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Abstract 
 

Obtaining accurate location information is important in practical applications of wireless 
sensor networks (WSNs). The distance vector hop (DV-Hop) is a frequently-used range-free 
localization algorithm in WSNs, but it has low localization accuracy. Moreover, despite 
various improvements to DV-Hop-based localization algorithms, maintaining a balance 
between high localization accuracy and good stability and convergence is still a challenge. To 
overcome these shortcomings, we proposed an improved DV-Hop localization algorithm 
based on the bat algorithm (IBDV-Hop) for WSNs. The IBDV-Hop algorithm incorporates 
optimization methods that enhance the accuracy of the average hop distance and fitness 
function. We also introduce a nonlinear dynamic inertial weight strategy to extend the global 
search scope and increase the local search accuracy. Moreover, we develop an updated 
solutions strategy that avoids premature convergence by the IBDV-Hop algorithm. Both 
theoretical analysis and simulation results show that the IBDV-Hop algorithm achieves higher 
localization accuracy than the original DV-Hop algorithm and other improved algorithms. The 
IBDV-Hop algorithm also exhibits good stability, search capability and convergence, and it 
requires little additional time complexity and energy consumption. 
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1. Introduction 

Wireless sensor networks (WSNs) enable the sensing of environmental information and 
have wide applications in various fields such as the military, medical care, environmental 
monitoring, disaster monitoring and home automation [1, 2]. The vast majority of these 
practical applications demand increasingly precise location information for the sensor node 
where an event occurred [3]. However, design an algorithm that can locate nodes with low 
energy consumption, high accuracy and good stability and practicability is difficult. 

The existing localization algorithms for WSNs can be categorized into range-based 
localization algorithms and range-free localization algorithms. In range-based localization 
algorithms, the distance or angle information of a node from a known location is directly 
acquired and used for location estimation. The angle of arrival (AOA), the radio signal 
strength indicator (RSSI), the time of arrival (TOA) and the time difference of arrival (TDOA) 
[4] are common range-based localization algorithms. In contrast, in range-free localization 
algorithms, knowing absolute information such as distance, angle and other physical 
measurements is unnecessary because of the low hardware requirements. Typical range-free 
localization algorithms include the centroid [5], the convex optimization [6], the lateration 
scheme [7], the multidimensional scaling map (MDS-MAP) [8], the cluster-based MDS 
(CMDS) [9], the approximate point-in-triangulation test (APIT) [10], the distance vector hop 
(DV-Hop) [11] and the expected hop progress (EHP) [12]. DV-Hop, which has been widely 
applied in various applications, is a useful localization algorithm that has low-cost, low energy 
consumption and is simple to implement. However, its localization accuracy is always 
unsatisfactory, and its localization performance is susceptible to the network distribution. 
When the DV-Hop algorithm is employed in networks with non-uniformly distributed sensor 
nodes, the algorithm's inaccurate measurement of the average hop distance produces large 
distance error, which accumulates and seriously affects the DV-Hop algorithm`s 
multi-objective optimization process. In such circumstances, the DV-Hop algorithm can yield 
results that include a large localization error. 

A series of optimal theories and methods have been applied to improve the DV-Hop 
algorithm, e.g., the expected hop [12], the weight algorithm [13, 14], the collinearity 
normalized theory [15], the RSS measurements [16, 17], the network geometry [18, 19] and 
the new multi-objective optimization algorithms [20]. These algorithms mainly focus on 
increasing the accuracy of the estimated distance in the DV-Hop algorithm and ignore the 
potential localization error produced during the process of the multi-objective optimization. In 
recent years, some intelligent optimization algorithms such as particle swarm optimization 
(PSO) [21-23] and the genetic algorithm (GA) [24, 25] have been used to reduce the 
localization error in multi-objective optimization methods based on the DV-Hop algorithm. 
However, these intelligent optimization algorithms fall short of a balanced performance that 
includes high localization accuracy, good convergence and stability and low complexity.  

The bat algorithm (BA) has shown better global search capability compared to other 
intelligent optimization algorithms [26-28]. The BA is a novel swarm intelligent optimization 
algorithm with a simple model. Therefore, the DV-Hop based on the bat algorithm 
(BDV-Hop) promises to provide a better-balanced localization algorithm for WSNs. Although 
the BA has an outstanding capability for solving multi-objective optimization problems, it has 
poor stability and is prone to premature convergence. Motivated to enhance the localization 
accuracy and improve the stability and convergence of BDV-Hop algorithm, we propose an 
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improved BDV-Hop (IBDV-Hop) algorithm for WSNs where the sensor nodes are randomly 
deployed at an arbitrary density. 

In this paper, we first describe the basic theory and localization mode of the BDV-Hop 
algorithm and analyze its existing deficiencies. Then, to reduce the deficiencies, we propose 
the IBDV-Hop algorithm, which contains improvements in the calculation of the average hop 
distance, in its fitness function and in velocity correction and also features an updated 
solutions strategy. In addition, we carry out simulation experiments to evaluate the 
localization accuracy, stability, search capability and convergence of the IBDV-Hop 
algorithm compared with the original DV-Hop, the BDV-Hop and other improved 
DV-Hop-based algorithms. Moreover, we explore the impacts of varying the maximum 
iterations, the size of the bat group, the density of anchor nodes and the node communication 
range on the localization performance of the IBDV-Hop algorithm and the other tested 
algorithms. The main contributions of this paper are as follows. 

