
Journal of Computer Science 10 (8): 1480-1487, 2014
ISSN: 1549-3636
© 2014 Science Publications
doi:10.3844/jcssp.2014.1480.1487 Published Online 10 (8) 2014 (http://www.thescipub.com/jcs.toc)

Corresponding Author: Karthikeyan, V., Department of ECE, Dr.M.G.R.Educational and Research Institute, Chennai, India

1480 Science Publications

JCS

ROBUST MEMORY MANAGEMENT
USING REAL TIME CONCEPTS

Karthikeyan, V., S. Ravi and M. Anand

Department of ECE, M.G.R. Educational and Research Institute, Chennai, India

Received 2014-02-14; Revised 2014-02-18; Accepted 2014-04-01

ABSTRACT

Memory fragmentation is the development of a large number of separate free areas. Memory management
in embedded systems demand effective implementation schemes to avoid fragmentation problem. Existing
dynamic memory allocation methods fail to suit real time system requirements. Execution times need to be
deterministic and this motivates the need for allocation and deallocation to be done in constant time
with the help of API’s. In µC/OS-II, memory allocation is semi-dynamic and a buddy allocator
dynamic memory allocation algorithm is commonly used. Programmer must statically allocate a
memory and partition the region using µC/OS-II Kernel API. Tasks can only request pre-partitioned
fixed-size memory space from µC/OS-II. Memory allocation times are influenced by the ratio of
memory allocation to the stack size of the task. In this research work memory management in LPC
1768 environment using RTOS µC/OS-II is proposed. Effective sharing of memory blocks among
tasks co exists with partition. The captured results shows that the memory allocation and deallocation
suits real time. The implication of the work is that, the necessity to reserve a static set of locations
ahead of time is eliminated so that memory can be allocated at compile or design time.

Keywords: Memory Allocation, RTOS, µC/OS, Embedded Systems, LPC1768, Fragmentation

1. INTRODUCTION

Optimal methods for memory management involve
allocating memory to a process when needed and deal
locating memory when no longer in use. Swapping can
make the memory used by all the running processes to
exceed main memory and hence needs to be used
carefully. Medium-term scheduler removes the un used
process from memory. At some later time, the process
can be reintroduced into memory and its execution can
be continued from where it left. Swapping is a technique
where processes are moved into and out of memory as
and when memory is requested else remain free.
Swapping is handled by a medium-term scheduler.
Swapping is also used in paging system where a process
that is swapped out will release all its page frames for
use by other processes. Swapping requires a backing
store (commonly a fast disk). The system maintains a
ready queue consisting of all processes whose images are
in backing store. Whenever the CPU scheduler decides

to execute a process, it calls the dispatcher which in turn
check whether the process in queue is in memory, if not,
there is no free memory region, the dispatcher swap out a
process currently in memory and swap in the desired
process. It then reloads the register as normal and
transfers control to the selected process. Virtual memory
makes it possible to run a single program that uses more
memory than the main memory (normally RAM) available
on the system. Programs refer to parts of memory using
addresses. In a virtual memory system, these are virtual
addresses. The virtual address is mapped onto physical
addresses by a Memory Management Unit (MMU).

2. MOTIVATION BEHIND THE
RESEARCH WORK

The need for effective memory management is
illustrated in the following examples. In data base
application there is a need to manage time varying
data and they are referred to as temporal data bases.

Karthikeyan, V. et al. / Journal of Computer Science 10 (8): 1480-1487, 2014

1481 Science Publications

JCS

The temporal data model should be designed in a way
to reduce the cost of memory storage (Halawani and
Al-Romema, 2010)”. Anbumozhi and Manoharan
(2014) proposed a method of fuzzy based image
fusion in that the author highlighted the need for
limited memory buffers with low computational
complexity in order to reduce the hardware cost. Due
to the limited memory capacity of mobile devices the
AST node is generated and executed only when
required and there is no need of converting all AST
nodes to respective code bytes (Patra et al., 2013).

