
Journal of Computer Science 9 (10): 1267-1273, 2013
ISSN: 1549-3636
© 2013 Science Publications
doi:10.3844/jcssp.2013.1267.1273 Published Online 9 (10) 2013 (http://www.thescipub.com/jcs.toc)

Corresponding Author: Jess Nielsen, Department of Research and Development, Trapeze Group Europe A/S, Søren Frichs Vej 38K,
DK-8230 Åbyhøj, Denmark

1267 Science Publications

JCS

A TOOL ANALYSIS IN
ARCHITECTURAL RECONSTRUCTION

1Jess Nielsen and 2Michael Lykke

1Department of Research and Development, Trapeze Group Europe A/S,
Søren Frichs Vej 38K, DK-8230 Åbyhøj, Denmark

2Bang and Olufsen A/S, Peter Bangs Vej 15, Struer, DK-7600, Denmark

Received 2013-07-18, Revised 2013-08-03; Accepted 2013-08-21

ABSTRACT

An understanding of a system’s software architecture is central to successful system modifications. In the
fortunate cases, the architecture is well understood as the original software architect and lead developers
are responsible for maintenance. However, often systems must be modified based upon incomplete
architectural information due to staff changes and incomplete or outdated documentation. In this case,
software architecture reconstruction is vital in order to re-establish overview and understanding of the
software architecture. In this study, we report on a tool analysis where the goal is to clarify the correctness
of a number of tools which offer such architectural reconstruction.

Keywords: Architectural Reconstruction, Reconstruction Tools

1. INTRODUCTION

This document outlines an analysis which facilitates
how a number of both commercial and non-commercial
tools document or reconstruct a software architecture
which can be used as architectural documentation.

The primary reason for this is that the maintenance
phase is well known to be costly for a successful
software product. A key aspect of maintaining,
enhancing and extending a software system is the ability
of developers to overview, understand and analyse the
software architecture of the system. However, more
often than not, the software architecture is largely
undocumented and only vaguely understood. A major
problem with documenting software architecture is the
uncertainty in predicting the exact nature of
documentation necessary in the future. Often customer
feature requests or new technological platforms demand
documentation of a certain type and aspects which are
not obvious at the onset of system development. Thus,
there will always be a demand for architectural
reconstruction, i.e., the ability to create a (partial)
software architecture based upon the artefacts which

define an existing software system: typically the source
code base, old documentation and maybe interviews
with the initial architects, developers and maintainers.
This is a labour intensive and therefore costly process
and architects should have all the necessary means at
their disposal to ensure a cost-effective reconstruction
process. Research efforts have thus been invested in
defining tools and platforms to aid in the
reconstruction process which has lead to a large
number of tools. A comprehensive overview can be
found in (Pollet et al., 2007).

2. PRELIMINARY

OpenSpeak is an open source voice-over IP application
based on Speex and wxWidgets, aimed at casual gamers
who like to chat while playing a game. The application
runs on both a Windows and a Linux platform. The key
metrics for the system can be found in Table 1.

The article will base its analysis on a reconstruction
of an open source project OpenSpeak with the use of the
principles described in (Deursen et al., 2004) and by
observing the system's runtime behaviour.

Jess Nielsen and Michael Lykke / Journal of Computer Science 9 (10): 1267-1273, 2013

1268 Science Publications

JCS

Table 1. Overview of openspeak
Programming Language C++
Lines of Code 183.536
Available from http://openspeak-project.org/
IDE Visual Studio 2005 +
Components Client, server

The basis for this reconstruction is to generate
information which can be used to produce (or reproduce)
the architectural documentation for the system.

3. TOOL ANALYSIS

The goal of the analysis is to clarify how
comprehensively the tools document the software
architecture in three essential viewpoints as outlined in
(Bass et al., 2003): Module view is a static
decomposition in packages, classes, modules,
Component-connector view (CandC view) is a dynamic
decomposition in objects, processes and communication
paths. Allocation view is a physical decomposition in
deployment units, computing nodes.

Below we outline the choice of tools used when
trying to construct these viewpoints.

3.1. Lattix

Lattix LDM is a commercial application, produced
by Lattix, Ltd. (http://www.lattix.com). The
application is primarily used to analyse the static
structure of the source code. The producer highlights
the following key features:

• Clarifying the relationship between directories,
source files, header files and idl files

• Analysing the relationship between the contents of
the C/C++ source files and explores the
dependencies at member level

The source code is typically structured by dividing it
into directories. These directories might each represent a
component of the system. An analysis of the #include-
directives files will outline the dependencies among the
source files. It will also outline the dependencies among
the components through the source files that are placed
in different directories.

