
Journal of Computer Science 10 (5): 763-773, 2014
ISSN: 1549-3636
© 2014 Science Publications
doi:10.3844/jcssp.2014.763.773 Published Online 10 (5) 2014 (http://www.thescipub.com/jcs.toc)

Corresponding Author: K. Nirmala Devi, Department of Computer Application, Kongu Engineering College, Perundurai, Erode,
Tamilnadu, India

763 Science Publications

JCS

IMPROVING FAULT TOLERANT RESOURCE OPTIMIZED
AWARE JOB SCHEDULING FOR GRID COMPUTING

K. Nirmala Devi and A. Tamilarasi

Department of Computer Application, Kongu Engineering College, Perundurai, Erode, Tamilnadu, India

Received 2013-09-28; Revised 2013-11-20; Accepted 2014-01-04

ABSTRACT

Workflow brokers of existing Grid Scheduling Systems are lack of cooperation mechanism which causes
inefficient schedules of application distributed resources and it also worsens the utilization of various
resources including network bandwidth and computational cycles. Furthermore considering the literature,
all of these existing brokering systems primarily evolved around models of centralized hierarchical or
client/server. In such models, vital responsibility such as resource discovery is delegated to the centralized
server machines, thus they are associated with well-known disadvantages regarding single point of failure,
scalability and network congestion at links that are leading to the server. In order to overcome these issues,
we implement a new approach for decentralized cooperative workflow scheduling in a dynamically
distributed resource sharing environment of Grids. The various actors in the system namely the users who
belong to multiple control domains, workflow brokers and resources work together enabling a single
cooperative resource sharing environment. But this approach ignored the fact that each grid site may have
its own fault-tolerance strategy because each site is itself an autonomous domain. For instance, if a grid
site handles the job check-pointing mechanism, each computation node must have the ability of
periodical transmission of transient state of the job execution by computational node to the server. When
there is a failure of job, it will migrate to another computational node and resume from the last stored
checkpoint. A Glow worm Swarm Optimization (GSO) for job scheduling is used to address the issue of
heterogeneity in fault-tolerance of computational grid but Weighted GSO that overcomes the position
update imperfections of general GSO in a more efficient manner shown during comparison analysis. This
system supports four kinds of fault-tolerance mechanisms, including the job migration, job retry, check-
pointing and the job replication mechanisms also considering risk nature of Grid computing environment.
The risk relationship between jobs and nodes are defined by the security demand and the trust level. Our
evaluation based simulation results show that our algorithm has shorter makespan and more efficient. We
also analyze the efficiency of the proposed approach against a centralized coordinated workflow
scheduling technique and show that our approach is more efficient than the centralized technique with
respect to achieving highly coordinated schedules.

Keywords: Grid Scheduling, Single Point of Failure, Scalability and Network Congestion, GSO Overcomes

the Position Update Imperfections, Centralized Technique Achieve Highly Coordinated
Schedule

1. INTRODUCTION

The traditional approach to resource access in grid
environments is based on a queuing model that provides

best-effort quality of service. In this model jobs are
queued until they can be matched with appropriate
resources for execution. This approach ensures that
access to resources is shared equally and fairly among all

K. Nirmala Devi and A. Tamilarasi / Journal of Computer Science 10 (5): 763-773, 2014

764 Science Publications

JCS

users of the system, but can result in long delays when
competition between users forces jobs to wait for
resources to become available. For applications with
only one job, or with a few jobs that can be submitted in
parallel, these delays are encountered only once. For
workflow applications with complex job hierarchies and
interdependencies the delays are encountered many
times. One way to improve quality of service for
workflow applications is to use a model for resource
allocation based on provisioning. With a provisioning
model, for a given period of time resources are allocated
for the exclusive use. It minimizes delays for queuing
because the user’s jobs no longer compete with other
jobs for resource access. Also, in counterpoint to the
model of queuing where resource allocation and
scheduling occur on a per-job basis, the provisioning
model allows resources to be allocated once and used for
multiple jobs. Provisioning is slightly more complex than
queuing in that it requires users to make more
sophisticated resource allocation decisions.

