖𝑛0≤𝑆𝑡+1≤𝐿𝑡+1 𝜆 ∗ 𝑆𝑡+1
𝑛 𝑔𝑘⁄ + +𝜆 ∗ 𝐿𝑡𝑛 ∗ ∑ 𝑃𝑘𝑖 ∗ �

1
�(𝑔𝑖)1 (𝑛−1)⁄ +(𝜉𝑡:𝑖)−1 (𝑛−1)⁄ �

�
𝑛−1

𝐾
𝑖=1   (34) 

where 𝑃𝑘𝑖 is the transition probability of the channel gain from 𝑔𝑖 to 𝑔𝑘 and 𝐿𝑡 = 𝐿𝑡+1 −
𝑆𝑡+1 . Redefine 𝜉𝑡+1:𝑘 as 

𝜉𝑡+1:𝑘 = ∑ 𝑃𝑘𝑖 ∗ �
1

�(𝑔𝑖)1 (𝑛−1)⁄ +(𝜉𝑡:𝑖)−1 (𝑛−1)⁄ �
�
𝑛−1

𝐾
𝑖=1                (35) 

The Eq.(30) can be obtained. 
End of the proof. 
According to proposition 4.1, at any time slot, given the channel gain is 𝑔𝑘 , the 

optimized transmitting data size is, 

𝑆𝑡∗ = �
𝐿𝑡

�1+(𝑔𝑘∗𝜉𝑡:𝑘)−1 (𝑛−1)⁄ � , 𝑡 ≥ 2

𝐿1 , 𝑡 = 1
�                        (36) 
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where 

𝜉𝑡:𝑘 = �∑ 𝑃𝑘𝑖 ∗ �
1

�(𝑔𝑖)1 (𝑛−1)⁄ +(𝜉𝑡:𝑖)−1 (𝑛−1)⁄ �
�
𝑛−1
，𝑡 ≥ 3𝐾

𝑖=1

∑ 𝑃𝑘𝑖/𝐾
𝑖=1 𝑔𝑖 , 𝑡 = 2

�           (37) 

and the corresponding minimum energy cost is, 
𝜀𝑐∗ = ∑ P(𝑔�(𝑇) = 𝑔𝑘) ∗ 𝐽𝑇(𝑇,𝑔�(𝑇) = 𝑔𝑘)𝐾

𝑘=1                   (38) 
Substituting (33) into (38), we have 

𝜀𝑐∗ = 𝜆 ∗ 𝑇𝑛 ∑ 𝑃(𝑘) ∗ � 1
�(𝑔𝑘)1 (𝑛−1)⁄ +(𝜉𝑇:𝑘)−1 (𝑛−1)⁄ �

�
𝑛−1

𝐾
𝑘=1              (39) 

Given the profile of an application, the optimized energy consumption can be obtained 
with the closed-form solutions expressed by Eq.(21) and Eq.(39) for ME and CE model 
respectively. The execution policy for the mobile device is simple: the mobile device will 
choose the way with lower energy consumption to implement this application. 

5. System Evaluations and Numerical Results Discussions  
To examine the efficiency of the proposed scheme, we present several numerical results. 

Parameters involved in ME and CE models are set to ensure that the energy consumption is 
consistent with the measurements in [8] and they are listed in Table 1.  

 
Table 1. Related parameters of energy 

 Parameters Values 
Effective switched capacitance k 10−11 

The shape of Gamma distribution α 4 
The scale of Gamma distribution β 200 

ACP ρ 0.95 
Energy coefficient λ 10−3 

The monomial order of energy-bit 
function n 3.36 

 
In CE model, the transition probability of channel gain from “good” to “bad” is arbitrarily 

set in [9], which cannot reflect the characteristics of the fading channels. Instead, we sample 
the channel gain of a slow flat fading channel [29] and give the channel state transition 
probabilities by statistics. The number of channel states K is set as 5, 3 and 2, respectively, to 
show the energy consumption affected by the quantization errors. The other parameters are list 
in Table 2. 

 
Table 2. Related parameters of channels 

Parameters  Values  
Mean of channel gain(normalized)   0.5 
Standard deviation of channel gain  0.2 

channel gain states set K=5 {𝑔1,𝑔2,𝑔3,𝑔4,𝑔5} {1,0.75,0.5,0.25,0.1} 
channel gain states set K=3 {𝑔1,𝑔2,𝑔3} {1,0.5,0.1} 
channel gain states set K=2 {𝑔1,𝑔2} {1,0.1} 

Length of a time slot Δt  1ms 
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Fig. 2. Normalized Channel gain and the quantized values 

 
Table 3. Statistical results of the transition probability metric in K=5 

 j=1 j=2 j=3 j=4 j=5 
i=1 0.5769 0.4231 0 0 0 
i=2 0.0340 0.8565 0.1058 0.0037 0 
i=3 0.0036 0.2049 0.6774 0.1123 0.0018 
i=4 0 0.0053 0.3413 0.4933 0.1600 
i=5 0 0 0.0219 0.3115 0.6667 

