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Abstract: Even though immutability is a desirable property, especially in a 

multi-threaded environment, implementing immutable Java classes is 

surprisingly hard because of a lack of language support. We present a static 

analysis tool using abstract bytecode interpretation that checks Java classes 

for compliance with a set of rules that together constitute state-based 

immutability. Being realized as a Find Bugs plug in, the tool can easily be 

integrated into most IDEs and hence the software development process. 

Our evaluation on a large, real world codebase shows that the average run-

time effort for a single class is in the range of a few milliseconds, with only 

a very few statistical spikes. 
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Introduction 

Due to the use of multi-core technology in modern 
desktop computers, laptops, tablets and even smart 
phones, concurrent programming has become the 
standard programming paradigm for virtually all 
software development. At the same time, Java, one of 
today’s predominant programming languages, supports 
concurrent program execution only rudimentarily, 
especially when it comes to the design of threadsafe 
classes. This becomes particularly evident in the context 
of immutable classes; instances of immutable classes can 
be shared freely and without synchronization between 
threads without the risk of data races and inconsistent 
states (Bloch, 2008; Peierls et al., 2005). In Java, 
however, it is an almost surprisingly difficult task to 
code immutability correctly. The properties that must be 
implemented are not widely known amongst 
programmers and neither the language itself nor the 
commonly used development environments provide 
sufficient support to help programmers with this task. 

In this study we present jic (java immutability 

checker), a comprehensive analysis tool that checks Java 

classes for immutability. As opposed to other tools that 

detect only straight-forward immutability breaches, jic 

performs a thorough analysis by means of abstract 

interpretation. For its analysis, jic checks all constructors 

and all methods of a class for violations of any of the 

rules for immutable classes. Abstractly interpreting a 

method basically means to execute it for all possible 

input values at once. Whenever a conditional statement 

is executed and the condition cannot be completely 

evaluated because it depends on some input-specific 

value, all possible execution paths must be followed. 

Evidently, this can lead to the problem of path explosion 

for complex methods. To mitigate this problem, we cache 

the execution results of nested methods calls, which 

reduces the total of nested method evaluations by about 

25%. There remains, however, still the possibility of a 

class to be too complex to be completely analyzed by 

abstract interpretation. In our experience with a big, real 

life project (Apache Tomcat 7.0), only one of the 

approximately 2 400 classes fell into this category. All 

other classes could be analyzed, on average even in a very 

short time as we will see in section 6. We therefore 

believe that jic can be a valuable tool for the development 

of thread-safe and in particular immutable, Java classes. 

Rather than on the Java source code level, we perform 
the abstract interpretation on the bytecode level, because 
of the relative simplicity of the underlying virtual machine 
model. As a side effect, the analyzer is usable for other 
languages that are executed within the Java Virtual 
Machine, such as e.g., Groovy, Scala and Clojure. 

The rest of this paper is organized as follows: In section 

2, we give an overview of relevant, related work before we 

give our pratical definition of immutability in section 3. 

Section 4 is concerned with the dependency of a class’s 

immutability on other classes, followed by a description of 

our implementation in section 5. In section 6 we evaluate 

our approach and finally, section 7 concludes this article. 

Related Work 

Even though immutability seems such an obvious 

property, there exist several definitions for immutability 
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in Java. For instance, give a definition in (Peierls et al., 

2005) that includes proper construction as a pre-requisite 

to immutability; J. Bloch’s definition in (Bloch, 2008), on 

the other hand, requires immutable classes not to be 

extensible, but does not mention proper construction. 

Haack et al. (2007), the authors differentiate between state 

based and observable immutability; while the former is 

more suitable for automated checking, the latter describes 

the intended effect of immutability, namely for immutable 

instances to be freely shareable without the need for 

synchronization in a multi-threaded environment. 

