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Abstract: In a mesh parameterization process that generates one-to-one 

mapping information between a three-dimensional surface and a two-

dimensional plane, we need to set some constraint positions in the solving 

system to define a specific location or size of the mapping plane. In this 

study, we will discuss how to perform a bounded-parameterization that 

minimizes distortion based on changing of constraints setting in the solving 

system. We introduce a series of experiments focusing on constraints 

optimization to deliver the optimal mapping information with less 

computational cost and time. Our proposed methods can reduce more than 

half of calculation costs and times from traditional method while 

maintaining the optimal mapping information. 
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Introduction 

Mesh parameterization is formulated as a mapping 

from a 3D triangulated surface to a certain 2D planar 

domain. Parameterization between two domains 

generally causes distortion errors. Hence, low 

stretching is an important criterion for parameterization 

and its applications. 

To perform a mesh parameterization, we first need an 

input mesh to be disk topology and then define a shape 

of target planar. There are two categories of planar 

shape, bounded and natural boundaries. However, both 

of them need constraint values in their solving systems. 

In bounded-parameterizations, all boundary vertices are 

constrained into a certain shape in planar domain and 

then solve remaining interior vertices. There are two 

famous constraint shapes; circle and square. 

Using a circular parameterization, different 

constraints settings in a square parameterization can 

generate different qualities of mapping information as 

shown in Fig. 1. The easiest way to deliver the lowest 

distortion is to do parameterizations with all possible 

constraints settings then check the results. Although it 

can guarantee the best result, it consumes a lot of 

computation time and resources. 

First, we will discuss how to set constraints positions 

in both circular and square parameterizations. Then, we 

present various approaches to get the lowest distortion in 

square parameterization by avoiding the brute-force 

scheme. Moreover, since multi-core CPU and GPU-

computing have been introduced and widely used 

nowadays, the proposed approaches should support 

parallel computing scheme as well. 

Backgrounds 

In 3D computer graphics or computational 

geometry studies, there are many techniques and 

applications that involve with a mapping information 

between 3D and 2D domains. 

Generating a mapping information between a 3D 

surface and a 2D data such as a square image requires a 

mesh parameterization process. A parameterization 

result can be represented by planar coordinates (u, v), 

indicating a position in 2D domain related to a position 

(x, y, z) in 3D domain. 

Many well-known parameterization methods have 

been proposed to achieve good mapping information. 

Tutte (1963) used a barycentric mapping theory and 

created a conformal mapping. More improvement found 

in Floater’s method (Floater, 1997), by using relative 

angles as a weight in each interior vertex to create 

barycentric mapping. Later on, stretch-minimizing 

methods have been proposed to achieve low stretch as 

possible. Yoshizawa et al. (2002) proposed a fast method 

of stretch-minimizing by re-computing the weight of 

linear energy-minimizing equations by using previous 

stretch value as a divisor. 
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 (a) (b) 
 
Fig. 1. Ustica models with checker-board texture mapping using the same square parameterization method with different constraints 

settings, (a) shows the worst case that has the largest L2 stretch (1.320295), (b) shows the best case that has the smallest L2 

stretch (1.175196) 
 

Concerning the limitation of bounded-

parameterization, Least Squares Conformal Maps 

(LSCM) by Levy et al. (2002) were presented as 

alternative ways to optimize the boundary positions from 

fixed-boundary into free-boundary. They used different 

harmonic energy formulations found in harmonic map 

(Eck et al., 1995) but still minimized angular distortion. 

Intrinsic parameterizations (Desbrun et al., 2002) used 

the same technique found in LSCM to preserve angle 

distortion and preserved area distortion. Both of them 

could significantly improve the distortions. However, 

they aimed to optimize by changing bounded-boundary 

into natural-boundary parameterization. 

Sorkine et al. (2002) proposed a bounded-distortion 

concept with simultaneous seam-cutting and they 

generated a valid parameterization without local or 

global fold overs and also controlled each mesh triangle 

distortion not to exceed a certain threshold. Lipman 

(2012) also proposed bounded-distortion mapping spaces 

which can control worst-case conformal distortion, 

orientation preserving and one-one mapping in various 

existing mapping algorithms. However, they aimed to 

control the mappings at unconstrained parts. 
On the topic of error metric, Sander et al. (2001) 

presented a method to minimize texture stretch to 
balance sampling rates over all locations and directions 
on the surface, called “progressive mesh”. To measure 
the local stretch of mapping in every direction, they 
defined a new “texture stretch” metric on triangle 
meshes, known as �2

 stretch metric. 

