

© 2016 Oliver Haase. This open access article is distributed under a Creative Commons Attribution (CC-BY) 3.0 license.

Journal of Computer Sciences

Original Research Paper

Abstract Interpretation of Java Bytecode for Immutability

Analysis

Oliver Haase

Hochschule Konstanz University of Applied Sciences, Konstanz, Germany

Article history

Received: 28-07-2014

Revised: 18-08-2016

Accepted: 20-08-2016

Email: haase@htwg-konstanz.de

Abstract: Even though immutability is a desirable property, especially in a

multi-threaded environment, implementing immutable Java classes is

surprisingly hard because of a lack of language support. We present a static

analysis tool using abstract bytecode interpretation that checks Java classes

for compliance with a set of rules that together constitute state-based

immutability. Being realized as a Find Bugs plug in, the tool can easily be

integrated into most IDEs and hence the software development process.

Our evaluation on a large, real world codebase shows that the average run-

time effort for a single class is in the range of a few milliseconds, with only

a very few statistical spikes.

Keywords: Immutability, Abstract Interpretation, Bytecode

Introduction

Due to the use of multi-core technology in modern
desktop computers, laptops, tablets and even smart
phones, concurrent programming has become the
standard programming paradigm for virtually all
software development. At the same time, Java, one of
today’s predominant programming languages, supports
concurrent program execution only rudimentarily,
especially when it comes to the design of threadsafe
classes. This becomes particularly evident in the context
of immutable classes; instances of immutable classes can
be shared freely and without synchronization between
threads without the risk of data races and inconsistent
states (Bloch, 2008; Peierls et al., 2005). In Java,
however, it is an almost surprisingly difficult task to
code immutability correctly. The properties that must be
implemented are not widely known amongst
programmers and neither the language itself nor the
commonly used development environments provide
sufficient support to help programmers with this task.

In this study we present jic (java immutability

checker), a comprehensive analysis tool that checks Java

classes for immutability. As opposed to other tools that

detect only straight-forward immutability breaches, jic

performs a thorough analysis by means of abstract

interpretation. For its analysis, jic checks all constructors

and all methods of a class for violations of any of the

rules for immutable classes. Abstractly interpreting a

method basically means to execute it for all possible

input values at once. Whenever a conditional statement

is executed and the condition cannot be completely

evaluated because it depends on some input-specific

value, all possible execution paths must be followed.

Evidently, this can lead to the problem of path explosion

for complex methods. To mitigate this problem, we cache

the execution results of nested methods calls, which

reduces the total of nested method evaluations by about

25%. There remains, however, still the possibility of a

class to be too complex to be completely analyzed by

abstract interpretation. In our experience with a big, real

life project (Apache Tomcat 7.0), only one of the

approximately 2 400 classes fell into this category. All

other classes could be analyzed, on average even in a very

short time as we will see in section 6. We therefore

believe that jic can be a valuable tool for the development

of thread-safe and in particular immutable, Java classes.

Rather than on the Java source code level, we perform
the abstract interpretation on the bytecode level, because
of the relative simplicity of the underlying virtual machine
model. As a side effect, the analyzer is usable for other
languages that are executed within the Java Virtual
Machine, such as e.g., Groovy, Scala and Clojure.

The rest of this paper is organized as follows: In section

2, we give an overview of relevant, related work before we

give our pratical definition of immutability in section 3.

Section 4 is concerned with the dependency of a class’s

immutability on other classes, followed by a description of

our implementation in section 5. In section 6 we evaluate

our approach and finally, section 7 concludes this article.

Related Work

Even though immutability seems such an obvious

property, there exist several definitions for immutability

Oliver Haase / Journal of Computer Sciences 2016, 12 (7): 314.322

DOI: 10.3844/jcssp.2016.314.322

315

in Java. For instance, give a definition in (Peierls et al.,

2005) that includes proper construction as a pre-requisite

to immutability; J. Bloch’s definition in (Bloch, 2008), on

the other hand, requires immutable classes not to be

extensible, but does not mention proper construction.

Haack et al. (2007), the authors differentiate between state

based and observable immutability; while the former is

more suitable for automated checking, the latter describes

the intended effect of immutability, namely for immutable

instances to be freely shareable without the need for

synchronization in a multi-threaded environment.