(1) Characterize and demonstrate the localization error caused by the average hop distance 
and fitness function in DV-Hop algorithm. Analyze the poor stability and convergence 
of the BDV-Hop algorithm. 

(2) Propose the IBDV-Hop algorithm, which has a higher localization accuracy, a more 
powerful search capability and better stability and convergence compared to the other 
algorithms mentioned in this paper. We also note that the IBDV-Hop algorithm has 
little additional time complexity and energy consumption compared with the DV-Hop 
algorithm. 

(3) Investigate the influences of the maximum number of iterations, the size of the bat 
group, the density of anchor nodes and the node communication range in the 
localization performance of the IBDV-Hop and other algorithms. 

The rest of this paper is organized as follows. Section 2 presents the related works on the 
improvements to the DV-hop algorithm. Section 3 describes the BDV-Hop algorithm and its 
deficiencies. Section 4 introduces the IBDV-Hop algorithm. A theoretical analysis of the 
IBDV-Hop algorithm and simulation results and comparisons are illustrated in Section 5. 
Finally, Section 6 presents the conclusions. 

2. Related Work 
Extensive studies have been conducted to improve the DV-Hop algorithm. These 
improvements have focused on two aspects: increasing the accuracy of the calculation of the 
average hop distance for sensor nodes and designing better multi-objective optimization 
algorithms. 

The localization error caused by the average hop distance calculation to the anchor nodes 
in the DV-Hop algorithm have a significant impact on the estimated locations of the unknown 
nodes. [12] proposes a range-free localization algorithm by using the expected hop progress 
(LAEP) in WSNs with sensor nodes randomly deployed. In LAEP algorithm, the expected hop 
progress from a network model is derived according to the network parameters. [13] presents 
an improved DV-Hop algorithm by calculating the average hop distance of all anchor nodes 
instead of the average hop distance of nearest anchor nodes. A threshold M is introduced and 
the average hop distance of unknown node is estimated through the weighted average hop 
distances of anchor nodes within M hop. A normalized collinearity DV-Hop algorithm is 
presented in [15]. The algorithm is adopted to the Voronoi diagram which divides the WSNs 
into several regions, and the anchor node information is obtained by each Voronoi polygon. 
The unknown node’s position can be estimated with relatively higher accuracy through the 
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anchor node information and the collinearity condition. [16] suggests a DV-Hop algorithm 
with RSS measurements and thresholds to improves the connectivity of the network. The pairs 
of nodes whose RSS values exceed the threshold are considered as the neighbors nodes. A 
Sub-Square Weighted (SSW) DV-hop algorithm is used in [17]. The SSW DV-hop algorithm 
is based on the rectangle topology which contributes to dividing the network into small square 
fields by taking the short edge of the rectangle field as the length of the edge for square. The 
position of an unknown node is the product of the estimated position in sub-square fields. Two 
improved DV-Hop algorithms (Checkout DV-hop and Selective 3-Anchor DV-hop) are given 
in [19]. The Checkout DV-hop algorithm estimates the position of mobile node by nearest 
anchor nodes and adjusts the estimated position of a normal node. The Selective 3-Anchor 
DV-hop algorithm creates three best anchor nodes and the best position of candidate positions 
are used to calculate the location of unknown node. [20] puts forward three improved DV-Hop 
(iDV-Hop1, iDV-Hop2, and Quad DV-Hop) algorithms under the irregular topologies 
situation. In iDV-Hop1 algorithm, three reference points are formed by choosing the nearest 
anchor nodes of the unknown node. The iDV-Hop2 algorithm is modified by using anchor 
location as the third reference point. For Quad DV-Hop algorithm, the least squares problem is 
transformed to the quadratic programming problem. 

In the original DV-Hop algorithm, the trilateration algorithm or the least squares method is 
applied to solve the multi-objective optimization problem and transform the location 
information for unknown nodes to coordinates. However, the fitness function of 
multi-objective optimization is sensitive to the distance error. Any error in the estimated 
average hop distance accumulates in the process of multi-objective optimization, which may 
result in quite large localization error. Hence, many studies have concentrated on improving 
the multi-objective optimization algorithms. A weighted least square algorithm is presented in 
[14] to reduce the inherent error of estimated distance between anchor nodes and the unknown 
node. [21] designs an improved DV-Hop algorithm by combining the DV-Hop with PSO 
algorithm. The PSO algorithm is used to minimize the localization error and revise the 
localization coverage rate and average localization accuracy. Another improved DV-Hop 
algorithm with PSO algorithm is proposed in [22] which optimizes the particle velocity, 
inertial weight, learning strategy and variation. The improved DV-Hop algorithm is able to 
avoid the local optimal solution and enhance the search speed in later iterative stage to 
increase localization accuracy. [23] also presents an improved DV-Hop algorithm with PSO 
algorithm to optimize the iterative process. An improved DV-Hop algorithm based on GA is 
proposed in [24]. The algorithm establishes a mathematical optimization model of the distance 
between the unknown node and anchor nodes. The GA is used to search for the optimal 
solution of DV-Hop algorithm. In [25], a hybrid algorithm of GA and the simplex method is 
given to optimize the location of the unknown node. The fitness function combines the cost 
function with a penalty function and the simplex method to improve the ability of algorithm on 
local search. 

