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ABSTRACT 

We consider the Nelder-Mead (NM) simplex algorithm for optimization of discrete-event stochastic 

simulation models. We propose new modifications of NM to reduce computational time and to 

improve quality of the estimated optimal solutions. Our means include utilizing past information of 

already seen solutions, expanding search space to their neighborhood and using adaptive sample sizes. 

We compare performance of these extensions on six test functions with 3 levels of random variations. 

We find that using past information leads to reduction of computational efforts by up to 20%. The 

adaptive modifications need more resources than the non-adaptive counterparts for up to 70% but give 

better-quality solutions.  We recommend the adaptive algorithms with using memory with or without 

neighborhood structure. 

 

Keywords: Nelder-Mead Simplex, Adaptive Nelder-Mead Simplex, Continuous Stochastic Optimization, 

Neighborhood Search, Local Selection 

1. INTRODUCTION 

An Optimization via Simulation (OvS) is the problem 
of finding possible set of input variables or decision 
variables that give maximum or minimum objective 
function values. In addition, a simulation optimization 
also aims at minimizing computational resources spent 
while maximizing the information obtained in a 
simulation experiment (Carson and Maria, 1997). We are 
interested in the OvS problems that have stochastic 
objective functions and continuous decision variables 
(Alon et al., 2005; Henderson and Nelson, 2006; Olafsson 
and Kim, 2002; Swisher et al., 2004) for OvS surveys. 

Many OvS tools are developed for unconstrained 
continuous problems. Most of them are based on the 
random search method that takes objective function 
values from a set of sample points and uses that 
information to select the next points. Various techniques 
differ in the choice of sampling strategies (Andradottir, 
2006). A point-based strategy involves sampling points 

in a neighborhood of the current solution, e.g., the 
Stochastic Ruler (Alrefaei and Andradottir, 2005) and 
the Simulated Annealing (Press et al., 2007). A set-based 
strategy generates a set of candidate solutions from a 
subset of the feasible region, e.g., the Nested Partitions 
Method (Shi and Olafsson, 2009) and the Nelder-Mead 
Simplex (Nelder and Mead, 1965). A population-based 
strategy creates a collection of candidate solutions using 
some properties of the previously visited solutions; for 
example, the Genetic Algorithm (Holland, 2000) and the 
Evolutionary Strategies (Beyer and Schwefel, 2002). 

We focus on the Nelder-Mead (NM) simplex algorithm 
(Nelder and Mead, 1965), which is originally developed for 
unconstrained deterministic optimization. It demonstrates 
wide versatility and ease of use such that it is implemented 
in MATLAB as a function fminsearch. The NM is also 
robust with respect to small random variations in the 
observed objective function values; therefore, it is used for 
optimizing stochastic problems as well (Tomick, 1995; 
Humphrey and Wilson, 2000) However, in the case that 
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variability in the objective function values are sufficiently 
large, the NM may terminate before reaching the global 
optima. For this, Barton and Ivey (1996) propose the 
algorithm RS9 that improve NM performance for stochastic 
problems by increasing the shrink parameter and 
recalculating every point of shrink simplex. 

In this study, we propose variants of the NM by 
utilizing past information and/or proximate points. 
Specifically, we incorporate: 

• Information collected since the search begins and 

• Search neighborhood 

With numerical experiments, we show that our 

algorithms provide better solutions while requiring less 

computational efforts than the original NM. 

Generally, an OvS problem can be defined as 

follows: The objective is to determine an optimal 

solution, x*, that minimizes the unknown objective 

function, µ: Θ→ �  over a continuous feasible region, 

Θ∈ �
d
; that is, *

x Θ

x arg min (x),
∈

= µ where, x∈Θ is a vector 

of d decision variables and x is called a solution. The 

objective function µ(x) cannot be observed directly; thus, 

it is estimated with stochastic simulation, i.e. Equation 1: 
 

xx
(x) E G(x, )ξµ = ξ    (1) 

 

where, G (x,ξx) is a simulation output evaluated at x  and 

xξ  is an unbiased random element with 
xE[ ]ξ = 0 and 

2

x xV[ ]ξ = σ .  The estimate of µ(x), ˆ (x)µ , is a sample mean 

of m independent simulation outputs: 
 

m

i

i 1

1
ˆ (x) G(x) G(x, )

m =

µ = = ξ∑   (2) 

 
This study is organized as follows: Section 2 

introduces the original form of the NM simplex algorithm, 

its existing variants, our extensions and describes design 

of numerical experimens. Section 3 shows of numerical 

results. Section 4 discusses the results. Ultimately, we 

conclude in section 5. 

