

© 2016 Zineb Bougroun, Adil Zeearaoui and Toumi Bouchentouf. This open access article is distributed under a Creative

Commons Attribution (CC-BY) 3.0 license.

Journal of Computer Sciences

Original Research Paper

Comparative Study of the Quality Assessment Tools Based on

a Model: Sonar, Squale, EvalMetrics

Zineb Bougroun, Adil Zeearaoui and Toumi Bouchentouf

Laboratoire des Systmes Electronique, Informatique et Images LSE2I,

National School of Applied Sciences, Oujda, Morocco

Article history

Received: 02-10-2015

Revised: 20-11-2015

Accepted: 05-03-2016

Corresponding Author:

Zineb Bougroun

Laboratoire des Systmes

Electronique, Informatique et

Images LSE2I, National School
of Applied Sciences, Oujda,

Morocco
Email:bougroun.zineb@gmail.com

Abstract: To build software, the customer is looking for a company that

develops the product in record time with minimal cost and good quality. To

measure the productivity and the software quality, several indicators and

metrics have emerged, which have been the subject of various research

fields and which are highly demanded by enterprises and software

development teams. In order to assess the software quality and ensure of

the quality of the product many tools have been developed and used. The

work presented in this study is focused on tools measuring software quality,

so we present the open source tools developed in java, then we compare it,

according to some criteria defined in this study.

Keywords: Software Product, Quality, Model, Metrics, Sonar, Squale,

EvalMetrics

Introduction

Quality takes more interest in the software

development life. This is the reason why there are

different aspects that seek to improve software

quality, among these, there is the aspect of processes

and methodologies aimed at organize work to reduce

time of product and improve quality, that we

discussed in previous articles (Bougroun et al., 2014;

2015) and the aspect of product quality using metrics

(Bougroun et al., 2013; 2012a; 2012b) to measure the

capability of the product to meet certain factors, in

this study we continue to study the second axis,

focusing on the evaluation tools software.

Metrics are a way to measure, monitor and predict

the quality of a software product. The customers become

more and more interested to know the quality

measurement of their development during their building;

than a tool that shows the progressively developing the

available quality is mandatory.

In this area and to predict the software quality, a lot

of tools are appeared that collects, calculates and

presents the results of the metrics. Among these tools

there are those who only collect the metrics and displays

their results, there are also those that analysis the result

of metrics by setting a minimum and maximum

threshold to judge quality and there are also tools that

relies on quality models analyzing each factor and

criterion then analyze product quality.

In this study, we will make a comparative study

between the open source assessments tools developed

with java, based on quality models collecting and

calculating metric and presenting their analyses to

evaluate java software.

This work will be presented as follow:

In the first section we present the related works,

we explain the context and the method used to verify

selected tools, in the next section we present tools and

study their model and plugins. After that we present

the comparison between those tools and finish the

paper by discussion and conclusion.

Related Work

Many studies have treated the software assessment

tools among which we quote:

The first study that was mentioned there is the

work done by Thomas et al. (2013); they made a study

of the state of art of open source tools developed

under java and they compared them using the

following criteria: Internal quality models supported;

metrics implemented; the year of the first version and

the latest version and features functional covered.

The study of Rutar et al. (2004) compare five bug

detection tools (Bandera, ESC/Java 2, FindBugs, JLint

and PMD) using static analysis of Java code. The

result of this study is that although there are some

overlaps among the types of errors detected, most of

Zineb Bougroun et al. / Journal of Computer Sciences 2016, 12 (1): 39.47

DOI: 10.3844/jcssp.2016.39.47

40

them are different. They also say that the use of these

tools is very difficult due to the number of results they

generate.

Lamas compares two tools (Codesido, 2011),

FindBugs and PMD that are complementary in terms of

bugs detected despite the fact that they are some overlaps

among them.

Ayewah et al. (2007) discuss the warnings found by

FindBugs tool and classify them by kinds, positives

(warnings that aren't really defects), trivial bugs (true

defects with minimal impact) and serious bugs (defects

with significant impact).

