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ABSTRACT 

Multi-agent systems are broadly known for being able to simulate real-life situations which require the 
interaction and cooperation of individuals. Opponent modeling can be used along with multi-agent systems 
to model complex situations such as competitions like soccer games. In this study, a model for predicting 
opponent moves based on their target is presented. The model is composed by an offline step (learning 
phase) and an online one (execution phase). The offline step gets and analyses previous experiences while 
the online step uses the data generated by offline analysis to predict opponent moves. This model is 
illustrated by an experiment with the RoboCup 2D Soccer Simulator. The proposed model was tested using 
22 games to create the knowledge base and getting an accuracy rate over 80%.  
 
Keywords: Opponent Modeling, Machine Learning, Case Based Reasoning 

1. INTRODUCTION 

An agent can be defined as an autonomous entity in 
an environment with the capacity of taking its own 
actions in order to achieve a goal (Wooldridge, 2008). 
Also, multi-agent systems take a set of agents in order to 
cooperate and achieve a common goal that cannot be 
completed without the help of other agents. 

Multi-agent systems are broadly known for being able to 
simulate real-life situations which require the interaction 
and cooperation of individuals. These systems are really 
good in modeling situations where different autonomous 
individuals need to interact with each other and their 
environment in order to accomplish a certain goal. 

Due to the multi-agent systems’ nature, a common 
practice is to use them to represent a competitive 
environment in which two teams play against each 
other in order to accomplish a goal that directly 
interferes with the other team’s objective. An example 
of this type of environments is the soccer game. A 
soccer game features two teams composed by eleven 
players each where the fundamental objective is to 
score more goals than the opponent. Using agents to 

represent each player is a natural way to model these 
kinds of environments, since most players tend to 
have similar capacities and in this case, only the 
goalkeeper has to attend different rules, as it is the 
only one who can grab the ball with its hands. 

It was decided to test our Strategy Patterns 
Prediction Model (SPPM) in a soccer-like 
environment (Gonzalez and Uresti, 2011). This research 
is based on opponent modeling on multi-agent systems 
on RoboCup 2D Soccer Simulator, an environment 
where participants are in constant movement and 
interaction and it is focused on the defensive actions of 
the team. It is accomplished following a complete cycle 
that is going to be discussed in the rest of this document.  

2. MATERIALS AND METHODS 

2.1. Knowledge Base Creation 

Knowing how the opponent is going to behave in a 
competitive environment such as soccer is a great way to 
increase a team’s effectiveness by being able to anticipate 
the rival’s actions.  
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In general, the result of predicting the behavior and 
movements of other agents and storing them in such a way 
that it is useful for making predictions is known as 
Opponent Modeling. Since it does not specify a unique 
technique to achieve its goal, the algorithms and methods 
used are chosen by each researcher. It can be 
implemented in most competitive games that involve two 
or more participants. While Opponent Modeling is a 
proven techinque to improve players or teams results 
(Del Giudice and Gmytrasiewicz, 2009; Richards and 
Amir, 2007; Parker et al., 2006; McCracken and Bowling, 
2004; Laviers et al., 2009), it also needs a lot of 
information, in some cases it is needed to create a sub-
domain of the original environment to reduce complexity. 

Creating a good opponent model is not a trivial task and 
can take a large amount of processing time because it needs 
to include as many cases as possible, meaning a great 
amount of data. This causes that creating a functional 
opponent model, one that is based specifically on the actual 
rival and without any previous knowledge, a difficult task 
inside a dynamic environment such as soccer. It becomes 
almost impossible because of the little number of 
interactions that can be generalized into a real model of 
the entire team including its strategies (Stone et al., 
2000). In this manner previous knowledge from the 
opponent is needed (Ramon et al., 2002; Kuhlmann et al., 
2006; Del Giudice and Gmytrasiewicz, 2009). 