2. MATERIALS AND METHODS 

2.1. The Nelder-Mead Simplex Algorithm 

2.1.1. Original NM 

The first of the simplex methods is due to        

Spendley  et al. (1962) for deterministic problems. They 

assume that any point in the domain of search can be 

constructed by taking a linear combination of the edges 

adjacent to any given vertices. The original simplex consists 

of the reflection of one vertex through the centroid of the 

opposite face. Sometimes a sequence of reflections brings 

the search back to where it starts. Nelder and Mead (1965) 

add expansion and contraction moves to accelerate the 

search and a shrink step is introduced to decrease the 

lengths of edges adjacent to the current best vertex by half, 

in case that none of the steps brings acceptable 

improvement to the original simplex. Figure 1 illustrates 

2-dimensional trial points for a simplex consisting of x0, x1 

and x2. The solid lines simplex is initialized. Other line-

style simplexes show various simplex operations, e.g., an 

expansion point is E

2
x , a reflection point is R

2
x , internal 

and external contraction points are iC

2
x  and eC

2
x , 

respectively and C is the centroid of the 2 best points. By 

the default setting of fminsearch (the NM implementation 

in MATLAB), a single simulation output (m = 1 in 

Equation 2) is an estimate of an objective function ˆ (x)µ .  

The overall logical steps of the NM algorithm are 
shown in Fig. 2 and it can be explained in more details as 
follows. 

Initialization: Create an Initial Simplex 

• Select a starting point x0∈Θ, a vector of d 

dimensions 

• Form an initial simplex of d+1 points, by defining: 
 

i 1 2 i i dx [x , x , , x s , , x ], i 1,2, ,d,= + =K K K  (3) 
 

where, si are the user-specified initial step sizes. 

• Estimate the objective function values at each of the 

d+1 simplex points from m independent  simulation 

outputs by computing its sample averages via 

Equation 2 to get 
0 1 d

ˆ ˆ ˆ(x ), (x ), , (x )µ µ µK  
then initialize 

the iteration number j = 1
 
and a number of observation 

of simulation outputs, count = m(d+1) 
 

 
 

Fig. 1. All simplex operations of the Nelder-Mead simplex 
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Fig. 2. Flow chart for the jth iteration of the Nelder-Mead simplex algorithm 

 

• Re-order these points in a non-decreasing order so 

that 
0 1 d

ˆ ˆ ˆ(x ) (x ) (x )µ ≤ µ ≤ ≤ µK  

 

While i 0 x
i 1,2,...,d

ˆ ˆmax x x
=

− ≤ ε  and ˆi 0
i 1,2,...,d

ˆ ˆ ˆ ˆmax (x ) (x ) µ
=

µ − µ ≤ ε ,  

j<Nsearch  
and  ˆcount Nµ<  are true. 

 

Step 1: Calculate the Reflection Point 

A worst point on the simplex (recall that we 

consider a minimization problem, so the worst point is 

one with the highest sample mean xd) xd is replaced 

with another point which has a lower objective 

function. Let R

dx  be the reflection of the worst point 

and xd passes through the centroid C of the d-best 

points. These points are computed as 

d 1

j

j 0

1
C x

d

−

=

= ∑  and 

R

d dx C (C x )= +α −  where, α <0 is  a reflection 

parameter; typically 1. Then the objective function 

value R

d
ˆ (x )µ  is estimated via m simulation outputs 

then count = count+m. 

Step 2: Update the Simplex 

Figure 3 shows an initial simplex with dash lines and 

an updated simplex with solid lines. The updated 

simplex depends on the relationship between R

d
ˆ (x )µ

 
and 

0 1
ˆ ˆ(x ), (x ), ,µ µ K d

ˆ (x )µ ; that is:  

 

• If R

0 d d 1
ˆ ˆ ˆ(x ) (x ) (x )−µ ≤ µ < µ , set R

d dx x←  and 
d

ˆ (x )µ ←  
R

d
ˆ (x )µ  as shown in Fig. 3a. Then go to Step 4. 

• If R

d 0
ˆ ˆ(x ) (x )µ < µ , the search continues in the same 

direction by calculating the expansion point, E

dx C= +
 

R

d(x C )γ −  where  γ>0 is an expansion parameter, 

typically 2. Then ( )E

d
ˆ xµ  is estimated from m 

simulation outputs by Equation 2, then count = count 

+ m.  The expansion point is accepted when it 

improves over the best point in the simplex, x0, as 

shown in Fig. 3b; otherwise, the reflection point is 

accepted.  Go to Step 4. 
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(a)        (b) 

 

                
(c)        (d) 

 

Fig. 3. Operations of the NM simplex method 

 

• If R

d 1 d
ˆ ˆ(x ) (x )−µ ≤ µ , the search reduces the simplex 

size by calculating the contraction point, C

dx C= +  

d(x C),β −%  where, β>0 is a contract parameter 

(generally 0.5), and 
dx%  is R

dx  if R

d d
ˆ ˆ(x ) (x )µ < µ  and xd 

otherwise. The objective function C

d
ˆ (x )µ  is estimated 

then count = count+m. If C

d d
ˆ ˆ(x ) (x )µ ≥ µ , go to Step 3; 

otherwise, the contraction point is accepted, i.e.,
 

C

d dx x← . The updated simplex can be one of two 

solid-line simplexes in Fig. 3c depending on which 

as the optimal *
x̂ and *ˆ ˆ(x ),µ  respectively, when 

when the search terminates. Contraction point ( ic

2
x or 

ec

2
x ) is used. Go to Step 4. 

