

© 2016 Matija Novak, Ivan Magdalenić and Danijel Radošević. This open access article is distributed under a Creative

Commons Attribution (CC-BY) 3.0 license.

Journal of Computer Sciences

Original Research Paper

Common Metamodel of Component Diagram and Feature

Diagram in Generative Programming

Matija Novak, Ivan Magdalenić and Danijel Radošević

Faculty of Organization and Informatics, University of Zagreb, Varaždin, Croatia

Article history

Received: 05-07-2016
Revised: 09-11-2016
Accepted: 14-12-2016

Corresponding Author:
Matija Novak
Faculty of Organization and
Informatics, University of
Zagreb, Varaždin, Croatia
Email: matnovak@foi.hr

Abstract: Component-based software engineering and generative

programming are common approaches in software engineering. Each

approach has some benefits and domain of usage. Component-based

development is used to build autonomous components that can be further

combined in different ways, while generative programming is more suitable

when building systems that have different variants. Before a variable

component based system can be build, it needs to be modeled. In this

article, a new common metamodel that aims to enable modeling a system

which combines both component-based development and generative

programming is introduced. The introduced metamodel proposed in this

paper combines the component diagram that is used to model systems in

component-based development and the feature diagram that is employed in

modeling systems in generative programming. The combined metamodel

enables modeling of variable systems using components.

Keywords: Metamodel, Component-Based Development, Component

Diagram, Generative Programming, Feature Diagram

Introduction

Component-Based Software Engineering (CBSE), is

one of the most common approaches in software

engineering today. The basis for this approach is

Component Based Development (CBD) (Crnkovic et al.,

2006).

CBD enables software development that consists

of autonomous and loosely coupled components. It is

common in Service-Oriented Architectures (SOA), in

which a system is divided into different services

which communicate together via interfaces. A UML

component diagram is used to define the structure of a

component based system.

This approach is not very practical when different

system variants exist, which is often the case in

generative programming. This type of programming

enables the development of systems that exhibit very

similar characteristics. A new system is thus only a

new variant of the same system that is specialized for

a particular purpose. While Feature Oriented Analysis

(FODA) is used to design such systems, a Feature

Diagram (FD) is employed to define the features of

the system. Feature models are widely used for

variability and commonality management in software

product lines (Benavides et al., 2010).

So what if we want to make a system that is both

component based and variable. A component diagram is

not adequate for that purpose because it is not suitable

for modeling of variants. Moreover, it is aimed to show

the system structure and does not define what the

features of the system are. Conversely, the downside of a

feature diagram is oriented to show the system features

rather than system structure. To overcome this gap we

have combined these two models using their

metamodels. A good description of metadata models

development can be found in (Hay, 2006).

In this article we will describe two models: UML

component diagram, later referred to as “component

diagram” and feature diagram. Our aim is to introduce a

common metamodel based on the metamodels of these

two diagrams that would enable us to model a family of

systems which use components.

For example, this common metamodel will be used to

model the workflow generator for Extract, Transform

and Load (ETL) processes. “Extract, Transform and

Load (ETL) is a process that makes it possible to

extract data from operational data sources, to

transform data in the way needed for data

warehousing purposes and to load data into a Data

Warehouse (DW)”. (Novak and Rabuzin, 2014) When

Matija Novak et al. / Journal of Computer Sciences 2016, 12 (10): 517.526

DOI: 10.3844/jcssp.2016.517.526

518

building a data warehouse, about 70% of time and

resources (or 80%, according to Inmon (2002)) is used

for the ETL purposes. So to speed up this process we

want to build an ETL workflow generator that would be

able to generate different ETL workflows for current

ETL systems. Before constructing this system, we first

need to model it. Because this ETL workflow generator

should be modeled as a variant component based

system, we need to combine both of the aforementioned

modeling techniques to fully represent it.