The tool has identified three directories as candidates
for components (Fig. 1), each representing a part of the
system. The three components are named “client”, “lib”
and “server”. The degree of dependency among the
components is shown by stating a number for each
relation. The number tells how many times the
component has been referred to, while a missing number
indicates that no relations or references exist.

Fig. 1. The component structure identified by Lattix

It is possible to add constraints to the components to
augment the visualization of the layers. The constraints
tell whether the relation is legal or not. Colours indicate
whether constraints are placed manually and whether
they have been violated.

Constraints to clarify whether it is a strict layered
model without circular references have been added.
These constraints state that none of them have been
violated and all communication should be done through
the communication layer, denoted library.

The tool addresses especially the module
viewpoint. It identifies object diagrams and classes
based on e.g., the classes and data member references
and it identifies packages and nodes based on the
directory structures (Table 2).

Although the structure discovered by Lattix was the
actual high-level component structure, it did not
recognise the low level and complex structures (Fig. 2).
A manual inspection revealed a complex reactor pattern
(Schmidt et al., 2000) as depicted above.

3.2. Code Visual to Flowchart

Code Visual to Flowchart is developed by
FateSoft/Share-IT. The application has the capability to
analyse source code and construct a flowchart diagram
based on the flows in the source code. The manufacturer
highlights the following key features:

• Reverse engineering a program with code analyser;
create programming flow charts from code

• Generating Visio, Word, Excel, Power Point, PNG
and BMP flow charts document from code

In relation to these key features, it can be used to
examine the flows in the source code. A certain sequence of
e.g., invocations or a large and complex function can be
visualised to help the understanding of the source code.

Jess Nielsen and Michael Lykke / Journal of Computer Science 9 (10): 1267-1273, 2013

1269 Science Publications

JCS

Fig. 2. The reactor pattern identified by manual inspection

Table 2. The symbolism in Lattix mapped to a proper UML notation and an appropriate view
Symbolism Description UML View
Directories Identifies the components Packages and nodes Module view
 Allocation view
Source files, #includes Identify the relations Objects and classes Module view
Source files, functions, Identify the relations Objects and classes Module view
class and data members
Source files, grouping Group source files into Packages and nodes Module view
Allocation view components
Constraints Identifies both legal Module view
 and illegal communication
 about components.

Table 3. The symbolism in Code Visual mapped to a proper UML notation and an appropriate view
Symbolism Description UML View
State charts Describes the flow Objects and candC view
 using the syntax stereotypes
 of state charts.

The tool can be used to illustrate a central flow inside
methods and to navigate through the code by clicking at
functions. It illustrates the flow within the functions.
However, the tool is not very suitable for reconstruction
of software architectures because it is very low-level,
while it might be useful if a sequence diagram is needed.

The usage of the tool addresses the dynamic
component connector view by using a static analysis
(Table 3). The reason is generally that the tool is not able

to neither collect data from running systems nor analyse
such data. The views are just illustrating a dynamic point
of view-scenarios can be walked through afterwards.

3.3. Visual Studio 2008

Visual Studio 2008 Developer Edition (VS 2008)
produced by Microsoft, also offers a set of analysis
tools for both static and dynamic analysis. For static
analysis, VS 2008 supports the following features for
unmanaged C/C++ code:

Jess Nielsen and Michael Lykke / Journal of Computer Science 9 (10): 1267-1273, 2013

1270 Science Publications

JCS

Table 4. The symbolism mapped to a proper UML notation and an appropriate view
Symbolism VS 2008 UML View
Class, function and Class view Classes Module view
data member
Class, function Call tree view Classes and objects C and C view
 Modules view Packages Module view
 Caller/Callee view Objects C and C view
 Functions view Objects C and C view

• Creation of a class diagram; however it only

includes inheritance relations in the diagram, not the
association and composite relations

In dynamic analysis, it is possible to perform both

code instrumentation and sampling. We only used
code instrumentation, but the following views are
available for both:

• Call tree view where it is possible to see the call stack

of the system
• Module view shows a list of the modules

(executable files) used by the system
• The Caller/Callee view shows all the function calls

and by whom they are called
• Function view lists all the functions called during

system execution
• Memory allocation view is targeted for managed

code and shows how much memory each function
and all its descendent has allocated

• Object lifetime view only works with managed code
and shows the total instances of each type and the
amount of memory they consume

• Process view shows the processes that are executed
during system execution

For the dynamic analysis, we tried to use the

Caller/Callee view as the primary tool, as this is a
sequence diagram containing only a single execution.
Surprisingly we could not use it, mainly because the
amount of information and the details was
overwhelming. Secondly, the list of called functions by
caller cannot be ordered by time of execution which
makes it difficult to find the sequence of method calls.