3. The BDV-Hop Algorithm 
The BDV-Hop algorithm can be described as a hybrid localization algorithm that combines 
the DV-Hop algorithm and BA. First, the DV-Hop algorithm is used to acquire the location 
information of nodes using a range-free approach. Then, the location information is optimized 
and transformed to the coordinates of the unknown nodes by the BA. In this paper, we assume 
that the sensor nodes work as follows. 
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(1) All nodes are randomly deployed in the network and use a plane routing protocol. 
(2) In the process of hop counting, nodes communicate with their neighbor nodes in a 

flooding communication mode. 
(3) Only the anchor nodes transmit data gathered from the sensor nodes to the base station; 

they also issue orders from the base station to the sensor nodes. 
(4) The improvements of IBDV-Hop algorithm are implemented in the base station. 

3.1 Location Information Acquisition by the DV-Hop Algorithm 
In the original DV-Hop algorithm, the distance between the anchor nodes and the unknown 
node is estimated by the product of the average hop distance and hop count value. The process 
of location information acquisition includes three phases [11, 18]. 

(1) Hop counting. Anchor nodes broadcast data packets that contain their location 
information and the number of hops to their neighbor nodes. When a node receives a packet, it 
adds 1 to the hop count and then records the hop count and the location of the sending anchor 
node. Subsequently, the nodes transmit these packets to their neighbor nodes until all nodes 
have received packets. 

(2) Distance estimation. In the first phase, the location information and the number of hops 
to anchor nodes are recorded. Therefore, the average hop distance to an anchor node is given 
by 
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i j
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where ( , )i ix y  is the location of anchor node i and ijh  is the number of hops between anchor 
node i and anchor node j. The estimated distance is calculated by 

ik i ikd =HopSize h×                                                              (2) 
where ikd  is the estimated distance between anchor node i and node k . 

(3) Coordinate calculating. In (1) and (2), the location of the unknown node is expressed as 
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where ( , )x y  is the coordinate of an unknown node. Next, (3) is transformed into matrix form 
AX b=                                                                  (4) 
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Then, X is represented by 
-1( )T TAX A A b=                                                           (5) 

3.2 Location Information Optimization and Transformation by the BA 
The optimal solution for (5) is obtained by solving a multi-objective optimization problem. 
The distance error is defined as 

*
i i id d ε− ≤                                                            (6) 



220                                Liu et al.: Improved DV-Hop Localization Algorithm Based on Bat Algorithm in Wireless Sensor Networks 

where id  denotes the estimated distance between the anchor node i and the unknown node and 
*

id  denotes the actual Euclidean distance between the anchor node i and the unknown node. 
The overall distance error ε  between anchor nodes ( , )i ix y  and the unknown node ( , )x y  can 

be expressed as 
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Obviously, the accuracy of the estimated locations in (6) and (7) is negatively correlated 
with the distance error. To evaluate the localization accuracy, a fitness function is modeled as 
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In the BA, the location of a bat represents one potential solutions for (8). Therefore, solving 
the problem of multi-objective optimization is regarded as searching for the optimal individual 
locations of the bat group. The process of optimizing and transforming the location 
information of an unknown node by the BA is divided into four steps [26, 28]. 

(1) Initialize the bat group. The bat group is generated randomly, and each bat is initialized 
with a location and velocity. Then, the bat group is evaluated by the fitness function in (8). The 
bat with the smallest fitness value is chosen to be the initial optimal individual, and its location 
is the initial optimal solution x∗ . 

(2) Update the status of bat group. The status of each bat is updated by adjusting the pulse 
frequency as 
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where if  is the pulse frequency of bat i, maxf  is the maximum pulse frequency, minf  is the 
minimum pulse frequency, ( [0,1])β β ∈  is a random factor with uniform distribution, t

iv  is 
the velocity of bat i at time t, and t

ix  is the location of bat i. 
(3) Update the solutions. A new solution with a random perturbation is generated with a 

given probability by 
t

i ix x Aα′ = +                                                     (10) 
where ( [ 1,1])α α ∈ −  is a random variable, and tA  is the volume parameter of bat i at time t.  

Then, compare the fitness values of the new solution ix′  with the previous optimal solution. 
If ix′  is smaller, ix′  replaces the previous optimal solution. Finally, update the solutions of the 
bat group and continue to search for better optimal solutions. 

(4) Adaptively adjust the parameters. According to the biological principles of the bat 
searching behavior, its pulse frequency is low but its volume is high during the initial search 
process, which is conductive to enlarging the search scope. Later, the bat increases the pulse 
frequency and gradually decreases the volume to improve the search accuracy. In the BA, the 
pulse frequency and volume are updated by 
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where (0 1)δ δ< <  and ( 0)>γ γ  are constants, 1t
ir
+  is the pulse emission rate at time 1t + , and 

0
ir  is the maximum pulse emission rate. 

Repeat the last three steps until the iterative termination condition has been reached. The 
last optimal solution is the location of the unknown node.  

3.3 Deficiencies of the BDV-Hop Algorithm 
Although the BDV-Hop algorithm provides a novel method to solve the multi-objective 
optimization problem, there are some deficiencies in both the DV-Hop algorithm and in the 
BA. 