An important consideration that needs to be

mentioned here is that this system is intended to be

message based, with all communication conducted via

messages. As a result, most of its components

constitute integration patterns which are described in

(Hohpe and Woolf, 2012). The description of message

patterns and communication through messages in the

ETL workflow generator is out of the scope of this

article and will not be discussed. As mentioned

before, the focus of our article is on variant

component systems.

The approach used in this paper differs from other

approaches reported in literature mainly in the model

structure and the representation of the common

metamodel as well as its implementation. In the SCT

generator model (Radošević and Magdalenić, 2011), for

example, the metamodel uses model elements

Specification, Configuration and Templates that can

be graphically represented by a specification diagram

and a configuration diagram. Also, SCT is

implemented as a source-code generator that can

generate program code on demand (Magdalenić et al.,

2013) or build program files. The majority of

approaches is based on metaprograms. Metaprograms

are defined as generic, incomplete, adaptable

programs (Jarzabek et al., 2006). Some approaches

are based on frames defined as XML frames, such as

XVCL (Jarzabek et al., 2003), while others are

oriented at some specific features of the problem

domain that require using particular kinds of

metamodels, like ontologies, as described in

(Magdalenić et al., 2009).
On the other hand, the approach presented in our

paper has some similarities with metaclass based

approaches described in Grigorenko et al. (2005;

Tolvanen and Rossi, 2003; De Lara and Vangheluwe,

2004). This model is also based on UML and have some

similarities in testing phase with (Xu et al., 2008).

This article is structured as follows. In section 2

we describe the methodology used. In section 3 we

describe the component diagram and in section 4 the

metamodel of the component diagram. Sections 5 and

6 contain the description of the feature diagram and

its metamodel. The common metamodel combining

the metamodels of the component diagram and the

feature diagram is introduced in section 7, along with

a description of applications of this new metamodel.

Conclusions and future work are given in section 8.

Used Methodology

As already stated in the introduction section a good

description of metadata models development can be

found in (Hay, 2006). But there are other works using

the same approach like (Androcec and Dobrovic, 2012).

But let us briefly describe the used approach and for

more details read (Hay, 2006).

To develop a new model a specific problem is needed

that cannot be solved with models that we already have.

In our case this was the model for a modeling family of

systems which use components. Once we know the

problem we need to find two or more models that can

partially solve the problem.

Next, what we need to describe all elements of every

model that we want to combine. In our case these are

“future diagram” and “component diagram”. What we do

next is an “Appearance table” that enables us to get a

form of “appearances in real world” to a “metadata

model” then “metadata metadata model” and so on. We

are going up this chain so long until we get to a point

where two of our models have the same representation in

our case this was “metadata metadata model”.

Once we find that point, we go one level down and

make an entity-relationship model of this level in our

case this was “metadata model”. Once we have the

entity-relationship model the hardest part is to find a

point where these two models can be merged. There

should be at least one point (like entity) which

represents basically the same thing and that can be

merged. In our case we had two connecting points, but

this is described in section 7.

Once these connection points are found we merge the

two entity-relationship models with all the existing

attributes. If there are duplicate attributes we remove

them. Last step is to specify how this new model should

be used. Since all this started with a specific problem an

example through all these steps is appreciated.

Now in the next chapter we will start with the

description of the component diagram and continue

the development of a new model based on the

described approach.

Component Diagram

A component diagram shows components,

provided and required interfaces, ports and

relationships between them. This type of diagrams is

used in Component-Based Development (CBD) to

describe systems with Service-Oriented Architecture

(SOA) (Fakhroutdinov, 2014).

Matija Novak et al. / Journal of Computer Sciences 2016, 12 (10): 517.526

DOI: 10.3844/jcssp.2016.517.526

519

A component diagram provides architects with a

neutral format for modeling solutions. Its purpose is to

show the structure and connections between

components. In other words, a component diagram

shows the high-level system architecture (Bell, 2004).