There are two policies that can be used to guide these
decisions. In static provisioning the application allocates
all resources required for the computation before any
other jobs being submitted and releases the resources
only after all the jobs have finished. This method
assumes that the number of resources required is known
or can be predicted in advance. In dynamic provisioning
resources are allocated by the system at runtime. This
allows the pool of available resources to grow and shrink
according to the changing needs of the application. This
Dynamic provisioning does not require advanced
knowledge of resource needs, but it does require policies
for acquiring and releasing resources. It also relies on the
ability of the provisioning system to acquire resources
on-demand when they are needed, which may not be
possible if the resources are shared with other users.

Advance reservation is a resource provisioning
mechanism supported by many batch schedulers. Users
create advance reservations by requesting slots from the
batch scheduler that specify the number of resources to
reserve and the start and end times of the reservation.
During the reservation period the scheduler only runs
jobs that belong to the user on the reserved resources.
Although batch schedulers used by many resource
providers have advance reservation features, few
providers support the use of reservations. In a survey of
advance reservation capabilities at several grid sites it is
inferred that 50% of the sites which are surveyed did not
support reservations at all and that most of the sites that
supports reservations required administrator assistance in

order to create them. As per the above, only a few sites
allowed users to create their own reservations. This kind
of advance reservations support is time-consuming and
cumbersome. Scheduler-based advance reservations also
increase resource usage costs. In many grid environments
these costs are measured in service units. Users of advance
reservations are typically charged a premium for dedicated
access to resources. These premiums can be 20 to 100%
above normal costs. Furthermore, users are often forced to
pay for the complete reservation, though they are not able
to use it all (e.g., if there is a failure that causes the
application to abort, or if the actual runtime of the
application is shorter than predicted).

An alternative to scheduler-based advance
reservations is the use of probabilistic advance
reservations. In this method reservations are made based
on statistical estimates of queue times which allow jobs
to be submitted with a high probability of starting some
time before the desired reservation begins. This allows
“virtual reservations” to be created by adjusting the
runtime of the job to cover both the time between the
submission of the job and the desired reservation start
time and the duration of the reservation itself. Unlike
scheduler-based reservations, probabilistic reservations
do not require special support from resource providers.
However, probabilistic reservations are not guaranteed
because the actual queue delay may exceed the predicted
delay and the final cost of a probabilistic reservation is
difficult to predict because the actual runtime of the
reservation job may exceed the desired reservation time.

1.1. Related Work

Jobs A scheduling strategy on load balancing of VM
resources based on genetic algorithm has been proposed
(Gu et al., 2012). Based on historical data and current
system state using genetic algorithm, this strategy
computes further on the influence it will have on the
system after the deployment of the required VM
resources and then selects the least-affective solution, by
which it obtains the best load balancing and reduces or
avoids dynamic migration. Simultaneously, this system
also brings in variation rate to describe the load variation
of system VMs and it also bring in average load distance
to measure the overall load balancing effect of the
algorithm. The disadvantages of the proposed system are
wastage of resource when the resources are not
distributed properly and Subscribers holds huge dynamic
heterogeneity and platform irrelevance whereas the

K. Nirmala Devi and A. Tamilarasi / Journal of Computer Science 10 (5): 763-773, 2014

765 Science Publications

JCS

advantages are efficiently and dynamic management of
resources so as to meet the requirements of subscriber’s
problems getting solved with full utilization of service in
Cloud computing dynamic environment.

Computer system performance depends on load
balancing which should concerns about grid topology,
communication delay, negotiation protocol and
workload. The interactions and interdependences
between these above factors and their relationship with
the selected load balancing algorithms are analyzed
over here (Sharma and Sharma, 2012). Necessary issues
are considered and thoroughly examined through the
systematic self-examination and the comparison of two
load balancing algorithms, a static and a dynamic one.
The static load balancing algorithm is the well-known
deterministic Round-Robin, whereas the dynamic load
balancing algorithm has been developed for the needs
of author’s research. They implemented their
experiment in a flexible simulation framework. Suitable
metrics are formulated so that their combined
examination reveals the doings of the system in terms of
performance. Precision of the system’s state information
is always balanced by the simplicity of the negotiation
protocol. The disadvantages of existing system are it
does not utilize any special selection policy as the tasks
are generated and sequentially dispatched; the mixture of
processing time is the elapsed time between the arrival
and the completion of the task at the processor takes
more time will lead to higher delay; degradation of
performance may occur when high information policy
complexity is combined with important communication
overheads whereas the advantage is proposed algorithm
efficiency can be enhanced when intense workload is
adequately combined with increased delay.