Notation 

Before explaining various algorithms, let us define 
basic notations. We represent a disk topology mesh ℳ≔ 
(�,�,�), where �:= {��∈ℝ3

|� = 0,…,��−1} is a set of �� 
vertices. �:= {
�(��,��)|� = 0,…,�
−1: ��, ��∈�:� ≠ �} is 
a set of �
 edges and �:= {��(
�,
�,
�)|� = 0,…,��−1: 

�,
�,
�∈�: � ≠ � ≠ �} is a set of �� faces. 

Let �:= {��∈�|� = 0,…,��−1} and �� = {
(�0,�1), 

(�1,�2),…,
(���−1, �0)} be a set of �� boundary vertices 
and boundary edges respectively. Let � equal to the total 
length of �� and let a sequence of all boundary vertices be 
�� = (�0,�1,…,���−1) sorted in the order of connection of ��. 

Bounded Parameterization 

In surface parameterization, there are two major shape 
categories, i.e., bounded and natural boundaries. In natural 
boundaries, we need to constrain two vertices in planar 
domain to fix the rotation and translation of the result 
(Desbrun et al., 2002), then perform the parameterization to 
solve unconstrained vertices’ coordinates. 

In bounded-parameterizations, we constrain all 
boundary vertices into a certain shape in planar domain 
then solve remaining interior vertices. There are two 
famous shapes in bounded-parameterization; circle and 
square. However, there are no specific algorithms for 
defining constraint positions. Users can create their 
own algorithm based on the length or numbers of 
boundary edges and so on. 

We will discuss our constraints setting algorithms in 
both circular and square shapes from now. 

Circular Parameterization 

There are two appropriate schemes to constrain 
boundary positions in circular shape. The first one is 
averaging circle arc’s length by the number of boundary 
edges and the second one is variation by the length of each 
edge. Although averaging approach is a simple method, it 
can have high distortion around boundary areas because the 
constraints of boundary vertices are not balanced by their 
edge’s lengths. A long edge can be assigned with too short 
constraint positions and a short edge can be assigned with 
too long constraint positions. Therefore, we use variation by 
the length approach for circular constraints. 

Suppose that circular plane has radius r and has 
initial center at planar origin (0,0). First, we constrain   
b0 ∈ B at (r,0) then map the boundary edges �� on the 
circular arc in counter-clockwise direction (Fig. 2a). We 
assign constraint positions of bi in planar as Ci (S, t) by 
the following formula: 
 

( ) ( ) ( )( ) ( )
1

1

0

, cos 2 , sin 2 , /
i

i i i i k k

k

C s t r r b b dπδ πδ δ
−

+
=

= × × =∑  

 
Since we can rotate circular mapping plane to any 

degree, it has the same meaning as constraining b0 at 

other positions in circle arc. Therefore, there is no 

constraints optimization in circular parameterization.
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 (a) (b) 

 
Fig. 2. Constraints mapping sequences on planar points, (a) circular constraints, (b) square constraints 

 

Square Parameterization 

Constraining boundary vertices in a square shape is 

similar to circular shape’s approach, i.e., averaging by 

the number of boundary edges and variation by the 

length of each edge. With the same reason with circular 

constraints that we try to deliver the best result, variation 

by the length approach is chosen. 

We assign b0∈B as a reference starting point of Vb and 

Eb. Let Pi,j be a corner position in square planar domain as 

shown in Fig. 2b and µ be the length of each side of square 

plane. We try to map some edges in Eb onto a side of the 

plane. In order to achieve low stretch at boundary area as 

much as possible, one side of square should be mapped on 

a quarter length of Eb that is, 0.25d. 

Let bj be a vertex in Vb that we want to constrain onto 

P0,0. Let the total length of edges starting from vertex bj 

to vertex bk be ( )1

1,
k

i ii j
l b b

−

+−
=∑  where k = (j+m) mod nb. 