The aim of escape analysis is to detect which objects

remain confined to or escape a certain scope. Usually, the

scope is the method stack, or the current thread. In the

former case, if an object stays confined to the method

stack, i.e., is only known to local variables rather than

other objects, it can be allocated on the method stack

instead of on the global heap. Stack allocated objects are

automatically garbage collected when the method frame is

popped from the stack, reducing the task of the heap

garbage collector and reducing the application’s memory

footprint. In addition, stack confined objects are also thread

confined and thus access to them need not be

synchronized. The same goes for objects that do escape

the method stack but remain confined to the current

thread. Escape analysis can also be used for proper

construction checking, with the scope not being the

method stack or the current thread, but the object’s

constructor. For an overview of the area of escape

analysis, see, e.g., (Ruf, 2000; Choi et al., 1999; Bogda and

Holzle, 1999; Aldrich et al., 1999; Choi et al., 2003).

Immutability

From a semantical point of view, an immutable

object is one whose behavior and visible state are

constant no matter when or in which (potentially

concurrent) order its methods are invoked and its visible

state is read. With such a definition of observable

immutability (Haack et al., 2007), the invisible state of

an immutable object may change over time as long as the

visible behavior remains the same. Even though this

might seem unusual, it allows for techniques like lazy

initialization and memoization that are taken advantage

of, e.g., by the immutable Java String class.

Observable immutability, however, is not trivial to
implement correctly and hard to check for a given class.
Therefore, idioms and best practices for the correct
implementation of immutable classes typically build
upon a state-based definition of immutability.

Because our objective is to provide a rule set for an

automatic immutability checking tool, we do the same

and give a state-based definition of immutability,

knowing that our definition will exclude classes that are

observably but not state-based immutable (To mitigate

this problem, our tool employes a white list that contains

the known (observable) immutable platform classes,

such as String and the wrapper classes for primitive

types). In a second step, we will deduce a set of

immutability properties that can automatically be checked.

We start with a definition of proper construction that will

be used within our immutability definition:

Definition 1 (Proper Construction). An object is

properly constructed if it becomes

accessible only after complete construction.

A class is properly constructed if its

instances are properly constructed.

Evidently, proper construction always is a desirable

property. For immutable classes, it becomes

indispensable, because otherwise a change of the object

state can be observed during the construction process.

We now give our high-level, state-based definition of

immutability:

Definition 2 (Immutability). An object is immutable if

(a) it is properly constructed and (b) its

state cannot be modified after construction.

A class is immutable if its instances are

immutable.

For our analyzer, we aim at a set of rules that is

equivalent to the above definition and that code can be

automatically checked against. Because Java code

defines classes, these rules will check for immutability

on the class rather than on the instance level. We start

with a rule that covers part (a) of definition 2:

Rule 1. A class is properly constructed, if in each of its

constructors, the this reference is not published

before completion of the construction process.

This rule might seem too strict at first glance, as

publication of the this reference after proper initialization

of all fields seems harmless. However, because

compilers can reorder instructions as long as single-

threaded equivalence is preserved, even publication of

the this reference in the last line of a constructor is a

violation of proper construction.
Defining a set of rules that guarantee part (b) of

definition 2 is a little bit more challenging. We start
our considerations with the concept of the state of a
class instance.

Clearly, all primitive fields as well as all reference

fields of an object o1 belong to o1’s state. If, however,

the target of a reference field, i.e., the referred object o2,

also is part of o1’s state depends on o2’s ownership. In a

language that uses the same kind of references for all

different kinds of relationships, including aggregations,

compositions and associations, it is impossible to know

the boundaries of an object’s state from its class

definition. Semantically, the set of referred objects that

Oliver Haase / Journal of Computer Sciences 2016, 12 (7): 314.322

DOI: 10.3844/jcssp.2016.314.322

316

belong to an object’s state can range from none (shallow

immutability) to the object closure, i.e., all objects that

are directly or indirectly referred by the object (deep

immutability). The definition of semantically more

adequate, finer grained levels of state boundaries is the

goal of ownership systems, see, e.g., (Aldrich and

Chambers, 2004; Dietl and Muller, 2005; Vitek and

Bokowski, 2001). Ownership system require to extend

standard Java by additional mechanisms. In the absence

of a language intrinsic ownership system, we take a

conservative approach and assume the object’s closure as

the object’s state boundaries.