The aim of escape analysis is to detect which objects 

remain confined to or escape a certain scope. Usually, the 

scope is the method stack, or the current thread. In the 

former case, if an object stays confined to the method 

stack, i.e., is only known to local variables rather than 

other objects, it can be allocated on the method stack 

instead of on the global heap. Stack allocated objects are 

automatically garbage collected when the method frame is 

popped from the stack, reducing the task of the heap 

garbage collector and reducing the application’s memory 

footprint. In addition, stack confined objects are also thread 

confined and thus access to them need not be 

synchronized. The same goes for objects that do escape 

the method stack but remain confined to the current 

thread. Escape analysis can also be used for proper 

construction checking, with the scope not being the 

method stack or the current thread, but the object’s 

constructor. For an overview of the area of escape 

analysis, see, e.g., (Ruf, 2000; Choi et al., 1999; Bogda and 

Holzle, 1999; Aldrich et al., 1999; Choi et al., 2003). 

Immutability 

From a semantical point of view, an immutable 

object is one whose behavior and visible state are 

constant no matter when or in which (potentially 

concurrent) order its methods are invoked and its visible 

state is read. With such a definition of observable 

immutability (Haack et al., 2007), the invisible state of 

an immutable object may change over time as long as the 

visible behavior remains the same. Even though this 

might seem unusual, it allows for techniques like lazy 

initialization and memoization that are taken advantage 

of, e.g., by the immutable Java String class. 

Observable immutability, however, is not trivial to 
implement correctly and hard to check for a given class. 
Therefore, idioms and best practices for the correct 
implementation of immutable classes typically build 
upon a state-based definition of immutability. 

Because our objective is to provide a rule set for an 

automatic immutability checking tool, we do the same 

and give a state-based definition of immutability, 

knowing that our definition will exclude classes that are 

observably but not state-based immutable (To mitigate 

this problem, our tool employes a white list that contains 

the known (observable) immutable platform classes, 

such as String and the wrapper classes for primitive 

types). In a second step, we will deduce a set of 

immutability properties that can automatically be checked. 

We start with a definition of proper construction that will 

be used within our immutability definition: 
 
Definition 1 (Proper Construction). An object is 

properly constructed if it becomes 

accessible only after complete construction. 

A class is properly constructed if its 

instances are properly constructed. 
 

Evidently, proper construction always is a desirable 

property. For immutable classes, it becomes 

indispensable, because otherwise a change of the object 

state can be observed during the construction process. 

We now give our high-level, state-based definition of 

immutability: 
 
Definition 2 (Immutability). An object is immutable if 

(a) it is properly constructed and (b) its 

state cannot be modified after construction. 

A class is immutable if its instances are 

immutable. 
 

For our analyzer, we aim at a set of rules that is 

equivalent to the above definition and that code can be 

automatically checked against. Because Java code 

defines classes, these rules will check for immutability 

on the class rather than on the instance level. We start 

with a rule that covers part (a) of definition 2: 
 
Rule 1. A class is properly constructed, if in each of its 

constructors, the this reference is not published 

before completion of the construction process. 
 

This rule might seem too strict at first glance, as 

publication of the this reference after proper initialization 

of all fields seems harmless. However, because 

compilers can reorder instructions as long as single-

threaded equivalence is preserved, even publication of 

the this reference in the last line of a constructor is a 

violation of proper construction. 
Defining a set of rules that guarantee part (b) of 

definition 2 is a little bit more challenging. We start 
our considerations with the concept of the state of a 
class instance. 

Clearly, all primitive fields as well as all reference 

fields of an object o1 belong to o1’s state. If, however, 

the target of a reference field, i.e., the referred object o2, 

also is part of o1’s state depends on o2’s ownership. In a 

language that uses the same kind of references for all 

different kinds of relationships, including aggregations, 

compositions and associations, it is impossible to know 

the boundaries of an object’s state from its class 

definition. Semantically, the set of referred objects that 



Oliver Haase / Journal of Computer Sciences 2016, 12 (7): 314.322 

DOI: 10.3844/jcssp.2016.314.322 

 

316 

belong to an object’s state can range from none (shallow 

immutability) to the object closure, i.e., all objects that 

are directly or indirectly referred by the object (deep 

immutability). The definition of semantically more 

adequate, finer grained levels of state boundaries is the 

goal of ownership systems, see, e.g., (Aldrich and 

Chambers, 2004; Dietl and Muller, 2005; Vitek and 

Bokowski, 2001). Ownership system require to extend 

standard Java by additional mechanisms. In the absence 

of a language intrinsic ownership system, we take a 

conservative approach and assume the object’s closure as 

the object’s state boundaries. 