We try to find the ending vertex �� that satisfy l = 0.25d 

as a quarter length of Eb. However, in most cases it 

cannot be equal exactly. Therefore, we find the ending 

vertex that satisfy l ≈ 0.25d�. We map the boundary 

edges (bj, bj + 1,⋅⋅⋅,bk) onto the square side from P0,0 to 

P1,0 relatively on each edge length over µ. 

For other sides of the square, we can follow the same 

basis described above by considering bk as the starting 

point from P1,0 corner and iterate the constraints setting 

process to P1,1, P0,1 and finally back to P0,0. 

When considering about constraints optimization 

in square case, different constraints different bi onto 

P0,0 can give different result. However, we cannot 

rotate square plane to any degree like circle’s case. 

The optimization problem is how to determine 

constraints setting that gives the lowest distortion 

parameterization result. 

Square Constraints’ Optimization 

Considering the problem of square constraints 
optimization, we map the boundary vertices in the mesh 
domain onto the square’s boundary in the planar domain 

with some conditions. The method is trying to map a 
quarter length of the total boundary edges onto one side 
of the square as mentioned in the previous section. With 
this condition, a new complexity arises. That is, a 
constraints setting can have a different number of edges 
on each side of the square. It is impossible to incorporate 
these boundary conditions into a linear solving system. 

The simplest way to perform is a brute-force approach 

using a stretch-minimizing parameterization. When 

considering constraints setting, brute-force approach 

means every vertex in Vb is mapped onto P0,0 then 

performs a stretch-minimizing parameterization. Although 

it guarantees the best result, one-time stretch-minimizing 

parameterization on a fine details mesh can use a lot of 

computation time and resources. Applying parallel-

processing may help on time issue, however it only suits 

for an environment that has many computation resources. 

To find the optimal boundary constraints, we did 

experiments observing the stretch of the unit square 

boundary by various fast solving parameterization methods 

i.e., shape-preserving (Floater, 1997), Tutte’s barycentric 

(Tutte, 1963), mean-value (Floater, 2003) and harmonic-

map (Eck et al., 1995). L
2
 stretch (Sander et al., 2001) 

values were compared between the fast solving methods 

and the stretch-minimizing method by Yoshizawa et al. 

(2002) approach. There was not any relationships among 

them. Constraints setting that give the lowest stretch in fast 

solving methods do not guarantee the lowest stretch from a 

stretch-minimizing method. We should use stretch-

minimizing parameterization directly for optimization. 

Experimental Environment 

We did experiments with two systems with different 

computing performances. There were a high-

performance system (Intel Xeon™ 10 cores running at 

2.50-3.30 GHz with 64 GB memory) and a moderate-

performance system (Intel Core i7™ 4 cores running at 

2.40-3.40 GHz with 8 GB memory). 

Experiment Models Information 

See Table 4 for details. 
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 (a) (b) 
 
Fig. 3. A similarity of square constraints after shifting constraint at P0,0 for a quarter of the total length of boundary edges, (a) b0 onto 

P0,0, (b) b0 onto P0,1 
 

25 Percent of Brute-Force 

Let the first boundary constraints be b0 onto P0,0, bσ 

onto P1,0 and bτ onto P1,1 (b0, bσ, bτ ∈ Vb) that are 

assigned by the boundary constraints algorithm. It means 

the distance from b0 to bσ should be approximately 

0.25d, also the same for distance from bσ to bτ. 

By starting from b0, we sequentially constrain a vertex bi 

onto P0,0 and constrain the following boundary vertices onto 

the square domain [P0,0, P1,0]. After repeating the 

constraints for interval of a quarter of boundary edges, then 

the vertices bσ and bτ might be mapped onto P0,0 and P1,0 

respectively. It is the same as we rotate the first constraints 

(b0 onto P0,0) 90 degree as shown in Fig. 3. 
Even though, we can reduce the number of calculations 

in brute-force approach to be around 25%. It still takes a lot 
of calculation time. A single stretch-minimizing 
parameterization on a fine details mesh could take 
calculation time more than one minute on a present day 
high performance computer. That means multiple 
parameterizations using 25% brute-force approach could 
take time more than hours or half a day to complete. 