Even though VS 2008 is an advanced tool, it only
includes inheritance relations when creating class diagrams,
as stated earlier. It is, however, possible to create relatively
simple mapping rules for finding associations and
composite relations see symbolism in (Table 4), but these
rules still have to be located manually.

The class diagram from VS 2008 identifies simple
composite relations. A list of all the names of the

member variables is displayed along with their types
when clicking on a class. However, the associations are
more difficult to identify because they are identified by
classes which are either created in a function or as part of
the parameter list.

3.4. MOOSE

MOOSE is an open source project started at the
Software Composition Group in 1975. It is a language-
independent tool developed for reversing and re-
engineering legacy software systems (Nierstrasz et al.,
2005). It is a framework for software development based
on formal models and code generation principles
(MOOSE, 2008).

One of the nice-to-have features of MOOSE is that it
allows developers to write their own parser in order to
translate the code into the FAMIX meta-model supported
by the MOOSE core. The meta-model is an object-
oriented representation of entities representing the
software artefacts of the target system (Nierstrasz et al.,
2005). This means that all information transformed into
MOOSE has the same internal representation, which other
tools can use to extend the functionality of MOOSE.

MOOSE offers a lot of different views. Some of the
views use colours and shapes to express the essence of
the view. The following is a short presentation of some
of the views offered:

• Blueprint complexity: shows the internals of a class,

by dividing the class into five layers, which are
described in (VIZ, 2008)

• Method distribution map: visualises the number of
methods each class has

• Method invocation: This view is similar to sequence
diagrams in UML

• Class diagram
• System complexity: The system complexity

visualises a class hierarchy where each rectangle
resembles a class

The parser is one of the more powerful features of

MOOSE because it captures a lot of information about
the source code.

Jess Nielsen and Michael Lykke / Journal of Computer Science 9 (10): 1267-1273, 2013

1271 Science Publications

JCS

Fig. 3. Sequence diagram illustrating the start process of the server

Table 5. The symbolism mapped to a proper UML nota-tion and an appropriate view
Symbolism MOOSE UML View
Class, function and Blueprint complexity Classes and Module view
data member objects C and C view
Class, function Method distribution map Classes Module view
Class, function Method invocation Classes and C and C view
 objects
Class, function and Class diagram Classes Module view
data member
Classes System complexity Classes Module view

For instance, MOOSE creates different kinds of lists
which contain information of all classes, variables,
method invocation, namespaces, outgoing/ingoing
accesses from a class Unfortunately, one of the
weaknesses of MOOSE is that it does not support any
search features. Finding specific variables to see which
classes use it, takes time.

Among all the views provided by MOOSE (Table 5),
the most used view from MOOSE is the Method
invocation view. It gives a good overview and
visualization of the collaboration among classes. This is

useful when creating class diagrams which support a
scenario. The set of classes used in a scenario is
typical only a subset of all the classes constituting the
system. It is difficult to find the first class in this
subset. This is because it may require domain
knowledge, debugging or heuristics. However, from
that point, it is easy to find the others by following the
arrows in the Method invocation view.

The Method invocation view can also be used
when reconstructing sequence diagrams to highlight
scenarios and collaborations. It is also difficult to find

Jess Nielsen and Michael Lykke / Journal of Computer Science 9 (10): 1267-1273, 2013

1272 Science Publications

JCS

the starting point using this view, but apart from that,
the overview provided by this view helps to identify
collaborated objects.

The time it takes to make sequence diagrams (Fig.
3) using the Method invocation view is roughly the
same time as without using it. It only helps to find
collaborated objects, as it does not allow you to see
the structure of the code, as Code Visual does, which
is necessary in order to build the sequence diagram.
However, it is faster when using it for Class diagrams
as you do not have to look inside the code to see
collaborated classes. The list of outgoing accesses
from a class is useful for finding the associations.

4. EVALUATION

Next, we discuss and evaluate the experience of the
reconstruction process from two perspectives. First we
will outline our experience with the tools. Secondly, we
will evaluate the value of the tools and discuss how the
results can be verified.

4.1. Experience with the Tools

The experience of the tools used to reconstruct the
software architecture will now be outlined. The tools
are categorised into two categories: static analysis and
dynamic analysis. The static analysis is based on the
application artefacts while the dynamic analysis is
used to capture data from the running system.
Whether the tools support either static or dynamic
analysis or even both are briefly summarised in the
following taxonomy (Table 6).

It was not possible for one tool alone to generate
diagrams for all the viewpoints outlined in (Bass et al.,
2003) as outlined below (Table 7). The tools are
mainly targeted for the module viewpoint.

