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ABSTRACT 

It is imperative for any level of cache memory in a multi-core architecture to have a well defined, dynamic 
replacement algorithm in place to ensure consistent superlative performance. The most prevalently used 
LRU replacement policy does not acquaint itself dynamically to the changes in the workload. As a result, it 
can lead to sub-optimal performance for certain applications whose workloads exhibit frequently fluctuating 
patterns. To overcome the limitation of this conventional LRU approach, our paper proposes a novel 
counter-based replacement technique which logically partitions the cache elements into four zones based on 
their ‘likeliness’ to be referenced by the processor in the near future. Categorizing the elements into 
different zones is achieved with the help of a 3-bit counter that is associated with every cache line. On a 
cache hit, the corresponding element is promoted from one zone to another zone. Replacement candidates 
are chosen from the zones in the ascending order of their ‘likeliness factor’ (i.e.,) the first search space for 
the victim would be the never likely to be referenced zone, followed by the subsequent zones till the most 
likely to be referenced zone is reached. Periodic zone demotion of elements also occurs to make sure that 
stale data does not pollute the cache. Experimental results obtained by using the PARSEC benchmarks have 
shown almost 7% improvement in the overall number of hits and 3% improvement in the average cache 
occupancy percentage when compared to LRU algorithm. 
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1. INTRODUCTION 

Replacement policies play a vital role in determining 
the performance of a system. In a multi-core 
environment, where processing speed and throughput are 
of essence, selecting a suitable replacement technique for 
the underlying cache memories becomes crucial. Cache 
memory hierarchy in multi-core processors usually 
consists of two levels. The private level 1 (or L1) cache 
associated with every core and a relatively larger level 
2(or L2) cache which may be shared by all the cores. If 
this turns out to be the final cache level, it can also be 
referred to as the Shared Last Level Cache (LLC).  

In present day environment, LRU approach is widely 
deployed across shared LLCs to choose the replacement 
candidates. This method seems to work well with many 

applications found today. However when it comes to 
certain workloads which possess an unpredictable data 
reference pattern that fluctuates frequently with time, LRU 
can result in poor performance. A closer observation on 
LRU can help reveal the cause for this problem. It 
assumes that all the applications follow the same reference 
pattern (i.e.,) they abide by the spatial and temporal 
locality theories. Any data item that is not accessed by the 
processor over a period of time is tagged as ‘least recently 
used’ and evicted from the cache. When such a data item 
is required by the processor in future, it is not found in the 
cache and has to be fetched from the main memory. 

Two other replacement strategies that are commonly 
being employed apart from LRU include the Not Recently 
Used (NRU) and Most Recently Used (MRU) policies. 
Functionally MRU is pretty much similar to LRU with a 
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slight difference that the most recently referred data item is 
chosen as victim. So there will not be much difference in 
terms of performance compared to LRU. NRU associates a 
single bit counter with every cache line to aid in making 
replacement decisions. It might be effective compared to 
LRU in certain cases, but a 1-bit counter may not be 
powerful enough to create the required dynamicity. 

To address the shortcomings of the previously 
discussed algorithms and to improve the overall hit rate, 
the study proposes a novel counter based replacement 
technique that logically partitions the cache into four 
different zones namely-Most Likely to be Referenced 
(MLR), Likely to be Referenced (LR), Less Likely to be 
Referenced (LLR), Never Likely to be Referenced (NLR) 
in the decreasing order of their likeliness factor 
Replacement, insertion and promotion of data elements 
take place within these zones in such a manner that the 
overall hit rate is maximized.  

1.1. Related Work 

Lot of researches has been carried out to discover 
dynamic replacement algorithms that can be applied over 
cache memories. As mentioned earlier, the more 
adaptive a replacement technique is, the better is the 
performance boost obtained (Hameed et al., 2013; 
Janapsatya et al., 2010). The replacement algorithm 
suggested by Odule and Osingua (2013) makes 
replacement decisions at runtime based on the changing 
workload patterns. Though it adapts to the spatial and 
temporal features of the workload, it operates at a page-
level granularity rather than at a finer block-level 
granularity which can be crucial when the workload 
pattern changes very frequently. 

