

© 2015 Deivendran, P. and E.R. Naganathan. This open access article is distributed under a Creative Commons Attribution

(CC-BY) 3.0 license.

 Journal of Computer Science

Original Research Paper

Scalability Services in Cloud Computing Using Eyeos

1
Deivendran, P. and

2
E.R. Naganathan

1Manonmaniam Sundaranar University, Tirunelveli, India
2Department of Computer Science and Engineering, Hindustan University, India

Article history

Received: 03-12-2013

Revised: 17-03-2014

Accepted: 11-08-2014

Corresponding Author:

Deivendran, P.

Manonmaniam Sundaranar

University, Tirunelveli, India
Email: deivendran77p@yahoo.com

Abstract: Cloud storage enables users to remotely store their data and

benefit of the demand high quality cloud applications without the

difficulty of local hardware and software management. Though the

benefits are clear, such a service is also reliable to the users’ physical

possession of their outsourced data, which inevitably poses new

security risks towards the recovery of the data in cloud. In order to

address this new problem and further achieve a secure and useful

cloud storage service, we propose in this study a flexible distributed

storage integrity mechanism, utilizing the homomorphic token and

distributed data. The proposed design allows users to check the cloud

storage with very lightweight communication and computation cost.

The auditing result not only ensures strong cloud storage correctness

guarantee, efficiency, but also simultaneously to access data error

localization, i.e., the identification of misbehaving server. Considering the

cloud data are dynamic in nature, the proposed design future supports

secure and efficient dynamic operations on outsourced data, including

block modification, update, deletion and append. The proposed scheme is

highly efficient and secure against Byzantine failure, malicious data

modification attack and even server colluding attacks.

Keyword: Homomorphic, Service, Storage, Third Party Auditor, Attack

Introduction

Scalability is the ability of an application to be

scaled up to meet demand through replication and the

distribution of requests across a pool or farm of

servers. It’s the traditional load balanced model and

it’s an integral component of cloud computing

environments. Vertical scalability is the ability of an

application to scale under load; to maintain

performance levels as the number of concurrent

requests increases. While load balancing solutions can

certainly assist in optimizing the environment in

which an application needs to scale by reducing

overhead that can negatively impact performance

(such as TCP session management, SSL operations and

compression/caching functionality) it can’t solve core

problems that prevent vertical scalability.

The problem is that a single database table or SQL

query that is poorly constructed can destroy vertical

scalability and actually increase the cost of deploying

in the cloud. Because you generally pay on a resource

basis, if the application isn’t scaling up well it will

require more resources to maintain performance levels

and thus cost a lot more. Cloud computing isn’t going

to magically optimize code or database queries or

design database table with performance in mind, that’s

still squarely in the hands of the developers regardless

of whether or not cloud computing is used the

deployment model.

XAMPP on the Web

At the beginning it is important to answer why to

choose XAMPP among so many server packages

available? Well, there are two strong advantages of it.

First-its configuration is so easy, that even a child can

do it. It particularly is minimized to unzip archive and

run setup batch. Second-XAMPP is extremely

Deivendran, P. and E.R. Naganathan / Journal of Computer Science 2015, 11 (1): 254.261

DOI: 10.3844/jcssp.2015.254.261

255

portable (Amazon, 2009). Moving it from one

directory or drive to another requires only one run of

setup-xampp.bat. You can even install it on USB stick

and have your private web server along with your

apps go anywhere with you and to be available on any

computer; you plug your USB stick. As I read other

Wiki articles on how many problems people have with

installing and configuring other servers or server pack

I think it can be simpler than with XAMPP. After that,

execute xampp-control. Exe to run any web server

component (like Apache, My SQL) you need or to

install it as system service. If you pass this step, you

can open your browser and point it to local host to see

XAMPP welcome page (Shah et al., 2008), which

consist of some modules for checking/granting

security to your web apps run under this server. If

everything is double checked and all issues all solved,

you may delete contents of http subfolder in you

XAMPP directory (Amazon, 2008) Differences

between setup version (EXE) and setup-less version

(ZIP) are at least questionable (half the size for the

first one) and I still can’t find out how do the achieve

it?) But for this tutorial and for advantages of

portability we will use ZIP version.