We are now prepared to define the rules for state

unmodifiability. We divide the problem space step by step

by starting with the following simple and obvious rule:

Rule 2. All fields, i.e., instance variables, must be final.

For fields with a primitive type, rule 2 ist not only

necessary but also sufficient, because a primitive final

field can be set only once during construction. For these

fields, we are done. What remains to be further

considered is reference fields, because rule 2 only

guarantees the references to be unmodifiable, but not the

referred objects. To prune the potential complex graph of

directly and indirectly referred objects, we only consider

mutable objects, recursively applying our immutability

rules- and operationally our immutability analyzer-to the

types of referred objects. Similar to primitive fields, for

reference fields with immutable targets, rule 2 ist both

necessary and sufficient.
The first rule that is concerned with mutable targets

of reference fields ensures that they cannot be

manipulated directly from the outside:

Rule 3. Reference fields to mutable data must be private.

Rule 3 concerns one aspect of encapsulation; full

encapsulation requires two more rules that ensure that

the outside cannot gain direct access to the respective

field. The first one affects constructors:

Rule 4. References to mutable data that enter

constructors may not be directly assigned to the

fields of the object under construction, but must

be deep copied first.

If a reference to mutable data comes from the outside,

then the outside might, at any point in time, modify the

referred data. Rule 4 prevents situations like these from

happening. The complementary rule ensures that

encapsulated mutable data does not leak to the outside:

Rule 5. Reference fields to mutable data must not be

published directly; instead, deep copies must be

created and published.

Now that the outside is prevented from manipulating

the mutable target of a reference field, what remains to

be taken care of is that the class itself does not make any

modifications to its own instances.

Rule 6. There must be no mutators, i.e., no state

changing methods.

In (Block 2008), as an additional rule immutable

classes are required not to be extensible. The rationale of

that rule is that a subclass of an immutable class can

easily break the immutability rules and itself be mutable.

Due to the substitution principle, the type of a reference

variable, field, or parameter can therefore be immutable,

while the runtime type of the referred object can be

mutable, if immutable classes can be extended.

Nevertheless, we do allow immutable classes to be

extensible, taking into account that the subclasses of\an

immutable class can themselves be mutable and that the

immutability of the static type of a variable is not enough

to assume the immutability of its value at runtime. To

become more concrete, this consideration materializes in

rules 3, 4 and 5. In all of these rules, whether a field or

parameter, respectively, is considered immutable or not,

is determined as follows:

• If the runtime type of a reference field is known-

because the referred object has been created

previously in a constructor-then the field is

immutable if its runtime type is immutable

• If the runtime type of a reference field is unknown,

then the field is considered immutable only if its

static type is both immutable and final

Dependencies on Other Classes

Even though immutability is a local property that a

class does or does not have, no Java class is entirely

independent of other classes; classes have superclasses,

may have inner and outer class and use other classes by

instantiating them and calling their methods. In this

section, we categorize the types of dependencies a class

has on other classes with respect to its immutability

property and how these dependencies are dealt with.

Superclasses

As a subclass inherits the components of its

superclass, there is a natural and very tight dependency

of a subclass on its superclass. In term of the

immutability property, this dependency is two-fold:

• First, a subclass can only be immutable if its

superclass is immutable, too. We therefore also

analyze the immutability of the superclass when

analyzing the subclass

Oliver Haase / Journal of Computer Sciences 2016, 12 (7): 314.322

DOI: 10.3844/jcssp.2016.314.322

317

• Secondly, when analyzing a method for immutability,

this method may call other methods. Often, the

(correct) behavior of the called method is essential for

the calling method’s compliance with the

immutability rules. When the called method belongs

to the calling method’s superclass, we do not consider

the called method an alien method, but an internal

method and hence analyze into the called method

Evidently, if the superclass changes and its

immutability property with it, the immutability of the

subclass gets broken without any changes to the

subclass. Also, the implementation of a method of the

superclass can change in a way that does not violate

the superclass’s immutability but breaks the

subclasses immutability. This potential effect is just

another variant of the so-called fragile base class

problem (Mikhajlov and Sekerinski, 1998) that

describes typical problems arising from the tight

coupling between super and subclasses.

Inner and Outer Classes

Similar to super and subclasses, inner and outer

classes have a very tight relationship with each other.