From this reason, we set our goal to reducing the 

number of calculations. If we can pursue an optimization 

by doing parameterizations with few testing cases, then 

it will surely be better than 25% brute-force method. 

Heuristics 

When dealing with a computational optimization 
problem, it is good to check with other well-known 
optimization techniques. There are many techniques and 
generally they are divided into 3 categories. 
Optimization algorithms such as a Simplex algorithm are 
suited for linear or quadratic programming solving. 
Iterative methods such as Newton and Quasi-Newton 
methods suit for non-linear programming solving. 
Heuristic algorithms such as genetic algorithms or hill 
climbing suit for solving the problems that cannot be 
solved or too slow by classic methods. 

Considering the mentioned problem, it concluded that 

a heuristic algorithm may be the best one for boundary 

optimization problem. The reason is that the boundary 

optimization problem has the difficulty of two sub-

problems connected together. One sub-problem is 

concerned with our main problem, i.e., finding best 

constraints of boundary vertices and edges. Another is a 

parameterization problem about solving planar locations 

of interior vertices. It is too difficult to combine the two 

sub-problems in a problem-solving system since it has 

the unique conditions for the boundary constraints. 

Hence, a heuristic method should suit for solving our 

constraints optimization problem. 

We chose a well known “Particle Swarm 

Optimization” algorithm (PSO) by (Kennedy and 

Eberhart, 1995) for solving our optimization problem. It 

is a swarm intelligent technique, originally inspired by 

social behavior of animal flocking. PSO has been used 

mainly to solve unconstrained, single-objective 

optimization problems. 

From experiment results, PSO method could reduce 

the calculation time to around 50 to 75% comparing to 

“25% brute-force” approach. By changing user-defined 
parameters, we could improve calculation time in some 

mesh models. However, we could not gain an expected 
results from the turning of these user-defined parameters 

yet. The number of particles plays important roles; more 
particles could secure the best result (same as brute-

force’s result) but calculation cost increases. The 

algorithm itself is based on random processes and it may 
give the unstable optimal answer if we use a small 

number of particles. Increasing the number of particles 
will cost almost the same calculation time as “25% 

brute-force” approach. Moreover, PSO has a 

disadvantage point on parallel computing because it 
updates particle positions based on the global-best 

position in each iteration which prevents from doing 
large numbers of parallel-processing simultaneously. 
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It could conclude that PSO or other heuristic 
optimizations can improve computation time when using 
an appropriate number of particles. Even, the 
performance was still not good as our expectation but its 
algorithm of checking few positions and focusing around 
potential optimal answers seem to be appropriate to the 
optimization problem. The main bottleneck of PSO is a 
procedure of random search. Avoiding the random 
search while checking few positions should generate 
better performance stably. 

Step-Sampling 

When analyzing square parameterization by looking 

at brute-force results, the most of the test mesh models’ 

L
2
 stretches are changed gradually when we changed bi 

at P0,0 along Vb (Fig. 5). From this characteristic, we can 

reduce the number of calculations by focusing on the 

boundary constraints settings that has high potential to 

give an optimal result. In order to do such thing, we need 

to know its appropriate searching scope as potential 

optimal constraints. 

The problem is how to determine the searching 

scope. A sampling approach is used as a survey of 

stretch values. Sampling is the reduction of a signal. 

A common example is the conversion of a sound wave 

(a continuous signal) to a sequence of samples (a 

discrete-time signal). 

Step-Sampling Algorithm 

We propose a simple algorithm named “step-

sampling”. It samples stretch values from selected 

boundary constraints. Boundary constraints will be 

selected by a step defined by a user and performed a 

stretch-minimizing parameterization. After the 

sampling is completed, we will get a constraints setting 

that gives the lowest stretch as the center of the 

searching area. Then, we do deep-checking in that area. 

We check its neighbors that are still unchecked for 

stretch values. The parameterization that has the lowest 

stretch is the optimal result. 

The following Algorithm 1 is the pseudo-code of the 

step-sampling algorithm. 