Van Emden and Moonen (2002) present an

approach for the automatic detection and visualization

of code smells with jCOSMO and discuss how this

approach can be used in the design of a software

inspection tool.

In the articles above, we find research studying the

different tools and show their weakness and strength we

find also a study of one tool at a unique point of view. In

this article we will discuss the tools that support a quality

model (thus the same strategy) but we'll compare them

according to the nature of the metric, the code smells and

the presentation of the result.

Context and Method

As we have stated in the previous paragraph this

article is allocated to study open source tools developed

under java that supports a quality model and aimed to

analyze and evaluate the quality of software. This study

is based on the following criteria:

• Nature of the metrics implemented in the tool

• Code smells detected

• The results presentation method

To select tools of this study we have use the

following source of information:

• Google Scholar and science direct were used to find

the related work according to the following

keywords: Open source tools java, quality metrics,

code smells, design smells. Among the most relevant

articles that based on our survey they are four articles

(Tomas et al., 2013; van Emden and Moonen, 2002;

Spinellis et al., 2009; Wagner et al., 2005)

• Java Power Tools book (Smart, 2009). Chapter

“Quality metrics tools”

• ISO/IEC 25000 portal (ISO/IEC, 2015). Section

“Open Source Measurement Tools”

As a result we found among sixteen tools only three

(Sonar, Sonar Plugins and Squale) that implements a

quality model (ISO 9126 SIG and SQUALE).

Tools Characteristics

Sonar

Presentation

Sonar (http://www.sonarsource.com/) is an open

platform to manage code quality in a continuous way

developed and supported by Sonar Source. It aims to

analyze the quality of components and report them with

a web server, it stores metrics in a database and presents

them. Each new release of component triggers a

complete analysis. The developer can also trigger an

analysis during the development phase to anticipate the

quality and correct it before the Release. Sonar follows

the ISO/IEC 9126 to assess the quality of the projects

under evaluation and provides as core functionality code

analyzers, defects hunting tools, reporting tools and a

time machine (Veiga and Frade, 2010). Sonar is a very

recent tool (it appeared in 2009), but it has already more

than forty plugins available. However only four plugins

have the ability to view report of results (Fig. 1).

Model

The quality model in ISO/IEC 9126 was developed

during 2001 to 2004, it comprises two sub-models: The

internal and external quality model and the quality in use

model. The quality model was inspired from McCall’s

and Boehm’s models. The model is divided in 6

characteristics: Functionality, reliability, usability,

efficiency, maintainability and portability; which are

further subdivided into 27 sub-characteristics (ISO/IEC,

2001; 2003a; 2003b; 2004).

Plugins

Sonar groups a set of well-known code analyzers

such as Cobertura, PMD, FindBugs, Squid, CheckStyle

and Clover (Arapidis, 2012).

By using these plugins, it is able to cover all
categories: Comment size (Density of comment lines and
some other related), duplicated code (Density of
duplicated lines), complexity (Average complexity by
method, Average complexity by class, Average
complexity by file …), coding rules (Violations of Sun
code conventions), dependencies (Package cycles,
Package dependencies, File dependencies …), Unit tests
(is refer the number of successful or failed tests, it also
takes into account parts of the code not covered by the
tests) (Fig. 2), Potential bugs (this criterion refers to the
various security vulnerabilities or bugs that may be
present in source).

Squale

Presentation

Squale is a web application which asses projects by

presenting the result of metrics, it use a batch process

Zineb Bougroun et al. / Journal of Computer Sciences 2016, 12 (1): 39.47

DOI: 10.3844/jcssp.2016.39.47

41

developed in Java that performs the analysis of source code

(Squalix) by means of a database that stores the metrics

(Fig. 3 present the interface of projects analysis list).

