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ABSTRACT

Workflow brokers of existing Grid Scheduling Systeare lack of cooperation mechanism which causes
inefficient schedules of application distributecsaerces and it also worsens the utilization of ousi
resources including network bandwidth and compaati cycles. Furthermore considering the litergture
all of these existing brokering systems primarilyoleed around models of centralized hierarchical or
client/server. In such models, vital responsibitych as resource discovery is delegated to theeatizad
server machines, thus they are associated withkmellvn disadvantages regarding single point ofifail
scalability and network congestion at links tha Eading to the server. In order to overcome tiesees,

we implement a new approach for decentralized catjpe workflow scheduling in a dynamically
distributed resource sharing environment of Gridse various actors in the system namely the usbs w
belong to multiple control domains, workflow brokeand resources work together enabling a single
cooperative resource sharing environment. Butdpigroach ignored the fact that each grid site nzaseh

its own fault-tolerance strategy because eachisitiself an autonomous domain. For instance, gfid

site handles the job check-pointing mechanism, eamhmputation node must have the ability of
periodical transmission of transient state of e @xecution by computational node to the serverelV
there is a failure of job, it will migrate to anethcomputational node and resume from the lasedtor
checkpoint. A Glow worm Swarm Optimization (GSOJ job scheduling is used to address the issue of
heterogeneity in fault-tolerance of computationdt gout Weighted GSO that overcomes the position
update imperfections of general GSO in a more iefficmanner shown during comparison analysis. This
system supports four kinds of fault-tolerance meddras, including the job migration, job retry, ckec
pointing and the job replication mechanisms alsosatering risk nature of Grid computing environment
The risk relationship between jobs and nodes afieatk by the security demand and the trust levelr O
evaluation based simulation results show that tgorghm has shorter makespan and more efficierd. W
also analyze the efficiency of the proposed apgroagainst a centralized coordinated workflow
scheduling technique and show that our approachare efficient than the centralized technique with
respect to achieving highly coordinated schedules.

Keywords: Grid Scheduling, Single Point of Failure, Scaldpihnd Network Congestion, GSO Overcomes
the Position Update Imperfections, Centralized Théepe Achieve Highly Coordinated
Schedule

1. INTRODUCTION best-effort quality of service. In this model jolse

queued until they can be matched with appropriate

The traditional approach to resource access in gridresources for execution. This approach ensures that
environments is based on a queuing model that geesvi  access to resources is shared equally and fairhngrall
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users of the system, but can result in long delalysn order to create them. As per the above, only adites
competition between users forces jobs to wait forallowed users to create their own reservationss Kkimd
resources to become available. For application$ wit of advance reservations support is time-consumimgy a
only one job, or with a few jobs that can be substiin cumbersome. Scheduler-based advance reservatisms al
parallel, these delays are encountered only onoe. F increase resource usage costs. In many grid ements
workflow applications with complex job hierarchiaad these costs are measured in service units. Usedvahce
interdependencies the delays are encountered manseservations are typically charged a premium faliciged
times. One way to improve quality of service for access to resources. These premiums can be 2M% 10
workflow applications is to use a model for reseurc above normal costs. Furthermore, users are ofterddo
allocation based on provisioning. With a provisiani  pay for the complete reservation, though they ateahle
model, for a given period of time resources arecalled to use it all (e.g., if there is a failure that sas the
for the exclusive use. It minimizes delays for qngu application to abort, or if the actual runtime dfet
because the user’'s jobs no longer compete withr otheapplication is shorter than predicted).

jobs for resource access. Also, in counterpointh® An alternative to scheduler-based advance
model of queuing where resource allocation andreservations is the use of probabilistic advance

scheduling occur on a per-job basis, the provisigni reservations. In this method reservations are rhased
model allows resources to be allocated once andifose  , statistical estimates of queue times which aljols

multiple jobs. Provisioning is slightly more compléhan
queuing in that it requires users to make more
sophisticated resource allocation decisions.