 

Algorithm 1. Pseudo-code of step-sampling algorithm 
 Step = 2,3,… 
 m = number of vertices in first 0.25d of Eb 
 stretch [ ] ← ∞  //m size array 
 for (i ← 0 to m−1) 

 if (i mod step = 1) 

 stretch [i] ← square-param(bi on P0,0) 

 end if 

 end for 

 ω ← index that gives MIN(stretch [ ]) 

 \\Indicate initial optimum and searching scope 
 J[ ] = [...,ω-2, ω-1, ω+1, ω+2,...] where stretch [ ] = 

∞ and close to ω 

 for (j ← each J) //deep checking 
 stretch [j] ← square-param (bj on P0,0) 
 end for  
 optimum ← MIN(stretch [ ])  

 

Step Value 

In the step-sampling algorithm, a proper step value 

can minimize the calculation time. However, a too large 

step may result in missing correct searching scope or 

spending more calculation time than a smaller step 

because larger step means larger deep-checking 

processes. Let m be the total test cases (boundary 

constraints) that can be calculated from the number of 

vertices in the first 0.25d interval. From empirical 

experiments, the formula for a proper step value is: 

 

/v fstep n m n≈ ×  

 

This formulated step value is suitable for high details 

models. For low details models, if the parameterizations 

are performed on a high-performance system then it 

might be better to use brute-force method or small step 

value that can guarantee the best result while the 

computation time is almost the same with high step 

numbers’ results. 

Experiment Result 

We tested 25% brute-force and our step-sampling 

algorithms on two systems to see how the performances 

of proposed methods are on various computation 

resource conditions. We tested 25% brute-force and our 

step-sampling algorithms on two systems to see how the 

performances of proposed methods are on various 

computation resource conditions as mentioned above. 

Both algorithms were optimized to use parallel 

processing (OpenMP
®
) as much as possible. However, 

the number of maximum threads was limited to the 

number of physical cores. All parameterizations were 

performed by using the algorithm from Yoshizawa et al. 

(2002) method. For the testing models, if the original 

models are not disk topology, we need to convert them 

into disk topology patches before performing the 

parameterization. We used several methods found in 

papers by (Gu et al., 2002; Dechvijankit et al., 2012; 

2015) for converting a mesh into topological disk patch. 

Step values were calculated by proposed formula for 

all models even coarse-details ones. We recorded the 

number of how many times stretch-minimizing 

parameterizations were performed (test counts) and L
2
 

stretch errors of the optimal results from 25% brute-force 

and step-sampling approaches. The results are shown in 

Table 1. Also, computation times on the both systems 

were measured. The results are shown in Table 3. 
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Table 1. Brute-force and step-sampling results 

 25% brute-force   Step-sampling  

 ---------------------------------------- ------------------------------------------------------------------- 

Model Test count L2 stretch  Step value  Test count  L2 stretch 

Torus 16 1.337377 3 11 1.338278 

Torus 3 holes 23 1.643867 3 13 1.643867 

Hand 17 1.449979 3 10 1.459317 

Head 20 1.235226 3 12 1.235226 

Eight 45 1.466127 5 18 1.466127 

Chains 153 1.452289 8 35 1.452289 

Cow 440 14995.2 14  59 14995.2 

Bunny 5 holes 166 1.370189 9 36 1.370189 

Bunny no hole 108 1.226405 7 29 1.226405 

Armadillo 655 1.416241 18  72 1.416241 

 

As the experiment results, our step-sampling 

approach spent less time and computations comparing to 

brute- force one. Time different margins were dependent 

on models’ complexity, the step-sampling method could 

reduce the computational time much more in higher-

detail meshes. Also it could deliver optimal results 

same as brute-force. There were some cases (torus and 

hand) which step sampling could not deliver the same 

optimal result compared with brute-force one. 

However, they were low-detail meshes cases that 

should use brute-force approach or smallest step value 

2 rather than the formulated one. 

Circular Mapping Analysis 

While different square constraints settings give different 

results, circular constraints settings have a singular result. 

Therefore, we analyze the circular parameterization 

(circular mapping) at its boundary vertices’ stretch. We 

investigated at the boundary vertex that has that the highest 

stretch in circular parameterization and the best square 

parameterization’s constraints mapping. We noticed that 

the highest stretch boundary vertex (in the circle) is likely 

near to a corner in the optimal square parameterization. 