Step 3: Shrink the Simplex 

 If the reflection point and contraction point provide 

no improvement, then the simplex is shrunk toward the 

best point x0 as shown in Fig. 3d. Compute the new 

simplex as follows: 
 

0 1 0 2 0 d 0[x , x (1 )x , x (1 )x , , x (1 )x ]τ + − τ τ + − τ τ + − τK  (4) 
 
where, τ is a shrink parameter, typically 0.5. The objec-

tive function values of these new points are estimated 

count = count +md. Then go to Step 4.  

Step 4: Re-order the Simplex Points in Ascending 

Orders 

 Then let j = j+1.  

End while 

Return *x̂  and 
*ˆ ˆ(x )µ . 

2.1.2. Barton and Ivey Stochastic Modification of 

NM and its Variant (RS9 and ANRS9) 

Barton and Ivey (1996) adapt the NM algorithm to 

accommodate stochastic variations in the objective function 

values. From empirical results, they see that because the 

NM algorithm relies on the ranks of the objective function 

values at the simplex vertices, it can make progress in 

presence of relatively small randomness which does not 

change the rank of the function value at the simplex points. 

However, if the variations in the function value are large 

enough, it affects the relative rank of the simplex vertices 

and misleads the algorithm. 

Barton and Ivey (1996) recommend the shrinkage 

coefficient (in Equation 4) of 0.9 instead of the usual 0.5 to 

increase the extent of reduction after shrink. This change 

improves the performance effectively for the cases where 

the original NM fails. Resampling the best point after shrink 

reduces the frequency of contraction, but this strategy is not 

effective in improving algorithm performance. 
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Moreover, Barton and Ivey (1996) apply another 
stopping criterion for stochastic problems, as suggested 
by Dennis and Woods (1987). The search terminates 
when the simplex size is sufficiently small: 
 

d

i 0

i 1
x

0

x x

max(1, x )

=

−
≤ ε

∑
 (5) 

 

where, 
0 1 d

ˆ ˆ ˆ(x ) (x ) (x ),µ < µ < < µK  and �  is the Euclidean 

norm, i.e., 2 2 2

1 2 dx x x x= + + +L . Besides the stopping 

criteria in Equation 5, their so-called RS9 is the NM with 

the following modifications: The objective function is 

estimated with 6 independent simulation outputs (m = 6 

in Equation 2); every solution is resampled every time it 

is encountered (no search history is kept) and the 

shrinkage coefficient τ is 0.9. 
The rescaling operations of the NM algorithm can  

lead to a too-early termination at a non-optimum if noise is 
present. Tomick et al. (1995) modify the RS9 further to 
allow the sample sizes to adjust adaptively to the observed 
noise in the solution space, called ANRS.  Suppose that m

j
 

is the minimum number of observations taken at each new 
trial point during the j

th
 iteration and m

0
 = 6: 

 
j 2 2 2

j 1

j

d,bm if S / (d )
m

m otherwise

+ α
  σ ≤ χ = 


 (6) 

 
where, b = 1.25 is a factor to increase the sample size, d 
is a size of the decision variable x, x is the largest 
integer smaller than x: 
 

2 2

ik ik

j j
2

j jd 1 m d 1 m

i 1 k 1 i 1 k 1

ˆ ˆ(x ) (x )

m (d 1)m
S

d

+ +

= = = =

   
µ µ   

      −
+

=

∑ ∑ ∑∑

 

 
is the mean square treatments from Analysis of Variance 

(ANOVA), σ2
 is the variance of white noise, ξx in 

Equation 1 and 2

d,αχ  is an α upper percentile of  the chi-

square distribution with d degree of freedom. 

2.2. New Variants of the Nelder-Mead Simplex 

Algorithm 

We are motivated by several general-purpose 
optimization algorithms for deterministic problems that are 
based on a neighborhood search; for example, the very large 
scale neighborhood search (Pichitlamken and Nelson, 
2003), neighborhood search based on tabu search and 
complete local search with memory for solving the 

uncapacitated facility location problem (Pichitlamken et al., 
2006). At each iteration, the search iteratively moves from 
the current solution to one of its neighbors which is better 
than itself and any other solutions in the neighbor-hood. 
Neighborhood search strategy and statistical selection of the 
best are used in OvS in Tomick et al. (1995) followed by a 
framework for OvS in More et al. (1981). 