There are two policies that can be used to guidseth
decisions. In static provisioninge application allocates
all resources required for the computation befong a
other jobs being submitted and releases the ressurc
only after all the jobs have finished. This method
assumes that the number of resources requiredoisrkn
or can be predicted in advance. In dynamic prowmisip
resources are allocated by the system at runtirhés T ) L o
allows the pool of available resources to grow simank d_el_ay and the fl_nal cost of a probabilistic re_semals
according to the changing needs of the applicafirs difficult .to predlct because the aqtual runtlm.e. thé
Dynamic provisioning does not require advanced reservation job may exceed the desired reservétivn
knowledge of resource needs, but it does requilieip®
for acquiring and releasing resources. It als@setin the

ability of the provisioning system to acquire resms Jobs A scheduling strategy on load balancing of VM
on-demand when they are needed, which may not bgegqrces based on genetic algorithm has been gedpo
possible if the resources are shared with othersuse (Gu et al., 2012). Based on historical data and current

Adva_nce reservation s a resource provisioning system state using genetic algorithm, this strategy
mechanism supported by many batch schedulers. User(§omputes further on the influence it will have dret

create advance reservations by requesting slots fhe .
; system after the deployment of the required VM
batch scheduler that specify the number of ressutce o
resources and then selects the least-affectivéico)lby

reserve and the start and end times of the resemnvat o ) .
which it obtains the best load balancing and resluare

During the reservation period the scheduler onlgsru ) . oo . .
jobs that belong to the user on the reserved regeur 2voids dynamic migration. Simultaneously, this eyst

Although batch schedulers used by many resource?!so brings in variati_on rate tp dgscribe the Imadatipn
providers have advance reservation features, fewPfSystem VMs and italso bring in average loadadise
providers support the use of reservations. In sesuof to measure the overall load balancing effect of the
advance reservation capabilities at several gtesst is ~ algorithm. The disadvantages of the proposed syatem
inferred that 50% of the sites which are surveyiednot wastage of resource when the resources are not
support reservations at all and that most of thesshat  distributed properly and Subscribers holds hugeadyo
supports reservations required administrator asgistin heterogeneity and platform irrelevance whereas the

to be submitted with a high probability of startisgme
time before the desired reservation begins. THswal
“virtual reservations” to be created by adjustire t
runtime of the job to cover both the time betweba t
submission of the job and the desired reservattart s
time and the duration of the reservation itself.likén
scheduler-based reservations, probabilistic retiensa
do not require special support from resource prrgd
However, probabilistic reservations are not guaedht
because the actual queue delay may exceed theigebdi

1.1. Related Work
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advantages are efficiently and dynamic management oDecentralized Hybrid Job Scheduling Algorithm. The
resources so as to meet the requirements of shbseri  proposed Novel Adaptive Decentralized Job Schegdulin
problems getting solved with full utilization ofrsee in Algorithm minimizes the makespan, improves the
Cloud computing dynamic environment. resource utilization and satisfies the user demamtb
Computer system performance depends on loadwell suits for the grid environment.
balancing which should concerns about grid topology  The issues associated are technical difficulties in
communication delay, negotiation protocol and implanting real time cloud whereas the advantages a
workload. The interactions and interdependencesnecessary multiplexing to achieve elasticity and th
between these above factors and their relationsftip  jllusion of infinite capacity requires each of tees
the selected load balancing algorithms are analyzedesources to be virtualized to hide the impleméatat
over here (Sharma and Sharma, 2012). NecessaBsissu of how they are multiplexed and shared and SaaS

are considered and thoroughly examined through theprovider can devolve some of its problems to the
systematic self-examination and the comparisomof t =54 Computing provider.

load balancing algorithms, a static and a dynamie. o
The static load balancing algorithm is the well-wmo
deterministic Round-Robin, whereas the dynamic load
balancing algorithm has been developed for the sieed
of author's research. They implemented their
experiment in a flexible simulation framework. Siite
metrics are formulated so that their combined
examination reveals the doings of the system imgeof
performance. Precision of the system’s state in&bion