In artificial Immune recognition system there is need
to allocate resources in such way that only limited
memory cells should be used but without reducing the
accuracy of AIRS (Golzari et al., 2011). The main
objective in scanning of data base to mine the spatially
co-located moving objects is to minimize the
computation cost and memory usage (Manikandan and
Srinivasan, 2013)”. Revathy and Saravanan (2014)
proposed a efficient parity check decoder for low power
applications. In this the author specified the importance
of effective utilization of hardware considering the
rapid growth of technology memory devices becomes
larger and powerful. The modern embedded system
applications requires large quantity of memory usage
but in many cases an embedded system has limited
memory capacity only and also size of input data
cannot be estimated in advance.

In situations like above there is a need to design a
effective memory management system such that memory
can be utilized efficiently (Porwal and Mittal, 2013)”.

3. MEMORY ALLOCATION METHODS

In RTOS there are two types of memory allocation;
static and dynamic. The classification of memory
allocation is shown in Fig. 1.

In static memory allocation: Memory is allocated at
compile or design time and allocation is prefixed. In
dynamic memory allocation memory allocation is done
during run time and it requires the status of memory
blocks at all instant. In this memory allocation is created
and destroyed during run time. Manual memory
allocation is simply used for the purpose of
understanding the memory management concept. In
Automatic memory allocation the allocation task is
executed by recycling the blocks and it eliminates
memory allocation bugs.

4. DYNAMIC MEMORY ALLOCATION
ALGORITHMS

The different types of dynamic memory allocation
algorithms are explained below.

4.1. Sequential Fit

The algorithm uses single linear list of all free
memory blocks, the blocks are allocated from this list.
The algorithm is easy to use but time consuming.

4.2. Indexed Fit

The algorithm uses an indexing data structure like
tree to found the free blocks.

4.3. Bit Mapped Fit

The algorithm uses a bitmap to represent the usage of
the heap.

4.4. Two Level Segregated Fit (TLSF)

TLSF is a combination of segregated and bitmap fit
algorithms. It solves the worst case bound problem and
produces high efficient allocation and deallocation in
real time applications.

Fig. 1. Memory allocation methods

Karthikeyan, V. et al. / Journal of Computer Science 10 (8): 1480-1487, 2014

1482 Science Publications

JCS

Table 1. Comparison between memory allocation algorithms
 Parameters

Algorithms Response time Fragmentation

Sequential fit Slow Large
Indexed fit Fast Large
Bitmapped fit Fast Large
TLSF Faster Small
Smart memory allocator The fastest smallest
Buddy system Fast Large

4.5. Buddy Allocator

It uses an array of free lists, one for each allowable
block size. The buddy allocator rounds up the requested
size to an allowable size and allocates from the
corresponding free list. If the allocated free list is empty
then another free list is selected. The main advantage of
buddy system is that freed blocks can be found quickly
by simply address computations. Table 1 shows the
comparison between different dynamic memory
allocation algorithms.

5. PROPOSED METHOD FOR MEMORY

MANAGEMENT

Malloc() and free() is dangerous in embedded real-
time system as inability to obtain a single contiguous
memory area due to fragmentation can be fatal
(Krishnaveni and Sivakumar, 2013)”. Execution time of
malloc() and free() are also nondeterministic. When
using dynamic memory allocation de-fragmentation of
memory will be required, but that can be time
consuming. To avoid the above issues, all the memory
allocations have to be done initially in the program, so
that there is no uncertainty about the availability of
memory during runtime. In µC/OS-II, fixed-sized
memory blocks are created from a partition made of a
contiguous memory area as shown in Fig. 2. All memory
blocks are the same size and the partition contains an
integral number of blocks. Allocation and deallocation of
these memory blocks is done in constant time and is
deterministic. µC/OS-II controls the partitions with
memory control blocks.