Grid is a dynamic environment, where the resources
may join or leave the environment at any time and the
jobs also arrives at different intervals of time. To obtain
the demands and requirements of the dynamic
environment, to minimize the makespan and to maximize
the resource utilization an effective grid scheduling
technique is needed (Kamalam and Bhaskaran, 2012).
We propose grid architecture as a collection of clusters
with multiple worker nodes in each cluster. Here
proposed a new scheduling algorithm Novel Adaptive
Decentralized Job Scheduling Algorithm (NADJSA) that
applies both Divisible Load Theory (DLT) and Least
Cost Method (LCM) and also considers the user
demands. The proposed Novel Adaptive Decentralized
Job Scheduling Algorithm is compared with the

Decentralized Hybrid Job Scheduling Algorithm. The
proposed Novel Adaptive Decentralized Job Scheduling
Algorithm minimizes the makespan, improves the
resource utilization and satisfies the user demands and
well suits for the grid environment.

The issues associated are technical difficulties in
implanting real time cloud whereas the advantages are
necessary multiplexing to achieve elasticity and the
illusion of infinite capacity requires each of these
resources to be virtualized to hide the implementation
of how they are multiplexed and shared and SaaS
provider can devolve some of its problems to the
Cloud Computing provider.

The Grid Scheduler must select proper resources for
executing the tasks with less response time. There are
various reasons such as network failure, resource
conditions overloaded, or unavailability of required
software components for execution failure. So, fault-
tolerant systems should be able to identify and handle
failures and support reliable execution in the presence of
failures. Therefore the integration of fault tolerance
measures and communication time with scheduling gains
much importance (Keerthika and Kasthuri, 2012). In this
study, a new fault tolerance based scheduling approach
Fault Tolerant Min-Min (FTMM) for scheduling
statically available meta tasks is proposed wherein
failure rate and the fitness value are calculated. The main
objective of this study is to design a new scheduling
algorithm that reduces the makespan which is the total
time taken to complete a set of jobs. Also, the idle time
of the resources should be less which assures that no
resources are kept idle for a long time. It also ensures
that fault tolerant measures are satisfied. The tasks are
scheduled after the fault rate of all the resources is
calculated. The proposed algorithm considers both
system performance and user satisfaction. Hence, most
of the jobs are completed within their expected
completion time with minimum number of failures.

Cloud System job scheduling is one of the essential
functionality performed in all the computing
environments. In order to increase the efficiency of
working cloud environments, job scheduling is a task
that is performed in order to gain maximum profit. Here
(Ambike et al., 2012), they proposed a system for
scheduling the multiple requests from users. All users are
classified and authenticated into two types namely
service-uploading and downloading by an web
application. Multiple requests are processed by utilizing

K. Nirmala Devi and A. Tamilarasi / Journal of Computer Science 10 (5): 763-773, 2014

766 Science Publications

JCS

non-pre-emptive priority algorithm. The Cloud Service
Provider (CSP) main motive is to provide fast services to
the multiple requests. On this study they presented a
corresponding strategy and algorithm to gain optimistic
value of service considering the goals of users and
service providers for Quality of Service (QoS).
Resources are utilized in a transient manner. The
disadvantage of proposed system is decentralized
scheduling has high implementation complexity
therefore most of the work is done on centralized
schedulers whereas the advantage is that multiple user
requests are processed by the use of non-pre-emptive
priority algorithm with utilization of resources is done
in a very transient manner.

The distinctiveness of Particle Swarm Optimization
algorithm (PSO) is that it is capable of solving large-
scale combination optimization problem that are easy to
fall into the search speed slowly and partially the most
superior with global fast convergence of simulated
annealing algorithm is utilized to combine particle
swarm optimization algorithm in each iteration that
enhances the convergence rate and improves the
efficiency. Zhan and Huo (2012) presented an improved
particle swarm optimization algorithm in resources
scheduling strategy of the cloud computing. It also can
reduce the average running time of task and raises the
rate availability of resources. The disadvantage of
proposed system is that strong randomness of these
algorithms are easy to sink into defects of local optima
and low convergence rate when solving large scale
optimization problem whereas the advantages are PSO
can solve the large-scale combination optimization
problem with the average search speed and proposed
algorithm in each iteration that enhances the
convergence rate and improves the efficiency.