Model

SQUALE model has been developed and validated
over 2008-2009 in an industrial setting with Air
France-KLM and PSA Peugeot-Citroen. It use the ISO

9126 model, which promotes a three-level model of
quality (factors, criteria and metrics) and add practices
as an intermediate level between metrics and criteria
(Mordal-Manet et al., 2009). In terms of analysis and
presentation of data, it shows 3 out of 6 factors of
SQUALE Quality Model: Maintainability, evolutivity
and reuse capacity, discarding analysis, functionality,
architecture and reliability (Tomas et al., 2013).

Fig. 1. Sonar interface for list evaluation project

Fig. 2. Sonar result of test evaluation

Fig. 3. Squale interface for list evaluation project

Zineb Bougroun et al. / Journal of Computer Sciences 2016, 12 (1): 39.47

DOI: 10.3844/jcssp.2016.39.47

42

Plugins

Squalix invokes the following plugins for static

analysis: Checkstyle, JavaNCSS, CKJM, PMD/CPD

and Jdepend (Tomas et al., 2013). By using these

plugins it covers: Code size (number of lines by

method, by class…), comment size (Density of

comment lines), duplicated code (number of

duplicated lines) complexity (Average complexity by

method, average complexity by class, average

complexity by file …), dependencies (class

dependencies packages dependencies…), coding rules

(Violations of Sun code conventions) and code smells.

Eval Metric

Presentation

EvalMetric is an open source tool developed by the

team of ENSAO to assess software during its development

(https://sourceforge.net/projects/evalmetrics/). It is a web

application that uses metrics to judge a project and

analyze its quality. The developer can also trigger an

analysis during the development phase to allow them to

anticipate the quality and correct it before the Release.

Once we have a new release the customer can trigger an

analysis that is saved in the database and in this way we

will have the entire history of the application. EvalMetric

also offers the possibility of extracting report and graphs

to facilitate analysis. This tool is based on the standard

ISO 25000 (ISO/IEC, 2015) (the Fig. 4 present the

interface of a list of evaluated projects).

Model

EvalMetric is based on the standard ISO 25000

which is an evolution of ISO 9126; it was developed

between 2012 and 2014. The quality model is divided

into two parts, quality in use and product quality, this

tool use the second one which is structured to three

levels the first one contains eight characteristics, the

second level contains thirty one sub-characteristics and

the last one concerns the measures. The EvalMetrics has

added to the model another level which contains

properties of quality and design and insert it between the

metrics and the sub-characteristics level.

Plugins

The tool does not use a plugins to calculate metrics

the entire product has been developed internally. The

tool covers: Code size (number of lines by method, by

class…), comment size (Density of comment lines),

duplicated code (number of duplicated lines)

complexity (Average complexity by method, Average

complexity by class, Average complexity by file …),

dependencies (class dependencies packages

dependencies…), coding rules (Violations of Sun code

conventions) and detection of design patterns.

Comparison between Sonar, Squale and

EvalMetric

Benchmarks

In this study we try to make a comparison between

open source java software evaluating software developed

in Java. As we have seen in the previous parts this study

will be reduced to three software views the criterion that

was given from the beginning (tools based on a model):

Sonar Squale and EvalMetric.

The study will be of interest to meet the following

questions:

• What are the metrics implemented and in which

category it belongs?

• What are the codes smells that can be detected?

• What are the rules of coding that can be detected?

• How much the software can give us an overall

vision quality?

Q1: What are the Metrics Implemented and in

which Category it Belongs?

In this issue we will classify implemented metrics

tools according to its categories to have a general vision

on the level of completeness of this tool. Here are

metrics categories taken in consideration:

Complexity; inheritance; code size; coupling;

Encapsulation ; Cohesion; package architecture; package

dependencies; package cohesion; package size and test.

In the study presented in the Table 1, Squale covers

the majority metric categories, regarding the code,

except encapsulation, Squale shows low on tests, using

this tool you cannot know the tests done and the

untested code (Fig. 5 to know how squale presents the

results metrics). Sonar is more oriented to test cases

done/not done condition covered/ not covered ... (Fig.