The run-time mapping form virtual to physical
address is done by a hardware device and forms the
memory management unit. Program Status Words
(PSW) controls the order of instruction execution and
contains various information about the state of a process.
There are three types of PSW’s namely; current PSW,
new PSW and old PSW.

5.1. Virtual Memory and Benefits

Virtual memory is a hardware technique where the
computer system appears to have more memory than it
actually does (Gopal et al., 2010). This is done by time
sharing the physical memory and executing a process
that may not be completely in main memory. The
advantages include:

• A program would no longer be constrained by the

amount of physical memory that is available
• Since each program could take less physical memory,

more programs could be run at the same time
• Less I/O would be needed to load or swap each

user program into memory. So each user program
would run faster

5.2. µC/OS-II API and its Functions

OSMemCreate(), OSMemGet(), OSMemPut() and
OSMemQuery() are the main RTOS functions used in
this research work. The µC/OS-II API’s and their
purpose is listed in Table 2.

5.3. Identified Hardware Setup

In this study the combination of LPC 1768
hardware and µC/OS-II kernel are used to minimize
the complexity of the system (Srikanth and Samunuri,
2013)”. The LandTiger V2.0 NXP LPC1768 ARM
development board is a 32 bit Microprocessor used for
embedded system applications. The Board has
following features:

• 512KB on chip flash program memory
• 64KB SRAM for high performance CPU
• Standard JTAG test/debug interface
• Two RS 232 serial interfaces
• Two CAN bus communication interfaces
• RS 485 communication interface
• RJ45-10/100M Ethernet network interface
• DAC o/p interface and ADC i/p interface
• USB 2.0 interface
• SD/MMC card (SPI) interface
• Color LCD display interface

LPC 1768 is a high performance and Low power
consumption Microprocessor. µC/OS-II is a real time
multi tasking operating system kernel version 2. It is
used for inter task communication and synchronization
and it has the following features:

• Portable, preemptive, multitasking kernel
• It can handle 64 tasks

Karthikeyan, V. et al. / Journal of Computer Science 10 (8): 1480-1487, 2014

1483 Science Publications

JCS

• It supports processors up to 64 bit
• It has deterministic execution times
• µC/OS-II is simple to use and simple to implement

KERNEL

An real time operating system (µC/OS-II) fulfills the
requirements of events that happens in real time. RTOS
gives an efficient solution for memory management with
variable sizes of memory blocks required for different
processes (Wang et al., 2011).

6. DEVELOPMENT CYCLE

The various steps involved in memory allocation and
deallocation is presented here. A new memory partition
is created using OSMemCreate() and as an illustration 5
blocks with block size of 5 is created. A request for the
memory blocks to remain in a loop until no more blocks
are available is placed. At each stage the amount of used
and free memory available in the memory block is
dynamically tracked. The memory blocks in a loop are
released until all the blocks are released and at each stage
the amount of used and free memory available in the
memory block is displayed. The sequence of steps
illustrating the above is given in Fig. 3.

6.1. Algorithm

The algorithm for task 1 and interrupt handler is
given below:

1. Get memory Status using OSMemQueryAPI
2. Display the used and free memory of the partition
3. Get memory block from partition using OSMemGet API
4. Display the used and free memory of the partition
5. If memory block is not NULL go to step 3
6. Display the used and free memory of the partition
7. Put memory block to the partition using OSMemPut API
8. Display the used and free memory of the partition
9. If used memory in the partition exceeds 0 go to step 7
10. Display the used and free memory of the partition
11. End

The task for the above algorithm is created with
function App_Task1 Create() and a stock of sufficient
size is created to run task properly with function
OSTaskCreate(). Priority of the task is passed to API using
the function APP_TASK1_PRIO.OSMemCreate(),
OSMemGet(), OSMemPut() and OSMemQuery() are used
to create a memory partition ,to get a block from the
memory partition, to put the memory block to the partition
and to query the status of the memory partition respectively.