The creation of a component diagram can be

described through the following steps:

• Identify and define system components and

stereotypes

• Define component ports

• Define component interfaces

• Group components into more complex components

(vertical composition)

• Define connection between components

• Describe component restrictions

To be able to create a component diagram it is

necessary to know the elements that the component

diagram is made of. Table 1 displays the elements and

their descriptions. A generic example of the

component diagram in Fig. 1 shows a simple system

which has four components, where component 3

requires component 1 and provides one interface for

usage. Component 1 consists of two components:

Component 2 and component 4, which are connected.

Component 4 delegates its port to the parent

component 1. Component 1 then offers this port as a

provided interface which is, as already mentioned,

used by component 3.

Table 1. Elements of component diagram

Representation (All images
are based on (Bell, 2004)) Element Description

 Component An autonomous unit containing a particular part of the system logic and
 providing interfaces for use.

 Interface The interface can either be provided or required. A provided interface is a

 formal contract which offers components to some client. A required
 interface tells what other components a particular component depends on.
 Although each component is an autonomous unit, it can depend on other
 components.

 Relationship The relationship is a connection between two components. The lollipop
 denotes the provided interface and the socket denotes the required interface.

 Port Port is the entrance to the internal structure of the component. One port can
 have one or zero interfaces. A port can be delegated when the internal port
 of the component is delegated to the external component.
Looks like a component. The only Stereotype The following types of stereotypes exist: Subsystem, process, service,
difference that instead of the key specification, realization and implementation.
word <<component>> the name
of the stereotype is included.

Fig. 1. Example of a component diagram with delegated interfaces

Matija Novak et al. / Journal of Computer Sciences 2016, 12 (10): 517.526

DOI: 10.3844/jcssp.2016.517.526

520

Fig. 2. Example of component diagram of ETL workflow generator

Figure 2 gives the component diagram of the ETL

workflow generator, which consists of three main

components (GEN1, GEN2 and GEN3). The idea of

the ETL workflow generator, as explained in the

introduction, is to generate ETL workflows. The

purpose of the “GEN1” component is to generate

workflow parts that correspond to transformations on

one attribute from one data source. The “GEN2”

component is supposed to generate workflow parts

that correspond to transformations that use two or

more attributes from one source. The “GEN3”

component generates workflow parts that correspond

to transformations that use two or more attributes

from different sources.

The “MainETLGenerator” component represents the

main logic which uses these three main components via

their interfaces and delegates jobs to these components.

“MainETLGenerator” also uses the “Splitter” and

“Aggregator” components. Since the whole system is

intended to be message based, “Splitter” and

“Aggregator” are basically integration patterns. The

labels “Router”, “ContentEnricher” and “Aggregator”

also refer to different integration patterns.

Similar to the “MainETLGenerator” component, the

“GEN1” component is used by the “Splitter” component.

“GEN1” consists of three components:

“Gen1ContentEnricher”, “Gen1Builder” and

“Gen1Router”. The components “Gen1Builder” and

“Gen1Router” delegate their ports to the parent

component “GEN1”. Furthermore, the “Gen1Builder”

component uses the “Gen1Router” component and the

“Gen1ContentEnricher” component. The “GEN2”

component consists of four components:

“Gen2RouterCreator”, “Gen2Router”,

“Gen2AgregatorAndContentEnricher” and

“GEN2Builder”.

 “Gen2Builder” uses the other three components

inside the “GEN2” component and delegates its port to

the parent component. The “GEN3” component consists

of three components: “Gen3Builder”,

“GEN3AgregatorAndContentEnricher” and

“GEN3Router”. “GEN3builder” uses the other two

components from the “GEN3” component and delegates

its port to the parent component. Based on the

component diagram in Fig. 2, we propose a metamodel

of the component diagram described in Section 4.

Metamodel of Component Diagram

To be able to combine the component diagram with the

feature diagram, we first need to create their metamodels.

For the purpose of creating the metamodels, we used the

“Appearance table” as described in (Hay, 2006). Table 2

offers the “Appearance table” for the component diagram.