Cloud computing must be advanced to focus on
resource utilization and resource management as they
are one of the predominant challenges in cloud.
Considering the time of processing, utilization of
resource based on CPU usage, throughput and
memory usage, the cloud environment with the service
node to control all clients request that could provide
maximum service to all clients. Resource scheduling
and tasks separately involves more waiting time and
response time. Linear Scheduling for Tasks and
Resources (LSTR) is a scheduling algorithm
(Abirami and Ramanathan, 2012) that performs tasks
and resources scheduling. The disadvantages are First
In First Out (FIFO) scheduling is used by the master
node to distribute resources to the waiting tasks and

virtualization deals with the existence of the resources
that are not physical whereas the advantages are
resource allocation is made based on the selection
criteria which will improve the efficiency of the cloud
environment and the manager of memory is responsible
for allocating memory resources to the clients.

Generally, resources scheduling strategy is the key
technology in cloud computing. Zhu et al. (2012)
proposed a new business calculation mode in cloud
computing. They performed study of cloud computing
system structure and the mode of operation with the
key research for cloud computing as the process of the
work scheduling and resource allocation problems
based on ant colony algorithm. Analysis and design of
the specific implementation for cloud resources
scheduling is also described. The issue is that resource
scheduling is a crucial question of distribution and in
cluster calculation it determines the user task execution
efficiency whereas the advantages are cloud computing
platform is a strong network of collaborative work and
it’s connected with a lot of computing resources and
services operating resources.

Cloud computing is a rising technology and it lets
users to pay as you need and posses very good
performance. Cloud computing is a heterogeneous
system as well and it contains large amount of
application data. It is acknowledged that optimizing the
transferring and processing time is crucial to an
application program, during the process of scheduling
some intensive data or computing an intensive
application. In this study (Guo et al., 2012) in order to
minimize the cost of the processing we formulate a
model for task scheduling and propose a Particle
Swarm Optimization (PSO) algorithm which is based
on small position value rule. The PSO algorithm
embedded in crossover and mutation and in the local
research converges and runs faster. The issue is that
efficient scheduling of all the application tasks and
data are the most important problem whereas the
advantages are minimizing the processing cost by
formulating a model for task scheduling and proposed
Particle Swarm Optimization (PSO) algorithm which
is based on small position value rule.

Existing solutions to task scheduling problems are
unsuitable for Cloud computing because they only focus
on a specific purpose like the minimization of execution
time or workload and do not use characteristics of Cloud
computing for task scheduling. A task scheduler in
Cloud computing has to satisfy cloud users with the
agreed QoS and improve profits of cloud providers. In

K. Nirmala Devi and A. Tamilarasi / Journal of Computer Science 10 (5): 763-773, 2014

767 Science Publications

JCS

order to solve task scheduling problems in Cloud
computing, this study (Jang et al., 2012) proposes a task
scheduling model based on the genetic algorithm. In the
proposed model, the task scheduler calls the GA
scheduling function every task scheduling cycle. This
function creates a set of task schedules and evaluates the
quality of each task schedule with user satisfaction and
virtual machine availability and the function iterates
genetic operations to make an optimal task schedule.
Issues are task scheduler in Cloud computing doesn’t
satisfy cloud users with the agreed QoS and improve
profits of cloud providers whereas the advantage is that
the task scheduler of this scheduling model calls the GA
scheduling function to make task schedules based on
information of tasks. The function iterates reproducing
populations to output the best task schedule.

1.2. Grid Workflow Scheduler

The proposed workflow scheduling algorithm utilizes
the Grid-Framework model with regard to grid
networking and resource organization. Grid-Framework
aggregates distributed resource brokering and allocation
services as part of a cooperative resource sharing
environment. The Grid-Framework, GF = {R1, R2,…,Rn},
consists of a number of sites, n, with each site
contributing its resource to the framework. Every site in
the framework has its own resource description Ri which
contains the definition of the resource that it is willing to
contribute. Ri, can include information about the CPU
architecture, memory size, number of processors,
operating system type, secondary storage size.