First, we define an “already-visited solution” as x that 

is not “too far” from the one already seen v, v x
∞

− =  

i i v
1 i d
max v x e ,

≤ ≤
− = where, 

∞
�  is the uniform norm, x

∞
=  

}{ 1 2 d
max x , x , , x ,K  and the neighbor distance 0≤e≤εx 

where εx =10
-4

, similar to the terminating criterion of the 

fminsearch. We select the neighbor v which provides the 

minimum ev as distinguishable from x. For an example 

of 2-dimensional problem, suppose x = 

(1.00018,2.50101), v1 = (1.00018, 2.50110) and v2 = 

(1.0011,2.50101), v3 = (1.00015, 2.601010) then e1 = 

max {|1.00018-1.0018|,|2.50101-2.50110}= 9×10
-5

, e2 = 

max (|1.0018-1.0011|,|2.50101|) = 7×10
-5
, e3 = max(|1.0018-

1.00015|,|2.50101-2.60101) = 0.1. Since e3 is greater 

than εx, v3 does not belong to N(x)
 
and we select v2 to 

represent x because e2≤εx and it has the smallest uniform-  
norm distance from x.   

We define the neighborhood of solution x = 
[x1,x2,…,xd] 

as N(x) consisting of all already-seen solu-
tions which lie inside the region of: 
  

1 2 d 1 2 d 1 2 d

1 2 d 1 2 d

[x ,x , , x ],[x ,x , , x ],[x ,x , , x ],

[x ,x , ,x ], ,[x ,x , , x ]

− ε + ε − ε

+ ε + ε

K K K

K K K
 (7) 

 
where, ε is the user-specified maximum neighborhood 
distance. We exclude any neighbors that lie outside the 
feasible space Θ, or ones which are further than ε from 
any given x. 

The aim of using past information is to save 
simulation effort by avoiding sampling at every 
encounter.  In our implementation of the NM search, we 
compare the sample averages of all candidates and select 
the one with the smallest average as the winner. 

We propose two NM-based algorithms with memory 

as follows. 

2.2.1. The Nelder-Mead Selection with Memory 

(NMSM) 

Simulation outputs that have been obtained for 
revisited solutions and their candidate solutions are kept 
in a database and they replace new sampling. Nevertheless, 
for already-seen solutions, NMSM adds one simulation 
output every time it is encountered so as to protect the 
search from unusually good or bad history. 
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Fig. 4. NMSMN algorithm 
 

Let V
j
 be a collection of visited solutions during the 

j
th

 iteration where V
0
 = φ.

 
If x∉V

j
 then V

j
 = V

j-1∪x. The 
NM is changed as follows: before generating new 
simulation outputs G(x,ξi) for x∈{x0,x1,x2,…,xd, x

R
, x

E
, 

x
C
},

 

we check whether they have been visited. If x∈V
j
, 

we use their past simulation outputs and generate only 
one new observation. The historical and one additional 
observations are used to calculate a new ˆ (x)µ  of a 
revisited solution. Otherwise, the NMSM generates new 
m observations for calculating new ˆ (x)µ  then registers x 
into the visited set. 

2.2.2. The Nelder-Mead Selection with Memory 

and using Neighborhood (NMSMN) 

The NMSMN is the NMSM integrated with a 
neighborhood. It constructs a neighborhood for every 
vertex of the simplex and estimates their objective 
function values. The best solution in the neighborhood 
replaces the original vertex. The advantages of the 
NMSMN are that they utilize past information of 
previous encounters and it also augments the search area 
to their neighborhood. Let N(x

j
) be a neighbor set of x

j
 

with ε = 0.01 in Equation 7. Thus V
j
 is a collection of 

visited solutions and their neighborhood during the j
th

 
iteration where V

0 
= φ.

 
If x∉V

j
, V

j 
= V

j-1∪N(x
j
). The 

NM are changed as follows: For x∈{x0, x1, x2,…, xd, x
R
, 

x
E
, x

C
}, before generating new simulation outputs, we 

check whether they are already visited solutions by the  
algorithm in Fig. 4. 

2.2.3. The Adaptive Nelder-Mead Selection with 

Memory (ANSM) 

The ANSM is NMSM, but when search reaches the 

step of updating the simplex, the j j

1 2
ˆ ˆ(x ),  (x ),  ,µ µ K

 
j

d 1
ˆ (x )+µ are estimated by the NMSM where Step 4 is 

modified as follows:
 

Step 4: Re-Order the Simplex Points 

 In ascending orders then compare all updated 
expected objective functions of simplex points for 
determining the m

j+1
 by Equation 6. Let j = j +1. 

2.2.4. The Adaptive Nelder-Mead Selection with 

Memory and using Neighborhood (ANSMN) 

This modification applies ANSM, to the NMSMN.  
It combines the advantage of utilizing memory of 
revisited solution and their neighbors and efficiently 
spending resources to ensure further progress approaching 
to minimum objective function value. 

2.3. Numerical Experiments 

In section 2.3.1, we describe a set of test functions 
and their starting solutions. Section 2.3.2 explains the 
main figures of merit that we use to evaluate and 
compare the performance of many modifications of the 

NM. Section 2.3.3 discusses the empirical test setup.  