The Grid Scheduler must select proper resources for
executing the tasks with less response time. These
various reasons such as network failure, resource
conditions overloaded, or unavailability of reqdire
software components for execution failure. So, tfaul
tolerant systems should be able to identify anddlean
failures and support reliable execution in the gnes of
failures. Therefore the integration of fault toleca

is always balanced by the simplicity of the negiia measures and communicgtion time with s_chedulingsgai
protocol. The disadvantages of existing system iare Much importance (Keerthika and Kasthuri, 2012)his
does not utilize any special selection policy astisks ~ Study, @ new fault tolerance based scheduling @gjpro
are generated and sequentially dispatched; theursixf ~ Fault Tolerant Min-Min  (FTMM) for scheduling
processing time is the elapsed time between theaarr Statically available meta tasks is proposed wherein
and the completion of the task at the processoestak failure rate and the fitness value are calculafée main
more time will lead to higher delay; degradation of objective of this study is to design a new scheuyli
performance may occur when high information policy algorithm that reduces the makespan which is tha to
complexity is combined with important communication time taken to complete a set of jobs. Also, the filne
overheads whereas the advantage is proposed hlgorit of the resources should be less which assuresnthat
efficiency can be enhanced when intense workload isresources are kept idle for a long time. It alssuees
adequately combined with increased delay. that fault tolerant measures are satisfied. Thkstase
Grid is a dynamic environment, where the resourcesscheduled after the fault rate of all the resourises
may join or leave the environment at any time amel t calculated. The proposed algorithm considers both
jobs also arrives at different intervals of time @btain system performance and user satisfaction. Hencst mo
the demands and requirements of the dynamicof the jobs are completed within their expected
environment, to minimize the makespan and to maemi  completion time with minimum number of failures.
the resource utilization an effective grid scheuyli Cloud System job scheduling is one of the essential
technique is needed (Kamalam and Bhaskaran, 2012)unctionality performed in all the computing
We propose grid architecture as a collection obtelts  environments. In order to increase the efficiendy o
with multiple worker nodes in each cluster. Here working cloud environments, job scheduling is aktas
proposed a new scheduling algorithm Novel Adaptive that is performed in order to gain maximum prdfiere
Decentralized Job Scheduling Algorithm (NADJSA)ttha (Ambike et al., 2012), they proposed a system for
applies both Divisible Load Theory (DLT) and Least scheduling the multiple requests from users. Adrssare
Cost Method (LCM) and also considers the userclassified and authenticated into two types namely
demands. The proposed Novel Adaptive Decentralizedservice-uploading and downloading by an web
Job Scheduling Algorithm is compared with the application. Multiple requests are processed blyzitg
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non-pre-emptive priority algorithm. The Cloud Seevi  virtualization deals with the existence of the @ses
Provider (CSP) main motive is to provide fast seggito  that are not physical whereas the advantages are
the multiple requests. On this study they preserted resource allocation is made based on the selection
Corresponding strategy and a|gorithm to gain Om]mm Critgria which will improve the efficiency Of thdomud .
value of service considering the goals of users andenvironment and the manager of memory is respomsibl
service providers for Quality of Service (QoS). for allocating memory resources to the clients.
Resources are utilized in a transient manner. The Generally, resources scheduling strategy is the key
disadvantage of proposed system is decentralizedechnology in cloud computing. Zhet al. (2012)
scheduling has high implementation complexity propose_d a new business calculation mode in cl_oud
therefore most of the work is done on centralized °MPUting- They performed study of CIOUd. computing
schedulers whereas the advantage is that multgde u system structure and the mode of operation with the

. key research for cloud computing as the procestef
requests are processed by the use of non-pre-eenptiv

oritv alaorith ith utilizati ¢ i work scheduling and resource allocation problems
priority algorithm with utilizafion ot resources gone based on ant colony algorithm. Analysis and desifjn
in a very transient manner.

he distincti ¢ il .. .. the specific implementation for cloud resources
The distinctiveness of Particle Swarm Optimization gcheqyling is also described. The issue is thatures

algorithm (PSO) is that it is capable of solvingg  gchequling is a crucial question of distributiordan
scale combination optimization problem that areyéas  ¢yster calculation it determines the user taskcetien

fall into the search speed slowly and partially thest  efficiency whereas the advantages are cloud comguti
superior with global fast convergence of simulated platform is a strong network of collaborative warkd
annealing algorithm is utilized to combine particle s connected with a lot of computing resourcesl an
swarm optimization algorithm in each iteration that ggpyices operating resources.