2) in terms of code metrics it focuses on the size

criterion: The comment size, file size, the package size

class ... and some metric dependencies: Dependencies

between files, packages (Fig. 8 shows results of

metrics). EvalMetric also covers all categories

previously mentioned except the test category. Between

EvalMetric and Squale, the last one implements several

metrics in each category while EvalMetric has only a

few metrics in each category (Fig. 6 shows the result of

size metrics and Fig. 7 shows the result of

characteristics indication).

Q2: What are the Codes Smells that can be

Detected?

The three tools use the PMD plugins which is a

powerful tool to detect smells code. This analysis tool

scans Java source code and looks for potential

problems like possible bugs, dead code, suboptimal

Zineb Bougroun et al. / Journal of Computer Sciences 2016, 12 (1): 39.47

DOI: 10.3844/jcssp.2016.39.47

43

code and overcomplicated expressions, for instance

[7]. It is based on sets of validation rules or rulesets.

Each ruleset comprises a set of rules and every rule

corresponds to a code checking. The rules of PMD

look for bad coding practices to avoid potential errors

resulting from experience. PMD includes a module

known as CPD “Copy Paste Detector”, which can

detect the duplicated code existing in the program and

therefore measure the number of blocks, lines and

duplicated tokens.

Fig. 4. Squale interface for list evaluation project

Fig. 5. Squale interface for results metrics

Fig. 6. EvalMetrics interface for methods metrics

Zineb Bougroun et al. / Journal of Computer Sciences 2016, 12 (1): 39.47

DOI: 10.3844/jcssp.2016.39.47

44

Fig. 7. EvalMetrics interface for characteristics indication

Fig. 8. Sonar interface for results

Table 1. Comparative study of Squale Sonar and EvalMetric by class of theirs metrics

Categories of metrics

 Code Pack Pack

 Inheritance size Coupling Encapsulation Cohesion architecture dependencies Pack cohesion Pack size Test

Squale WMC DIT CBO ------- LCOM1 D SPC CPC NCP -------
 V(G) NHL SLOC COF LCOM2 I SCC Locality
 eV(G) NOC LOC RFC LCOM3 A PP Happiness
 NIM NOM LCOM4 Ca CP
 NRM CLOC TCC Ce PRIS

 SIX Out-port Classes SRIP
 In-port Classes NPCD
 Hidden Classes NPD
Sonar WMC ------- NOM ------- ------- ------- ------- Package cycles ------- ------- Condition coverage.
 V(G) NOC Package Conditions by line.
 NOP dependencies Covered conditions by line.
 LOC to cut Line coverage.
 Package Lines to cover.
 tangle Skipped unit tests.
 index Uncovered conditions.
 NPD Uncovered lines.
 Uncovered lines.
 Unit tests.

 Unit tests duration.
 Unit test errors.
 Unit test failures.
 Unit test success density.
Eval WMC DIT NOM RFC AHF TCC D PP CPC NPC -------
Metrics V(G) NOC NOC CBO APF I CP
 NIM LOC MHF A NPD
 CLOC MPC Ca
 MPF Ce

Zineb Bougroun et al. / Journal of Computer Sciences 2016, 12 (1): 39.47

DOI: 10.3844/jcssp.2016.39.47

45

Q3: What are the Rules of Encodings that can be

Detected?

The three tools are based on the Checkstyle tool that

can detect up to 2228 issues that are java code conventions

and standards, for example: Missing javadoc, related to

code beautification, declaring field as final…Its operation

is based on validation rules, which are equivalent in most

cases to coding conventions, so rule violations allow

measuring coding conventions violations. Even though

this is its main functionality, since version 3 it can identify

class design problems, duplicated code, or bug patterns

(Tomas et al., 2013). There is no difference between the

three tools because the tools are based on the same tool. =

Q4: How Much the Software can Give us an

Overall Vision Quality?

Sonar is a very useful tool if you want to make a

microscopic analysis on a project using a quality

model. This means that although it is based on ISO

9126 that this model does not appear in the project

analysis. The tool focuses primarily on metrics and

coding rules; it presents them in general (example:

The percentage commentary throughout the project)

and presents them in a specific way (the user

comment for any class, method ...).