In this study, Ri = {pi, xi, µi, ∅i}, which includes the
number of processors pi, processor architecture xi, their
speed µi and installed operating system type ∅i.
Resource brokering, indexing and allocation in Grid-
Framework are facilitated by a Resource Management
System (RMS) known as Grid-Framework Model
(GFM). Figure 1 shows an example Grid-Framework
resource sharing model consisting of Internet-wide
distributed parallel resources. Every contributing site
maintains its own service which is composed of 3
software entities: Grid Resource Manager (GRM),
Local Resource Management System (LRMS) and
Distributed Information Manager (DIM) or Grid Peer.
Here, we consider the scientific workflow applications
as the case study for the proposed scheduling approach.
A Scientific workflow application can modeled as a
Directed Acyclic Graph (DAG), where the tasks in the

workflow are represented as nodes in the graph and the
dependencies among the tasks are represented as the
directed arcs among the nodes.

We focus on scheduling of workflow application,
which consists of a collection of tasks. Our approach
supports allocation of different tasks in a workflow
across multiple sites in the Grid-Framework (Fig. 2), if
the total number of processors needed for executing all
the tasks in a workflow are not available within a single
Grid site. In our application model, each task needs
availability of only one processor within a Grid site.
Thus the resource claim object for a task encapsulates
request for a single processor, i.e. the requirement of the
number of processors available is 1. In case, at any given
instance of time, if no resource ticket is able to offer
single processor as requested by a resource claim object
then the claim object is stored in the coordination spaced
until one of the Grid site publishes a resource ticket
offering one available processor. Sites of grid publish
resource tickets after a certain interval of time.
Algorithms for (i) task scheduling; (ii) resource
provisioning and (iii) resource coordination is given in
paper (Rahman et al., 2010).

The grid system consists of geographically dispersed
computational sites having different administrative
polices and heterogeneous resources. Any computational
node may employ one or multiple fault-tolerance
mechanisms for more reliable computation. Here, we
consider the following four fault-tolerance mechanisms:

• Job Retry (JRT) mechanism: The JRT mechanism is

the simplest fault-tolerance technique, which will re-
execute the failed job from the beginning on the
same computational node

• Job migration/Job Migration without checkpointing
(JMG) mechanism: The JMG mechanism will move
the failed job to another computational node and re-
execute the job from the beginning on the latter
computational node

• Job migration with Checkpointing (JCP)
mechanism: The JCP mechanism will record the
state of the job periodically at rum time. If the job
fails, it is moved to another computational node and
resumed the execution from the last checkpoint

• Job Replication (JRP) mechanism: The JRP
mechanism replicates a job to multiple
computational nodes such that the job has higher
success rate. If one of those replicas has already
completed, then all other replicas should stop their
execution to save the computing power

K. Nirmala Devi and A. Tamilarasi / Journal of Computer Science 10 (5): 763-773, 2014

768 Science Publications

JCS

Fig. 1. Grid Framework Model (GFM)

Fig. 2. Multi-site allocation of workflow tasks

In the grid system, each computational site supports
one of the following three mechanisms: JRT, JMG and
JCP. As for the supporting of JRP, the scheduler will
allocate multiple computational sites to execute a certain
job concurrently. Furthermore, the scheduler can execute

a certain job by any combination of these four different
fault-tolerance mechanisms. For instance, a job may be
executed concurrently in a node supporting JRT as well
as a node supporting JCP, resulting in that JRP is also
applied to the job in effect.

K. Nirmala Devi and A. Tamilarasi / Journal of Computer Science 10 (5): 763-773, 2014

769 Science Publications

JCS

1.3. The Glowworm Swarm Optimization
(GSO) Algorithm

In GSO, a swarm of agents are initially randomly
distributed in the search space. Agents are modeled
after glowworms and will be called glowworms in the
following of this study. Accordingly, they carry a
luminescent quantity called luciferin along with them.
The glowworms emit a light whose intensity is
proportional to the associated luciferin and interact
with other agents within a variable neighborhood. It
starts by placing a population of n glowworms
randomly in the search space so that they are well
dispersed. In the beginning, all the glowworms
contain an equal quantity of luciferin. All iteration
consists of a luciferin-update phase followed by a
movement phase based on a transition rule. The
following is the load balancing algorithm that utilizes
GSO for effective scheduling:

1. Initialize the number of virtual machines VM=

{vm1,…….,vmn n number of resources and T=
{t 1,…….,tn} t is the n number of tasks.

2. Calculate the processing time ti,j to process task t on
resource i is known; and T is m×n matrix such that:

11 12 1n

m1 m2 mn

t t t

T

t t t

 
 =  
 
 

…

⋮ ⋱ ⋮

⋯

3. Set number of dimensions = m
4. Set number of glowworms = n
5. Let s be the step size
6. Let xi(t) be the location of glowworm i at time t
7. deploy agents randomly
8. Define smallest position value (SPV) S0 = S0

1, S
0
2,

S0
3,….,S0

N and apply SPV rule to solve discrete
problems at Step 17.