enhances the convergence rate and improves the cioyd computing is a rising technology and it lets
efficiency. Zhan and Huo (2012) presented an imgdov | cars to pay as you need and posses very good
particle swarm optimization algorithm in resources performance. Cloud computing is a heterogeneous
scheduling strategy of the cloud computing. It adsm system as well and it contains large amount of

reduce thle ;;_/erag(fe running time (r)]f tag‘-k an ratses fapplication data. It is acknowledged that optinmizihe
rate availability of resources. The disadvantage Ofynsterring and processing time is crucial to an

propqsed system is tha}t S'Frong randomness_of thesSlpplication program, during the process of scheduli
algorithms are easy to sink into defects_of logatirna some intensive data or computing an intensive
ano_l I.OW. convergence rate when solving large scale pplication. In this study (Guet al., 2012) in order to
B e sonan SonsstagTNIMze the G0 o (e processing we formate a
problem with the a?/erage search speed anpd propose odel for _task _schedulmg and_ propose a Particle
warm Optimization (PSO) algorithm which is based

algorithm in each iteration that enhances the i .
: . on small position value rule. The PSO algorithm
convergence rate and improves the efficiency. ; . .
embedded in crossover and mutation and in the local

Cloud computing must be advanced to focus on h d faster. The i is th
resource utilization and resource management as the'€>€arch converges and runs faster. 1he issueats
efficient scheduling of all the application tasksda

are one of the predominant challenges in cloud. X
Considering the time of processing, utilization of data are the most important problem whereas the

resource based on CPU usage, throughput an@dvantages are minimizing the prqcessing cost by
memory usage, the cloud environment with the servic formulating a model for task scheduling and propiose
node to control all clients request that could pdev ~ Particle Swarm Optimization (PSO) algorithm which
maximum service to all clients. Resource scheduling!s based on small position value rule.

and tasks separately involves more waiting time and  EXxisting solutions to task scheduling problems are
response time. Linear Scheduling for Tasks andunsuitable for Cloud computing because they ontuo
Resources (LSTR) is a scheduling algorithm on a specific purpose like the minimization of extean
(Abirami and Ramanathan, 2012) that performs taskstime or workload and do not use characteristic€lotid
and resources scheduling. The disadvantages ase Fircomputing for task scheduling. A task scheduler in
In First Out (FIFO) scheduling is used by the maste Cloud computing has to satisfy cloud users with the
node to distribute resources to the waiting taskd a agreed QoS and improve profits of cloud providéms.
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order to solve task scheduling problems in Cloud
computing, this study (Jareg al., 2012) proposes a task
scheduling model based on the genetic algorithnthén

workflow are represented as nodes in the graphtlzend
dependencies among the tasks are represented as the
directed arcs among the nodes.

proposed model, the task scheduler calls the GA We focus on scheduling of workflow application,

scheduling function every task scheduling cycleisTh
function creates a set of task schedules and eealtiae
quality of each task schedule with user satisfactiod
virtual machine availability and the function itera

which consists of a collection of tasks. Our apphoa
supports allocation of different tasks in a workflo
across multiple sites in the Grid-FramewoRg 2), if

the total number of processors needed for executing

genetic operations to make an optimal task schedulethe tasks in a workflow are not available withisiagle
Issues are task scheduler in Cloud computing doesn’Grid site. In our application model, each task seed

satisfy cloud users with the agreed QoS and improve

profits of cloud providers whereas the advantageas
the task scheduler of this scheduling model caisGA
scheduling function to make task schedules based o
information of tasks. The function iterates repradg
populations to output the best task schedule.

1.2. Grid Workflow Scheduler

The proposed workflow scheduling algorithm utilizes
the Grid-Framework model with regard to grid
networking and resource organization. Grid-Framéwor
aggregates distributed resource brokering and altmt

services as part of a cooperative resource Sharin%omputational

environment. The Grid-Framework:G {Ry, R,,...,R},

consists of a number of sites, n, with each site

contributing its resource to the framework. Eveitg
the framework has its own resource descriptipwiitch
contains the definition of the resource that iviling to
contribute. R can include information about the CPU
architecture, memory size, number
operating system type, secondary storage size.