With EvalMetric and Squale tools we can do a

macroscopic and microscopic analysis. EvalMetrics and

Squale are based on the ISO 25000 and SQUALE model

therefore project analysis comes in hierarchy by

following the model used, so you can view the quality

factors of your project model and see their satisfaction

which can make you to decide and evaluate the quality

of the whole project. These tools give you also the

possibility to analysis each package, class method by

showing the metrics related to each level.

Discussion

The study was done in this article focuses on open

source tools developed with java, based on a quality

model, that evaluates java software. This study was

reduced to three tools Sonar Squale and EvalMetrics.

it was done on functional criteria and according to

these criteria presented in the previous section we can

say that sonar is richer than the other tools in regard to

the presentation of tests done/not done ... but it is

lower in the implementation of the metric, for it does

not cover all quality properties and it does not put

value in the model on which it is based (no

presentation of the model in its Results).

Squale and EvalMetrics are similar in regard to

functionality that they cover, it is true that Squale does

not cover the encapsulation property but it implements

many metrics in the other properties contrary to

EvalMetrics. The main advantages of EvalMetrics

compared to this tools is that it has a part to detect

designs patterns as well as anti patterns and it traces the

history of each quality factor each metric for your project

from your first test (Fig. 9 and 10).

Fig. 9. EvalMetrics interface for design pattern result

Zineb Bougroun et al. / Journal of Computer Sciences 2016, 12 (1): 39.47

DOI: 10.3844/jcssp.2016.39.47

46

Fig. 10. EvalMetrics interface for metric history

Conclusion

The comparative study we did in this study has

focused on open source Java tools based on model

that evaluate java software, this work was based on

the survey done on open source tools for measuring of

the quality. View the first criterion demanded

(software which is based on a quality model) our

study was limited in three software (Squale, Sonar,

EvalMetrics) and as a conclusion of this study Sonar

shows a force in the presentation of the unit test (Unit

test errors, test time, test done, condition covred ...)

while the other two tools did not. Squale and

EvalMetrics exceed Sonar in presenting the model

that it implements and between the two tools

EvalMetric exceeds Squale view that it shows the

patterns and the anti patterns of the project.

Funding Information

The authors have no support or funding to report.

Author’s Contributions

Zineb Bougroun: Participet in all experiments,

cordenates and the writing of the work.

Adil Zeearaoui: Cordinated the work.

Toumi Bouchentouf: Orgnized the work.

Ethics

This article is original and contains unpublished

material. The corresponding author confirms that all of

the other authors have read and approved the manuscript

and no ethical issues involved.

References

Arapidis, C., 2012. Sonar Code Quality Testing

Essentials. 1st Edn., Packt Publishing, Birmingham,
ISBN-10: 1849517878, pp: 318.

Ayewah, N., W. Pugh, J.D. Morgenthaler, J. Penix

and Y.Q. Zhou, 2007. Evaluating static analysis

defect warnings on production software.

Proceedings of the 7th ACM SIGPLAN-

SIGSOFT Workshop on Program Analysis for

Software Tools and Engineering, Jun. 13-14, ACM,

USA., pp: 1-8. DOI: 10.1145/1251535.1251536

Bougroun, Z., A. Zeaaraoui and T. Bouchentouf, 2014.

The projection of the specific practices of the third

level of CMMI model in agile methods: Scrum, XP

and Kanban. Proceedings of the 3rd IEEE

International Colloquium in Information Science and

Technology, Oct. 20-22, IEEE Xplore Press, Tetouan,

pp: 174-179. DOI: 10.1109/CIST.2014.7016614

Bougroun, Z., A. Zeaaraoui and T. Bouchentouf, 2015.

Scrumban/ XP: A new approach to cover the third

level of CMMI model. Proceedings of the

Mediterranean Conference on Information and

Communication Technologies, (ICT’ 15).