Shared LLC is accessed by multiple cores. So it is 
imperative to have a good replacement algorithm 
running over it. When a miss is encountered here, the 
resulting overhead can be higher compared to other 
cache levels. Many works (Jaleel et al., 2008; Wu and 
Martonosi, 2011; Srikantaiah et al., 2008) have emerged 
in recent times which strive to improve the performance 
at LLC. Reineke and Grund (2010) have even explored 
the possibility of execution history such as the initial 
hardware state of the cache affecting the sensitivity of 
replacement algorithms applied over it.  

 The lines which will never be referenced by the 
processor in the future (dead-lines) need to be 
eliminated in order to increase cache space utilization 
factor (Soares et al., 2008). Counter based cache 
replacement and cache bypassing algorithm proposed 
by Kharbutli and Solihin (2008), works on this issue and 
tries to predict the dead-lines well in advance and choose 

them as victims. But with a constantly fluctuating workload, 
the process of prediction might become intricate and the 
accuracy can be lost. 

Hence in this study we focus on designing a novel 
counter based replacement algorithm for shared LLC in a 
CMP environment which makes decisions at a fine-
grained block level. To deal with fluctuating data access 
pattern, it logically partitions the cache into different 
zones using a 3-bit counter and consistently transports 
the elements from one zone to another zone in 
accordance with the input data set pattern and thus 
maximizes the hit rate compared to LRU algorithm.  

The rest of the study is organized as follows. 
Section 2 explains our replacement strategy in 

detail, section 3 describes the experimental setup, 
sections 4 and 5 analyze the obtained results and 
compare the performance with LRU and finally Section 
6 summarizes the study. 

2. COUNTER BASED LOGICAL 
CACHE PARTITIONING 

APPROACH 

As discussed earlier, schemes like LRU, MRU, NRU 
might lead to sub-optimal performance for certain 
applications as they do not dynamically accustom to the 
changing workload patterns. Hence in this work we propose 
a cache replacement technique which is targeted towards 
the shared LLC. It uses a 3-bit counter to dynamically 
shuffle the cache elements and logically partition them into 
four different zones based on their likeliness to be 
referenced by the processor in the near future. This counter 
from here on will be referred to as Logical Cache 
Partitioning (LCP) counter. The lower and upper bounds for 
the counter are set to ‘0’ and ‘7’ respectively. The 
prediction about the likeliness of reference of the data items 
is made with the help of the hits encountered in the cache. 
As the number of hits for a particular element 
increases, it is moved up the zone list till it reaches 
the MLR region. Only if it stays unreferenced for 
quite an amount of time, it is evicted from the cache. 
Let us assume that the mapping policy used is the set 
associative mapping (Henessey and Patterson, 2011). 
Table 1 shows the counter value range for each zone.  

As their names imply, the zones are arranged in the 
decreasing order of their likeliness factor. Every cache 
line is associated with a LCP counter which is initialized 
with a value of ‘-1’. Any replacement policy consists of 
three phases-Replacement, Insertion and Promotion. 
Each of which is explained in the subsequent sections. 
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Table 1. Zone categorization 
Counter value range Zone 
6-7 MLR 
3-5 LR 
1-2 LLR 
0 NLR 
 
2.1. Replacement 

When a miss is encountered in the cache, the data item 
is fetched from the secondary memory and brought into the 
cache thereby replacing one of the elements which was 
already present in the cache. This element is often referred 
to as the victim. The process of selecting a victim needs to 
be efficient in order to improve the hit rate. In our method, 
the victim is selected from the zones in the increasing order 
of their likeliness factor. Any cache line which comes under 
the NLR zone is considered first for replacement. If no such 
line is found search is performed again to check if any 
element falls in the LLR region and so on till MLR is 
reached. If two or more lines possess the same counter 
value that is considered for replacement during that 
iteration, the line that is encountered first is chosen as the 
victim. Once the replacement is made, LCP counters of all 
the other data elements are decremented by ‘1’. This is done 
to carry out gradual zone demotion as discussed earlier to 
flush out unused data items from the cache. 

2.2. Insertion 

This phase is encountered as soon as the replacement 
candidate is found. The new incoming data item is 
inserted into the corresponding cache set and its LCP 
counter value is set to ‘2’ (LLR zone).  