In this study, R= {pi, %, w, Ji}, which includes the
number of processors, processor architecturg, xheir
speed u; and installed operating system type;.
Resource brokering, indexing and allocation in &rid

Framework are facilitated by a Resource Management

System (RMS) known as Grid-Framework Model
(GFM). Figure 1 shows an example Grid-Framework
resource sharing model consisting of Internet-wide
distributed parallel resources. Every contributisite

maintains its own service which is composed of 3
software entities: Grid Resource Manager (GRM),

Local Resource Management System (LRMS) and,

Distributed Information Manager (DIM) or Grid Peer.
Here, we consider the scientific workflow applicets
as the case study for the proposed scheduling appro
A Scientific workflow application can modeled as a
Directed Acyclic Graph (DAG), where the tasks ie th
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n

of processors,

availability of only one processor within a Gridtesi
Thus the resource claim object for a task encatesila
request for a single processor, i.e. the requir¢methe
number of processors available is 1. In case, wgamren
instance of time, if no resource ticket is ableofer
single processor as requested by a resource chijecto
then the claim object is stored in the coordinaspaced
until one of the Grid site publishes a resourcéetic
offering one available processor. Sites of grid lishb
resource tickets after a certain interval of time.
Algorithms for (i) task scheduling; (i) resource
provisioning and (iii) resource coordination is givin
paper (Rahmast al., 2010).

The grid system consists of geographically disgkrse
sites having different administrative
polices and heterogeneous resources. Any compuigtio
node may employ one or multiple fault-tolerance
mechanisms for more reliable computation. Here, we
consider the following four fault-tolerance mectsamns:

e Job Retry (JRT) mechanism: The JRT mechanism is
the simplest fault-tolerance technique, which veH
execute the failed job from the beginning on the
same computational node

Job migration/Job Migration without checkpointing
(JMG) mechanism: The JMG mechanism will move
the failed job to another computational node and re
execute the job from the beginning on the latter
computational node

Job  migration with  Checkpointing (JCP)
mechanism: The JCP mechanism will record the
state of the job periodically at rum time. If thebj
fails, it is moved to another computational nodd an
resumed the execution from the last checkpoint

Job Replication (JRP) mechanism: The JRP
mechanism replicates a job to multiple
computational nodes such that the job has higher
success rate. If one of those replicas has already
completed, then all other replicas should stoprthei
execution to save the computing power

JCS
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Grid Framework Model (GEM)
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Fig. 1. Grid Framework Model (GFM)

Workflow application

Resources

GFM _

r 3

Peer-to-peer
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Fig. 2. Multi-site allocation of workflow tasks

In the grid system, each computational site sugport a certain job by any combination of these fourediéht
one of the following three mechanisms: JRT, JMG andfault-tolerance mechanisms. For instance, a job bay
JCP. As for the supporting of JRP, the scheduldr wi executed concurrently in a node supporting JRT et w
as a node supporting JCP, resulting in that JR&EsI3

allocate multiple computational sites to executedain
applied to the job in effect.

job concurrently. Furthermore, the scheduler catete
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13. The Glowworm Swarm Optimization
(GSO) Algorithm

In GSO, a swarm of agents are initially randomly 16.
distributed in the search space. Agents are modeled?.

after glowworms and will be called glowworms in the

following of this study. Accordingly, they carry a 18.

luminescent quantity called luciferin along witheth.
The glowworms emit a light whose intensity is
proportional to the associated luciferin and intéra
with other agents within a variable neighborhoad. |
starts by placing a population of glowworms
randomly in the search space so that they are well
dispersed.
contain an equal quantity of luciferin. All iterati
consists of a luciferin-update phase followed by a
movement phase based on a transition rule. The
following is the load balancing algorithm that irds
GSO for effective scheduling:

1. |Initialize the number of virtual machines VM=
{vmg,....... ,vm, n number of resources and T=
{te,. ... 1} tis the n number of tasks.

2. Calculate the processing timetb process task t on
resource i is known; and T is mxn matrix such that:

Set number of dimensions = m

Set number of glowworms = n

Let s be the step size

Let %(t) be the location of glowworm i at time t
deploy agents randomly

Define smallest position value (SPVJ S5, S,

©No oA

14.
15.

In the beginning, all the glowworms 21.

fori=1to n do(0) = |,

rzij(o) =0

N (1) = {j: dj ()< r; (O); Li(t); i@®<,,O}
j = Sele%wworn{ p )

X (1) =% (t)
(t+1) =x(t)+9 ——~-2 "7
x;(t+1) =x(t) {Xj (0 -x, (t)J

19. r; (t+1) = min {ys, max {0, r; ()+B (n-ON; (HD}}
20.