Fig. 2. Memory block partition

Table 2. µC/OS-II API’s and its functions
µC/OS-II API Functions
App_Task 1 create Used to create Application Task1
Os Task create Used for Task creation
Os_Task_Name_EN Used to enable Task name
OS_Mem Create() To create new Memory Partition
OS_Mem Get() Get Memory and Allocate the block
OS Mem Put() Return all the Memory blocks
 to a memory partition
Mem_Init() Used for Memory initialization
App_Task_Start_PRIO To start the Task Priority
OS_Start Start Multitasking
OS_Mem Query To get details about Memory

6.2. Code Implementation in C

The following are the codes for Task Creation, Task1,
Memory Partition initialization and global declarations.

6.2.1. Task Creation

Void App TaskCreate(void)
{
CPU_INT08U os err;
Os_err = os_err;
UART0_SendString(“Creating Task 1(Memory
Management) with priority 58\r\n”);
Os_err = OSTaskCreate((void(*)(void*))uctsk_Task1,
 (void *)0,

 (OS_STK*) &
App_Task1stk[APP_TASK_STK_SIZ
E-1],

 (INT8U)
 APP_TASK1_PRIO);
if OS TASK NAME EN>0

Karthikeyan, V. et al. / Journal of Computer Science 10 (8): 1480-1487, 2014

1484 Science Publications

JCS

6.2.2. Task 1

Static void uctsk_Task1 (void*pdata)
{
 INT8U err=0;
 Int cnt = 0;
 OS_MEM_DATA mem_data;
 pdata = pdata;
UART0_SendString(“Task1(Memory Management) is
Created\r\n”);
UART0_SendString(“\r\n****MEMORY BLOCKS
ALLOCATION****\r\n\n”);
6.2.3. Memory Partition Init and Global Declarations
OS_MEM*CommMem;
INT8U*msg[6];
INT8U CommBuf[5][5];

Void Mem_Init(void)
{
 INT8U err;
 CommMem=OSMemCreate(&CommBuf[0]
[0],5,5,&err);
}

6.3. Experimental Setup

USB cable of the LPC 1768 Board is connected to
USB port of the system and Serial port of the LPC 1768
Board is connected to Serial port of the system The
memory management program is compiled and
downloaded to the LPC 1768 board By resetting the
board, the allocation and de allocation of memory
blocks in hyper terminal can be seen. The experimental
setup is shown in Fig. 4.

Fig. 3. Steps in memory management

Karthikeyan, V. et al. / Journal of Computer Science 10 (8): 1480-1487, 2014

1485 Science Publications

JCS

7. RESULTS

Real time implementation of memory allocation is
demonstrated in Fig. 5 which shows a creation of new
memory partition with block size of 5 and task1for
memory block allocation, release and display of status
of memory blocks. The allocation of memory blocks

one by one is shown in Fig. 6. In which it is clearly
seen that free and used memory status is updated
dynamically each time a block is allocated. Similarly
release of memory blocks after use is shown in Fig. 7,
here also used and free memory status displayed each
time a block is released. The results shows that memory
allocation is done in real time.

Fig. 4. Experimental setup 1. USB Cable of LPC 1768(Connected to USB Port of PC), 2. Serial port of LPC 1768(Connected to PC

Serial port)

Fig. 5. Real time implementation of memory management

Karthikeyan, V. et al. / Journal of Computer Science 10 (8): 1480-1487, 2014

1486 Science Publications

JCS

Fig. 6. Memory blocks allocation

Fig. 7. Memory blocks deallocation

Karthikeyan, V. et al. / Journal of Computer Science 10 (8): 1480-1487, 2014

1487 Science Publications

JCS

8. DISCUSSION

In reported algorithms, the search time increases
particularly when the memory available for allocation is
large. In this study, the allocator rounds up the requested
size to an allowable value and permits to select a larger
block from another vacant list. Masmano et al. (2008)
proposed a TLSF dynamic memory allocator for a real
time application. TLSF is a constant time, good fit
allocator. In this suitable list is found by processor bit
instructions and word size bitmaps. A comparison is
being made on timing performance with other allocators.
The results presented by author’s shows that percentage
of fragmentation is very high in buddy allocator
compared with TLSF allocator. The results of proposed
buddy allocator coded in Keil C language shows vast
improvement in minimization of fragmentation and also
it achieves bounded execution time without wasting
memory space. In this study memory is considered as a
resource in real time application and its efficient
management is demonstrated.