9. Find the optimal resources vector using R0 = R0
1,

R0
2, R

0
3,….,R0

N:

k k
i iR (S mod m) 1= +

10. Calculate the i

jE(T) represents the expected

execution time for Job i running in Node j at step 20.
11. Set maximum iteration number = iter_max
12. Set t =1
13. while (t≤ iter_max) do

14. for i =1 to n do li(0) = lo
15. i

d 0r (0) r=

16. Ni (t) = {j: dij (t)<
i
dr (t); li(t); li(t)<lj(t)}

17. j = selectglowworm(p
�

)

18. () () j i
i i

j i

x (t) x (t)
x t 1 x t s

x (t) x (t)

 − + = +
 −
 

19. i
dr (t+1) = min {γs, max {0, i

dr (t)+β (ni-Ni (t))}}

20. SPV rule to obtain the discrete permutation, where
K
i, jS represents the resource ID to which the task j is

assigned.
21. Calculate the i

jE(T) represents the expected

execution time for Job i running in Node j:

i i i
j j

j

2 3i i i
JRT j j j

1 1 1 SZ
E(T) E (T) 1 P P P

2 2 2 C
 = + + + × 
 

where, SZi is the size of Job i and Cj is the computing
capacity of Node j.
22. If node a to j fails job is migrated to another

computational node i
jE(T) represents the expected

execution time for Job i running in Node j, k, q:

()i i
M j j

i ii
j j,k

j

1 SZ
E T 1 P P MC

2 C
 = − × + × 
 

()i i i ii
M j k k

k

i
k k,q

1 SZ
E T P 1 P P MC

2 C

  = × − × + ×  
  

()i i i
M q j k

i i
q

q

1 SZ
E T P P 1 P

2 C

  = × − ×     

Where:

i i
x,y

x,y

D
MC

Bw
=

i
x ,yMC is the migration cost of the condition that Job i

moves from Node x to Node y, Di is the data size of Jobi,
Bwx,y and is the communication bandwidth between
Node j and Node j and Node k, where x; y∈{j,k,q}.
23. If node i to j fails job transient process states to the

check pointing server periodically the process to
backup node before resuming the unfinished job:

K. Nirmala Devi and A. Tamilarasi / Journal of Computer Science 10 (5): 763-773, 2014

770 Science Publications

JCS

i
j

j

i

i i
cp j

j
j

i

ji i
j j j,k

j

SZ
CSZ

E (T) = (1- P) + ×OH
C PR

SZ

2× CSZ
×P + × OH + MC

2×C PR

  
  
  
  
   

  

  
  
  
  
   

  

() j
j

i

i
j i

SZ

2×C
RM j,k,q = SZ - × PR ×C

PR

  
  
  
  
   
  

() ()
()

()
()

ji i i K
k j j K

K

K
k K

K

i
j

i

i
j

i
ji

k,q

cp

RM j,k,q
RM j,k,q C

E (T) = P 1- P + ×OH
C PR

RM j,k,q
RM j,k,q 2× C

+P + ×OH + MC
2× C PR

  
          

     
  

  
            

      
  

() ()

()i
j

i i K
k j k

RM j,k,q

C
RM j,k,q = RM j,k,q - × PR × C

PR

  
  
  
  
    
  

() ()

()

()
()

i
ki

j
q

i
i i i k

cp q j k

q
q

i
k

i
qki

q K
q

RM j,k,q
1- P

C

RM j,k,qE (T) = P × P
C

+ ×OH
PR

RM j,k,q

2× CRM j,k,q
+P + ×OH

2×C PR

  
     
 
  
  
  
  
    
  

  
  

         
    

  
  

where, ()i

kRM j,k,q is the remaining job size for Job i to

be executed when a failure occurs in Node x. OHx is

the overhead of performing one check pointing
operation for Node x.
24. Let the set RPi consists of those nodes that will

execute Job i independently. Assume Job i starts
to be executed in Node j at timeijs if Node j

belongs to the set RPi. If Job i is executed
successfully, then the job will be finished at time

i i i
j j

j

sz
f = s +

c
. Because the execution of job i in Node j

will continue after time i
jf only if all previous executed

replicas fail, the probability that Job i will continue
after time i

jf will be:

() i
i

w RP wi i iconst f f fi j w j

P = P∈
≤

∏

25. Let the execution time of each replica is broken into

multiple pieces byi
jf , where j∈RPi. Each piece has

an execution probability and its expected execution
time is equal to multiplying the continuation
probability at the beginning of a piece by the
execution time of executing Job i in Node j is
calculated as follows:

() ()
() () ()

i i
start j j i i iconst f ×(f -f

i i
j JRP j

nx, j RPi
i i i is f <f fx y

)

j j
i i i i¬ f .f <f fz x

x yi

y

x

z

= P s × -s +

E T E T

P
∈

≤ ≤

∃ ≤

=

∑

26. Result of the execution time for Job i running in

Node j, k, q

27. If () ()()K i i
M j ji, j cpS E T E T≤≤ then

 Go to step 20 and result of execution time.
 Else

 If () ()()i K
M j

i
i, j cp jE T S E T≤ ≤ then

Go to step 22 and result of execution time
 Else

 If () ()()i K
j M

i
cp i, j jE T S E T≤ ≤ then

Go to step 23 and result of execution time
25. For each glowworm i do:

() () () ()i i it = -ρ t -1 + γ J(x t)ℓ ℓ ℓ

26. for each glowworm j∈Ni(t)do:

K. Nirmala Devi and A. Tamilarasi / Journal of Computer Science 10 (5): 763-773, 2014

771 Science Publications

JCS

() () ()
() ()

j i
ij

k ik N (t)i

t - t
p t =

t - t
∈∑
ℓ ℓ

ℓ ℓ

28. end if
29. end if
30. Evaluate new solutions and update light intensity.
30. end for j
31. end for i
32. t = t+1
33. Rank the glowworms and find the current global best

and update the iteration parameter.
34. Repeat the above phases until the termination

condition is met.

1.4. Weighted GSO

Weighted GSO is also similar to General GSO but if
any glow worm that does not able to find any best
solution, the intensity of glow worm i is absorbed and it
will be invisible to all other glow worm in the space.
Hence weighted GSO surmounts this problem by
assigning pre-defined weight parameters wi to each glow
worm improves the efficiency and result.

2. MATERIALS AND METHODS

In this section we have made an attempt to
decentralized cooperative workflow scheduling in a
dynamically distributed resource sharing environment
of Grids. This can be done by using Gridsim. This
approach ignored the fact that each grid site may have
its own fault-tolerance strategy because each site is
itself an autonomous domain. For instance, if a grid site
employs the job check-pointing mechanism, each
computation node must have the ability of periodical
transmission of transient state of the job execution by
computational node to the server. When there is a
failure of job, it will migrate to another computational
node and resume from the last stored checkpoint. A
Glow worm Swarm Optimization (GSO) for job
scheduling is used to address the problem of
heterogeneity in fault-tolerance of computational grid
but Weighted GSO that overcomes the position update
imperfections of general GSO in a more efficient
manner shown during comparison analysis.

3. RESULTS

The following are the graphical results of our
implemented systems namely GSO and Modified GSO

(MGSO) and the parameters considered for the
comparison of these methods are namely:

• Response time
• Co-ordination delay and
• Makespan

4. DISCUSSION

Response time for a task is the delay between the
submission time and the arrival time of execution output
which is shown in Fig. 3. Effectively, the response time
includes the latencies for coordination and the CPU time.
In Fig. 3, Number of tasks ranging from 50 to 500 is
taken along x-axis and average response time per task (in
seconds) is taken along y-axis ranging from 0 to 500. It
can be inferred from the graph that response time of
MGSO is lesser than GSO which shows MGSO is more
responsive than GSO.

The metric coordination delay sums up the latencies
for: (i) resource claim to reach the index cell, (ii) waiting
time till a resource ticket matches with the claim and (iii)
notification delay from coordination service to the
relevant GFM which is shown in Fig. 4 on which
number of tasks ranging from 50 to 500 is taken along x-
axis and average coordination delay time per task (in
seconds) is taken along y-axis ranging from 0 to 250. It
can be inferred from the graph that coordination delay
time of MGSO is lesser than GSO which shows MGSO
is more coordinating than GSO.