Bougroun, Z., A. Zeaaraoui, M. Saber and T.

Bouchentouf, 2013. Enhancement of the taxonomy

of Metrics by ISO model using design quality

properties. Proceedings of the International

Syposium on Securiy and Safety of Complex

Systems, (SCS’ 13) Agadir Morocco.

Bougroun, Z., A. Zeaaraoui, M.G. Belkasmi and T.

Bouchentouf, 2012a. Joining ISO model with

metrics using design quality properties. J. Inform.

Syst. Manage., 2: 184-195.

Zineb Bougroun et al. / Journal of Computer Sciences 2016, 12 (1): 39.47

DOI: 10.3844/jcssp.2016.39.47

47

Bougroun, Z., A. Zeaaraoui, M.G. Belkasmi and T.

Bouchentouf, 2012b. Classification of the metric in

ISO model by oriented object properties.

Proceedings of the 2nd International Conference on

Innovative Computing Technology, Sept. 18-20,

IEEE Xplore Press, Casablanca, pp: 128-132.
 DOI: 10.1109/INTECH.2012.6457816

Codesido, I.L., 2011. Comparación de analizadores

estáticos para código Java.

http://www.sonarsource.com/

https://sourceforge.net/projects/evalmetrics/

ISO/IEC, 2001. ISO/IEC TR 9126-1: Software

engineering-product quality-part 1: Quality model.

International Organization for Standardization.

ISO/IEC, 2003a. ISO/IEC TR 9126-2: Software

engineering-product quality-part 2: External metrics.

International Organization for Standardization.

ISO/IEC, 2003b. ISO/IEC TR 9126-3: Software

engineering-product quality-part 3: Internal metrics.

International Organization for Standardization.

ISO/IEC, 2004. ISO/IEC TR 9126-4: Software engineering-

product quality-part 4: Quality in use metrics.

International Organization for Standardization.

ISO/IEC, 2015. ISO/IEC 25000 portal.

Mordal-Manet, K., F. Balmas, S. Denier and S. Ducasse,

2009. The squale model-a practice-based industrial

quality model. Proceedings of the IEEE

International Conference on Software Maintenance,

Sept. 20-26, IEEE Xplore Press, Edmonton, AB.,

pp: 531-534. DOI: 10.1109/ICSM.2009.5306381

Rutar, N., C.B. Almazan and J.S. Foster, 2004. A

comparison of bug finding tools for Java.

Proceedings of the 15th International Symposium on

Software Reliability Engineering, Nov. 2-5, IEEE

Xplore Press, pp: 245-256.

 DOI: 10.1109/ISSRE.2004.1

Smart, J.F., 2009. Java power tools.

Spinellis, D., G. Gousios, V. Karakoidas and P.

Louridas, 2009. Evaluating the quality of open

source software. Electr. Notes Theoretical Comput.

Sci., 233: 5-28. DOI: 10.1016/j.entcs.2009.02.058

Tomas, P., M.J. Escalona and M. Mejia, 2013. Open

source tools for measuring the internal quality of

Java software products. A survey. Comput.

Standards Interfaces, 36: 244-255.

 DOI: 10.1016/j.csi.2013.08.006

van Emden, E. and L. Moonen, 2002. Java quality

assurance by detecting code smells. Proceedings of

the 9th Working Conference on Reverse

Engineering, Nov. 29-Dec. 1, IEEE Xplore Press,

pp: 97-106. DOI: 10.1109/WCRE.2002.1173068

Veiga, J.M. and M.J. Frade, 2010. TreeCycle: A Sonar

plugin for design quality assessment of Java

programs. Techn. Report CROSS-10.07-1.
Wagner, S., J. Jürjens, C. Koller and P. Trischberger,

2005. Comparing bug finding tools with reviews and

tests. Proceedings of the 17th IFIP TC6/WG 6.1

International Conference on Testing of

Communicating Systems, (TCS’ 05), Springer,

Montreal, Canada, pp: 40-55.

 DOI: 10.1007/11430230_4