2.3. Promotion 

A hit on any data item in the cache calls for the 
promotion phase. The LCP value associated with the 
cache line is incremented to the final value of its 
immediate upper zone. For example, if it was earlier in 
the LLR zone (LCP value ‘1’ or ‘2’), its LCP value is set 
to ‘5’ (i.e.,) the element now falls within the LR zone. 

2.4. Boundary Condition Check 
It is essential that the LCP counter value does not 

overshoot its specified range. Thus whenever it is modified, 
a boundary condition check is carried out to ensure that the 
value does not go below ‘0’ or beyond ‘7’.  

2.5. Comparison with LRU 

Consider the following data set: 

. . .2 9 1 7 6 1 7 5 9 1 0 7 5 4 8 3 6 1 7 . . . 

 It can be seen that data items 1 and 7 occur frequently. 
Table 2 shows the working of LRU and LCP on this data 
pattern. Assume that the cache can hold 4 blocks at a time. 
Incoming data items at that point of time are shown in the 
leftmost column. In the right most column, ‘m’ indicates a 
miss and ‘h’ indicates hit. Initially the cache contains 
invalid blocks. Counter values associated with all the blocks 
are set to -1. After applying both the techniques, LCP has 
resulted in 3 hits more than LRU. It is to be noted that 
frequently occurring data items 1 and 7 have resulted in hits 
towards the end unlike LRU. This is primarily because 
LRU follows the same approach irrespective of the 
workload pattern and tags 1 and 7 as ‘least recently used’ 
whereas LCP dynamically adjusts itself according to the 
access pattern change.  

3. EXPERIMENTAL SETUP 

For simulation purpose we have chosen an open-source, 
full system simulator called Gem5 (Binkert et al., 2011) 
which is capable of simulating a variety of Instruction Set 
Architectures (ISAs). We make use of the Alpha ISA with 2 
cores at 2 GHz clock frequency. Supported cache levels 
include a private L1 cache which is further sub-divided into 
instruction and data cache and an L2 cache which is shared 
between the available cores. The size of L1 and L2 cache 
are set to 64 kB and 2 MB respectively. Line size for both 
the caches is 64B. L1 cache is 2-way associative and L2 
cache is 8-way associative. 

3.1. Benchmark 
Eight workloads have been selected from the princeton 

application repository for shared-memory computers 
(Bienia et al., 2008; Gebhart et al., 2009), a benchmark 
suite that comprises numerous large scale commercial 
multi-threaded workloads targeted towards CMP, to 
evaluate our method. Every workload is unique and their 
working set size varies considerably. Table 3 highlights the 
key characteristics of all the PARSEC benchmarks used. 

4. RESULTS 

From here on, the term LCP will be used to represent 
our method in the graphs. Percentage increase in the overall 
number of hits at L2 is shown in Fig. 1. The x-axis 
represents each benchmark and the y-axis shows the 
percentage change in hits compared to LRU. Figure 2 
shows the total number of replacements made at L2. Figure 
3 shows the miss rate recorded by the individual cores and 
also the overall miss rate at L2. Figure 4 shows the average 
L2 cache occupancy percentage for all the benchmarks. 
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Table 2. Working of LRU and LCP for the data set shown above 
Input                          Cache contents (LRU)                       Hit/miss            Input                    Cache contents (LCP)                 Hit/miss 
2  2    m 2 22 -1 -1 -1 m 
9 9 2   m 9 22 92 -1 -1 m 
1 1 9 2  m 1 22 92 12 -1 m 
7 7 1 9 2 m 7 22 92 12 72 m 
6 6 7 1 9 m 6 62 91 11 71 m 
1 1 6 7 9 h 1 62 91 15 71 h 
7 7 1 6 9 h 7 62 91 15 75 h 
5 5 7 1 6 m 5 61 52 14 74 m 
9 9 5 7 1 m 9 92 51 13 73 m 
1 1 9 5 7 h 1 92 51 17 73 h 
0 0 1 9 5 m 0 91 02 16 72 m 
7 7 0 1 9 m 7 02 91 16 75 h 
5 5 7 0 1 m 5 01 52 15 74 m 
4 4 5 7 0 m 4 42 51 14 73 m 
8 8 4 5 7 m 8 41 82 13 72 m 
3 3 8 4 5 m 3 32 81 12 71 m 
6 6 3 8 4 m 6 31 62 11 70 m 
1 1 6 3 8 m 1 31 62 15 70 h 
7 7 1 6 3 m 7 31 62 15 72 h 