Whoever has control over the implementation of a class

also controls the implementation of its inner and outer

classes if there are any. We therefore do not consider

methods belonging to an inner or outer class alien

methods, but treat them as internal methods and

consequently step into them for analysis if they are called

from within an analyzed method. As with superclasses, a

change of an inner or outer class might break a class’s

immutability. However, in contrast to superclasses, inner

and outer classes need not be immutable themselves to

allow for a class’s immutability.

All Other Classes

A class’s immutability must not depend on the

particular implementation of any other class, except its

superclass, its inner and its outer classes. Methods of other

classes are considered alien methods; if an alien method is

called from a method being analyzed then it must not be

analyzed, but its worst possible behavior must be

assumed. In the context of immutability checking, the

worst possible behavior means that the alien method:

• Publishes (makes external) all input parameters

including the this reference if its amongst them

• Returns a reference to an external object if its result

type is a reference value

Only if this worst case behavior does not lead to an

immutability violation-be it immediately or during the

further evaluation process-is the call to the alien method

legal in terms of immutability. However, even though a

class’s immutability must not rely on another class’s

implementation, it may rely on its contract. If a class

contract specifies the class to be immutable-we use an

@Immutable annotation for that matter, as will be

discussed in section 5.3-then we assume it to comply

with the contract. This consideration is relevant to

distinguish between mutable and immutable reference

fields of a class, see rules 3, 4 and 5.

Implementation

The jic immutability checker is implemented as a

generic abstract bytecode interpreter with hook points for

tests that can introspect the state of the virtual machine,

together with specific tests that check for immutability

breaches. In this section, we first describe the abstract

interpreter and then the immutability checks.

Abstract Interpreter

The data structures and the inner workings of the

abstract interpreter are similar to a regular Java virtual

machine, in the sense that for each method to be analyzed, it

computes step by step the effect of each instruction on the

current state, i.e., on (a) the values of all local variables, (b)

the operand stack and (c) the object heap. The pseudocode

in algorithm 1 shows how the abstract interpreter transfers

the initial state of a method into its final state. As can be

seen, the local variables are initialized with the arguments

into the method; due to abstract interpretation, these will be

symbolic rather than concrete values:

Algorithm 1 Abstract interpretation of a Java method’s

bytecode.

 initialize localVars with args

 opStack←θ

 heap←θ

 instr←first instruction

 while instr 6 ≠ null do

 localVars←localVars.transfer(instr)

 opStack←opStack.transfer(instr)

 heap←heap.transfer(instr)

 end while

 if instr.isBranchInstruction() then

 instr←instr.target()

 else

 instr←instr.next()

 end if

As can also be seen in algorithm 1, each of the three

state components (localVars, OpStack, heap) has a

transfer function that computes the output state

component depending on the input state component and

the current instruction. For localVars, e.g., the transfer

function is the identity function for all but store

instructions. For a store instruction, the indicated local

Oliver Haase / Journal of Computer Sciences 2016, 12 (7): 314.322

DOI: 10.3844/jcssp.2016.314.322

318

variable is updated with the given value. Likewise, the

opStack transfer function updates the operand stack

whenever an instruction consumes stack entries, or

pushes new entries onto the stack. The heap finally, is

modified when a new object or array is created or when

an object field (or reference valued array component) is

set to a new value, that is a new link is drawn between

two objects on the heap. For all other instructions, the

transfer function is the identity function.

Though the basic working of the abstract interpreter is

very similar to a regular Java virtual machine, there are also

several key differences, as described in the following:

Single Threaded

All immutability rules (i.e., if an object is properly

constructed, if the input parameters to a constructor are

deep-copied, if the mutable reference fields of an object

are published, or if a method changes the state of its

object) are independent of whether the corresponding

byte code is executed single or multi threaded. Thus, to

keep the interpreter simple, it has only one method stack

that is associated with the sole thread of execution.

Backward References

In addition to regular object references we also use

explicit backward references from the target to the

originating objects. These references are a useful

performance measure because many immutability checks

need to test whether a given object is, e.g., transitively

reachable from the this object, see section 5.2.

External Objects

As reference parameters to a constructor or method,

we use two special objects, a mutable external object

and an immutable external object. In the terminology of

abstract interpretation, these two special objects are the

symbols for unknown reference type values. They

represent unknown class instances and arrays alike.

When an internal object is published during the course of

symbolic evaluation, it is replaced by one of the two

external objects, depending on its immutability property.