2.2. Initial Setup 

In order to create a useful opponent model for 
Strategy Patterns Prediction Model (SPPM), it is 
necessary to take into account previous experiences. In 
this case, records and logs of past games were used. 
These logs are automatically generated by the RoboCup 
2D Soccer Simulator each time a game is executed and 
they are saved in a RCG file. The RCG files and team 
binaries used for this research can be found in the 
RoboCup (2013). The RCG files are binaries that can be 
reproduced by the Replay Tool Program (r2play) bundled 
with the RoboCup 2D Soccer Simulator. The binary files 
contain all the information necessary to recreate an entire 
game. Since this type of file is binary, it is difficult to 
obtain the information inside it because a format 
specification is not given. Instead of trying to get all the 
data from the RCG file, it can be converted to a readable 
XML file where all the info of the corresponding game is 
contained. For this process we used the rcg2xml tool, also 
bundled with the RoboCup 2D Soccer Simulator. 

The original XML file obtained from an RCG files 
describes not only the server parameters, but also each of 
the ball’s position, each player’s position and actions 
across the game. Some information is presented even if 

the element that it is describing did not change across 
time. Keeping the data as it is presented can cause a big 
overhead of unnecessary information.  

The default parameters create a standard soccer field 
with some flags that allow players to locate themselves 
and the other elements inside the field. Figure 1 shows 
the default and official soccer field generated by the 
RoboCup 2D Soccer Simulator, it is the one used in 
competitions and for this research. 

The prediction model intends to forecast the ball 
position when it is in the adversary’s possession, for this 
reason not all the information contained in the XML is 
useful. In order to reduce the time needed to create the 
knowledge base, the unnecessary information inside the 
XML files is completely removed. This leaves only the 
data corresponding to the players’ actions, players’ 
positions, ball’s position and game status. 

To reduce the complexity of the opponent modeling 
process, it was decided that the field must be divided into 
zones. This division allows the system to be tolerant to 
the noise generated by the environment. 

While dividing the field into zones has been done 
before (Arias and Uresti, 2008; Berger and Herfert, 
2009), there is not a related work on optimizing the field 
division based on any criteria so we had to create a 
division that would serve the SPPM’s purpose. 

 The division was made in such way so that the size 
of each one of the blocks generated is large enough to 
reduce system complexity and small enough to keep the 
prediction relevant. The division’s size decision was 
made based on the fact that having a division consisting 
of small zones would give us too many combinations 
for search, resulting in no real advantages for creating a 
division at all. Creating big division zones ends up 
giving us a small search space allowing to reduce the 
time employed looking inside the search tree for 
possible solutions but it also affects the prediction’s 
precision and therefore its usefulness.  

This resulted in the soccer field being divided in 
medium-sized zones that allowed us to generate a grid 
consisting of 60 zones which is enough to keep the 
prediction relevant and the search tree in a reasonable 
size. Creating a different division with more zones ended 
creating a bigger decision tree because some patterns were 
divided in different leaves since the previous zones were 
divided. On behalf, reducing the number of zones ended in 
grouping patterns together and in cases creating an over 
generalization of the patterns. The final division is shown in 
Fig. 2. The number of zones was determined by trial and 
error. The field division also takes advantage of the flags 
provided by the RoboCup 2D Soccer Simulator which serve 
as reference points for the agents inside the game. 
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Fig. 1. RoboCup 2D Soccer Simulator official field 
 

 
 

Fig. 2. Field divided into zones 

 
2.3. Patterns 

The knowledge base contains a series of patterns that are 
obtained from one or more RoboCup 2D Soccer Simulator 
log files. A pattern is defined as the route that the ball 
follows inside the game while one team keeps it. A team 
gets the possession of the ball when a member of his team 
kicks it and then loses it when a member of the opposing 

team kicks it or when an event that alters the game status 
change is presented, such as: A goal is scored, the ball goes 
out of bounds, the play time is over or a foul is committed. 
An example of a full pattern is shown in Fig. 3. 

In order to create a visualization of the actual strategy 
patterns, we defined a short set of symbols that allowed 
us to follow the pattern development. The set of symbols 
is presented in Fig. 4. 
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Fig. 3. A pattern’s set 
 

 
 
Fig. 4. Symbols for strategy patterns visualization 
 

Each pattern inside the search tree is associated to a 
full strategy or play. This strategy includes the movement 
of each of the players that participate in it and the position 
of the ball. An example of this is shown in Fig. 5. 