We are now prepared to define the rules for state 

unmodifiability. We divide the problem space step by step 

by starting with the following simple and obvious rule: 
 
Rule 2. All fields, i.e., instance variables, must be final. 
 

For fields with a primitive type, rule 2 ist not only 

necessary but also sufficient, because a primitive final 

field can be set only once during construction. For these 

fields, we are done. What remains to be further 

considered is reference fields, because rule 2 only 

guarantees the references to be unmodifiable, but not the 

referred objects. To prune the potential complex graph of 

directly and indirectly referred objects, we only consider 

mutable objects, recursively applying our immutability 

rules- and operationally our immutability analyzer-to the 

types of referred objects. Similar to primitive fields, for 

reference fields with immutable targets, rule 2 ist both 

necessary and sufficient. 
The first rule that is concerned with mutable targets 

of reference fields ensures that they cannot be 

manipulated directly from the outside: 
 
Rule 3. Reference fields to mutable data must be private. 
 

Rule 3 concerns one aspect of encapsulation; full 

encapsulation requires two more rules that ensure that 

the outside cannot gain direct access to the respective 

field. The first one affects constructors: 
 
Rule 4. References to mutable data that enter 

constructors may not be directly assigned to the 

fields of the object under construction, but must 

be deep copied first. 

 

If a reference to mutable data comes from the outside, 

then the outside might, at any point in time, modify the 

referred data. Rule 4 prevents situations like these from 

happening. The complementary rule ensures that 

encapsulated mutable data does not leak to the outside: 

 

Rule 5. Reference fields to mutable data must not be 

published directly; instead, deep copies must be 

created and published. 

Now that the outside is prevented from manipulating 

the mutable target of a reference field, what remains to 

be taken care of is that the class itself does not make any 

modifications to its own instances. 

 

Rule 6. There must be no mutators, i.e., no state 

changing methods. 

 

In (Block 2008), as an additional rule immutable 

classes are required not to be extensible. The rationale of 

that rule is that a subclass of an immutable class can 

easily break the immutability rules and itself be mutable. 

Due to the substitution principle, the type of a reference 

variable, field, or parameter can therefore be immutable, 

while the runtime type of the referred object can be 

mutable, if immutable classes can be extended. 

Nevertheless, we do allow immutable classes to be 

extensible, taking into account that the subclasses of\an 

immutable class can themselves be mutable and that the 

immutability of the static type of a variable is not enough 

to assume the immutability of its value at runtime. To 

become more concrete, this consideration materializes in 

rules 3, 4 and 5. In all of these rules, whether a field or 

parameter, respectively, is considered immutable or not, 

is determined as follows: 

 

• If the runtime type of a reference field is known-

because the referred object has been created 

previously in a constructor-then the field is 

immutable if its runtime type is immutable 

• If the runtime type of a reference field is unknown, 

then the field is considered immutable only if its 

static type is both immutable and final 

 

Dependencies on Other Classes 

Even though immutability is a local property that a 

class does or does not have, no Java class is entirely 

independent of other classes; classes have superclasses, 

may have inner and outer class and use other classes by 

instantiating them and calling their methods. In this 

section, we categorize the types of dependencies a class 

has on other classes with respect to its immutability 

property and how these dependencies are dealt with. 