Symbolic Primitive Values

For each primitive type, there is exactly one

symbolic value, i.e., someInt, someDouble, etc. These

values represent unknown method parameters of the

respective type.

The main reason is as follows: When evaluating a

constructor or method, be it directly or indirectly through

nested method invocation, we are not interested in

primitive result values but only in the object graph that is

built during evaluation, because this is where

immutability breaches can happen. However, beside not

knowing the exact result value of a method with

primitive return type, this design decision has two more

consequences: (1) For condition branch instructions with

numeric conditions, the condition cannot be evaluated

and thus all branches must be executed. Evidently, if the

code contains many levels of nested conditional branch

instructions, this can lead to path explosion. On the other

hand, abstract interpretation basically means to evaluate

a method for all possible input values and thus

evaluating both possible paths of a conditional branch

instruction seems the natural thing to do. (2) When

accessing an array component with an unknown index,

each component of the array must be assumed to be the

desired one. Thus, the code following the array access

must be evaluated for each possible component of the

array. For arrays containing many components, this can

also lead to path explosion.

Interpretation of Internal Vs. Alien Methods

When a method or constructor f is interpreted and

within f another method or constructor g is invoked, then

the interpreter steps into g only if it is an internal

method-see section 4 for a definition of ’internal’-but not

if g is an alien method. To skip an alien method, the

interpreter pops the right amount of parameters from the

operand stack and pushes a correctly typed symbolic

result value onto the stack. For a primitive return type of

g, the result is one of the primitive symbolic values

described above. For a method g that returns a reference,

the referred object must be considered external to

method f, because g may have published it prior to

returning it to f. If the static return type of g is an

immutable and final reference type, then the runtime type

of the result object must equal its (immutable) static type

and hence a reference to the immutable external object is

pushed onto the operand stack. Otherwise, if the static

return type is non-final or mutable, then the runtime type

of the result object cannot be known to be immutable and

thus a reference to the mutable external object is pushed

onto the operand stack. Also, as already mentioned in

section 4, all reference parameters into g are made

external, because g might publish them and public objects

are the most harmful in terms of immutability.

For internal methods, on the other hand, the

interpreter pushes a new frame onto the method stack

and recursively continues interpretation with the called

method, the same way a regular JVM would do it.

The challenge, however, is to determine whether a

method is an internal or an alien method. The challenge

lies in the fact that for a method call o.g(), the target object

o’s runtime type is not known to the interpreter if o is a

reference parameter that has been passed externally into

the calling method f. In that case, the evaluator proceeds

as follows: If the static type of o is an alien type, then o.g()

must be an alien method call, independent of o’s runtime

type; if o’s static type is an intenal class, the interpreter

performs the regular late binding resolution, starting at o’s

Oliver Haase / Journal of Computer Sciences 2016, 12 (7): 314.322

DOI: 10.3844/jcssp.2016.314.322

319

static type. If the resolved method implementation is final-

either because the target class is final, or because g is

final, then o.g() must be an internal method call and hence

the evaluator can step into it.

Forking

Because of the symbolic values for input parameters,
there are several situations when the interpreter has more
than one option to continue execution:

• A conditional statement whose condition involves a

symbolic value and thus cannot be (completely)
evaluated

• Access to an array component at an index that
involves a symbolic value

• A try block with multiple catch clauses

In all of the above cases, the interpretation process

forks and follows all possible options. In some cases,

this means to execute different paths, in other cases it

means to assume different array components and then

continue for each one of them. To avoid the problem of

path explosion, the interpreter combines the results to the

largest possible extent at the end of method calls, i.e.,

before returning the results to the calling method.

Immutability Checks

The abstract interpreter contains several hook points

where the state of the VM can be checked for violations

of the immutability rules from definition 2. These hook

points concern all instructions that either modify the

object graph, or publish-or may publish-an object outside

its intended scope. More specifically, these are:

Hook Point (i)-Object Field Assignment

Assigning a reference value, v, to a field, f, of an
object, o, that is o.f = v, establishes a reference from o to v,
if f has a reference type. This newly created reference can
be checked for compliance with the immutability rules.

Hook Point (ii)-Array Component Assignment

Similarly, assigning a reference value, v, to a component
of an array, a, that is a[i] = v, establishes a reference from a
to v, if a has a reference component type. However, even if
v is a primitive value, the assignment can constitute an
immutability breach, for example if the array is a field of a
supposedly immutable object.