9. CONCLUSION

In this study, a buddy allocator dynamic memory
allocation algorithm for efficient memory management
in real time environment has been implemented. In this
method when a memory block is allocated or released
then the free and used memory blocks (displayed in the
hyper terminal) can be easily found by simple address
computation. This method enables easy allocation and
deallocation of memory blocks, minimizes the
fragmentation, ensures optimal utilization of memory
and good locality among memory blocks. Although, this
method is optimal, it still has a limitation that it has a
residual fragmentation and this could be due to restricted
block sizes. Future direction of research shall be on
overcoming this limitation and design a memory
allocator that solves the problem of allocation based on
the task behavior and use of real time concepts in
message box and mail queue techniques.

10. REFERENCES

Anbumozhi, S. and P.S. Manoharan, 2014.
Performance analysis of high efficient and low
power architecture for fuzzy based image fusion.
Am. J. Applied Sci., 11: 769-781. DOI:
10.3844/ajassp.2014.769.781

Golzari, S., S. Doraisamy, M.N. Sulaiman and N. Udzir,
2011. An efficient and effective immune based
classifier. J. Comput. Sci., 7: 148-153.
DOI: 10.3844/jcssp.2011.148.153

Gopal, B., R. Beg and P. Kumar, 2010. Memory
management technique for paging on distributed
shared memory framework. Int. J. Comput. Sci.
Inform. Technol., 2: 141-153.

Halawani, M.S. and N.A. Al-Romema, 2010. Memory
storage issues of temporal database applications on
relational database management systems. J. Comput.
Sci., 6: 296-304. DOI: 10.3844/jcssp.2010.296.304

Krishnaveni, N. and G. Sivakumar, 2013. Survey on
dynamic resource allocation strategy in cloud
computing enviornment. Int. J. Comput. Applic.
Technol. Res., 2: 731-737.

Manikandan, G. and S. Srinivasan, 2013. An efficient
algorithm for mining spatially co-located moving
objects. Am. J. Applied Sci., 10: 195-208. DOI:
10.3844/ajassp.2013.195.208

Masmano, M., I. Ripoll, P. Balbastre and A. Crespo,
2008. A constant-time dynamic storage allocator for
real-time systems. Real-Time Syst., 40: 149-179.
DOI: 10.1007/s11241-008-9052-7

Patra, S.K., B.K. Pattanayak and B. Puthal, 2013.
Javascript interpreter using non recursive abstract
syntax tree based stack. Am. J. Applied Sci., 10:
403-413. DOI: 10.3844/ajassp.2013.403.413

Porwal, S. and H. Mittal, 2013. An efficient memory
management technique for smart card operating
system. Int. J. Comput. Technol., 5: 124-129.

Revathy, M. and R. Saravanan, 2014. Performance
analysis of high efficiency low density parity-check
code decoder for low power applications. Am. J.
Applied Sci., 11: 558-563. DOI:
10.3844/ajassp.2014.558.563

Srikanth, K. and N. Samunuri, 2013. RTOS Based
priority dynamic scheduling for power applications
through DMA peripherals. Int. J. Eng. Trends
Technol., 4: 3660-3664.

Wang, Y.Y., R.B. Sallie D.A. Chang, W.L. Silver and
E.R. Liman, 2011. A TRPA1-dependent mechanism
for the pungent sensation of weak acids. J. Cell
Biol., 137: 493-505. DOI: 10.1085/jgp.201110615