Therefore, we can use this information to perform square 

constraints optimization. 

There are two approaches for the optimization using 

the circular stretch. The first one is to constrain the 

largest stretch boundary vertex in the circle to a corner in 

the square. Another one is to constrain high stretch 

boundary vertices to around all four corners of the square 

as much as possible. 

Highest Stretch Boundary Vertex at Corner 

This optimization “single highest” can be done by a 

simple process. First, we perform circular 

parameterization. Then, we analyze L
2
 stretch errors and 

find the highest stretch vertex. Finally, we analyze all 

possible square boundary constraints mappings (without 

doing parameterizations). We assume that the constraints 

mapping which the largest stretch vertex in the circle be 

constrained to a corner in the square may be an optimum. 

High Stretch Boundary Vertices around Corners 

This optimization “many high” is more complex than 
single highest approach. We need to define a cost function 
of a square constraints setting. The cost should indicate 
how high stretch vertices in circular parameterization are 
mapped in square constraints. If many high stretch 
vertices were assigned around corners’ vicinity, then the 
cost function should give a high cost value. 

In the cost function, the distance between circle’s arc 

and square’s side-line is used as the weight in the cost 

function. Here, we assume that circle’s radius r = 1 and 

square side length µ = 2. A vertex be mapped on a corner 

should have the maximum weight and a vertex be mapped 

on a middle of a side-line should have the minimum 

weight. Let ui be the distance between assigned position of 

bi and the nearest corner point (normalized relatively to µ), 

stretchv (bi) be L
2
 stretch value of a boundary vertex in 

circular parameterization also let wi be the weight of 

analyzing vertex as the distance from the point on square 

to circle’s arc with 45 degrees angle. Fig. 4 shows the 

meanings of variables. The cost function of each 

constraints mapping is formulated as: 
 

( )
1

2

0

2 2
cos ( )

2

nb
i i

v i i i

i

u u
t stretch b w w

−

=

− − −
= × =∑  

 

 
 
Fig. 4. “High stretch boundary vertices around corners” cost 

function’s variables meaning based on the distance 

between circle's arc and square’s side-line  
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 (a) (b) 

 

     
 (c) (d) 

 

    
 (e) (f) 

 
Fig. 5. L2 stretch values graphs of 25% brute-force approaches. Red circle markers indicate the lowest stretch constraints. Yellow 

triangle markers indicate constraints defined by “single highest” approach. Green square markers indicate constraints defined 

by “many high” approach. The x-axes represent constraints mapping ID, the y-axes represent L2 stretch errors. (a) hand, (b) 

eight, (c) chains, (d) cow, (e) bunny 5 holes, (f) armadillo 

 

Experiment Result 

We tested both approaches with same experimental 
conditions that be described before. In each testing 
model, L

2
 stretch values from 25% brute-force 

approach were recorded. Then, stretch-minimizing 
circular parameterization was performed on it. We 

analyzed L
2
 stretch values and classified which 

constraints mappings satisfied the conditions on both 
approaches. The results from some experiments are 
shown in Fig. 5. 

As the results, the prediction using circular 
parameterization approach could indicate a square 
boundary constraints mapping which is close to the 
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best result. Either “single highest” constraints 
mapping or “many high” constraints mapping is close 
to the 25% brute-force one. However, it still cannot 
guarantee the same result yet. 

Select a Better One 

From experiment results, either “single highest” 

constraints setting or “many high” constraints setting 

gives a potential to deliver an optimal result. Therefore, 

these two approaches could be used for square 

constraints optimization. 

By comparing the stretches of both approaches, the 

one that gives a better result is chosen to be the optimal 

result. The benefit of this overall approach is to reduce a 

lot of the computation to one circular parameterization 

and two square parameterizations. However, it does not 

give the best result same as 25% brute-force one in most 

cases but approximately optimal one. 

Step-Sampling with Circular Mapping Analysis 

In previous sections, two main approaches for square 

constraints optimization were proposed; step-sampling 

optimization and prediction-based optimization from 

circular mapping. Both have advantages and disadvantages. 