Hook Point (iii)-Static Field Assignment

Assigning a reference value, v, to a static field publishes
the value and hence can be an immutability breach
depending on how v is connected in the object graph.

Hook Point (iv)-Virtual Method Invocation

Within a virtual method, any of the above can happen

to any of the reference parameters; whether this can lead

to an immutability breach depends on the connection

status of the individual parameters.

Hook Point (v)-Method Returning

If a method returns a reference value, then the

referred object escapes the scope of this method.

Whether this is harmful or harmless depends on the

connection status of the referred object.

Checking rules 2 and 3 from section 3 is as trivial as

inspecting the final and the access right modifiers of all

or the mutable reference fields, respectively. A breach of

any of the rules 1, 4, 5 and 6 technically translates to an

invalid object graph in the sense that one object, o1, is-or

might be-reachable from another object, o2, when it

should not be. In the following, we describe to what

invalid object interconnection each of the above

mentioned rules corresponds:

Proper Construction Check (Rule 1)

An object is improperly constructed, if the this

reference, either directly or indirectly, escapes the scope

of its constructor. An indirect escape occurs, if an object

that (transitively) refers the this object, escapes the

constructor scope. On the Java source code level, this

happens, e.g., when an inner instance of the this object,

which always has a hidden reference to its outer object,

escapes. The proper construction check is hooked into

hook points (i), (ii), (iii) and (iv).

For hook point (i), the check is applied to each

reference parameter of the virtual method; for hook

points (ii), (iii) and (iv), the check is applied to the value

v to be assigned. For hook points (ii) and (iii), however,

harm is only done if v is assigned to an object or array,

respectively, that is external to the constructor.

Constructor Parameters are Copied Check (Rule 4)

References to mutable objects that are passed into a

constructor must not be directly assigned to any field or

subfield of the this object. This check is only hooked

into hook points (ii) and (iii); the check specifically tests

if (a) the value v to be assigned or any object transitively

referred by v, is external to the constructor and (b) the

object or array that is assigned to is a field or a subfield

of the this object.

Fields not Published Check (Rule 5)

In the most general case, a reference field (to mutable

data) of an object, o1, is published if an object, o2, that

refers to a field or a subfield of o1, is published. Such an

object o2 can be published as a parameter to a virtual

method, by assignment to an external object, an external

array, or a static field; or by returning it as a method

result. Consequently, the fields not published check is

hooked into all hook points.

Oliver Haase / Journal of Computer Sciences 2016, 12 (7): 314.322

DOI: 10.3844/jcssp.2016.314.322

320

No Mutators Check (Rule 6)

Mutating an object, o, whose fields are all final boils

down to assigning a value to an object field or an array

component that is reachable from o. Consequently, this

check is hooked into hook points (i) and (ii).

Technical Realization and Usage

To allow for an easy and seamless integration of the

jic analyzer into the software development process, we

have implemented it as a FindBugs plugin. As FindBugs

is available as a plug in for the most widely used Java

IDEs, including Eclipse, NetBeans and IntelliJ, jic can

easily be integrated into most academic as well as

commercial development processes.

FindBugs uses Apache BCEL for the bytecode AST

representation and so does jic for the sake of easy

integration into FindBugs. However, changing the

bytecode representation to a different AST format, if it

turned out to be necessary or convenient, would be

straightforward and can, e.g., be achieved by a pre-phase

that converts one AST representation into another one.

When running FindBugs within a Java IDE, the

developer can select Java classes on the class, the

package, or the project level. Configured appropriately,

jic will check those classes that are annotated as

immutable for their compliance with our immutability

definition in section 3. Jic accepts any @Immutable

annotation as a trigger for its check; this includes, e.g.,

the predefined @Immutable annotations in the packages

net.jcip.annotations and javax.annotation.concurrent, but

also any other pre- or user defined @Immutable

annotation. Rule 1 of definition 2, the rule for proper

construction, however, is checked not only for

supposedly immutable, but for all classes. This is

because proper construction is not only a fundamental

pre-requisite for immutability, but also an essential

property for any mutable classes. Class instances are

never supposed to be visible before they are completely

initialized and therefore in a valid state with all their

consistency invariants established. If an instance escapes

during its own construction process, hard to detect bugs

can occur even in a single-threaded environment.