3.3.1 Error of Estimated Distance 
For the BDV-Hop algorithm and most of the improved DV-Hop algorithms, the distance 
between nodes is estimated by the average hop distance and the number of hops in (2). 
Therefore, the localization accuracy of the BDV-Hop algorithm is closely related to the 
accuracy of the average hop distance.  
Definition 1: n nodes are randomly distributed in networks. The communication range of all 
nodes is r. Therefore, the actual distance between node i and node j is ( )ij ijl l r≤ . According to 
the rules of the BDV-Hop algorithm, the estimated distance between nodes is defined as 

*
ij ijl h r=                                                              (12) 

where ijh  is the number of hops between node i and node j. Therefore, the error of estimated 
distance between node i and node j can be defined as 

*
ij ij ij

ij ij

e l l

h r l

= −

= −
                                                          (13) 

 

 

Fig. 1. Network with usual distribution 
 

Fig. 1 shows the network with usual distribution. The error of the estimated distance 
between node1 and node2 is * *

12 12 12 12e l l r l    , the error of the estimated distance between 

node1 and node3 is * *
13 12 12 23 23 12 232e l l l l r l l       , and the error of the estimated distance 

between node1 and node4 is * * *
14 12 12 23 23 34 34 12 23 343e l l l l l l r l l l          . According to 

Fig. 1, the error of the estimated distance between nodem and noden is defined as  
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* * *
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where n and m (1 )m n< <  are positive integers. 
Lemma 1: The greater the number of hops among nodes is, the larger the error of estimated 
distance will be. 
Proof: In (14), we have  
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From Definition 1, the actual distance between noden and noden-1 is ( 1)n nl r  . Therefore, 
(15) is expressed as 

( 1) ( 1) 0mn m n n ne e r l                                                 (16) 
We can observe that the distance error accumulates as the number of hop among nodes 

increases. That is, the estimated distance between nodes with small hop counts is more 
accurate than among those nodes with large hop counts. Therefore, decrease the influence of 
anchor nodes that have small hop counts to the unknown node will contribute to improving the 
accuracy of estimated distance. 

 

 

Fig. 2. Network with ideal distribution 
 

 

Fig. 3. Network with random distribution 
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Fig. 2 and Fig. 3 show the ideal distribution and random distribution of network. In Fig. 2, 
the distance between two neighbor nodes in the ideal distribution equals the communication 
range r. In Fig. 3, the distance between the two neighbor nodes in the random distribution is 
expressed as 12l r  and 23l r . In most cases, the random network distributions as shown in 
Fig. 3 are more in accord with practical circumstances. 
Definition 2: In the network with ideal distribution, the distance between node i and node j in 
one-hop is defined as * *( )ij ijl l r   . In the network with random distribution, the distance 
between node i and node j in one-hop is defined as ( )ij ijl l r   . 
Lemma 2: The network with random distribution generates more error compared to the 
network with ideal distribution. 
Proof: By Definition 2, the difference of the distance between node i and node j in the ideal 
distribution and in the random distribution is expressed as 

*

0, ( , 1,..., , )
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The average hop distances of network in the ideal distribution and the random distribution 
are defined as 

*

( )

ij
i j i j

i
ij ij

i j i j

ij ij
i j i j

i
ij ij

i j i j

l r
HopSize

h h

l r e
HopSize

h h

∗

≠ ≠

≠ ≠

≠ ≠

≠ ≠


 = =



−
 = =



∑ ∑
∑ ∑

∑ ∑
∑ ∑

                                         (18) 

and their difference is given by 

* 0
ij

i j
i i

ij
i j

e
HopSize HopSize =

h
≠

≠

− ≥
∑
∑                                          (19) 

Hence, we can draw the conclusion that the error of estimated distance in the network with 
random distribution is larger than in the network with ideal distribution. However, both the 
BDV-Hop algorithm and most of the improved DV-Hop algorithms assume that the network is 
one with the ideal distribution. 

Above all, the error caused by estimated distance has a major impact on the localization 
accuracy of the BDV-Hop algorithm and its improved versions. It is crucial to design 
improvements to estimate the distance. 

3.3.2 Error of Fitness Function 
A fitness function is used to evaluate the localization accuracy of the BDV-Hop algorithm. In 
(6), (7) and (8), we can infer that the fitness value is mainly determined by the distance error ε . 
Therefore, the fitness function in (8) can be expressed as 

2

1
( , )

k

i
i

F x y ε
=

= ∑                                                   (20) 

The solution in (8) is a potential optimal solution, which means that the sum of 2 2 2
1 2, ,..., kε ε ε  

is the minimum value. Therefore, the fitness value of the optimal solution can be described as 
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However, if the value of (1 )l l kε ≤ ≤  is quite large or quite small, the evaluation of the 
optimal solution will be seriously affected. This condition results in a non-optimal solution 
replacing the actual optimal solution. 

 

 

Fig. 4. The changes of fitness value with the number of iterations 
 

 

Fig. 5. The changes of localization error with the number of iterations 
 

Fig. 4 and Fig. 5 show an example of the error caused by the fitness function. The process of 
searching for the optimal solution is depicted in Fig. 4 and the changes of actual localization 
error are illustrated accordingly in Fig. 5. In Fig. 4, the fitness values decrease gradually as the 
number of iterations increases. After 27 iterations, the fitness value converges to a fixed value; 
consequently, the algorithm is converged. According to the fitness function and value for the 
BDV-Hop algorithm shown in (20) and (21), the solution found after these 27 iterations is the 
optimal solution. However, Fig. 5 shows that at iterations 13, the localization error has already 
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reached the minimum value. Although the iterations continue, the localization error is already 
minimized by iterations 13. In other words, the localization performance cannot be precisely 
evaluated by the fitness function in the BDV-Hop algorithm. Accordingly, the error caused by 
the original fitness function seriously affects the evaluation of the optimal solution. 

3.3.3 Premature Convergence 
Algorithm convergence is closely related to the updated methods of the solutions. Because it 
lacks an effective variation mechanism and updated solutions strategy, the BDV-Hop 
algorithm results in poor convergence. 