Table 6. The tools categorised into analysis types
Tool Static Analysis Dynamic Analysis
Lattix X
VS 2008 X X
Code Visual X
MOOSE X X

Table 7. The tools categorised by the viewpoints, they address
 Tool
 --
Viewpoint Lattix MOOSE VS 2008 Code Visual
Module view X X X
C and C view X X X
Allocation view X

However, some of the tools do have the ability to
collect data for both the C&C view and allocation view,
even though the data for the C&C view is displayed in
an unstructured manner that is difficult to use.

4.2. Verification and Usability of the Result

It is difficult to verify the output generated by the
tools alone and this is why we have chosen to map the
symbolism to a common set of views. For tools that
cover the entire set of views, we have a complete
reconstruction of the architecture and for tools that
signal the same structures we also have a reasonable
correct structure.

However, not all tools are able to offer the same level
of abstraction hence some tools offer a conceptual output
while others offer a detailed sequence diagram. This
makes it difficult to compare the output, but all tools are
able to collect and generate data that can be used for the
module view.

Illustratively, this means that the tools Lattix,
MOOSE and VS 2008 can be helpful to construct both
class and package diagrams for the module view. Lattix
and VS 2008 identify packages and all of the tools
identify common classes. The tools agree on the
collected information about the simple structures such as
classes and their simple relations. This facilitates that
generation of the simple structures is reasonably correct,
but still they do not necessarily reflect upon the correct
use of complex structures.

The result is reliable as long as it just depends on
simple structures and relationships, but it is
insufficient when it comes to complex patterns. The
final result was conclusively not as useable as
expected, but the tools were able to generate a high-
level description of the system which might be helpful
when archiving an overview.

5. CONCLUSION

How much of an architectural description needs to be
reconstructed depends on the task at hand and can range
from a single diagram, if the company regularly updates
its documentation, to everything included in an
architectural description. Reconstructing the architectural
description is not a process that is done overnight if
everything is required. A lot of data needs to be extracted
from the artefacts of the system and further analysed,
visualised and then analysed again.

The reconstruction process uses two general
techniques to collect the required data: A static analysis
which collects its data from the artefacts belonging to the

Jess Nielsen and Michael Lykke / Journal of Computer Science 9 (10): 1267-1273, 2013

1273 Science Publications

JCS

application and a dynamic analysis which collects its
information from a running system.

In general, it is very difficult for tools to collect data
from an existing application. This makes it even harder to
find a tool which is suited for your special needs. There are
some commercial products on the market, but very few of
them are capable of collecting all the data you might need
for the reconstruction process as you have to combine
several tools. The disadvantage with multiple tools is often
missing collaboration between them. When selecting the
tools to be used it is important to be aware of prices
(especially for commercial products) because the
economical aspects are definitely not cheap and the initial
costs could therefore increase unexpected.

Future work is to further investigate the features of
the tools to make a more automatic process of the
sequence diagram generation and pattern recognition
through both simple and complex structures.

6. ACKNOWLEDGEMENT

Thanks to everyone who helped with this article.
Especially thanks to Trapeze Group Europe A/S for the
economical contributions.

7. REFERENCES

Bass, L., P. Clements and R. Kazman, 2003. Software
Architecture in Practice. 2nd Edn., Addison-Wesley
Professional, Boston, ISBN-10: 0321154959, pp: 560.

Deursen, A.V., C. Hofmeister, R. Koschke, L. Moonen
and C. Riva, 2004. Symphony: View-driven
software architecture reconstruction. Proceedings of
the 4th Working IEEE/IFIP Conference on Software
Architecture, Jun. 12-15, IEEE Xplore Press, pp.
122-132. DOI: 10.1109/WICSA.2004.1310696

MOOSE, 2008. Model-Based Object-Oriented Software.
Generation Environment. Universität Kaiserslautern.

Nierstrasz, O., S. Ducase and T. Girba, 2005. The Story
of Moose: An agile reengineering environment
abstract Oscar Nierstrasz. Pennsylvania State
University.

Pollet, D., S. Ducasse, L. Poyet, I. Alloui and S.
Cimpan et al., 2007. Towards a process-oriented
software architecture reconstruction taxonomy.
Proceedings of the 11th European Conference on
Software Maintenance and Reengineering, Mar. 21-
23, IEEE Xplore Press, Amsterdam, pp: 137-148.
DOI: 10.1109/CSMR.2007.50

Schmidt, D., M. Stal, H. Rohnert and F. Buschmann
2000. Pattern-Oriented Software Architecture. 1st
Edn., John Wiley and Sons, England, ISBN-10:
0470065303, pp: 636.

VIZ, 2008. Polymetric Views. University of Berne.