Evaluation

We have run a field test of the jic tool on the sources

of the Apache Tomcat project, version 7.0, which

comprises 2 412 classes that contain 2 753 constructors

and 19 391 methods (without constructors). Because the

supposedly immutable Tomcat classes are not annotated

and thus cannot be differentiated from the intendedly

mutable classes, we checked all classes for proper

construction only. However, as the abstract interpreter

accounts for 89% of the jic implementation, whereas the

individual checks only sum up to the remaining 11%, the

field test is a good indication for the overall stability of

the jic tool.

Functional Evaluation

The analysis of the Tomcat classes has yielded a total

of 663 bugs that is comprised of the following categories:

• 1 out of the 2 412 classes was reported as too

complex to be analyzed

• In 193 cases, the this reference was passed into an

alien method

• In 21 cases, the this reference escaped through

indirect passing into an alien method. This happens

mostly when an inner instance of the object being

created is passed into an alien method, because inner

instances have hidden references to their embedding

outer instance

• About 448 bugs where subsequent bugs caused by

an another bug in another class. In the vast majority

of the cases, the subsequent bugs occur in classes

that extend improperly constructed superclasses,

which renders the subclasses themselves improperly

constructed. In around half of the cases, the

improperly constructed superclasses are Java

platform classes or subclasses thereof. In particular,

108 subsequent bugs occur in specific Exception

and Error classes, because the Throwable class uses

a native method in its constructors and therefore

must be considered improperly constructed. If the

developer of a subclass, however, trusts the

superclass to be properly constructed nevertheless

(because, e.g., the native method does not let the this

reference escape), they can switch off the

subsequent bug with a FindBugs specific

@SuppressWarning annotation

Runtime Performance

We have measured the time a jic analysis takes per

class; to get the numbers of a broad array of different

classes, we have run the measurement for the entire

Apache Tomcat 7.0 package. To average out the effects

of spikes due to, e.g., background tasks such as garbage

collection, we’ve collect the results from 10 different

measurement runs, leading to the measurement of

around 24 000 class analyses. The measurements were

made on a machine with a 2 GHz Intel Core i7

processor, 8 GB of RAM and 500 GB of secondary

storage. Figure 1 depicts a plot of the result; please note

the logarithmic scale of both axes that was necessary

because the vast majority of analyses ranges within a

few milliseconds, with a few spikes up to a maximum

of 4217 ms. Out of the around 24 000 results, 216

values were greater than 100 ms, out of which 31 were

greater than 1000 ms.

Oliver Haase / Journal of Computer Sciences 2016, 12 (7): 314.322

DOI: 10.3844/jcssp.2016.314.322

321

Fig. 1. Measurement of the jic analysis runtime per class, both axes in logarithmic scale

Fig. 2. Measurement of the jic analysis runtime per class, only the y-axis in logarithmic scale, the x-axis zooming into the

range of 0 to 100 ms

The histogram in Fig. 2 zooms into the range of 0 to

100 ms on the x-axis, this time with a logarithmic scale

only for the y-achsis. This graph gives a better visual

impression on how low the measured runtimes for more

than 99% of the analysis runs were.

Conclusion and Future Work

Even though immutability is a desirable and

seemingly simple property, it is surprisingly difficult to

achieve in Java, because of the language’s lack of

support of it. What is more, there exists not only one but

multiple definitions of immutability that differ in the

degree of strictness of their rules. Our definition aims at

being as little restrictive as possible, while maintaining

automatic checkability and, of course, the desired effect

of immutable objects being freely shareable without any

need for synchronization.

Based on our immutability definition we have

presented the java immutability checker, jic, an analysis

tool that checks java classes for compliance with a set of

rules that resemble immutability. Jic is implemented as

an abstract bytecode interpreter, i.e., it performs its

analysis on the Java bytecode level. The rationale behind

this decision is the relative simplicity of the Java

bytecode language and the JVM machine model, as

compared to Java source code with its huge and ever

growing array of language features.

As a field study, we have evaluated jic on the Apache

Tomcat 7.0 project with its around 2 400 classes that

Oliver Haase / Journal of Computer Sciences 2016, 12 (7): 314.322

DOI: 10.3844/jcssp.2016.314.322

322

comprise around 20 000 methods. The runtime effort a

single class analysis is in the range of a few milliseconds

for more than 99% of classes, only one class was too

complex to be completely analyzable.