The new solution of the BDV-Hop algorithm in (10) is generated with a random 
perturbation that is determined by the average volume of the bat group. However, if most of 
the bats tend to the local optimal solution in one iteration, the perturbations are unlikely to 
contribute to producing new solutions. In this situation, the updated method of the BDV-Hop 
algorithm has little impact on the diversity of solutions and the premature convergence is still 
quite likely to occur. Thus, the lack of an effective variation mechanism in the BDV-Hop 
algorithm makes it impossible to consistently guarantee a high localization accuracy. In 
addition, the local solutions of past iterations are abandoned in the BDV-Hop algorithm. For 
each iteration, the local solution will contain available and useful localization information that 
is conducive to searching for the optimal solution and avoiding premature convergence.  

Consequently, a more effective variation mechanism and better updated method should be 
designed to avoid premature convergence and increase the diversity of the solutions of the 
BDV-Hop algorithm. 

4. Proposed IBDV-Hop Algorithm 
In this section, four optimization methods are designed for the IBDV-Hop algorithm. These 
optimization methods aim at improving the deficiencies of the BDV-Hop algorithm as 
discussed above. The time complexity and energy consumption of the IBDV-Hop localization 
algorithm are also analyzed. 

4.1 Improvement of Average Hop Distance 
Because the locations of the anchor nodes are known in advance, we can calculate the actual 
distance among the anchor nodes to improve the average hop distance. 

The estimated distance is given in (2). The entire distance error E , among the anchor nodes 
is expressed as 

( )*
ij ij ij

i j
E d d

≠

= −∑                                                    (22) 

where ( , 1, 2,..., )*
ijd i j= k  is the actual distance between anchor node i and anchor node j, and 

ijd  is the estimated distance. Then, the error of the average hop distance is expressed as 
*
ij ij

ij i j
ij

ij ij

d d
E

E =
h h

≠

−
=
∑

                                                 (23) 

To reduce the error of estimated distance, a normalized weight factor is introduced to revise 
the average hop distance. When an anchor node records the number of hops between its 
location and that of an unknown node, the weight factor of the average hop distance can be 
normalized as 
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where iH  is the number of hops between the anchor node i and the unknown node, and jH  
represents the hops between all anchor nodes and the unknown node.  

In (24), we learn that the larger iH  is, the smaller the iW  is. According to Lemma 2, the 
estimated distance from large hops among anchor nodes produces greater error. Hence, the 
large hop needs a small weight factor and small hops needs a large weight factor. Accordingly, 
the average hop distance in (1) can be improved as 

1
( )

k

i i i ij
i

HopSize W HopSize E
=

′ = −∑                                          (25) 

From (25), the anchor nodes that are near the unknown node have large weight factors and 
greatly affect the average hop distance while those anchor nodes far from the unknown node 
only weakly influence the average hop distance. Consequently, the error caused by the 
estimated distance will be reduced. 

4.2 Improvement of Fitness Function 
The error caused by the fitness function is expressed in (20) and (21). To reduce this error, it is 
necessary to reduce the influence of 2

lε  values that are quite large or quite small in (21).  
Definition 3: The value p denotes the reliability of each anchor node. Then, the distance error 
can be improved as 

2 2
i i ipε ε′ =                                                          (26) 

where (0 1, 1,2,..., )i ip p i k≤ ≤ =  is the reliability of the anchor node i. 
We introduce the root mean square (RMS) value to evaluate the distance error of anchor 

nodes, which is given by  
2

1

k

i
i

rms k

ε
ε =

′
=
∑                                                       (27) 

In addition, the reliability ip  is modeled as 
1 0

2 0 0

3 0 0

4 0

,
, 2
, 2 3
, 3

i rms

i rms
i

i rms

i rms

p
p

p
p
p

ε ε ε
ε ε ε ε
ε ε ε ε
ε ε ε

 − ≤
 < − ≤=  < − ≤
 − >

                                       (28) 

where 0ε  is a threshold. The improved fitness function then becomes 
2

1
( , )

k

i i
i

F  x y pε
=

′ ′= ∑                                                  (29) 

In this case, an anchor node that produces a quite large or quite small distance error has low 
reliability. Therefore, the evaluation of solutions by the improved fitness function will be more 
precise than the original fitness function in (8). 

4.3 Correction of Velocity  
Because of its lack of an effective variation mechanism and updated solutions strategy, the 
BDV-Hop algorithm is likely to become trapped in local optimal solutions. To balance the 
global search capability and the local search accuracy, a nonlinear dynamic inertial weight 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 1, January 2017                                      227 

strategy is given by 
-1 *

i( )t t t
i i i iv w v x x f= + −                                                (30) 
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                            (31) 

where iw  is the nonlinear dynamic inertial weight of bat i, iF ′  is the fitness value in the 
current iteration and avgF ′  is the average fitness value. We can deduce from (31) that the 
nonlinear dynamic inertial weight w is affected by the fitness value iF ′ . Therefore, a bat with a 
large fitness value has a small inertial weight and vice versa.  

When the bats converge to a local optimal solution, their fitness values decrease and their 
inertial weights increase. Bats with large inertial weights help to extend the search scope and 
increase the diversity of the solutions. In contrast, bats with small inertial weights weaken the 
influence from large fitness values during the evaluation of the optimal solution, which serves 
to further optimize the local optimal solution. Hence, the nonlinear dynamic inertial weight 
strategy contributes to improving the search accuracy and increasing the diversity of solutions. 