 
As stated earlier, we adopt a multi-state Markov model to describe the stochastic changes 

of slow fading wireless channels. Fig. 2 (a) shows the normalized channel gain of slow fading 
wireless channels, which is log-normal distributed in our simulations. And Fig. 2 (b) 
demonstrates the quantized value when we sampled the corresponding normalized channel 
gain with 5 scales, i.e., 5 channel states. Compared with the dual-state Markov method in [9], 
where the channel gain was quantized in “good” and “bad” states, our multi-state Markov 
method better reflects the stochastic feature of the fading channel and can be helpful in 
increasing the accuracy of energy optimization algorithm.  

Table. 3 displays the channel states transition probabilities 𝑃𝑖𝑗 by statistical analysis of 
the channel gain values in Fig. 2 (b). 𝑃𝑖𝑗 is used in dynamic transmission data scheduling 
algorithm to minimize energy consumption for offloading the application to the cloud center.  
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5.1 Performance of Mobile Execution Energy Model 
The energy consumed by three different applications executed in ME model is given in 

Fig. 3 with the application completion deadline T as 40 milliseconds. These three 
applications are all in algorithm level, with their ATC given in Table 4. As demonstrated in 
Fig. 3, it is obvious that the energy cost increases with the size of the data, and the growth 
rate is proportional to the ATC of the application. The reason is that the second-order partial 
derivative of the energy in Eq. (21) with respect to the G(L) is greater than zero, and the G(L) 
increases with the ATC. Consequently, the energy gaps among applications grow with the 
data size which means that the higher complexity application cost much more energy than 
the lower complexity ones as the data size rises. We also find in Fig. 3 that the energy 
consumption in a two-core CPU is lower than that in a single-core CPU. This is because 
given a fixed deadline, the computation load is distributed among two cores, so the clock 
frequency of each core can be lower than that of the single-core CPU. It results in the lower 
energy consumption according to Eq.(1). 

 
Table 4. Algorithm level applications and their time complexity 

Applications ATC 
binary search log(m) 
order search m 
merge sort m×log(m) 
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Fig. 3. Energy consumed (in logs) by mobile device versus the input data size L 
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5.2 Performance of Cloud Execution Energy Model 
This subsection describes the analytical and simulation results of CE model and presents 

the performance comparisons between our proposed scheme and the scheme in [9]. Fig. 4 
gives the optimal data transmission scheduling of different channel states in the CE model 
when K=3. Fig. 4 (a), Fig. 4 (b) and Fig. 4(c) are the three extreme cases when the channel 
states are constantly good, median or bad during whole transmission time (40 time slots). In 
Fig. 4 (a), given a good channel state, the scheduler transmit more bits of data in the current 
time slot than that in the next time slot, in case of lower channel gain in the next time slot. If 
the channel stays in good state, the number of transmitted bits decreases over time. Conversely, 
in Fig. 4 (c), where the channel state are constantly bad, the size of transmitted data is less in 
the current time slot than that in the next time slot for the scheduler expects the higher channel 
gain in the next slot. In Fig. 4 (b), where the channel states are constantly at the middle level, 
the allocated data in each time slot is very close to the equal divisions. When the channel gain 
changes among time slots, the corresponding fluctuation of transmitted data size can be 
observed in Fig. 4 (d), (e) and (f). 

 
Fig. 4. Optimal bit transmission, K=3, L=200bits, T=40ms 
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Fig. 5. Comparison of energy consumption, K=5, K=3 and K=2 

 
Fig. 5 shows the energy consumption versus the data size and delay deadline with 

different number of channel states in CE model. It is straightforward that the energy 
consumption increases with the raising of data size and the reducing of transmission deadline. 
It is shown in both Fig. 5 (a) and Fig. 5 (b) that the finer quantization granularity 
(corresponding to the bigger number of channel state K) leads to the lower energy 
consumption. This phenomenon can be explained as follows. The thick quantization 
granularity results in the underestimating or overestimating of the channel gain. When the 
channel gain is underestimated, the unnecessary higher power is used to transmit the data. 
When the channel gain is overestimated, corresponding insufficient transmitting power will 
leads to the degradation of the system performance, i.e., unacceptable bit error rate, which 
conversely forces the transmitter to increase the transmitting power or retransmit the data. All 
of these aspects contribute to the higher energy consumption when the channel gain is 
quantized with thicker granularity. 