We have implemented jic a a FindBugs plugin; as

FindBugs in turn is available as a plugin for the most

widely used Java IDEs, including Eclipse, Net-Beans

and IntelliJ, jic can easily be integrated into most

academic as well as commercial development processes.

The code, as well as the latest readily packaged

FindBugs plugin are publicly hosted at

https://github.com/seerhein-lab/jic and

https://github.com/seerhein-lab/jic/ releases, respectively

and can be used under the Apache License, Version 2.0.

In a future project, we intend to evaluate jic’s

usefulness for other Java bytecode based languages,

such as Groovy, Scala and Clojure. Even though some

of these languages-most notably Scala-are designed to

avoid the classical concurrency problems by the

explicit support of immutably types, some of the

sources for immutability breaches do remain. For

instance, in Scala a reference to the this reference can

escape during object construction just as well as in

Java. It will be interesting to study which other

immutability rules are relevant for non-Java bytecode

based languages, or if there are new rules to be

considered as well.

Acknowledgement

This work has been done at the Hochschule Konstanz

University of Applied Sciences. The author would like to

thank everyone who has contributed to the progress of

the research.

 Funding Information

This work was funded by the Hochschule Konstanz

University of Applied Sciences.

Ethics

This article is original and contains unpublished

material. The author approved the manuscript and

confirms that no ethical issues arise.

References

Aldrich, J. and C. Chambers, 2004. Ownership domains:

Separating aliasing policy from mechanism.

Proceedings of the European Conference on Object-

Oriented Programming, Jun. 14-18, Oslo, Norway,

pp: 1-25. DOI: 10.1007/978-3-540-24851-4_1

Aldrich, J., C. Chambers, E.G. Sirer and S. Eggers,

1999. Static Analyses for Eliminating Unnecessary

Synchronization from Java Programs. In: Static

Analysis, Cortesi, A. and G. Filé (Eds.), Springer,

Venice, Italy, pp: 19-38.

Bogda, J. and U. Holzle, 1999. Removing unnecessary

synchronization in java. Proceedings of the 14th

ACM SIGPLAN Conference on Object-Oriented

Programming, Systems, Languages and

Applications, Nov. 01-05, Denver, CO, USA, pp:

35-46. DOI: 10.1145/320384.320388

Bloch, J., 2008. Effective Java. 2nd Edn., Addison-Wesley

Professional, ISBN-10: 0132778041, pp: 368.

Choi, J.D., M. Gupta, M. Serrano, V.C. Sreedhar and

S. Midkiff, 1999. Escape analysis for java. Proceedings

of the 14th ACM SIGPLAN Conference on Object-

Oriented Programming, Systems, Languages and

Applications, Nov. 01-05, Denver, CO, USA, pp: 1-19.

DOI: 10.1145/320384.320386

Choi, J.D., M. Gupta, M.J. Serrano, V.C. Sreedhar and

S.P Midkiff, 2003. Stack allocation and

synchronization optimizations for java using escape

analysis. ACM Trans. Programm. Lang. Syst., 25:

876-910. DOI: 10.1145/945885.945892

Dietl, W. and P. Muller, 2005. Universes: Lightweight

ownership for JML. J. Object Technol., 4: 5-32.

Haack, C., E. Poll, J. Schafer and A. Schubert. 2007.

Immutable objects for a java-like language.

Proceedings of the 16th European Symposium on

Programming, Mar. 24-Apr. 1, Springer, pp: 347-362.

DOI: 10.1007/978-3-540-71316-6_24

Mikhajlov, L. and E. Sekerinski, 1998. A study of the

fragile base class problem. Proceedings of the 12th

European Conference on Object-Oriented

Programming, Jul. 20-24, Belgium, pp: 355-383.

DOI: 10.1007/BFb0054099

Peierls, T., B. Goetz, J. Bloch, J. Bowbeer and D. Lea et al.,

2005. Java Concurrency in Practice. 1st Edn.,

Pearson Education India, ISBN-10: 8131713393,

pp: 424.

Ruf, E., 2000. Effective synchronization removal for

java. Proceedings of the ACM SIGPLAN 2000

Conference on Programming Language Design and

Implementation, Jun. 18-21, Vancouver, BC,

Canada, pp: 208-218. DOI: 10.1145/349299.349327

Vitek, J. and B. Bokowski, 2001. Confined types in java.

Software: Practice Experience, 31: 507-532.

 DOI: 10.1002/spe.369