4.4 Updated Solutions Strategy 
Because premature convergence severely affects the localization performance of the 
BDV-Hop algorithm, a new updated solutions strategy is established in IBDV-Hop algorithm. 
In each iteration, the fitness value of the current local optimal solution is recorded. If the 
differences among the fitness values in the last c  iterations are quite small, update the bat 
group once as 

1 2ˆ( ) ( )t t t t
i i i i i

t t t
i i i

v w v c x x c x x

x x v

∗ ′ = + − + −


′ ′= +
                                        (32) 

where 1 1(0 1)c c< <  and 2 2(0 1)c c< <  are random variables, t
ix  is the location of bat i at time t, 

x∗  is the current global optimal solution and x̂  is the last local optimal solution. In (32), the 
bat group is revised considering both the local optimal solutions of previous iterations and the 
current global optimal solution. When the bat group is about to achieve local convergence, the 
updated strategy will introduce variations in some solutions, thereby avoiding premature 
convergence and improving the probability of obtaining better solutions. Meanwhile, the 
updated solutions strategy is also beneficial for promoting the diversity of the bat group and 
improving the localization accuracy. 

4.5 Algorithm Flow 
The flow of the IBDV-Hop algorithm is as follows. 

Step 1: Initialize the network in accordance with the schemes described in the location 
information acquisition for the BDV-Hop algorithm. Record the hops among nodes. 

Step 2: Calculate the estimated distance and actual distance among the anchor nodes in (1) 
and (2). Calculate and improve the average hop distance using (25). 

Step 3: Generate the bat group randomly. Determine the optimal fitness value and the local 
optimal solution x  for the bat group using (8) and (21).   

Step 4: Update the bat group. Adjust the pulse frequency f and the location x in (9) and 
update the velocity v in (30) for each bat. 

Step 5: Generate a random number (0 1)rand rand< < . Compare the pulse emission rate ir  

javascript:void(0);
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with rand . If irand>r , go to Step 6, otherwise, generate a new solution ix′  using (10) to 
replace the former solution ix . 

Step 6: If & & ( ) ( )i irand>A f x <f x , let the ix  replace the local optimal solution x , and 
update the pulse emission rate ir  and the volume iA  using (11).  

Step 7: After each bat has been updated, go to Step 8, otherwise go to Step 4.  
Step 8: Compare the local optimal solution x  with the global optimal solution x∗ . If the 

former is better, the local optimal solution is the new global optimal solution.  
Step 9: Evaluate the local optimal solutions for the previous c iterations. If the differences 

between the local optimal solutions and the current global optimal solution are continuously 
lower than a given threshold 0ε , update the bat group once using (32).  

Step 10: If the iterative termination condition is fulfilled, go to Step 11. Otherwise, go to 
Step 4. 

Step 11: Export the global optimal solution x∗  and terminate the IBDV-Hop algorithm. 
At this point, x∗  is the estimated location of the unknown node. 

4.6 Analysis of Algorithm Complexity 
Assuming that n nodes and k anchor nodes are randomly deployed in a network, then the 
dimension of the search space is 2, the size of the bat group is m, the maximum iterations is T 
and the interval of the updated solutions strategy is c. 

In the network initialization stage of the DV-Hop algorithm, the time complexity required 
for hop counting is ( )O n n . The time complexity generated by the calculation and 
improvements of the average hop distance is ( ( ))O k n k  , and the time complexity for 
calculating the fitness value is ( )O m k . The processes to update the pulse frequency f, velocity 
v, solution x and the nonlinear dynamic inertial weight w  in IBDV-Hop algorithm require a 
time complexity of ( )O T m . Meanwhile, the maximum time complexity for the processes of 
updated the pulse emission rate r, volume A and the optimum solution are less than ( )O T m . 
In addition, the time complexity required for updated solutions strategy is ( ( / ))O T m c  and 
for the other statements it is ( )O T m . In total, the time complexity of IBDV-Hop algorithm is 

( )O n n  + ( ( ))O k n k   + ( )O m k  + ( ( / ))O T m c  + ( )O T m . Because the maximum number 
of iterations is much larger than the size of bat group, the time complexity of the IBDV-Hop 
algorithm can be reduced to { ( ), ( )}Max O T m O n n  . Table 1 lists the time complexity of the 
DV-HOP, BDV-Hop and IBDV-Hop algorithms. By adjusting the maximum number of 
iterations and the size of the bat group, the time complexity of the IBDV-Hop algorithm and 
the DV-Hop algorithm have the same order of magnitude. 

 
Table 1. Algorithm complexity 

Localization algorithm Time complexity Space complexity 
DV-Hop O(n*n) O(1) 

BDV-Hop O(T*m) O(m) 
IBDV-Hop O(T*m) O(m) 

 
Table 1 also lists the space complexity of the DV-HOP, BDV-Hop and IBDV-Hop 

algorithms. The temporary storage space occupied by the operational process of the 
IBDV-Hop algorithm is positively correlated with the bat group. Hence, the space complexity 
of IBDV-Hop algorithm is ( )O m , and it is determined by the size of the bat group. 
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4.7 Analysis of Energy Consumption 
The energy consumed in IBDV-Hop algorithm is mainly concentrated in the stages of network 
initialization and hop counting between nodes, anchor nodes and the unknown node. The same 
is true of the DV-Hop and BDV-Hop algorithms. Moreover, the proposed improved methods 
in the IBDV-Hop algorithm are carried out in the base station, which has powerful computing 
capability and no strict requirements for saving energy. Therefore, the IBDV-Hop algorithm 
requires little additional node energy consumption compared to the DV-Hop and BDV-Hop 
algorithms, and the improvements in IBDV-Hop algorithm are both reasonable and feasible. 