Makespan is measured as the response time of a
whole workflow, which equals the difference between
the submission time of the entry task in the workflow
and the output arrival time of the exit task in that
workflow which is shown in Fig. 5. Note that, these
measurements (except makespan) are collected by
averaging the values obtained for each task in the
system. The measurement of makespan is taken by
averaging over all the workflows in the system. In Fig.
4, Number of tasks ranging from 50 to 500 is taken
along x-axis and average makespan workflow is taken
along y-axis ranging from 0 to 5000. It can be inferred
from the graph that makespan of MGSO is lesser than
GSO which shows MGSO is more quicker in
completion of workflow than GSO.

From all the above graphs we can conclude that
MGSO is better than GSO in terms of response time,
coordination delay and makespan.

K. Nirmala Devi and A. Tamilarasi / Journal of Computer Science 10 (5): 763-773, 2014

772 Science Publications

JCS

Fig. 3. Response time graph

Fig. 4. Coordination delay graph

Fig. 5. Makespan graph

5. CONCLUSION

We have implemented a decentralized and
cooperative scheduling technique for workflow

applications with a GA-based job scheduling strategy for
a large-scale computational grid. We considered the
computational grid in which each computational site
supports one or two of four kinds of fault-tolerance

K. Nirmala Devi and A. Tamilarasi / Journal of Computer Science 10 (5): 763-773, 2014

773 Science Publications

JCS

mechanisms, including job migration, job retry, the job
migration with checkpointing and the job replication
mechanisms. The scheduler will decide which kinds of
fault-tolerance mechanisms will be applied to each
individual job for more reliable computation and shorter
makespan. To induce effective scheduling we utilized
Glowworm Swarm Optimization that is even capable of
handling discontinuities in the objective function in
finding the best scheduling method. In future, we intend to
address the resource failure and fault tolerance issues into
our scheduling technique. Future work in this direction
would involve a thorough analytical study of the effect of
various parameters on algorithm performance, aimed
primarily toward providing an analytical justification to
the conclusions reached by experimentation.

6. REFERENCES

Abirami, S.P. and S. Ramanathan, 2012. Linear
scheduling strategy for resource allocation in cloud
environment. Int. J. Cloud Comput. Services Arch.,
2: 9-17.

Ambike, S., D. Bhansali, J. Kshirsagar and J. Bansiwal,
2012. An optimistic differentiated job scheduling
system for cloud computing. Int. J. Eng. Res.
Applic., 2: 1212-1214.

Gu, J., J. Hu, T. Zhao and G. Sun, 2012. A new resource
scheduling strategy based on genetic algorithm in
cloud computing environment. J. Comput., 7: 42-52.

Guo, L., S. Zhao, S. Shen and C. Jiang, 2012. Task
scheduling optimization in cloud computing based
on heuristic algorithm. J. Netw., 7: 547-553. DOI:
10.4304/jnw.7.3.547-553

Jang, S.H., T.Y. Kim, J.K. Kim and J.S. Lee, 2012. The
study of genetic algorithm-based task scheduling for
cloud computing. Int. J. Control Automat., 5: 157-
162.

Kamalam, G.K. and V.M. Bhaskaran, 2012. Novel
adaptive job scheduling algorithm on heterogeneous
grid resources. Am. J. Applied Sci., 9: 1294-1299.
DOI: 10.3844/ajassp.2012.1294.1299

Keerthika, P. and N. Kasthuri, 2012. An efficient fault
tolerant scheduling approach for computational grid.
Am. J. Applied Sci., 9: 2046-2051. DOI:

10.3844/ajassp.2012.2046.2051
Rahman, M., R. Ranjan and R. Buyya, 2010.

Cooperative and decentralized workflow scheduling
in global grids. Future Generat. Comput. Syst., 26:
753-768. DOI: 10.1016/j.future.2009.07.002

Sharma, M. and P. Sharma, 2012. Performance
evaluation of adaptive virtual machine load
balancing algorithm. Int. J. Adv. Comput. Sci.
Applic., 3: 86-88.

Zhan, S. and H. Huo, 2012. Improved PSO-based task
scheduling algorithm in cloud computing. J. Inform.
Comput. Sci., 9: 3821-3829.

Zhu, L., Q. Li and L. He, 2012. Study on cloud
computing resource scheduling strategy based on the
ant colony optimization algorithm. Int. J. Comput.
Sci., 9: 54-58.