The patterns used to create the knowledge base have a 
minimum duration of 10 steps but not a maximum 
duration. The minimum duration restriction was set so that 
the team is able to search for the similar case or cases 
inside the knowledge base and still have time to complete 
a defensive action corresponding to the search result. 

2.4. Search Tree 

After the knowledge base is created, a search tree is 
also generated in order to facilitate the comparison 
between the actual game info and the patterns stored in 
the knowledge base. The search tree allows the SPPM to 
have an efficient way to find and compare similar 
patterns by inside a file that is not only smaller than the 
knowledge base one but also has the patterns ordered so 
that it requires less time. 

The search tree generated from the knowledge base 
contains the zones where the ball and the attacking team 

are positioned at the start of a pattern as shown in Fig. 6. 
The ball’s position is used as the first comparison 
parameter since it determines a team’s play and actions. 
After the ball’s position, each following node indicates 
the zones in which players are located. Since the 
knowledge base, we only use the players that have a 
direct interaction with the ball along the strategy pattern 
in order to reduce both files’ size. 

Each pattern was sorted (excluding the ball’s position 
since it’s always the first value) so that when the tree 
was created each of the branches keep an ascending 
order. This was done in order to make comparisons faster 
and to assure there is no need to implement a sorting 
method after creating the tree.  

The search tree must be stored in order to be read by 
the team during a play. An XML file is used to do this 
since both have a hierarchical nature. During a game, the 
XML file is only read at the beginning in order to reduce 
the time it takes for the leader to compare the actual 
game status to the results in the search tree. An example 
of the XML search tree file is shown in Fig. 7. 

While reading the tree file from the file system can be 
done in less than a game cycle, doing this repeatedly can 
derive in some failures like the system not properly 
freeing the file so it cannot be read immediately after it is 
used. Also depending on the implementation, reading the 
file can saturate the server since there are 6000 game 
cycles in total and in the worst case scenario the file 
must be read in each of the 6000 game cycles. 

We ended up copying the entire search tree to the 
leader’s memory. This approach did not cause any negative 
repercussion to that agent’s performance during the game 
and it helped avoiding the above mentioned problems. 
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Fig. 5. A full pattern visualization 
 

 
 

Fig. 6. General structure of the search tree 
 

The rest of the team does not need to have a copy of 
the search tree since the leader is the only one that uses it 
to retrieve strategy patterns’ information since we follow 
a centralized approach. 

The creation of the knowledge base and the search 
tree using 22 RCG files took about 35 min. The search 

time for a single pattern takes less than a game cycle but 
there are times when a possible result is not found so the 
SPPM repeats the search progress but it uses the ball’s 
neighbor areas. Searching the neighbor areas can delay 
the entire progress since it needs to search at least 9 
different areas and their combinations. 



A.B. Gonzalez Perez and J.A. Ramirez Uresti / Journal of Computer Science 10 (1): 73-84, 2014 

 
78 Science Publications

 

 

 

JCS 

 
 
Fig. 7. An example of the XML file for a search tree 
 
2.5. In-Game Features 

In order to make use of the knowledge base created in 
the knowledge base creation phase of the model, SPPM 
needs to use and test this data into new games. The 
complete process that must be followed includes: Getting 
the actual game status information (opponent players’ 
and ball positions), look for similar patterns inside the 
knowledge base and return the possible zones where the 
ball will be according to the cases stored in the 
knowledge base with the potential cover zones that will 
let the team respond to the rival.  

This process is only a part of the complete SPPM, it 
is the one used during a game and it requires a 
knowledge base and its corresponding search tree to be 
created. While the search tree must be created from the 
knowledge base, the defensive actions taken inside the 
game can be totally independent of that process. The 
SPPM process predicts the ball position over time by 
analyzing and comparing actual game status and past 
experiences. A defensive action can use this information 
but it also can be a totally separated process. 