Superclasses 

As a subclass inherits the components of its 

superclass, there is a natural and very tight dependency 

of a subclass on its superclass. In term of the 

immutability property, this dependency is two-fold: 

 

• First, a subclass can only be immutable if its 

superclass is immutable, too. We therefore also 

analyze the immutability of the superclass when 

analyzing the subclass 
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• Secondly, when analyzing a method for immutability, 

this method may call other methods. Often, the 

(correct) behavior of the called method is essential for 

the calling method’s compliance with the 

immutability rules. When the called method belongs 

to the calling method’s superclass, we do not consider 

the called method an alien method, but an internal 

method and hence analyze into the called method 

 

Evidently, if the superclass changes and its 

immutability property with it, the immutability of the 

subclass gets broken without any changes to the 

subclass. Also, the implementation of a method of the 

superclass can change in a way that does not violate 

the superclass’s immutability but breaks the 

subclasses immutability. This potential effect is just 

another variant of the so-called fragile base class 

problem (Mikhajlov and Sekerinski, 1998) that 

describes typical problems arising from the tight 

coupling between super and subclasses. 

Inner and Outer Classes 

Similar to super and subclasses, inner and outer 

classes have a very tight relationship with each other. 

Whoever has control over the implementation of a class 

also controls the implementation of its inner and outer 

classes if there are any. We therefore do not consider 

methods belonging to an inner or outer class alien 

methods, but treat them as internal methods and 

consequently step into them for analysis if they are called 

from within an analyzed method. As with superclasses, a 

change of an inner or outer class might break a class’s 

immutability. However, in contrast to superclasses, inner 

and outer classes need not be immutable themselves to 

allow for a class’s immutability. 

All Other Classes 

A class’s immutability must not depend on the 

particular implementation of any other class, except its 

superclass, its inner and its outer classes. Methods of other 

classes are considered alien methods; if an alien method is 

called from a method being analyzed then it must not be 

analyzed, but its worst possible behavior must be 

assumed. In the context of immutability checking, the 

worst possible behavior means that the alien method: 

 

• Publishes (makes external) all input parameters 

including the this reference if its amongst them 

• Returns a reference to an external object if its result 

type is a reference value 

 

Only if this worst case behavior does not lead to an 

immutability violation-be it immediately or during the 

further evaluation process-is the call to the alien method 

legal in terms of immutability. However, even though a 

class’s immutability must not rely on another class’s 

implementation, it may rely on its contract. If a class 

contract specifies the class to be immutable-we use an 

@Immutable annotation for that matter, as will be 

discussed in section 5.3-then we assume it to comply 

with the contract. This consideration is relevant to 

distinguish between mutable and immutable reference 

fields of a class, see rules 3, 4 and 5. 

Implementation 

The jic immutability checker is implemented as a 

generic abstract bytecode interpreter with hook points for 

tests that can introspect the state of the virtual machine, 

together with specific tests that check for immutability 

breaches. In this section, we first describe the abstract 

interpreter and then the immutability checks. 

Abstract Interpreter 

The data structures and the inner workings of the 

abstract interpreter are similar to a regular Java virtual 

machine, in the sense that for each method to be analyzed, it 

computes step by step the effect of each instruction on the 

current state, i.e., on (a) the values of all local variables, (b) 

the operand stack and (c) the object heap. The pseudocode 

in algorithm 1 shows how the abstract interpreter transfers 

the initial state of a method into its final state. As can be 

seen, the local variables are initialized with the arguments 

into the method; due to abstract interpretation, these will be 

symbolic rather than concrete values: 

 

Algorithm 1 Abstract interpretation of a Java method’s 

bytecode. 

 initialize localVars with args 

 opStack←θ 

 heap←θ 

 instr←first instruction 

 while instr 6 ≠ null do 

 localVars←localVars.transfer(instr) 

 opStack←opStack.transfer(instr) 

 heap←heap.transfer(instr) 

 end while 

 if instr.isBranchInstruction() then 

 instr←instr.target() 

 else 

 instr←instr.next() 

 end if 

 

As can also be seen in algorithm 1, each of the three 

state components (localVars, OpStack, heap) has a 

transfer function that computes the output state 

component depending on the input state component and 

the current instruction. For localVars, e.g., the transfer 

function is the identity function for all but store 

instructions. For a store instruction, the indicated local 
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variable is updated with the given value. Likewise, the 

opStack transfer function updates the operand stack 

whenever an instruction consumes stack entries, or 

pushes new entries onto the stack. The heap finally, is 

modified when a new object or array is created or when 

an object field (or reference valued array component) is 

set to a new value, that is a new link is drawn between 

two objects on the heap. For all other instructions, the 

transfer function is the identity function. 