SPV rule to obtain the discrete permutationengh
', represents the resource ID to which the task j is

assigned.
Calculate the E(T)represents the

execution time for Job i running in Node j:

expected

i ) 1,. 1.2 13) SZ
E(T)= EJRT(T',')(:HE l?+§ P +*2 ’f’jxq

where, SZis the size of Job i and; @& the computing
capacity of Node j.
22.

If node a to j fails job is migrated to anathe
computational nodeE(T))represents the expected

execution time for Job i running in Node |, k, q:

N (. 1.).SZ . .
EM(TJ)-(l‘EFJ’jx?Zf Bx MG,

]

=G

)x%+ px MQ,qJ

c.(1)=r e[ =3 g2

q

S%,....,S and apply SPV rule to solve discrete \where:

problems at Step 17.
9. Find the optimal resources vector usiny =RR’,,

Roz, Rog,....,#)N:

R = (S mod my !

v D.
I —_ |
MC, , = B
X,y

MC , is the migration cost of the condition that Job i

moves from Node x to Node y, 3 the data size of Jgb

10. Calculate the E(T))represents

execution time for Job i running in Node j at sBp
Set maximum iteration number = iter_max
Sett=1

while (K iter_max) do

11.
12.
13.

////4 Science Publications 769

the expected BW,

and is the communication bandwidth between

Node j and Node j and Node k, where &{jyk,q}.
23.

If node i to j fails job transient process ssato the
check pointing server periodically the process to
backup node before resuming the unfinished job:
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sz,
i\ — i\ S4 G
E,(T)=(-F) = 4 55 | XOH
]
sz
| Sz 2xC.
xP +—2L|xOH +M
l2xc | PR 1+ MG
sz
xC.

RM! (j,k,q) =SZ - 2xG, xPRxC
j PR

RM: (.k,0)

'){RME(i:kvq)] Cy

E,(TH)=P|(1-P c. ==

]

RM: (. k,0)

[ RM (j,k,q) 2xC, y
+P{ 2xC. J+ o8 OH, +MG

RM (j,k.q)
CK

RM, (j.k.q) = RM; (j.k,q) - o)

E,(Ty) =P xR

RM, (j.k.q)

oL ESon
q

where, RM, (j,k,q) is the remaining job size for Job i to
be executed when a failure occurs in Node x.,@H
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xPRxQ

the overhead of performing one check pointing

operation for Node x.
24. Let the set RPconsists of those nodes that will

execute Job i independently. Assume Job i starts
to be executed in Node j at tideif Node j

belongs to the set RPIf Job i is executed
successfully, then the job will be finished at time

fi=s +3%4  Because the execution of job i in Node j
C.
J
will continue after timef; only if all previous executed
replicas fail, the probability that Job i will camie
after timef; will be:

Pons (1) =TT R

f\',‘,J

. Let the execution time of each replica is brokeo

multiple pieces by, , where [JIRR. Each piece has

an execution probability and its expected execution
time is equal to multiplying the continuation

probability at the beginning of a piece by the
execution time of executing Job i in Node j is
calculated as follows:

E(T) = Ewe(T)

= start( gJ) X(-%) + nx,j%?ﬁ’ Pcons](ﬂ})x(fy -ﬁx)
sijgf;( <fiysfij

ot £l <<l

. Result of the execution time for Job i running

Node j, k, q

f (S‘fjsEM(Tj‘)s ECP(T)) then

Go to step 20 and result of execution time.

770

Else

If (EM(TJ‘)sSfj < ECP(T,')) then

Go to step 22 and result of execution time
Else

If (Ecp('l'j‘)sslfjs EM(TJ')) then
Go to step 23 and result of execution time
25. For each glowworm i do:

()= (-9, (1) +1 365 (1)

26. for each glowworntjN;(t)do:
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0,(t)-4 (1) (MGSO) and the parameters considered for the
py (t szN (ngt 0 comparison of these methods are namely:

* Response time

gg 223 :; «  Co-ordination delay and

30. Evaluate new solutions and update light intgnsi " Makespan

30. end for j

31. end fori 4. DISCUSSION

32.t=t+1 _ _

33. Rank the glowworms and find the current gldiest Response time for a task is the delay between the
and update the iteration parameter. submission time and the arrival time of executiopat

34. Repeat the above phases until the terminatiorwhich is shown irFig. 3. Effectively, the response time
condition is met. includes the latencies for coordination and the GiRig.