To get the complete pattern and, knowing the fact 
that this is a multi-agent system, it is needed to obtain the 
partial information that each of the agents knows, due to 

this situation, the number of messages listened per cycle 
restrictions and the noise ones were eliminated. 

2.6. Decision Process 

Even with the modified communication parameters, 
tryAing to follow a distributed decision process was not 
possible since it required a full negotiation cycle 
involving all of the agents. This resulted in time wasted 
in just trying to coordinate who is going to take the 
decisions because the simulator is designed to only allow 
the agents to listen to their teammates’ messages a cycle 
after they have been sent.  

Therefore the initial prediction process was planned 
as follows: 

• An agent should identify an appropriate time to begin 
the prediction process or it can be done in a fixed 
time. An appropriate time can be defined as a moment 
when the rival team is not in an imminent scoring 
chance position. For an imminent scoring change 
position, the rival team needs to have the possession 
of the ball and being close to our goal zone 

• The agent sends messages to the rest of the team so 
the negotiation process is started 

• Each agent evaluates if it can be the leader 
(coordinator) for the prediction process. If a leader is 
chosen then it informs its team about his new 
acquired role. For electing the leader the following 
factors were planned to be taken into consideration: 
Player distance to the ball, player’s role (goalkeeper, 
defense, midfield or attacker), player’s distance to 
enemy’s team players and players position 

• The leader agent sends messages to the rest of the 
team in order to obtain their information that 
includes their positions, the position of the ball and 
the position of the opponent agents 

• The leader agent uses the search tree and gets the 
possible strategy patterns, then it evaluates each of the 
search tree results and creates a new pattern that 
contains the zones the ball is most likely to be located 

• The leader sends the prediction pattern to its team 

The minimum messages used to decide the leader 
role are 6 since at least 3 messages are used (proposal, 
answer and confirmation) and each message takes 1 
cycle to be sent and 1 to be received. Another problem 
with this process occurs when more than one agent has 
the best possibility to acquire the leader role. Another 
negotiation process between them must occur and even if 
they can solve it with at their first try, it would require at 
least another 4 cycles. 
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Having a constant time overhead whenever a 
prediction is meant to be done extends the time the entire 
process requires and, since RoboCup 2D Soccer 
Simulator is an entirely dynamic environment, the time 
consumed in deciding the team’s leader is un-viable 
because the prediction may no longer coincide with the 
actual field state. 

In order to reduce the time spent on negotiation 
issues, it was decided to follow a centralized approach 
for decision process. In human soccer, the goalkeeper 
usually has a complete vision of the field and also is the 
player that most likely has the fewest interactions with 
the ball. Based on the characteristics previously 
mentioned, we decided that it should be the agent who 
receives all the data and takes all the decisions. The final 
communication process is shown in Fig. 8. 

2.7. Prediction 

Once all the data is received, it needs to be cleaned 
and consolidated into a single pattern so that it can be 
used into the search tree. The leader agent determines the 
ball’s position by calculating an average from the 
positions received and then a single zone can be 
assigned. A similar process is followed for each of the 
opponent players reported and duplicates are eliminated. 
Then the information is merged in a single list in a 
format that can be used by the search tree. 

Once the result is taken from the search tree, we get all 
the possible patterns’ IDs with the best matches. The criteria 
to decide those matches is based in the distance between the 
actual field status and the one contained in the pattern, 
giving more importance to strategies that involve more 
players. This is called the similarity measure. The similarity 
measure formula is the following: 
 

( )( )2 2
br bp br bp

2 2
n pri ppi pri ppi

i=1

s = (X - X ) + (Y - Y ) × α

(X - X ) + (Y - Y )
+

n
∑

 

 
where, Xbr and Ybr are the X and Y positions of the ball 
in the actual status and Xbp and Ybp are the X and Y 
positions of the ball inside the pattern. Xpri and Ypri are 
the X and Y position of the players in the actual status 
while the Xppi and Yppi indicate the position of the 
players inside the pattern analyzed. The symbol α 
represents a constant value used to give the ball’s 
position more importance in the comparison. For our 

tests we decided to use a value of α = 1.5.This process 
can be compared and is based on Case Based Reasoning 
(CBR). CBR uses human like thinking in order to react 
to actual circumstances based on previous experiences. It 
has been openly used in this domain (Arias and Uresti, 
2008; Berger and Herfert, 2009). The basic CBR process 
is defined as the following actions: 