 
Fig. 6. Energy consumed by mobile device in both ME and CE models 
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Finally, we analyze the execution policy of the mobile device. Energy consumed by the 
mobile device for a given application, e.g., "order search", is plot in Fig. 6.The energy 
consumption increases with the data size in both ME and CE models. When the data size is 
small (below the highlight points in Fig. 6), the energy consumption in ME model is smaller 
than that in CE model, the mobile device is thereby inclined to offload the application to the 
cloud center to save the energy. Otherwise, the mobile device executes the application locally. 
It is noted that when the 5-channel-states (K=5) scheme is used, the mobile device will 
offloads the application to the cloud with the data size below 1900, while the corresponding 
data size in the scheme [9] is around 1350 (referring to the highlight points in Fig. 6). It means 
that the quantization granularity (corresponding to the number of channel states) can affect the 
choosing behaviors of the mobile devices. Comparing to the 5-channel-states (K=5) scheme, 
the dual channel states scheme used in [9] leads to the higher transmission energy cost and 
hinders the mobile device to save energy by utilizing application offloading.  

6. Conclusion 
In this paper we investigate the problem of optimizing the energy consumption of mobile 

devices in the Mobile Computing Cloud environment. We distinguish the applications’ 
computational requirements to optimize the energy consumed by CPUs in mobile devices by 
introducing the asymptotic time complexity (ATC) method. We propose a multi-scale scheme 
to quantize the channel gain, which better reveals the stochastic feature of wireless fading 
channel compared with the dual-state Markov method in [9]. Our proposed multi-scale 
scheme is proved to be helpful for reducing the energy consumed by mobile devices when 
offloading the applications to the cloud center. Besides, our analytical results can also be used 
as a guideline for the mobile devices to decide either executing the application locally or 
offloading it to the cloud center. It is noted that we only consider the scenario where an 
application is fully parallelism available while neglecting the scheduling cost in multi-core 
mobile execution model. Our future work will consider the parallel scheduling algorithms for 
the asymmetric multi-core architecture CPUs and improve the estimation accuracy of energy 
consumption in the ME model. 

 

APPENDIX A 
The monomial order n in Eq.(3) ranges from 2 to 5, which is related to the transmission 

mode (including both the modulation and coding scheme). The value of n can be obtained 
from the best (least-square) approximation of 𝜀𝑐(𝑆𝑡 ,𝑔(𝑡))  to the form 𝜆 × 𝑆𝑡𝑛

𝑔(𝑡)
 [19]. 

Usually, the transmission mode is determined according to the bit-error rate requirements of 
the wireless system. We use a practical system as an example to illustrate the problem. The 
transmission modes for the OFDM system using adaptive modulation and coding (AMC) are 
shown in Table 5, which have been adopted by 802.11a standard [30]. 
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Table 5. The parameters of different transmission modes 
Mod Mod2 Mod3 Mod4 Mod5 

Modulation Scheme QPSK QPSK 16QAM 64QAM 
Coding Rate 1/2 3/4 3/4 3/4 

Bit Rate (Mbit/s) 12 18 36 54 

SNR 
required 

(dB) 

BER  

10−3 5.13 8.19 14.62 20.66 
10−4 5.93 9.00 15.45 21.52 
10−5 6.60 9.69 16.15 22.24 

 
We use the values of bit rates and the SNRs(represent the transmission power) listed in 

Table 5 to perform the approximation. The receiving power 𝑃𝑐,𝑟(𝑆𝑡) can be obtained from 
Eq.(3)  

𝑃𝑐,𝑟(𝑆𝑡) = 𝜀𝑐(𝑆𝑡,𝑔(𝑡))×𝑔(𝑡)
𝛥𝑡

= 𝜆
𝛥𝑡

× 𝑆𝑡𝑛                     (a-1) 
where, 𝛥𝑡 is the transmission time for 𝑆𝑡  bits of data. The signal-to-noise radio can be 
derived as, 

SNR = 𝑃𝑐,𝑟(𝑆𝑡)
N0×𝐵

= 𝜆
N0×𝐵×𝛥𝑡

× 𝑆𝑡𝑛                        (a-2) 
where, 𝑁0 is the noise power spectral density which is assumed to be a constant and B is the 
transmission bandwidth. As 𝑆𝑡 = 𝐵𝑖𝑡 𝑅𝑎𝑡𝑒 × 𝛥𝑡, we have 

SNR = 𝜆
N0×𝐵

× 𝛥𝑡𝑛−1 × 𝐵𝑖𝑡 𝑅𝑎𝑡𝑒𝑛                     (a-3) 

Let λ′ = 𝜆×𝛥𝑡n−1

N0×𝐵t
, λ′ is a constant when n is determined. The Eq.(a-3) can be rewrite as, 

SNR = λ′ × 𝐵𝑖𝑡 𝑅𝑎𝑡𝑒𝑛                         (a-4) 
Then, the problem is transformed into the best approximation of SNR to the form 

λ′ × 𝐵𝑖𝑡 𝑅𝑎𝑡𝑒𝑛 with the values of SNRs and Bit Rates listed in Table 5. The approximation 
results is shown in Fig. 7. We notice that n is 3.36, 3.34 and 3.33 respectively corresponding 
to the different BER requirements. 

 
Fig. 7. approximation results 
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