5. Simulation Results and Discussion 
To demonstrate the localization performance of our proposed IBDV-Hop algorithm, we 
performed a variety of simulation experiments to compare it with the DV-Hop, PSODV-Hop 
[21], IPSODV-Hop [22] and BDV-Hop algorithms. In the simulation experiments, nodes with 
the same characteristics are distributed randomly in a 100 m × 100 m square area. The default 
settings of the parameters are listed in Table 2. Each simulation experiment is randomly 
simulated 50 times on the MATLAB 2012b platform. The localization error is defined as 

2 2

1
( ) ( )

100%

k

i i i i
i

x x y y
error

kr
=

− + −
= ×
∑                                    (33) 

where ( )i ix ,y  denotes the actual location of the unknown node i and ( )i ix ,y  denotes the 
estimated location. 
 

Table 2. Default settings of parameters 
Symbol Description Value 

k Number of anchor nodes 5-50 
r Communication range 20-60 m 

N Maximum iterations 0-300 
m Size of bat group 20-160 
A0 Initial volume 0.25 
r0 Initial pulse rate 0.5 
λa Attenuation coefficient of volume 0.95 
λf Enhancement coefficient of search frequency 0.05 

fmax, fmin Maximum and minimum search frequency 2,0 
wmax, wmin Maximum and minimum velocity weight 0.9,0.4 

ε0 Threshold of fitness value 18 
c1,c2 Random variables 0.6,0.4 

p1,p2,p3,p4 Reliabilities 1,0.9,0.8,0.5 
c Update interval of solution 5 

 

5.1 Algorithm Convergence 
The convergence graphs for the PSODV-Hop, IPSODV-Hop, BDV-Hop and IBDV-Hop 
algorithms are shown in Fig. 6, where it is evident that the localization error of the four 
algorithms decreases as the number of iterations increases. As the iterations vary from 0 to 60, 
the localization error declines sharply. Subsequently, the decline in localization error levels off 
until the algorithms reach fixed convergence values. 
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Fig. 6. Optimization processes of algorithms 
 

Due to the fast local convergence of PSO, the PSODV-Hop algorithm converges rapidly 
and exhibits the largest localization error compared to other algorithms. Although the 
IPSODV-Hop algorithm has better search capability and convergence than the PSODV-Hop 
algorithm, its localization accuracy is still unsatisfactory. The localization error of the 
BDV-Hop algorithm is smaller than those of the PSODV-Hop and IPSODV-Hop algorithms. 
However, the curve of the localization error in the BDV-Hop algorithm is steep in Fig. 6. That 
is, the BDV-Hop algorithm has poor stability, and large variations in solutions occur as the 
number of iterations increases. In contrast, localization error curve for the IBDV-Hop 
algorithm is more stable than that of the BDV-Hop algorithm, and the IBDV-Hop algorithm 
achieves the smallest localization error among all algorithms. 

 
Table 3. Convergence values of algorithms 

Localization algorithm Convergence value 
DV-Hop 0.2467 

PSODV-Hop 0.1971 
IPSODV-Hop 0.1865 

BDV-Hop 0.1742 
IBDV-Hop 0.1575 

 
Table 4. Statistical indicators for algorithms 

Algorithms Mean value Variance Standard deviation Standard error 
DV-Hop 0.2467 0.0425 0.2062 0.0292 

PSODV-Hop 0.1986 0.0552 0.2349 0.0332 
IPSODV-Hop 0.1857 0.0341 0.1847 0.0261 

BDV-Hop 0.1762 0.0859 0.2931 0.0414 
IBDV-Hop 0.1571 0.0249 0.1578 0.0223 

 
The convergence values of the IBDV-Hop algorithm and the other algorithms are listed in 

Table 3. The smaller the convergence value is, the higher the localization accuracy is. We can 
conclude from Table 3 that the localization accuracy of IBDV-Hop algorithm is 36.2% higher 
than that of DV-Hop algorithm and is 9.6% higher than that of BDV-Hop algorithm. Clearly, 
the IBDV-Hop algorithm achieves the highest localization accuracy among all the tested 
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algorithms. 
Some important statistical indicators of the simulation results for algorithms are listed in 

Table 4, which shows that the dispersion of the results in IBDV-Hop algorithm is lower than 
that of the other algorithms. In other words, the IBDV-Hop algorithm is considerably more 
stable. 

 

 

Fig. 7. Update times of optimal solution 
 

 

Fig. 8. Impact of the maximum number of iterations on the localization error 
 

Fig. 7 provides the number of updates to the optimal solution for the tested algorithms. The 
PSODV-Hop algorithm updates the optimal solution only 10 times, while the IPSODV-Hop 
algorithm updates it 80 times, the BDV-Hop algorithm 27 times and the IBDV-Hop algorithm 
35 times. Hence, the PSODV-Hop algorithm achieves the fastest optimization speed and 
requires the fewest updates to the optimal solution, but its localization error is also the highest. 
In contrast, the IPSODV-Hop algorithm has the slowest optimization speed and greatest 
number of updates to the optimal solution. The BDV-Hop algorithm and IBDV-Hop algorithm 
achieve moderate optimization speeds and updates to the optimal solution. From Table 3, 
Table 4, Fig. 6 and Fig. 7, we can conclude that the proposed IBDV-Hop algorithm has both 
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high localization accuracy and good stability at the cost of only a few updates to the optimal 
solution compared to other algorithms. 