• Retrieve-Similar cases or situations must be 
retrieved from memory given the actual problem 
conditions 

• Reuse-The retrieved cases must be mapped to the 
new problem even if they need to be adapted to fit 
the situation 

• Revise-Test and evaluate the possible solutions in 
the new scenario 

• Retain-After adapting, testing and evaluating, store 
the new solution as a new case in the memory 

CBR is considered as a cycle that allows the system 
to constantly learn new experiences or cases. 

Having all the play patterns that coincide with the 
actual in-game status, the zones where the ball was 
during those plays can be taken from the knowledge base 
created from previous data and for the prediction a 
sample is taken each 5 steps (again this is determined in 
this case by the distance a player can travel). With this 
information the probabilities of the ball being in a certain 
zone can be deducted and this is shown in Fig. 9. 

Having the zones at a 5 cycle interval step, we can 
determine which ones need to be covered by our players 
(the ones with most possibilities of the ball being there) 
and the ones that can be ignored. Being this a soccer 
game, the areas that need to be covered are the ones that 
surround the predicted zones and that are between the 
ball position and our team’s goal box. 

The next step is to decide whether it is a viable 
option to send the players to the zones, if it is already 
too late or even if the prediction is wrong and therefore 
there is no point to cover them. Another issue to take 
into account is that even if the entire search process 
takes about 1 or 2 steps to be completed, there are cases 
when it takes about 12 to 15 steps to end the entire 
process. In those cases, a condition in which the 
process stops if it has taken too much time or if the ball 
is close to the goal box must be included. These 
situations affect the goalkeeper’s ability to react to an 
attack, so it must stop performing the decision process 
and focus in defending its own goal box. 
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Fig. 8. SPPM Communication process 
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Fig. 9. Darker zones indicate a higher probability 

 
After analyzing all the combinations of possible 

situations mentioned in the previous paragraph that 
can be present during a game, it was decided that the 
following are the only ones that can really affect the 
team and in particular the goalkeeper’s individual 
goals: Catching the ball, reacting to opponents 
approaching the goal line and clearing the ball from 
the penalty area. 

 If the goalkeeper determines that it is viable to make 
a defensive action, it communicates it to the rest of the 
team with the time and zones that need to be covered so 
that the players that are closest to those zones go to them 
and try to recover the ball. 

If any of the agents perceive that the ball or the play 
is not similar to the prediction, then an alert message is 
sent to inform that the covering zones have almost no 
probabilities to have the ball inside. 

The logs generated from the test files can be 
analyzed and included inside the knowledge base; this 
allows the system to evolve and to get more 
information about different and new situations. This 
feature allows our SPPM to respond better in next 
matches and to evolve across time. 

3. RESULTS 

The tests made during this research were divided 
into three types: Test with our team against teams that 
were previously analyzed and included inside the 
knowledge base, tests against teams not included in 
the knowledge base and games where our team was 
not involved at all. 

The first test type was intended to prove the system 
reliability against opponents’ movement of already 
known teams. The second one does the same but with 
other teams and situations that are unknown for the 
system. The third set is made to test it the prediction’s 
accuracy in general. 

Twenty-seven analyses were done to get the results 
presented here, where 12 analyses were done over 
previously analyzed teams, 3 over not previously 
analyzed teams and 12 over games that did not involve 
the team developed for this research. 

The following was used in order to create the 
knowledge base for these results: 

 
• 22 games were used (143 MB in GZ files) 
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• An XML file was created for each of the 22 games 
(1.4 GB) 

• A single knowledge base created with 604 strategy 
patterns (1.06 MB XML file) 

• A single search tree was created (62.6KB XML file) 
 

The entire knowledge base creation was done in a 2.0 
GHZ dual core PC and it took about 35 min for the entire 
process to be completed. 