2.3.1. Test Functions 

We test the unconstrained optimization algorithm on 
a set of six deterministic test functions; that is: 
 

x xG(x, ) g(x) ,ξ = + ξ  (8) 
 

as ξx is an unbiased random element with E [ξx] = 0 and 
2

x x
V[ ]ξ = σ  and g(x) is deterministic test problems. These 

test functions are 2 dimensional (d = 2). Our standard 

deviations, σx, are 0.75, 1.00 and 1.25 times g(x*) as 

defined in Equation 8. Common random numbers are used. 

Some of the selected functions have appeared in previous 

studies. For example, test functions 2-5 are classical test 

functions produced by More et al. (1981). They were also 

used in Humphrey and Wilson (2000) and Barton and Ivey 

(1996) for optimization of noisy responses. Test function 6 

is adapted from  Neddermeijer et al. (2000). Each of these 

deterministic test functions has a unique optimum. 

2.3.1.1. Test Function 1: Paraboloid Function 

The paraboloid function is defined as: 
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d
2

i

i 1

g(x) x 1
=

= +∑  

 
The starting point is given by x = [d,d,…,d]. The optimal 
of function value g* =1 is achieved at point x* = [0,..,0]. 
Figure 5 depicts the polynomial function for case d = 2. 
This function is concave, symmetric and having only one 
minimum point. It is easy to optimize if no noise exists. 
However, when noise is present, optimization is difficult. 

2.3.1.2. Test Function 2: Variably Dimensioned 

Function 

The variably dimensioned function is given by: 
 

2

i

i 1

d 2

g(x) [f (x)] 1
=

+

= +∑  

 

where fi (x) = xi -1 for i = 1,…,d,  
d

d 1 j

j 1

f (x) j(x 1)+
=

= −∑
 

and  

2
d

d 2 j

j 1

f (x) j(x 1) .+
=

 
= − 

 
∑ The starting point is given by x = 

[x1, x2, …, xd], where xj =1-(j/d), j = 1,2,…,d. The 

optimal function value g* = 1 is achieved at point x* = 

[1,…,1]. Figure 6 depicts the variably dimensioned 

function for d = 2. The search area is U-curve, which is a 

crossed flat area. There are numerous local minima in the 

region of flat area but only one unique global minima exist. 

2.3.1.3. Test Function 3: Trigonometric Function 

The trigonometric function is defined as: 
 

d
2

i

i 1

g(x) [f (x)] 1
=

= +∑  

 

where for i=1,...,d,
d

i j

j 1

f (x) d cos(x 1) i[1
=

= − − + −∑ cos(xi-1)]  

-sin(xi-1). The starting point is x = [1/d,…,1/d]. The 

optimal of function value g* = 1 is achieved at point x* 

= [1+2πk1,..,2πkd] where kj = 0±1, ±2,…
 
for j = 1,..,d. 

Figure 7 illustrates the trigonometric function for d = 2. 

This function is a sine curve and multi-modal minima. 

2.3.1.4. Test Function 4: Extended Rosenbrock 

 The extended Rosenbrock function is defined as: 
 

d
2

i

i 1

g(x) [f (x)] 1
=

= +∑  

 
where, for i=1,..,d/2, 2

2i 1 2i 2i 1
f (x) 10(x x )− −= −  and f2i(x) = 

(1-x2i-1). The starting point is x = [-1.2,1,…, -1.2,1]. The 
optimal of function value g* = 1 occurs at x* = [1,…,1]. 

Figure 8 depicts the extended Rosenbrock function for 
the case of d = 2. This function is a non-convex function. 
The global minimum is inside a long, narrow, parabolic 
shaped flat valley. To find the valley is trivial. However, it 
is difficult to converge to the global minimum.

 
 

2.3.1.5. Test Function 5: Brown’s Almost-Linear 

Function 

The Brown’s almost-linear function is given by: 
 

d
2

i

i 1

g(x) [f (x)] 1
=

= +∑
  

where 
d

i i j

j 1

f (x) x x (d 1)
=

= + − +∑   for i = 1,...,d-1  and  

d

d j

j 1

f (x) x 1
=

 
= −  

 
∏ . The solution x = [1/2,…,1/2] is used  

as the starting point. The optimal function value g* = 1 is 

achieved at the point x* = [λ,..,λ,λ1-d
] where λ satisfies 

dλd
-(d+1) λd-1

+1 = 0. Humphrey and Wilson (2000) 

compute the value of λ is 0.5 for d = 2. Figure 9 

illustrates the Brown’s almost-linear function for d = 2. 

The function is not linearly separable and has the basic 

form of a nonlinear least squares problem. 