Though the basic working of the abstract interpreter is 

very similar to a regular Java virtual machine, there are also 

several key differences, as described in the following: 

Single Threaded 

All immutability rules (i.e., if an object is properly 

constructed, if the input parameters to a constructor are 

deep-copied, if the mutable reference fields of an object 

are published, or if a method changes the state of its 

object) are independent of whether the corresponding 

byte code is executed single or multi threaded. Thus, to 

keep the interpreter simple, it has only one method stack 

that is associated with the sole thread of execution. 

Backward References 

In addition to regular object references we also use 

explicit backward references from the target to the 

originating objects. These references are a useful 

performance measure because many immutability checks 

need to test whether a given object is, e.g., transitively 

reachable from the this object, see section 5.2. 

External Objects 

As reference parameters to a constructor or method, 

we use two special objects, a mutable external object 

and an immutable external object. In the terminology of 

abstract interpretation, these two special objects are the 

symbols for unknown reference type values. They 

represent unknown class instances and arrays alike. 

When an internal object is published during the course of 

symbolic evaluation, it is replaced by one of the two 

external objects, depending on its immutability property. 

Symbolic Primitive Values 

For each primitive type, there is exactly one 

symbolic value, i.e., someInt, someDouble, etc. These 

values represent unknown method parameters of the 

respective type. 

The main reason is as follows: When evaluating a 

constructor or method, be it directly or indirectly through 

nested method invocation, we are not interested in 

primitive result values but only in the object graph that is 

built during evaluation, because this is where 

immutability breaches can happen. However, beside not 

knowing the exact result value of a method with 

primitive return type, this design decision has two more 

consequences: (1) For condition branch instructions with 

numeric conditions, the condition cannot be evaluated 

and thus all branches must be executed. Evidently, if the 

code contains many levels of nested conditional branch 

instructions, this can lead to path explosion. On the other 

hand, abstract interpretation basically means to evaluate 

a method for all possible input values and thus 

evaluating both possible paths of a conditional branch 

instruction seems the natural thing to do. (2) When 

accessing an array component with an unknown index, 

each component of the array must be assumed to be the 

desired one. Thus, the code following the array access 

must be evaluated for each possible component of the 

array. For arrays containing many components, this can 

also lead to path explosion. 

Interpretation of Internal Vs. Alien Methods 

When a method or constructor f is interpreted and 

within f another method or constructor g is invoked, then 

the interpreter steps into g only if it is an internal 

method-see section 4 for a definition of ’internal’-but not 

if g is an alien method. To skip an alien method, the 

interpreter pops the right amount of parameters from the 

operand stack and pushes a correctly typed symbolic 

result value onto the stack. For a primitive return type of 

g, the result is one of the primitive symbolic values 

described above. For a method g that returns a reference, 

the referred object must be considered external to 

method f, because g may have published it prior to 

returning it to f. If the static return type of g is an 

immutable and final reference type, then the runtime type 

of the result object must equal its (immutable) static type 

and hence a reference to the immutable external object is 

pushed onto the operand stack. Otherwise, if the static 

return type is non-final or mutable, then the runtime type 

of the result object cannot be known to be immutable and 

thus a reference to the mutable external object is pushed 

onto the operand stack. Also, as already mentioned in 

section 4, all reference parameters into g are made 

external, because g might publish them and public objects 

are the most harmful in terms of immutability. 

For internal methods, on the other hand, the 

interpreter pushes a new frame onto the method stack 

and recursively continues interpretation with the called 

method, the same way a regular JVM would do it. 