Overall our SPPM achieved to get a prediction of the 
ball position with a precision over the 80% in an 
acceptable range defined by being in a distance 
equivalent to at most one zone far from the real ball 
position. This lets the team define coverage zones along 
time so that the adversary team can be stopped and the 
ball recovered. 

The prediction accuracy was probed in three different 
groups of tests. The first group involved testing the same 
teams used to create the knowledge base against our team 
(PA-Previously Analyzed), the second group follows a 

similar mechanic but whit teams that were not included in 
the learning phase (NPA-Not Previously Analyzed) and 
finally the third group consists of a set of games in where 
our team did not participate (OT-Other Teams). 

The results involving the actual distance and the 
predicted one are shown in Fig. 10. According to the 
results, taking into consideration the mean distances in X 
and in Y separately is the best way to get the actual 
position of the ball. 

Given the results generated by analyzing the 
distances, the predictions obtained during the course of 
this research where accommodated in their respective 
group based on the mean distance during the whole play 
between the prognosticated zones and the real ones. 

The Fig. 11 shows the percentage of the results and 
the group that they belong to, this graphic only takes into 
account the results in mean distance in X and Y because 
of the results previously generated. It is shown that most 
of the time (more than 80%); the zones predicted are 
close enough to the real ones to make a defensive action 
that lets the team try to recover the ball. 

 

 
 
Fig. 10. Distances got in the results for Previously Analyzed teams (PA), Not Previously Analyzed teams (NPA) and Other Teams 

(OT) that not involve the one developed for this research 

 

 
 
Fig. 11. Percentage of usefulness got in the results for Previously Analyzed teams (PA), Not Previously Analyzed teams (NPA) and 

Other Teams (OT) that not involve the one developed for this research 
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4. DISCUSSION 

Analyzing the results and the circumstances 
presented inside the games that were shown the 
following circumstances were observed. 

There are some teams less susceptible to fall into the 
model predictions. This is caused depending on the 
opponent team’s ability to react to our predictions and 
the capacity of both teams to play the game. There are 
some strategies that are more likely to be presented in a 
game with certain circumstances (like a team’s dominion 
over its rival) than in others.  

Some predictions do not end in the zone that was 
supposed to be in because in some cases the opponent 
changes its route when a member of our team got close. 
In other cases the opponent directly shot to goal during 
the circumstance described and sometimes our team 
managed to get the ball effectively ruining the 
prediction. All these situations can reduce the system’s 
prediction precision because given the actual game 
status; those situations can change completely the 
strategy outcome. 

Some teams change their tactics depending on the 
score and the time left to end the game. 

While the prediction process got a good accuracy rate 
(over 80%), the defensive actions implemented by our team 
did not allow us to corroborate the entire SPPM’s goal. The 
actual game results did not change in our favor since our 
team is way below actual competing teams’ level. 

Even though the considerations described before, it is 
considered that the predictions have a very good 
accuracy rate and are done in an efficient time so that the 
agents can react to it in real time. 

5. CONCLUSION 

In this study a model for opponent strategies modeling 
(SPPM) is presented. SPPM obtains information from 
RoboCup 2D Soccer Simulation log files, converts this 
information into a knowledge base containing strategy 
patterns used by opponents. With these strategy patterns a 
search tree is generated to index all possible cases in such 
a way that any search of the tree is fast enough to be 
useful in real-time. When in play, the opponent formation 
of players and ball position is detected, analyzed for 
possible matches in our knowledge base, a probability of 
the ball position in the future states is generated and a final 
decision on how to defend against this possible strategy is 
made. All this process is done fast enough so a useful real-
time decision is made. 

The importance of the creation of the knowledge 
base that supports the model is also discussed as well 
as the actions that take place inside the environment 
that the model is used. The model was tested in the 
RoboCup 2D Soccer Simulator so that it is proved in a 
dynamical environment which also has an opponent 
who takes its own decisions and follows its own 
course of action. The model discussed in this study 
gives an accuracy of around 80% in the tests. Taking 
into consideration the dynamic nature of the 
environment in which it takes place, it can be said it is 
a really good percentage. 
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