Own Cloud Operating System with Eyes

A cloud OS simply refers to an operating system

(or an interface filled with a complete suite of desktop

applications) that resides on the Web and you can

access to it anytime, anywhere as long as you have an

Internet connection. While there are plenty of cloud

OS out there that you can sign up and use for free,

there might be instances where you want to have your

own dedicated cloud OS. First of all, signing up a free

account with third-party (Kincaid, 2009) cloud OS

often means that you have limited file storage space

and all your data are stored in other people’s server.

Next, the connection speed is dependent on the

number of active users at any time. The more popular

the site is, the slower it will get when you are using it.

If what you want is your own dedicated Web OS

(Juels et al., 2007) that you can use to manage your

online stuff and also to provide an environment to

collaborate with your colleagues/partners, then eye

OS is the software for you. Eye OS is free and open

source cloud OS software that you can install on your

own Web server. One thing that, I like about eye OS

is its small file size and ease of installation. The

whole package is only 2.5 MB in size and the

installation required almost zero configuration (well,

there are still several steps involved) and anyone who

know how to use a FTP program can get it up and

running in no time.

User Classes and Characteristics:

• Third Party Auditor: Collect the data’s from the

user and generate tokens for that particular file for

security

• Cloud Service Provider: Collect file from third

party auditor generate signature like token and

send cloud server

Constraints in Analysis:

• Constraints as informal text

• Constraints as operational restrictions

• Constraints integrated in existing model concepts

• Constraints as a separate concept

• Constraints implied by the model structure

Constraints in Design:

• Determination of the involved classes

• Determination of the involved objects

• Determination of the involved actions

• Determination of the require clauses

• Global actions and constraint realization

Constraints in Implementation

A hierarchical structuring of relations may result in

more classes and a more complicated structure to

implement. Therefore it is advisable to transform the

hierarchical relation structure to a simpler structure

such as a classical flat one. It is rather straightforward

to transform the developed hierarchical model

(Wilson, 2006) into a bipartite, flat model, consisting

of classes on the one hand and flat relations on the

other. Flat relations are preferred at the design level

for reasons of simplicity and implementation ease.

There is no identity or functionality associated with a

flat relation. A flat relation corresponds with the

relation concept of entity-relationship modeling and

many object oriented methods.

To ensure the security and dependability for cloud

data storage under the aforementioned adversary

model, we aim to design efficient mechanisms for

dynamic data verification and operation and achieve

the following goals: Storage correctness (Arrington,

2006) to ensure users that their data are indeed stored

appropriately and kept intact all the time in the cloud.

Fast localization of data error: To effectively locate

the malfunctioning server when data corruption has

Deivendran, P. and E.R. Naganathan / Journal of Computer Science 2015, 11 (1): 254.261

DOI: 10.3844/jcssp.2015.254.261

256

been detected. Dynamic data support (SMI, 2009) to

maintain the same level of storage correctness

assurance even if users modify, delete or append their

data files in the cloud. Dependability (Ateniese et al.,

2008) to enhance data availability against Byzantine

failures, malicious data modification and server

colluding attacks, i.e., minimizing the effect brought

by data errors or server failures. Lightweight: To

enable users to perform storage correctness checks

with minimum overhead.

Pass Agent Architecture:

• Tunnel module

• Registration module

• Registration Server

• Service Deployment

Tunnel Module

This module is responsible for establishing the

tunnel alive. The tunnel negotiation is accomplished

via SSL over TCP. Once the tunnel is setup, the

tunnel module can receive data from the tunnel and

process accordingly before sending it to the service

dispatcher.