Four main parts that every component diagram consists of

are: “Component”, “Relationship”, “Port” and “Interface”.
Using the ERA model in Table 2, we developed a

metamodel of the component diagram (Fig. 3). Let us

explain the ERA model. The relationship between the

entities “Component” and “Port” is clear. One port must

belong to one component and one component can have

zero or multiple ports. The relationship between

Matija Novak et al. / Journal of Computer Sciences 2016, 12 (10): 517.526

DOI: 10.3844/jcssp.2016.517.526

521

“Component” and “Interface” is similar. One component

can theoretically have zero or multiple interfaces. One

interface must belong to one component.

Although we used the “Relationship” as an entity

in Table 2, in the ERA model it can be represented as

a unary relation on the entity “Interface” and a unary

relation on the entity “Component”. This is because

two components are always connected through some

interface. If one component has a required interface

for the other component, then this required interface

can be connected only by using the provided interface

of the other component. One required interface can be

connected to only one provided interface, but one

provided interface can be connected to multiple

required interfaces. In other words, one provided

interface can be used multiple times by different

components. Since a component can be placed inside

another component (in the so-called vertical

composition), we need another unary relation on the

entity “Component”. Every component can be a parent

of zero or multiple components and one component can

have zero or one parent.

Table 2 Appearance table for component diagram

Element of metadata

(metadata model) OBJECT „Entity type“ „Attribute“

“meta-metadata” ---

Metadata model ENTITY TYPE ENTITY TYPE ENTITY TYPE ENTITY TYPE

„metadata“ „Component“ „Relationship“ „Port“ „Interface“

 ATTRIBUTE ATTRIBUTE ATTRIBUTE ATTRIBUTE
 „ID, Stereotype, Name, „Relationship type” „Name, Port type, „Name, Interface type,
 Component part“ belongs, offers “ Provided, Required“,

Appearance data in the COMPONENT RELATIONSIP PORT
real world “Appearance „ Gen1Router, Gen1 „Gen1Router-Gen1Builder, „GEN1-Gen1Builder“ INTERFACE

in the real world” Builder, GEN1“ Gen1Content PORT TYPE „delegated” „Gen1Router provides
 Enricher-Gen1Builder, BELONGS TO an interface, Gen1Builder

 GEN1- Gen1Builder“ COMPONENT „GEN1“ requires interface“
 RELATION TYPE OFFERS COMPONENT INTERFACE TYPE

 „ vertical composition, „Gen1Builder“ „requires, provides“
 component relation“
Appearance in the Gen1Router, Gen1Builder requires Gen1Builder delegates Gen1Router

real world Gen1Builder, GEN1 Gen1Router, Gen1Builder port to GEN1 provides an interface,
 requires Gen1Content Gen1Builder requires

 Enricher, GEN1 consist of an interface
 component Gen1Builder

Fig. 3. ERA model-metamodel of component diagram

Matija Novak et al. / Journal of Computer Sciences 2016, 12 (10): 517.526

DOI: 10.3844/jcssp.2016.517.526

522

In the ERA model there is a third unary relation – the

“Delegated port”. This unary relation is needed when one

component delegates its internal port to a parent

component. A port might not be delegated, or can be

delegated only once. However, one port to which delegation

is made can be used multiple times by different delegated

ports of child components. It is also evident that in the ERA

model “port” is connected to “Interface”. A port might not

have an interface (in the case of delegated port).

Conversely, an interface might not have a port because

it can be directly connected to a component. On the other

hand, one interface can represent multiple ports.

Feature Diagram

A feature diagram shows hierarchical feature
decomposition including if some feature is mandatory or
not, alternative or optional (Czarnecki and Eisenecker,
2000). This diagram is used in domain analysis to show
variability and common features in some domain.