The challenge, however, is to determine whether a 

method is an internal or an alien method. The challenge 

lies in the fact that for a method call o.g(), the target object 

o’s runtime type is not known to the interpreter if o is a 

reference parameter that has been passed externally into 

the calling method f. In that case, the evaluator proceeds 

as follows: If the static type of o is an alien type, then o.g() 

must be an alien method call, independent of o’s runtime 

type; if o’s static type is an intenal class, the interpreter 

performs the regular late binding resolution, starting at o’s 



Oliver Haase / Journal of Computer Sciences 2016, 12 (7): 314.322 

DOI: 10.3844/jcssp.2016.314.322 

 

319 

static type. If the resolved method implementation is final-

either because the target class is final, or because g is 

final, then o.g() must be an internal method call and hence 

the evaluator can step into it. 

Forking 

Because of the symbolic values for input parameters, 
there are several situations when the interpreter has more 
than one option to continue execution: 
 
• A conditional statement whose condition involves a 

symbolic value and thus cannot be (completely) 
evaluated 

• Access to an array component at an index that 
involves a symbolic value 

• A try block with multiple catch clauses 
 

In all of the above cases, the interpretation process 

forks and follows all possible options. In some cases, 

this means to execute different paths, in other cases it 

means to assume different array components and then 

continue for each one of them. To avoid the problem of 

path explosion, the interpreter combines the results to the 

largest possible extent at the end of method calls, i.e., 

before returning the results to the calling method. 

Immutability Checks 

The abstract interpreter contains several hook points 

where the state of the VM can be checked for violations 

of the immutability rules from definition 2. These hook 

points concern all instructions that either modify the 

object graph, or publish-or may publish-an object outside 

its intended scope. More specifically, these are: 

Hook Point (i)-Object Field Assignment 

Assigning a reference value, v, to a field, f, of an 
object, o, that is o.f = v, establishes a reference from o to v, 
if f has a reference type. This newly created reference can 
be checked for compliance with the immutability rules. 

Hook Point (ii)-Array Component Assignment 

Similarly, assigning a reference value, v, to a component 
of an array, a, that is a[i] = v, establishes a reference from a 
to v, if a has a reference component type. However, even if 
v is a primitive value, the assignment can constitute an 
immutability breach, for example if the array is a field of a 
supposedly immutable object. 

Hook Point (iii)-Static Field Assignment 

Assigning a reference value, v, to a static field publishes 
the value and hence can be an immutability breach 
depending on how v is connected in the object graph. 

Hook Point (iv)-Virtual Method Invocation 

Within a virtual method, any of the above can happen 

to any of the reference parameters; whether this can lead 

to an immutability breach depends on the connection 

status of the individual parameters. 

Hook Point (v)-Method Returning 

If a method returns a reference value, then the 

referred object escapes the scope of this method. 

Whether this is harmful or harmless depends on the 

connection status of the referred object. 

Checking rules 2 and 3 from section 3 is as trivial as 

inspecting the final and the access right modifiers of all 

or the mutable reference fields, respectively. A breach of 

any of the rules 1, 4, 5 and 6 technically translates to an 

invalid object graph in the sense that one object, o1, is-or 

might be-reachable from another object, o2, when it 

should not be. In the following, we describe to what 

invalid object interconnection each of the above 

mentioned rules corresponds: 

Proper Construction Check (Rule 1) 

An object is improperly constructed, if the this 

reference, either directly or indirectly, escapes the scope 

of its constructor. An indirect escape occurs, if an object 

that (transitively) refers the this object, escapes the 

constructor scope. On the Java source code level, this 

happens, e.g., when an inner instance of the this object, 

which always has a hidden reference to its outer object, 

escapes. The proper construction check is hooked into 

hook points (i), (ii), (iii) and (iv). 

For hook point (i), the check is applied to each 

reference parameter of the virtual method; for hook 

points (ii), (iii) and (iv), the check is applied to the value 

v to be assigned. For hook points (ii) and (iii), however, 

harm is only done if v is assigned to an object or array, 

respectively, that is external to the constructor. 