Registration Module

In order for a SaaS application to access an on-

premise service, the enterprise administrator registers

the accessible on-premise services to the PASS. The

registration module provides a web interface for

administrators to perform this task on-demand

(Arrington, 2006). The registered service will be

added to the database as direct service. Meanwhile,

this module also synchronizes the service registration

with the synchronization, server. For security purpose,

during the synchronization, the PA must present its

certificate to PS over HTPPS for authentication.

PASS Architecture

As discussed in our architecture, in case the user

does not have the time, feasibility or resources to

perform the storage correctness verification, he can

optionally delegate this task to a dependent third party

auditor, making the cloud storage publicly verifiable.

Third Party Auditor (TPA) Fig. 1 an optional TPA,

who has expertise and capabilities that users may not

have, is trusted to assess and expose risk of cloud

storage services on behalf of the users upon request.

Storage correctness: To ensure users that their data are

indeed stored appropriately and kept intact all the time

in the cloud.

Registration Server

The registration server provides two interfaces.

One is a secured web interface through which

administrators can manage PASS agents and services

Fig. 6. The other interface is for PA’s registration

module to synchronize services. This interface is

different from a general web interface in that it

requires client’s certificate by which PASS agents are

authenticated. The registered service and agents will

be stored in a database, in the actual implementation;

a run-time copy is pushed to the routing engine for

performance enhancement.

Fig. 1. PASS architecture

Deivendran, P. and E.R. Naganathan / Journal of Computer Science 2015, 11 (1): 254.261

DOI: 10.3844/jcssp.2015.254.261

257

Service Deployment

This describes the proposed architecture to

implement multi-tenancy for an SOA platform. Since

the solution deals with security and implementation

related complications; we describe it in terms of a

concrete SOA platform Fig. 7. When a client sends a

message addressed to a particular tenant’s service,

that request must indicate the tenant in some manner.

The default approach in WSO2 Carbon is to add the

tenant name to the URL as follows.

Nonfunctional Requirements

Their scheme combines spot-checking and error

correcting code to ensure both possession and

irretrievability of files on archive service (Juels et al.,

2007) systems. Built on this model and constructed a

random linear function based homomorphic

authenticator which enables unlimited number of

challenges and requires less communication overhead

due to its usage of relatively small size of BLS

signature. Their scheme utilized public key based

homomorphism (Arrington, 2006) tags for auditing

the data file Fig. 5. However, the pre-computation of

the tags imposes heavy computation overhead that can

be expensive for an entire file. In their subsequent

work, Attendee et al. described a PDP scheme

(Wilson, 2006) that uses only symmetric key based

cryptography. This method has lower-overhead than

their previous scheme and allows for block updates,

deletions and appends to the stored file, which has

also been supported in our work. It is not yet clear

how the work can be adapted to cloud storage

scenario where users (Shah et al., 2008) no longer

have the data at local sites but still need to ensure the

storage correctness efficiently in the cloud. The

software may be safety-critical. If so, there are issues

associated with its integrity level.

The software may not be safety-critical although it

forms part of a safety-critical system. For example,

software may simply log transactions. If a system

must be of a high integrity level and if the software is

shown to be of that integrity level, (Wang et al., 2009)

then the hardware must be at least of the same

integrity level. There is little point in producing

‘perfect’ code in some language if hardware and

system software (in widest sense) are not reliable.

If a computer system is to run software of a high

integrity level then that system should not at the same

time accommodate software of a lower integrity level.

Systems with different requirements for safety levels

(Kincaid, 2009) must be separated. Otherwise, the

highest level of integrity required must be applied to all

systems in the same environment.

Cloud Architecture Design

Cloud Server (CS)

An entity, which is managed by Cloud Service

Provider (CSP) to provide data storage service and has

significant storage space and computation resources In

order to achieve assurance of data storage correctness

and data error localization simultaneously. Upon

receiving challenge, each cloud server computes a short

“signature” Fig. 2 over the specified blocks and returns

them to the user. Fast localization of data error: To

effectively locate the malfunctioning server when data

corruption has been detected.