2.3.1.6. Test Function 6: Symmetrical Gaussian 

Function 

The symmetrical Gaussian function is defined as: 
 

d
2

i

i 1

1
g(x) 2 exp [f (x)]

15000 =

 
= − − 

 
∑  

 
where, fi (x) =100-xi for i = 1,..,d. The starting point is x 
= [70,…,70]. The optimal of function value g* = 1 is 
achieved at the point x* = [100,..,100]. Figure 10 depicts 

the symmetrical Gaussian function for d = 2. If any 
starting point is in area of blended curve, it converges to 
a unique global minimum point. On the other hand, if 
any staring point is in flat area, it is difficult to reach the 
minimum point. 

2.3.2. Search Performance Measures 

 When the search terminates, optimal solutions can 
be estimated in at least 3 ways: The solution on-hand, the 
most frequently visited solution, or the solution with the 
best cumulative averages (Banks, 1998; Andradottir, 
1999). Our preliminary experiments find that the 
solutions on hand outperform other estimates for optimal 
solutions.  Motivated by Humphrey and Wilson (2000), we 
evaluate the search performance via the average of the 
following performance measures over many replications: 
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Fig. 5. Paraboloid function for d = 2 
 

  
 

Fig. 6. Variably dimensioned function for d = 2 
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Fig. 7. Trigonometric function for d = 2 

  

 
 

Fig. 8. Extended rosenbrock function for d = 2 
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Fig. 9. Brown’s almost-linear function for d = 2 
 

  
 

Fig. 10. Symmetrical gaussian function for d = 2 
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2.3.2.1. Logarithm of the Total Number of 

Simulation Outputs 

To measure the computation work performed by a 
simulation optimization procedure, we compute: 
 

L ln(total number of  simulation outputs)≡  
 

It provides at best a rough indication of the total 
computational work required by a simulation procedure. 

2.3.2.2. Deviation of the Best Estimated Optimal 

Function Value from the True Optimal 

Value 

For a measure of accuracy of the best result delivered 
by a simulation optimization procedure, we consider 
Equation 9: 
 

* *

*

ˆ(x ) (x )
D

(x )

µ − µ
=

µ
 (9) 

 
This measure cannot be employed for Test Function 1 

since each coordinate of the true optimum for the 
paraboloid function is equal to zero. 

2.3.3. Empirical Test Setup 

 Our implementations are run on MATLAB by modi-

fying fminsearch function. The NM coefficients are as 

follow: α = 1, γ = 2, β = 0.5 and τ = 0.5. The initial step 

size, si 
as shown in Equation 3, is 10

−4
. Minimum deviation 

εx and µ̂ε  are 10
−4

. Maximum budget consumption ˆNµ  and  

Nsearch are 10
5
. To estimate the objective function, the 

sample size m is 6. Maximum neighborhood distance ε is 

0.01. Three level of standard deviation of random noise ξx is 

{0.75 g (x*), 1.00g (x*), 1.25 g (x*)}. The factor of 

increasing simulation size b in Tomick (1995) is 1.25. We 

perform 20 macroreplications (i.e., experiments) for each 

test problem on 10 search algorithms as follows: 
 
• NM-The original Nelder-Mead Simplex 
• RS9-The Barton and Ivey stochastic modification  
• ANRS9-Adaptive Nelder-Mead modification 
• NMSM-The Nelder-Mead selection with memory 
• NMSM+RS9-The NMSM with RS9 
• NMSMN-The NMSM with using neighborhood 
• NMSMN+RS9-The NMSMN with RS9 
• ANSM-Adaptive Nelder-Mead selection with memory 
• ANSM+RS9-ANSM with RS9 
• ANSMMN-ANSM with using neighborhood 
• ANSMMN+RS9-ANSMMN with RS9 

3. RESULTS 

Table 1 shows the budget consumption of each algo-
rithm until computation budget is exhausted or until the 

search is unable to get any improvements. Table 2 contains 
the average deviation in estimating the objective function 
values as defined in (9). As expected, when the degree of 
randomness increases, a given test problem becomes more 
difficult. Most algorithms fare worse and their estimated 
optimal solutions are further away from the optimal 
solutions because all algorithms give smaller D  at lower 
random noise. That means *ˆ(x )µ  is not far from  µ (x*). On 
the contrary, Test Function 4 is the most difficult to 
optimize even when the level of randomness is low. 
 Moreover, using the adaptive strategy with memory 

gives the smallest D  although the adaptive feature requires 

more computational effort. For example, for Test Function 

1 and at all random noise levels, ANRS9 consumes more 

computational resource than RS9, but it rewards with better 

estimated optimal solutions, i.e., smaller D . Similar results 

can be observed between ANSM+RS9 and ANSMN+RS9 

in comparison with NMSM and NMSMN, respectively. 