Constructor Parameters are Copied Check (Rule 4) 

References to mutable objects that are passed into a 

constructor must not be directly assigned to any field or 

subfield of the this object. This check is only hooked 

into hook points (ii) and (iii); the check specifically tests 

if (a) the value v to be assigned or any object transitively 

referred by v, is external to the constructor and (b) the 

object or array that is assigned to is a field or a subfield 

of the this object. 

Fields not Published Check (Rule 5) 

In the most general case, a reference field (to mutable 

data) of an object, o1, is published if an object, o2, that 

refers to a field or a subfield of o1, is published. Such an 

object o2 can be published as a parameter to a virtual 

method, by assignment to an external object, an external 

array, or a static field; or by returning it as a method 

result. Consequently, the fields not published check is 

hooked into all hook points. 
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No Mutators Check (Rule 6) 

Mutating an object, o, whose fields are all final boils 

down to assigning a value to an object field or an array 

component that is reachable from o. Consequently, this 

check is hooked into hook points (i) and (ii). 

Technical Realization and Usage 

To allow for an easy and seamless integration of the 

jic analyzer into the software development process, we 

have implemented it as a FindBugs plugin. As FindBugs 

is available as a plug in for the most widely used Java 

IDEs, including Eclipse, NetBeans and IntelliJ, jic can 

easily be integrated into most academic as well as 

commercial development processes. 

FindBugs uses Apache BCEL for the bytecode AST 

representation and so does jic for the sake of easy 

integration into FindBugs. However, changing the 

bytecode representation to a different AST format, if it 

turned out to be necessary or convenient, would be 

straightforward and can, e.g., be achieved by a pre-phase 

that converts one AST representation into another one. 

When running FindBugs within a Java IDE, the 

developer can select Java classes on the class, the 

package, or the project level. Configured appropriately, 

jic will check those classes that are annotated as 

immutable for their compliance with our immutability 

definition in section 3. Jic accepts any @Immutable 

annotation as a trigger for its check; this includes, e.g., 

the predefined @Immutable annotations in the packages 

net.jcip.annotations and javax.annotation.concurrent, but 

also any other pre- or user defined @Immutable 

annotation. Rule 1 of definition 2, the rule for proper 

construction, however, is checked not only for 

supposedly immutable, but for all classes. This is 

because proper construction is not only a fundamental 

pre-requisite for immutability, but also an essential 

property for any mutable classes. Class instances are 

never supposed to be visible before they are completely 

initialized and therefore in a valid state with all their 

consistency invariants established. If an instance escapes 

during its own construction process, hard to detect bugs 

can occur even in a single-threaded environment. 

Evaluation 

We have run a field test of the jic tool on the sources 

of the Apache Tomcat project, version 7.0, which 

comprises 2 412 classes that contain 2 753 constructors 

and 19 391 methods (without constructors). Because the 

supposedly immutable Tomcat classes are not annotated 

and thus cannot be differentiated from the intendedly 

mutable classes, we checked all classes for proper 

construction only. However, as the abstract interpreter 

accounts for 89% of the jic implementation, whereas the 

individual checks only sum up to the remaining 11%, the 

field test is a good indication for the overall stability of 

the jic tool. 

Functional Evaluation 

The analysis of the Tomcat classes has yielded a total 

of 663 bugs that is comprised of the following categories: 

 

• 1 out of the 2 412 classes was reported as too 

complex to be analyzed 

• In 193 cases, the this reference was passed into an 

alien method 

• In 21 cases, the this reference escaped through 

indirect passing into an alien method. This happens 

mostly when an inner instance of the object being 

created is passed into an alien method, because inner 

instances have hidden references to their embedding 

outer instance 

• About 448 bugs where subsequent bugs caused by 

an another bug in another class. In the vast majority 

of the cases, the subsequent bugs occur in classes 

that extend improperly constructed superclasses, 

which renders the subclasses themselves improperly 

constructed. In around half of the cases, the 

improperly constructed superclasses are Java 

platform classes or subclasses thereof. In particular, 

108 subsequent bugs occur in specific Exception 

and Error classes, because the Throwable class uses 

a native method in its constructors and therefore 

must be considered improperly constructed. If the 

developer of a subclass, however, trusts the 

superclass to be properly constructed nevertheless 

(because, e.g., the native method does not let the this 

reference escape), they can switch off the 

subsequent bug with a FindBugs specific 

@SuppressWarning annotation 

 