Fig. 2. Cloud Architecture user and auditor

Deivendran, P. and E.R. Naganathan / Journal of Computer Science 2015, 11 (1): 254.261

DOI: 10.3844/jcssp.2015.254.261

258

Cloud Computing Computational

Approaches

Cloud computing has computational and

sociological implications. In computational terms

cloud computing is described as a subset of grid

computing concerned with the use of special shared

computing resources (Shah et al., 2007). For this

reason it is described as a hybrid model exploiting

computer networks resources, chiefly Internet,

enhancing the features of the client/server scheme.

From a sociological standpoint on the other hand, by

delocalizing hardware and software resources cloud

computing changes the way the user (SMI, 2009)

works as he/she has to interact with the “clouds”

(Juels et al., 2007) on-line, instead of in the traditional

stand-alone mode.

Cloud Server (CS): An entity, which is managed

by Cloud Service Provider (CSP) to provide data

storage service and has significant storage space and

computation resources In order to achieve assurance

of data storage correctness and data error localization

simultaneously, (Ateniese et al., 2007) our scheme

entirely relies on the pre-computed verification

tokens. Later, when the user wants to make sure the

storage correctness for the data in the cloud, he

challenges the cloud servers with a set of randomly

generated block indices. Upon receiving challenge,

each cloud server computes a short “signature”

(Kincaid, 2009) over the specified blocks and returns

them to the user. Fast localization of data error: To

effectively locate the malfunctioning server when data

corruption has been detected.

//Public access service method creation//

Myblob(service.set-containe, x_ms_blob_Public access)

{

blob_service=Blob service (account_name = ‘pytool’,

ount_key=‘07iY9G.1r7A= =‘)

stoage_container_name=pyfiles’blob_service.create_con

tainer (storage_container_name)

blob_service.set_container_acl(storage_container_name,

x_ms_blob_public_access=‘container’)

}

}

//Upload a text file and set appropriate content type//

Myblob (open s, r)

{

myblob = open(r’foo.txt’, ‘r’).read()

blob_name=‘hello.txt’blob_service.put_blob(storagecont

ainer_name, _type=‘BlockBlob’)

blob_service.set_blob_properties

(storage_container,blob_name,my_blob_content_type=‘t

ext/plain’)}

// Upload a photo and set appropriate content type//

myblob = open(r’clouds.jpeg’, ‘r’).read()

Myblo_upload(s,x)

{

blob_name=‘clouds.jpeg’blob_service.put_blob(storage_

container_name,blob_name,myblob,x_ms_blob_type=‘B

lockBlob’)

blob_service.set_blob_properties(storage_container_nam

e,blob_name, lob_content_type=‘image/jpeg’)

}

blobs=lob_service.list_blobs(container_name)

for blob in blobs:

print (blob.name)

print(blob.url)

Results

A PASS system has been implemented using eye
OS/. Net services based on the architecture described
(Wilson, 2006) experiments were conducted to
evaluate the performance of the PASS system with
regard to processing time and throughput. It is
compared with the case where a reverse proxy is
deployed for integration as it is approach used in SaaS
integration despite the deficiencies.

Performance Comparison (RTT)

The hardware depicts the performance of PASS

with regard to the average Round-Trip Time (RTT)

Fig. 3, the number of simultaneous requests. In this

experiment, the test client sent requests to the test

server and we calculated the average round trip time

over all requests (Ateniese et al., 2008). The test was

repeated multiple times by spawning different number

of threads on the same test client.

Throughput Comparison

The throughput is relatively flat with the increase of

the number of threads. Note that the absolute value may

not be very useful in this case as the page size is

approximately 8 Kbyte Fig. 4. We are more interested in

the difference between PASS and the reverse proxy

under the same testing setting.