Considering D,  no algorithms decisively wins at all noise 

levels, but almost wining algorithms involve the adaptive 

method. Similarly, when we consider L, no algorithms 

outperforms completely at all noise levels. 
For better comparison, we compare relative ratio of 

both, L and D , between pairs of algorithms. The data 
is divided into 3 sets. Firstly, comparing between the 
adaptive and non-adaptive methods, e.g., ANRS9/RS9, 
ANSM+RS9/NMSM +RS9 and ANSMN+RS9/NMSMN, 
for most test functions and almost all noise levels, the 
adaptive methods spends 79% more computation effort 
than the non-adaptive methods, but they give better 
estimates of the optimal solutions by reducing D,  for 
up to 50%. For example at σx =1.00 g(x*)

 
for Test 

Function 2, all adaptive algorithms, ANRS9, 
ANSM+RS9 and ANSMN+ RS9, yield the estimates 
of the optimal solutions closer to the true optimum 
than the non-adaptive algorithms, RS9, NMSM+RS9 
and NMSMN+RS9 respectively; D,  is reduced ap-
proximately by 30% although they spend more 
computational effort. Except for σx = 0.75g(x*) of 
Test Function 3, the adaptive algorithms with using 
memory (e.g., ANSM+RS9 and ANSMN+RS9) are 
slightly less than the corresponding the non-adaptive 
algorithms (i.e., NMSM+RS9 and NMSMN+RS9, 
respectively); and for Test Function 4 with σx = {0.75 
g(x*), 1.00g (x*)}, the adaptive algorithms with using 
memory (e.g., ANSM+RS9 and ANSMN+RS9) the 
true optimum, i.e., D  increases. For Test Functions 1, 
3, 5 and 6, D  increases when the standard deviation 
of random noise goes up, across all algorithms.  For Test 
Function 2, almost every algorithms also exhibit this pat-
tern except ANSMRS9. Moreover, the results show that 
for Test Functions 1-3 and 5-6, it is not difficult to find 
do not give better improvement than their counterparts.
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Table 1. Logarithm of computational effort (L) 
Test function 

Factor  ---------------------------------------------------------------------------------------------------------- 

   σx Algorithm 1 2 3 4 5 6 

0.75 NM 2.58 2.44 2.46 2.52 2.43 2.42 

 RS9 3.75 3.78 3.78 3.73 3.74 3.78 

 NMSM 2.38 2.36 2.38 2.32 2.40 2.41 

 NMSM+RS9 2.70 2.70 2.64 2.62 2.62 2.52 

 NMSMN 2.42 2.41 2.38 2.48 2.32 2.41 

 NMSMN+RS9 2.81 2.84 2.80 2.92 2.76 2.62 

 ANRS9 4.61 4.48 4.57 4.66 4.62 4.69 

 ANSM+RS9 3.08 3.21 2.45 2.89 3.05 2.64 

  ANSMN+RS9 3.06 3.26 2.46 3.41 3.22 2.64 

1.00 NM 2.55 2.44 2.42 2.55 2.45 2.44 

 RS9 3.78 3.78 3.72 3.77 3.70 3.78 

 NMSM 2.42 2.29 2.39 2.31 2.36 2.30 

 NMSM+RS9 2.71 2.63 2.69 2.60 2.65 2.64 

 NMSMN 2.44 2.42 2.37 2.35 2.40 2.30 

 NMSMN+RS9 2.65 2.79 2.74 2.86 2.60 2.67 

 ANRS9 4.46 4.56 4.68 4.59 4.63 4.70 

 ANSM+RS9 3.18 3.18 2.98 3.07 3.05 2.95 

  ANSMN+RS9 3.10 3.22 3.13 3.13 3.36 2.95 

1.25 NM 2.55 2.42 2.42 2.53 2.47 2.42 

 RS9 3.75 3.75 3.75 3.73 3.78 3.78 

 NMSM 2.45 2.33 2.34 2.33 2.22 2.28 

 NMSM+RS9 2.67 2.52 2.53 2.69 2.60 2.48 

 NMSMN 2.45 2.40 2.32 2.51 2.36 2.28 

 NMSMN+RS9 2.79 2.82 2.82 2.77 2.69 2.48 

 ANRS9 4.65 4.48 4.69 4.59 4.64 4.62 

 ANSM+RS9 3.26 3.09 2.97 3.11 2.91 3.19 

  ANSMN+RS9 3.31 3.41 3.07 3.41 2.97 3.19 

 

Secondly, comparing between memory and non-
memory methods, e.g., NMSM/NM, NMSM+RS9/RS9 
and ANSM+RS9/ANRS9, the  results show that memory 
deployment saves on resource consumption, spending on 
average 77% less than non-memory counterparts for all 
test functions and noise levels, e.g., NMSM+RS9 and 
ANSM+RS9 consume less resources for about 30%, than 
RS9 and ANRS9, respectively. This is because solutions 
that are less than εx apart are classified to be the same. If 
the search revisits the already seen parts of the 
solution space, it may use the sampling data from the 
previous visits, instead of resampling anew. For most 
test functions and noise levels, on average, utilizing 
memory reduces deviation D  by up to 80% of non-
utilizing memory, aside from Test Function 4 that 
involves the adaptive methods. For example, Test 
Function 5 for all noise levels, NMSM, NMSM+RS9 
and ANSMN+RS9 give better optimal solutions by up 
to 6% to 49% of NM, RS9 and ANRS9, respectively. 