1.4, Weighted GSO In Fig. 3, Number of tasks ranging from 50 to 500 is

taken along x-axis and average response time ple(ita
Weighted GSO is also similar to General GSO but if seconds) is taken along y-axis ranging from 0 t0. 30
any glow worm that does not able to find any bestcan be inferred from the graph that response tife o
solution, the intensity of glow worm i is absorbeud it ~ MGSO is lesser than GSO which shows MGSO is more
will be invisible to all other glow worm in the spa responsive than GSO.
Hence weighted GSO surmounts this problem by  The metric coordination delay sums up the latencies
assigning pre-defined weight parametersoreach glow  for: (i) resource claim to reach the index cel), aiting
worm improves the efficiency and result. time till a resource ticket matches with the claind (iii)
notification delay from coordination service to the
2. MATERIALSAND METHODS relevant GFM which is shown ifrig. 4 on which
number of tasks ranging from 50 to 500 is takem@bo-
axis and average coordination delay time per task (
seconds) is taken along y-axis ranging from 0 t0.26
can be inferred from the graph that coordinatiotayle
time of MGSO is lesser than GSO which shows MGSO
is more coordinating than GSO.
Makespan is measured as the response time of a
whole workflow, which equals the difference between
the submission time of the entry task in the warkfl

In this section we have made an attempt to
decentralized cooperative workflow scheduling in a
dynamically distributed resource sharing environimen
of Grids. This can be done by using Gridsim. This
approach ignored the fact that each grid site maayeh
its own fault-tolerance strategy because each isite
itself an autonomous domain. For instance, if d giie
employs the job check-pointing mechanism, each

computation node must have the ability of periolica . : . )
b yorp and the output arrival time of the exit task in ttha

transmission of transient state of the job executiy
computational node to the server. When there is aWOrkfIOW Wh'tCh is shovtvn ka'g 5. Note that“th::'sde b
failure of job, it will migrate to another computaial measurements  (except makespan) are collecte y

node and resume from the last stored checkpoint. A averaging the values obtained for each task in the
Glow worm Swarm Optimization (GSO) for job system. The measurement of makespan is taken by
scheduling is used to address the problem Ofaveraglng over all the Wofkf'OWS in the systemfig
heterogeneity in fault-tolerance of computationadg 4| Number of tzsks ranging fkrom 50 to I?f?o IS tak;n
but Weighted GSO that overcomes the position update ong x-axis and average makespan workflow is taken

imperfections of general GSO in a more efficient ?Iong r): axis ring::ng frolin 0to 5?00 It can ble irdel h
manner shown during comparison analysis. rom the graph that makespan of MGSO is lesser than

GSO which shows MGSO is more quicker in
3. RESULTS completion of workflow than GSO.
From all the above graphs we can conclude that
The following are the graphical results of our MGSO is better than GSO in terms of response time,
implemented systems namely GSO and Modified GSOcoordination delay and makespan.
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5. CONCLUSION applications with a GA-based job scheduling stratey

a large-scale computational grid. We considered the
We have implemented a decentralized andcomputational grid in which each computational site
cooperative  scheduling technique for workflow supports one or two of four kinds of fault-toleranc
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mechanisms, including job migration, job retry, jbb Jang, S.H., T.Y. Kim, J.K. Kim and J.S. Lee, 20IRe
migration with checkpointing and the job replicatio study of genetic algorithm-based task schedulimg fo
mechanisms. The scheduler will decide which kinfls o cloud computing. Int. J. Control Automat., 5: 157-
fault-tolerance mechanisms will be applied to each 162.

individual job for more reliable computation ancoder Kamalam, G.K. and V.M. Bhaskaran, 2012. Novel

makespan. To induce effective scheduling we utlize L ; .
Glowworm Swarm Optimization that is even capable of adaptive job scheduling algorithm on heterogeneous
grid resources. Am. J. Applied Sci., 9: 1294-1299.

handling discontinuities in the objective functidn ,
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