The feature diagram creation process can be

described using the following steps:

• Define the concept that needs to be modeled

• Define the main features of the concept

• Define the relation type between the concept and

the main features and between the features on the

same level

• Define the features of features

• Define the relation type between every feature and its

parent feature and between features on the same level

• Repeat steps 4 and 5 until you get to the last

feature that contains no more child features

An example of a feature diagram is shown in Fig. 4,

while its elements are described in Table 3. Figure 4

offers a simple feature diagram which has one “concept”

feature that is modeled. The “concept” consists of two

main features, one of which is optional and one

mandatory. The “optional feature” further consists of

two features, at least one of which is mandatory. The

“mandatory feature” also consists of two subfeatures, but

this time they are mutually exclusive alternatives. While

the “optional feature” can have both features at the same

time, the “mandatory feature” can have only one

“alternative feature” at the same time.

Figure 5 represents an example of a feature diagram

which defines the ETL workflow generator that consists of

five main features: “GEN1”, “GEN2”, “GEN3”, “Splitter”

and “Aggregator”. “GEN2” and “GEN3” are optional and

“GEN1” is mandatory. This is because every variant will

have at least one data source so “GEN1” will always be

used, while “GEN2” and “GEN3” will be used if

transformations on multiple attributes or data sources are

used. “ETLGenerator” can either have the “Splitter” or the

“Aggregator” feature, or both. “GEN1”, “GEN2” and

“GEN3” contain child features, some of which are

mandatory and some optional. The“GEN1” feature must

contain “Router” and “Builder”, while “ContentEnricher” is

optional. Similarly, “GEN2” must have “Builder” and

“RouterCreator”, but “Router” is optional and itself

contains the optional subfeature

“AggregatorAncContentEnricher”. “GEN3” only contains

the mandatory feature “Builder”, while “Router” is

optional. “Router” in “GEN3” also has the optional sub-

feature “AggregatorAndContentEnricher”. Based on Fig. 5

below, the metamodel of the feature diagram presented in

the following section will be made.

Metamodel of Feature Diagram

To be able to combine the component diagram with
the feature diagram, we first need to create their
respective metamodels. To create the metamodel of the
feature diagram we also used the “appearance table”
(Table 5), as in the case of the metamodel previously
described in Section 4. As may be seen from Table 5, the
feature diagram consists of four entities at the meta-
level. The “Relation” entity represents the parent-child
relation between features. The “Connection” entity
represents the relation between features on the same
level. So the “Relation” element from the feature
diagram is split into two entities, “Relation” and
“Connection”. This is necessary because one feature can
at the same time be connected to another feature on the
same level and have a parent and/or have children.

Fig. 4. Feature diagram-simple example

Matija Novak et al. / Journal of Computer Sciences 2016, 12 (10): 517.526

DOI: 10.3844/jcssp.2016.517.526

523

Fig. 5. Example of feature diagram of ETL workflow generator

Fig. 6. ERA model-metamodel of feature diagram

Fig. 7. ERA model-common metamodel of metamodel of component diagram and feature diagram

Matija Novak et al. / Journal of Computer Sciences 2016, 12 (10): 517.526

DOI: 10.3844/jcssp.2016.517.526

524

Table 3. Description of feature diagram elements

Label/Representation Element Description (based on (Apel and Christian, 2009))

„Feature / Concept“ Concept Represents the concept from some domain that is modeled.
„Optional Feature”,

“Mandatory Feature”, etc. Feature Represents a part of the concept. A feature can be: First level feature, which means it
 is the main part of the concept; or it can be a feature of a feature of a modeled concept.

 Relation Relation represents the parts of which a subject consists. The relation can be mandatory

 or optional, indicating whether a particular feature must or does not have to be a part of a
 subject or a concept.

 The relation can also be “XOR alternative”, which means that some features are mutually
 exclusive alternatives to each other. For example, a computer can either have an Intel i3

 processor or an Intel i5 processor, but not both of them. Furthermore, the relation can be
 “OR”, which means that, for example, a computer can have a USB 3.0 and/or a USB 2.0 port.