Runtime Performance 

We have measured the time a jic analysis takes per 

class; to get the numbers of a broad array of different 

classes, we have run the measurement for the entire 

Apache Tomcat 7.0 package. To average out the effects 

of spikes due to, e.g., background tasks such as garbage 

collection, we’ve collect the results from 10 different 

measurement runs, leading to the measurement of 

around 24 000 class analyses. The measurements were 

made on a machine with a 2 GHz Intel Core i7 

processor, 8 GB of RAM and 500 GB of secondary 

storage. Figure 1 depicts a plot of the result; please note 

the logarithmic scale of both axes that was necessary 

because the vast majority of analyses ranges within a 

few milliseconds, with a few spikes up to a maximum 

of 4217 ms. Out of the around 24 000 results, 216 

values were greater than 100 ms, out of which 31 were 

greater than 1000 ms. 
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Fig. 1. Measurement of the jic analysis runtime per class, both axes in logarithmic scale 
 

 
 
Fig. 2. Measurement of the jic analysis runtime per class, only the y-axis in logarithmic scale, the x-axis zooming into the 

range of 0 to 100 ms 

 

The histogram in Fig. 2 zooms into the range of 0 to 

100 ms on the x-axis, this time with a logarithmic scale 

only for the y-achsis. This graph gives a better visual 

impression on how low the measured runtimes for more 

than 99% of the analysis runs were. 

Conclusion and Future Work 

Even though immutability is a desirable and 

seemingly simple property, it is surprisingly difficult to 

achieve in Java, because of the language’s lack of 

support of it. What is more, there exists not only one but 

multiple definitions of immutability that differ in the 

degree of strictness of their rules. Our definition aims at 

being as little restrictive as possible, while maintaining 

automatic checkability and, of course, the desired effect 

of immutable objects being freely shareable without any 

need for synchronization. 

Based on our immutability definition we have 

presented the java immutability checker, jic, an analysis 

tool that checks java classes for compliance with a set of 

rules that resemble immutability. Jic is implemented as 

an abstract bytecode interpreter, i.e., it performs its 

analysis on the Java bytecode level. The rationale behind 

this decision is the relative simplicity of the Java 

bytecode language and the JVM machine model, as 

compared to Java source code with its huge and ever 

growing array of language features. 

As a field study, we have evaluated jic on the Apache 

Tomcat 7.0 project with its around 2 400 classes that 
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comprise around 20 000 methods. The runtime effort a 

single class analysis is in the range of a few milliseconds 

for more than 99% of classes, only one class was too 

complex to be completely analyzable. 

We have implemented jic a a FindBugs plugin; as 

FindBugs in turn is available as a plugin for the most 

widely used Java IDEs, including Eclipse, Net-Beans 

and IntelliJ, jic can easily be integrated into most 

academic as well as commercial development processes. 

The code, as well as the latest readily packaged 

FindBugs plugin are publicly hosted at 

https://github.com/seerhein-lab/jic and 

https://github.com/seerhein-lab/jic/ releases, respectively 

and can be used under the Apache License, Version 2.0. 

In a future project, we intend to evaluate jic’s 

usefulness for other Java bytecode based languages, 

such as Groovy, Scala and Clojure. Even though some 

of these languages-most notably Scala-are designed to 

avoid the classical concurrency problems by the 

explicit support of immutably types, some of the 

sources for immutability breaches do remain. For 

instance, in Scala a reference to the this reference can 

escape during object construction just as well as in 

Java. It will be interesting to study which other 

immutability rules are relevant for non-Java bytecode 

based languages, or if there are new rules to be 

considered as well. 
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