The rest of comparing is between neighbor and non-

neighbor methods, e.g., NMSMN/NMSM, NMSMN+RS9 

/NMSM+RS9 and ANSMN+RS9/ANSM+RS9. Regarding 

the memory-utilizing property, for all noise levels and 

almost all test functions, except Test Function 4, the non-

adaptive methods which incorporate the neighbor-

structure neither saves computation effort nor improves 

estimates of the optimal solution, e.g., on Test Functions 

2 and 6, NMSMN and NMSMN+ RS9 give indistinguishable 

results on D  and L from NMSM and NMSM+RS9, 

respectively. In other words, using neighbor-structure is 

greedy and misled to a non-optimum compared to the 

algorithms without neighbor-structure. On the other 

hand, ANSMN+RS9 provides a better optimal solution 

and spends less computation effort than ANSM+RS9 by 

32% and 29%, respectively. These results show that using 

neighbor-structure on adaptive algorithms provide 

improved estimated optimal solutions. The search with 

good performance when there is no limitation on 

computational resource is AMSMN+ RS9 because it gives 

the least D  at all noise levels for most test functions, except 

Test Function 4. If computational computational resource 

is limited, NMSM+RS9 performs better. 
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Table 2. Average deviation of function value of algorithm from true function value (D)  

 
  Test function  

Factor  ------------------------------------------------------------------------------------------------------------------ 
  σx 

Algorithm 1 2 3 4 5 6 

0.75 NM 0.61 0.57 0.62 0.21 0.58 0.59 
 RS9 0.92 0.95 0.97 0.33 0.94 0.92 
 NMSM 0.45 0.54 0.61 0.15 0.54 0.54 
 NMSM+RS9 0.69 0.70 0.73 0.17 0.68 0.63 
 NMSMN 0.53 0.53 0.65 0.14 0.49 0.54 
 NMSMN+RS9 0.70 0.72 0.77 0.27 0.66 0.72 
 ANRS9 0.32 0.34 0.35 0.26 0.31 0.39 
 ANSM+RS9 0.22 0.15 0.26 0.43 0.23 0.33 
  ANSMN+RS9 0.20 0.23 0.26 0.38 0.24 0.33 

1.00 NM 0.76 0.73 0.81 0.26 0.85 0.81 
 RS9 1.22 1.26 1.29 0.56 1.26 1.22 
 NMSM 0.69 0.70 0.80 0.21 0.78 0.75 
 NMSM+RS9 0.92 0.92 0.94 0.23 0.89 0.99 
 NMSMN 0.69 0.67 0.78 0.22 0.74 0.75 
 NMSMN+RS9 0.85 0.92 0.96 0.36 0.88 0.87 
 ANRS9 0.39 0.40 0.53 0.30  0.47 0.46 
 ANSM+RS9 0.27 0.29 0.37 0.39 0.29 0.35 
  ANSMN+RS9 0.29 0.28 0.34 0.35 0.27 0.35 

1.25 NM 0.98 0.82 0.99 0.39 1.05 1.00 
 RS9 1.53 1.60 1.62 0.88 1.62 1.57 
 NMSM 0.98 0.96 0.85 0.23 0.84 0.92 
 NMSM+RS9 1.05 1.06 1.12 0.56 1.14 1.12 
 NMSMN 0.86 0.95 1.06 0.39 0.89 0.92 
 NMSMN+RS9 1.25 1.15 1.28 0.47 1.26 1.12 
 ANRS9 0.54 0.62 0.63 0.19 0.64 0.62 
 ANSM+RS9 0.35 0.28 0.50  0.33 0.33 0.42 
  ANSMN+RS9 0.37 0.37 0.50 0.32 0.34 0.42 

 

4. DISCUSSION 

We show that the Nelder-Mead algorithm which is 
designed for deterministic optimization can be modified 

to accommodate stochastic outputs. Using past information 
generally decreases computational effort and not 
jeopardizes the performance significantly. Although all 
adaptive-with-memory algorithms spends more com-
putational resources, they give better optimal solutions 
comparing with their corresponding non-adaptive ones. 
Exploiting neighborhood and utilizing memory are 
helpful for adaptive algorithms, but not for non-adaptive 
algorithms. The search performance is improved on 
either ANSM+RS9 and ANSMN+RS9 for unconstrained 
resource consumption, or NMSM and NMSMN for 
economical resource consumption.  

5. CONCLUSION 

Utilizing past information in continouse optimization 
saves computational resource. To improve an estimated 
optimal solutions without limitation of computational 
effort, uses past information corporates on adaptive 
method. For our future work, we extend our algorithm to 

discrete search space and apply simulation to decision 
making such as queuing or inventory problem.  
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