System Performance in Real Data

Two PASS were deployed in two different networks.

The two test clients send requests to the test server

through the different PASS and the average RTT was

calculated Table1.

Deivendran, P. and E.R. Naganathan / Journal of Computer Science 2015, 11 (1): 254.261

DOI: 10.3844/jcssp.2015.254.261

259

Fig. 3. RTT comparison

Fig. 4. Throughput comparison

Fig. 5. Service registration

Deivendran, P. and E.R. Naganathan / Journal of Computer Science 2015, 11 (1): 254.261

DOI: 10.3844/jcssp.2015.254.261

260

Fig. 6. Home window

Fig. 7. Service creation data

Table 1. Performance analysis

Process Verizon eye OS Optimum online

Direct access 410 480

PASS 492 530

Overhead 70 50

Conclusion

User acceptance of the system is key factor for the

success of any system. The system under consideration

is tested for user acceptance by constantly keeping in

Deivendran, P. and E.R. Naganathan / Journal of Computer Science 2015, 11 (1): 254.261

DOI: 10.3844/jcssp.2015.254.261

261

touch with prospective system and user at the time of

developing and making changes whenever required. We

implemented and tested a working system based on

PASS architecture. The experimental study shows that

PASS solution is feasible.

Acknowledgement

Based on this model, we propose a scheme for

assigning Web services to server nodes in the cloud in

order to improve the scalability of composite services.

We have presented a simulated Experimental evaluation

of our scheme. We are in the process of deploying our

scalability management scheme in the cloud

environment and experimentally study its performance.

Author’s Contributions

All authors equally contributed in this work.

Ethics

This article is original and contains unpublished

material. The corresponding author confirms that all of

the other authors have read and approved the manuscript

and no ethical issues involved.

References

Amazon, 2008. Amazon s3 availability event.

Amazon.com.

Amazon, 2009. Amazon web services (aws).

Arrington, M., 2006. Gmail disaster: Reports of mass

email deletions.

Ateniese, A., R. Burns, R. Curtmola, J. Herring and L.

Kissner et al., 2007. Provable data possession at

untrusted stores. Proceedings of the 14th ACM

Conference on Computer and Communications

Security, Oct. 28-31, ACM, New York, pp: 598-609.

DOI: 10.1145/1315245.1315318

Ateniese, G., R.D. Pietro, L.V. Mancini and G. Tsudik,

2008. Scalable and efficient provable data

possession. Proceedings of the 4th international

Conference on Security and Privacy in

Communication Networks, Sep. 22-25, ACM, New

York, DOI: 10.1145/1460877.1460889

Juels, A., S. Burton, J. Kaliski, 2007. Pors: Proofs of

retrievability for large files. Proceedings of the 14th

ACM Conference on Computer and

Communications Security, Oct. 28-31, ACM, New

York, pp: 584-597. DOI: 10.1145/1315245.1315317

Kincaid, J., 2009. Media ax/the linkup closes its doors.

Shah, M.A., M. Baker, J.C. Mogul and R. Swaminathan,

2007. Auditing to keep online storage services

honest. Proceedings of the 11th USENIX Workshop

on Hot Topics in Operating Systems, USENIX

Association Berkeley, CA, USA, pp: 1-6.

Shah, M.R. Swaminathan and M. Baker, 2008. Privacy-

preserving audit and extraction of digital contents.

Cryptology e Print Archive.

SMI, 2009. Building customer trust in cloud computing

with transparent security. Sun Microsystems, Inc.

Wang, C., Q. Wang, K. Ren and W. Lou, 2009. Ensuring

data storage security in cloud computing. Proceedings

of the 17th International Workshop on Quality of

Service, Jul. 13-15. IEEE Xplore Press, Charleston,

SC, pp: 1-9. DOI: 10.1109/IWQoS.2009.5201385

Wilson, S., 2006. Appengine outage. Payment Processor

Breach May Be Largest Ever, 20-27.