5.2 Impact of the Number of Iterations on Localization Accuracy 
Fig. 8 describes the impact of the number of iterations on the localization error in four 
algorithms as the maximum number of iterations varied from 100 to 1000. Fig. 8 shows that 
the localization error of the PSODV-Hop, IPSODV-Hop and IBDV-Hop algorithms decreases 
as the maximum iterations changes from 100 to 300; however, when the maximum number of 
iterations is greater than 300, there is almost no variation of the localization error in those three 
algorithms. The BDV-Hop algorithm is unaffected by an increase in the maximum number of 
algorithm. Finally, the curve of IBDV-Hop algorithm is smoother than that of BDV-Hop 
algorithm (see Fig. 8), showing that the IBDV-Hop algorithm is more stable than the 
BDV-Hop algorithm. In addition, the IBDV-Hop algorithm reveals higher efficiency than 
BDV-Hop algorithm when the number of iterations is below 300. 

5.3 Impact of the Size of the Bat Group on the Localization Accuracy 
We can assume that the function of the particle swarm in the PSODV-Hop and IPSODV-Hop 
algorithms is similar to that of the bat group in the BDV-Hop and IBDV-Hop algorithms. The 
impact of the size of the bat group on localization error is shown in Fig. 9, where we can see 
that increasing the size of the bat group reduces the localization error in all the algorithms. As 
the bat group size varies from 20 to 100, the localization error steadily decreases. As the size of 
the bat group changes from 100 to 160, the localization error in PSODV-Hop, IPSODV-Hop 
and IBDV-Hop algorithms remains almost unchanged. Therefore, we can infer that the size of 
bat group is conductive to reducing the localization error within a certain range, and that the 
bat group size should be set appropriately for each specific experiment to gain the maximum 
advantage from the IBDV-Hop algorithm. 
 

 

Fig. 9. Impact of the size of the bat group on the localization error 

5.4 Impact of the Density of Anchor Nodes on Localization Accuracy 
Fig. 10 depicts how the density of anchor nodes influences the localization error of the tested 
algorithms as the number of anchor nodes varies from 5 to 50. In Fig. 10, the density of anchor 
nodes has a significant effect on the localization error of the DV-Hop, PSODV-Hop and 
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IPSODV-Hop algorithms, and the localization error is markedly reduced as the number of 
anchor nodes increases from 5 to 25. In contrast, the localization error of the BDV-Hop and 
IBDV-Hop algorithms barely changes. Hence, the number of anchor nodes is almost 
insignificantly correlated with the localization accuracy for the IBDV-Hop algorithm. 
Compared to the DV-Hop, PSODV-Hop and IPSODV-Hop algorithms, the IPSODV-Hop 
algorithm is less dependent on the anchor node density.  
 

 

Fig. 10. Impact of the density of anchor nodes on the localization error 
 

 

Fig. 11. Impact of communication range on localization error 

5.5 Impact of Communication Range on Localization Accuracy 
Generally, the actual communication range of RF devices is susceptible to interferences from 
different environmental situations. Therefore, we explored the impact of changing 
communication ranges on the localization accuracy of the tested algorithms. The simulation 
results are presented in Fig. 11 as the communication range varies from 25 to 60 m. Clearly, 
the localization error of all algorithms decreases as the communication range varies between 
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25 and 40 m. However, at a communication range of 40 m, all algorithms obtain the minimum 
localization error values, and as the communication range continues to rise, the localization 
error of all the algorithms also gradually rises. However, the localization error curve of the 
IBDV-HOP algorithm is more robust than that of the other algorithms as the communication 
range increases from 40 to 60 m. Thus, variations in the communication range have less effect 
on the localization accuracy in the IBDV-Hop algorithm. This implies that the IBDV-Hop 
algorithm is both stable and applicable to varied environmental conditions. 

6. Conclusion 
In this paper, we proposed the IBDV-Hop algorithm, based on the BA, to improve the 
localization accuracy of the DV-Hop algorithm. In the IBDV-Hop algorithm, the optimization 
methods for the average hop distance and fitness function effectively reduce the localization 
error and avoid error accumulation. The nonlinear dynamic inertial weight strategy to correct 
the velocity not only extends the global search scope and increases the accuracy of the local 
search but also contributes to searching for better solutions and further improves the 
localization accuracy. The updated solutions strategy provides a valid variation mechanism 
that avoids premature convergence and promotes the solution diversity. The theoretical 
analysis and simulation results demonstrate that the IBDV-Hop algorithm presents the highest 
localization accuracy compared to the other algorithms tested in this study. Its stability, search 
capability and convergence is better than that of the BDV-Hop algorithm. At the same time, 
the IBDV-Hop algorithm imposes little additional time complexity and energy consumption 
compared to the DV-Hop and BDV-Hop algorithms. 

We conclude that the IBDV-Hop algorithm exhibits improved localization accuracy as the 
number of iterations and the size of bat group (within a certain range) increase. In contrast, the 
algorithm is only weakly affected by changes in the density of anchor nodes or node 
communication ranges. Therefore, the IBDV-Hop algorithm shows good stability and 
adaptability for localizing WSNs under different environmental conditions. 

However, because the IBDV-Hop algorithm is sensitive to parameter values, future work 
should include more exploration of the relevance between the algorithm's performance and the 
values of crucial parameters under different circumstances. 
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