Table 4. Appearance table for feature diagram

Element of metadata

(metadata model) OBJECT „Entity type“„Attribute“
“meta-metadata” --

Metadata model ENTITY TYPE ENTITY TYPE ENTITY TYPE ENTITY TYPE
„metadata“ „Concept“ „Feature“ „Relation“ „Connection“

 ATTRIBUTE ATTRIBUTE ATTRIBUTE ATTRIBUTE
 „Name, description, domain“ „ID, Name, „Relation type, Parent „Feature 1“

 Constraint, Rule“ feature, Child Feature“ „ Feature 2“

 „Type of connection“
Appearance data in CONCEPT OSOBINA RELATION CONNECTION

the real world „ ETL WF generator “ „GEN1, GEN3, „GEN1-Router“ „Splitter-Aggregator “

“Appearance in the GEN2, Splitter“ FEATURE FEATURE
real world” „Router“ „Splitter“

 „Builder“ „Aggregator“

 “ETLGenerator”
Appearance in the ETL WF generator GEN1, GEN3, GEN1 has mandatory ETLGenerator can have

real world GEN2, Splitter feature Router. Splitter or Generator or both

Based on Table 4, we created the ERA model (i.e.,

metamodel of the feature diagram) that is shown in Fig.

6. As in the component diagram, the “Relation” entity

in the ERA model is represented as a unary relation on

the entity “Feature”. “Feature” can have one parent and

one parent can have zero or multiple children. The

same applies to “Connection” that is also represented as

a unary relation. One feature can be in connection with

zero or multiple features of the same level. If feature 1

is in connection with feature 2 and feature 2 is in

connection with feature 3, then feature 1 is implicitly in

connection with feature 3. Owing to this, a unary

relation is sufficient. It is not necessary to make a new

table, as defined by the representation rules in ERA

modeling for the M:N relationship. A mandatory field

in the entity “Feature” indicates if the relation is

mandatory or optional. The alternative field in the

entity “Feature” indicates whether the connection is

“OR” or “XOR”.

“Concept” is basically the same as “Feature”, the only

difference being that it has no parent and has no features

on the same level. Since “Concept” has some extra

attributes, the relation between “Concept” and “Feature” is

1:1. In other words, a feature can be a concept, but one

concept can only be represented by one feature.

Common Metamodel

As already mentioned in the introduction, we

attempted to combine the component diagram and the

feature diagram with the aim of modeling system

families by using components. The component diagram

only shows the structure of the system and not its

features. The feature diagram shows the features of the

system, but does not necessarily show the complete

structure and all the connections within the system. From

the feature diagram we can conclude which parts are

variable and which are not. The component diagram

makes it possible to discern the overall structure of the

new system as well as connections within it. However,

from these two diagrams it is still not possible to tell

how many times a particular feature can be generated. In

the case of the ETL workflow generator, this depends on

configuration messages that the system receives.

Now that both metamodels have been created, the

two diagrams can be connected. The common point

between these two models is the “Concept”. In the

feature diagram the “Concept” is the main feature (i.e.,

the feature that has no parent), while in the component

diagram the “Concept” encompasses the whole diagram.

In other words, the “Concept” corresponds to what is

Matija Novak et al. / Journal of Computer Sciences 2016, 12 (10): 517.526

DOI: 10.3844/jcssp.2016.517.526

525

modeled by means of the component diagram. In a

certain system the “Concept” can be a whole new

component with new interfaces to be used by other

systems or components. Other connections are the

features in feature diagram. Features correspond to

components in the component diagram and, conversely,

components are equal to features in the feature diagram.

Every feature in the feature diagram will have one

corresponding component in the component diagram.

Since every component does not have to implement an

important feature, we can have more components than

features. In the common model we can say that every

feature is implemented by one or more components.

One should consider that the vertical composition in

the component diagram is not the same as the parent-

child relation in the feature diagram. For example, in the

feature diagram the feature “GEN2” has a child feature

“Router” that has a child “Content enricher”. In the

component diagram the “GEN2” component has two

inner components, “Router” and “Content enricher”, that

are on the same level.

The common metamodel is represented in Fig. 7. To

create the common metamodel (Fig. 7) we copied the

metamodel of the component diagram (Fig. 3) and

enhanced it with the missing elements from the

metamodel of the feature diagram (Fig. 6). In the

common metamodel, the “Component” entity (copied

from the component diagram metamodel) is equal to the

“Feature” entity from feature diagram metamodel. So the

“Component” entity in the common metamodel is

renamed to “Component/Feature”.