The first one uses a sampling technique to define an 

optimal area and then performs deep-checking of the area. 

The performance is good when running with parallel 

processing, however it still has high computation cost on 

high-details models. It is not suitable for a system that has 

limited computation resource environment. 

The second one uses L
2
 stretch values of each vertex 

in circular parameterization and then performs two 

square parameterizations to get a better result. Although 

it reduces a lot of computation, it mostly does not deliver 

the best result same as brute-force or step-sampling yet. 

Hybrid Approach 

To reduce the computation cost and get the optimal 
result same as 25% brute-force approach, we can have a 
constraints optimization method by combining two 
previous approaches together. We use the advantage of 
prediction-based optimization using circular mapping to 
cut the computation cost of finding an optimal area in 
step-sampling. 

First, an initial optimal constraint is defined by the 

circular mapping analysis approach. Then, the optimal 

area is defined by searching around the initial optimal 

constraints. However, the optimal area might not contain 

the initial optimal constraints. 
To define the actual optimal area, we adapted step-

sampling technique by sampling the neighbors of the 
initial optimal constraints. We select to check specific 
neighbors’ constraints by a constant interval. We 
terminate the sampling if their stretches are increasing. 
The constant interval is important, for properly and 

convergently constraints investigation. Too small interval 
might cause mistakenly termination of sampling process 
too early before detecting the actual optimal area. Too big 
interval might cause too large searching scope. 

From empirical experiments, a formula to get a proper 

constant interval is based on the step number formula (see 

step-value section). The formula for the interval is: 
 

-1 / 1v finterval step n m n≈ ≈ × −  

 
After the end of sampling processes, we detect the 

lowest stretch constraints mapping and define it as a 

center of the optimal area. As well as the step-sampling 

basis, we perform deep-checking constraints mappings 

around the optimal area to get the final optimal result. 
The following Algorithm 2 is a pseudo-code of the 

hybrid algorithm. Also, Fig. 7 shows the flowchart of our 
hybrid algorithm. 
 
Algorithm 2. Pseudo-code of the hybrid algorithm 
 m = number of vertices in first 0.25d of Eb 
 stretch [ ] ← ∞ //m size array 

 interval ← / 1v fn m n× −  

 stretch [γ] ← optimum for  
 prediction-from-circular-param( ) 
 //γ is index number that represent as 
 // square-param(bγ on P0,0) 
 γl, γr ← γ 
 do 

 
l l
γ γ←  

 γl ← γl - interval 

 stretch [γl] ← square-param(b�l on P0,0) 

 until ( )l lstretch stretchγ γ   <     

 do 

 
r r
γ γ←  

 γr ← γr - interval 

 stretch [γr] ← square-param (
r

b
γ

on P0,0) 

 until (stretch [γr]< stretch rγ   ) 

 ω ← index that give MIN(stretch [ ]) 
 J[ ] = [...,ω-2, ω-1, ω+1,ω+2,...] where stretch [ ] = 

∞ and close to ω 
for (j ← each J)  //deep checking  
 stretch [j] ← square-param(bj on P0,0) 
 end for 
 optimim ← MIN(stretch [ ]) 
 

Experiment Results 

We tested our hybrid approach with the same 
experimental conditions that be described before. The 
results are shown in Table 2 and 3. We used formulated 
constant interval values that used for sampling the 
neighbors of the initial optimal constraints to find actual 
optimal area phase. 
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Table 2. Hybrid approach results. Test numbers in bracket indicate step-sampling test counts 

Model  Interval Test count  L2 stretch  

Torus  2 5 (11) 1.337377 
Torus 3 holes  2 6 (13) 1.643867 
Hand  2 6 (10) 1.449979 
Head  2 5 (12) 1.235226 
Eight  4 10 (18) 1.466127 
Chains  7 18 (35) 1.452289 
Cow  13  28 (59) 14995.2 
Bunny 5 holes  8 20 (36) 1.370189 
Bunny no hole  6 14 (29) 1.226405 
Armadillo  17 36 (72) 1.416241 
 