 
Table 3. Key characteristics of PARSEC benchmarks used 
Program Application domain Working set 
Blackscholes Financial analysis Small 
Canneal Computer vision Medium 
Dedup Enterprise storage Unbounded 
Ferret Similarity search Unbounded 
Fluidanimate Animation Large 
Swaptions Financial analysis Medium 
Vips Media processing Medium 
X264 Media processing Medium 

 

 
 

Fig. 1. Percentage increase in overall number of hits at L2 compared to LRU 
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Fig. 2. Change in number of replacements made at L2 
 

 
 

Fig. 3. Miss rate recorded by individual cores 
 

  
 

Fig. 4. Average cache occupancy percentage 
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5. DISCUSSION 

Miss rate can be defined as the number of misses 
expressed as a fraction of total number of accesses. As it 
can be seen from Fig. 3 there is reduction in the core-
wise miss rate and overall miss rate across majority of 
the benchmarks when compared to LRU.  

Apart from two workloads, all the others have shown 
significant improvement in hits. Percentage increase in 
hits varies from a minimum of 0.1% (Dedup) to 
maximum of up to 15.1% (Blackscholes) as shown in 
Fig. 1. Percentage increase in hits is computed from the 
difference between the number of hits in LCP and LRU. 

Number of replacements reflects the efficiency of any 
replacement algorithm. A maximum of almost 20% 
decrease in the number of replacements can be observed 
across the given workloads compared to LRU from Fig. 2. 
Cache occupancy refers to the amount of cache that is being 
effectively utilized to improve the performance for any 
workload. Figure 4 indicates cache utilization is marginally 
higher for majority of the benchmarks when LCP is applied 
compared to LRU. 

6. CONCLUSION 

 In this study we have come up with a dynamic and a 
structured replacement strategy to be adopted across the 
LLC. Key points pertaining to our replacement policy 
goes as follows: 

• Elements of the cache are logically partitioned into 
four zones based on their likeliness to be referenced 
by the processor with the help of a 3-bit LCP 
counter associated with every cache line. The 
minimum value that the counter can hold is ‘0’ and 
the maximum value is ‘7’ 

• Replacement candidates are chosen from the zones 
in the increasing order of their likeliness factor 
starting from the NLR zone. Initially all the counter 
values are set to ‘-1’. Conceptually all the blocks 
contain invalid data 

• For every hit, the corresponding element is moved 
up by one zone by adjusting the LCP counter value. 
If it has reached the top most zone (MLR) the 
counter value is left untouched  

• For every miss the counter value is decremented by 
‘1’ to prevent stale data items from polluting the 
cache over a period of time. When a new data 
arrives, its LCP value is set to ‘2’. Boundary 
condition check needs to be applied whenever the 
LCP counter value is modified to make sure that it 
does not overshoot its designated range 

Experimental results obtained by applying our 
method on PARSEC benchmarks have shown a 
marginal improvement of 7% in the overall number of 
hits and 3% improvement in the average cache 
occupancy percentage when compared to the 
conventional LRU approach. 

6.1. Limitations 

The number of bits used to represent LCP counter is 
kept to three owing to hardware limitations. Since it is 
has to be associated to with every cache line, increasing 
the number of bits might increase the hardware 
complexity. Benchmark evaluation has been carried out 
with a fixed set of system parameters (i.e.,) L1 and L2 
cache sizes have been fixed to 64 kB and 2 MB 
respectively and the Instruction Set Architecture is 
chosen as Alpha.  

6.2. Future Research 

LCP is proven to have yielded good results at L2 
cache level. Studies can be conducted to measure the 
performance by applying our method across all the 
available cache levels. Combining the current cache 
optimization techniques such as data prefetching along 
with LCP can produce really high performance.  
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