All the attributes from the entity “Feature” from the

feature diagram metamodel are added to the entity

“Component/Feature” except for the “Name” and

“PK_ID” attributes. “PK_ID” is not added because we

need only one primary key. “Name” is not added

because every feature corresponds to one component and

the feature can therefore be named after the component.

The “Concept” entity is simply taken in its original form

from the feature diagram metamodel and added to the

common metamodel. The “Concept” entity is connected

to the “Component/Feature” entity through the same

relation that connected it to the “Feature” entity in the

feature diagram metamodel. The meaning of each

attribute stays the same as it was in the original

metamodel that it was taken from.
The steps for using this new common metamodel are

as follows:

• Define the concept that needs to be modeled

• Define the main features of the concept

• Define the relation type between the concept and the

main features and between the features on the same

level

• Define the features of features

• Define the relation type between every feature and

its parent feature and between features on the same

level

• Repeat steps 4 and 5 until you get to the last feature

that contains no more child features (7) All features

now become components and define any missing

components that are not represented by features

• Define stereotypes

• Define component ports

• Define component interfaces

• Group components into more complex components

(vertical composition)

• Define connection between components

• Describe component restrictions

Conclusion and Future Work

In this work we presented two modeling diagrams

which are used in software development. Each of them is

associated with a different approach so they are not

normally used together. In this work we combined these

two modeling methods to solve the problem of modeling

system families that are built by jointly using

components and generative programming.

By abstracting the component diagram and the

feature diagram to the metamodel level we successfully

combined these two different models. The major benefit

of the presented approach is that we showed that these

two models perfectly complement each other. We can

therefore say that it is possible to model systems that use

generative programming and also include components.

As an example of such an approach we modeled the

ETL workflow generator that is intended to be used for

generating ETL workflows for traditional systems.

In our future work, we plan to build the ETL

workflow generator prototype based on the presented

metamodel using components and generative

programming. Components like “GEN2” and “GEN3”

will have features like “Router” or “Content Enricher”

which we aim to generate during the execution of the

program based on the configuration. At the same time,

“Router” and/or “Content Enricher” will be components

from which the system is built.

So our focus in the future will be on the

automation for generating ETL workflow. The idea is

to use the common metamodel to build a system

which will “model” ETL process based on semantics

and suggest the needed transformations and mappings

for automatic generation of ETL workflows. Also, as

stated in the introduction section this system will be

message based. In our future work we plan also to

focus on the description of message patterns and

communication through messages that will be used in

ETL workflow generator. For the implementation we

plan to use Apache Camel.

Matija Novak et al. / Journal of Computer Sciences 2016, 12 (10): 517.526

DOI: 10.3844/jcssp.2016.517.526

526

Author’s Contributions

Matija Novak: Proposed the main idea of this study

and wrote the first version of the manuscript. Also he

was mainly responsible for the component diagram

elements and ETL.

Ivan Magdalenić: Connected the two diagrams and

complemented the connection to generative programming.

Danijel Radošević: Wrote the introduction to related

work. He was mainly responsible for the feature diagram

elements.

Ethics

This article is original and contains unpublished

material. The corresponding author confirms that all of

the other authors have read and approved the manuscript

and no ethical issues involved.

References

Androcec, D. and Z. Dobrovic, 2012. Creating hybrid

software engineering methods by means of

metamodels. Proceedings of the 34th International

Conference on Information Technology Interfaces,

Jun. 25-28, IEEE Xplore Press, pp: 481-486.

 DOI: 10.2498/iti.2012.0430

Apel, S. and K. Christian, 2009. An overview of feature-

oriented software development. J. Object Technol.,

8: 49-84. DOI: 10.5381/jot.2009.8.5.c5

Bell, D., 2004. UML basics: The component diagram.
Benavides, D., S. Segura and A. Ruiz-Cortes, 2010.