Table 3. Time consuming results on two systems. All time units are second 

 High performance system (Xeon): Time  Moderate performance system (i7): Time  
 -------------------------------------------------------------- ------------------------------------------------------------------- 
Model 25% brute-force  Step-sampling  Hybrid  25% brute-force  Step-sampling Hybrid  

Torus  0.016 0.009 0.016 0.016 0.016 0.016 
Torus 3 holes  0.032 0.015 0.016 0.031 0.031 0.016 
Hand  0.062 0.060 0.110 0.110 0.079 0.109 
Head  0.047 0.031 0.078 0.078 0.062 0.047 
Eight  0.078 0.047 0.063 0.125 0.062 0.063 
Chains  4.376 1.125 1.891 14.126 2.969 2.328 
Cow  619.438 83.710 50.597 2723.050 357.925 175.010 
Bunny 5 holes  130.729 28.393 27.439 573.890 125.255 71.347 
Bunny no hole  90.976 25.799 20.251 395.943 105.850 52.847 
Armadillo  11298.100 1384.340 904.433 41632.200 5102.450 2903.420 
 
Table 4. Experiment models information 

Model  Vertices  Faces  Boundary edges  

Torus 233 404 59 
Torus 3 holes 246 393 86 
Hand 1082 2002 159 
Head 713 1357 66 
Eight 863 1548 175 
Chains  6885 13164 603 
Cow  38658 75618 1695 
Bunny 5 holes  35073 69465 662 
Bunny no hole  35068 69662 471 
Armadillo  174296 345952 2637 
 

 
 
Fig. 6. Percentage of time-consuming reduction on both step-sampling and hybrid approaches compare with 25% brute-force time. 

The y-axes represent percentage unit, a higher value means more time-consuming reduction (higher is better) 
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Fig 7. Flowchart of our hybrid algorithm 
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From the results, our hybrid approach could deliver 

the best result same as 25% brute-force one. The total 

amount of square parameterizations was reduced from 

step-sampling around than half. About the time-

consuming, our hybrid algorithm spent time more than 

step-sampling on low-details models because the hybrid 

approach must wait until the circular parameterization 

was finished before performing square 

parameterizations. On the high-details models such as 

bunny and armadillo, the hybrid approach could deliver 

much faster results, especially on a moderate-

performance system. Fig. 6 shows the comparison of 

both approaches comparing to 25% brute-force. 

Conclusion 

We presented various approaches for constraints 

optimization in bounded-parameterization especially 

square one to deliver the lowest stretch error as possible. 

The easiest way to delivering the lowest stretch square 

parameterization is to do brute-force approach with a 

stretch-minimizing method. However, it will consume a 

lot of computation time and resources. 

We proposed our “step-sampling” concept which 

reduces much calculation time while maintaining a stable 

optimal result. Although it is a simple algorithm, we can 

have great performance that reduces computations more 

than half from brute-force approach. We also proposed a 

formula to calculate suitable step number based on 

mesh’s complexity that will minimize the calculation 

time. However, the computational cost is still high and 

might not suit for running in an environment that has 

limited resources. 

Then, we analyzed stretches in circular 

parameterization for an optimal square parameterization. 

We found that constraining the highest stretch boundary 

vertex in circular mapping onto a square corner or high 

stretch boundary vertices in circular mapping onto 

around square corners’ vicinity, could give an optimal 

constraints mapping. Although it could reduce 

calculation costs to only one circular and two square 

parameterizations, it still cannot guarantee the best 

constraints mapping same as brute-force result yet. 

Finally, we proposed a hybrid approach by 

combining step-sampling and circular 

parameterization analysis approaches. By narrowing 

the searching scope of the constraints by analyzing 

circular mapping’s stretches, we could get the best 

result as brute-force, while reducing a lot of 

computation cost. Our hybrid approach is suitable for 

applying in a limited resources environment. 

For open topics and future works, there are some 

parts that can be improved more such as how to reduce 

parameterization time using fast-solving with step-

sampling or circular mapping analysis approaches. Also, 

there are other parameterizations that involve 

optimization interior vertices such as conformal 

optimizations in brain surfaces (Gu et al., 2003; Lui et al., 

2010). We can combine our exterior vertices 

(constraints) optimization with an interior optimization 

to deliver the optimal mapping in both ways. 
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