Automated analysis of feature models 20 years later:
A literature review. Inform. Syst., 35: 615-636.
DOI: 10.1016/j.is.2010.01.001

Crnkovic, I., M. Chaudron and S. Larsson, 2006.

Component-based development process and

component lifecycle. Proceedings of the

International Conference on Software Engineering

Advances, Oct. 29-Nov. 3, IEEE Xplore Press, pp:

44-44. DOI: 10.1109/ICSEA.2006.261300

Czarnecki, K. and W.U. Eisenecker, 2000. Generative

programming: Methods, Tools and Applications. 1st

Edn., Addison Wesley, Boston, ISBN-10:

0201309777, pp: 832.

Fakhroutdinov, K., 2014. UML component diagrams.

Grigorenko, P., A. Saabas and E. Tyugu, 2005. Visual tool

for generative programming. Proceedings of the 10th

European Software Engineering Conference Held

Jointly with 13th ACM SIGSOFT International

Symposium on Foundations of Software Engineering,

Sept. 05-09, ACM Press, New York, pp: 249-252.

DOI: 10.1145/1081706.1081747

Hay, D.C., 2006. Data Model Patterns: A Metadata Map.

1st Edn., Elsevier Morgan Kaufmann,

 ISBN-10: 0120887983, pp: 406.

Hohpe, G. and B. Woolf, 2012. Enterprise Integration

Patterns: Designing, Building and Deploying

Messaging Solutions. 1st Edn., Addison-Wesley,
Boston, ISBN-10: 0133065103, pp: 735.

Inmon, W.H.H., 2002. Building the Data Warehouse. 3rd

Edn., John Wiley and Sons, New York,

 ISBN-10: 0471270482, pp: 432.

Jarzabek, S., P. Bassett, H. Zhang and W. Zhang, 2003.

XVCL: XML-based variant configuration language.

Proceedings of the 25th International Conference on

Software Engineering, May 3-10, IEEE Xplore

Press, pp: 810-811.

 DOI: 10.1109/ICSE.2003.1201298

Jarzabek, S., H. Zhang, S. Ru, V.T. Lam and Z. Sun,

2006. Analysis of meta-programs: An example. Int.

J. Software Eng. Knowledge Eng., 16: 77-101.

 DOI: 10.1142/S0218194006002689

De Lara, J. and H. Vangheluwe, 2004. Defining visual

notations and their manipulation through meta-

modelling and graph transformation. J. Visual Lang.

Comput., 15: 309-330.

 DOI: 10.1016/j.jvlc.2004.01.005

Magdalenić, I., D. Radošević and T. Orehovački, 2013.

Autogenerator: Generation and execution of

programming code on demand. Expert Syst. Applic.,

40: 2845-2857. DOI: 10.1016/j.eswa.2012.12.003

Magdalenić, I., D. Radošević, anf Z. Skočir, 2009.

Dynamic generation of web services for data

retrieval using ontology. Informatika, 20: 397-416.
Novak, M. and K. Rabuzin, 2014. Prototype of a Web

ETL tool. Int. J. Adv. Comput. Sci. Applic., 5: 97-

103. DOI: 10.14569/IJACSA.2014.050614

Radošević, D. and I. Magdalenić, 2011. Source code

generator based on dynamic frames. J. Inform.

Organiz. Sci., 35: 73-91.

Tolvanen, J.P. and M. Rossi, 2003. Metaedit+: Defining

and using domain-specific modeling languages and

code generators. Proceedings of the 18th Annual

ACM SIGPLAN Conference on Object-Oriented

Programming, Systems, Languages and

Applications, Oct. 26-30, Anaheim, CA, USA., pp:

92-93. DOI: 10.1145/949344.949365

Xu, D., W. Xu and W.E. Wong, 2008. Testing aspect-

oriented programs with UML design models. Int. J.

Software Eng. Knowl. Eng., 18: 413-437.

 DOI: 10.1142/S0218194008003672

