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Abstract: Over the past few years, researchers have devoted efforts to 

enhance the original DES encryption algorithm. These enhancements focus 

on improving multiple perspectives of the algorithm through enhancing its 

internal components to deliver a robust DES variant against different kinds 

of typical attacks such as linear and differential crypto analysis, in addition 

to the newly evolved attacks such as differential power analysis attacks. In 

fact the output of existing solutions have enhanced the ciphertext 

randomness. This paper introduces two encryption algorithms that enhance 

the original DES named DDES and HDES. DDES is mainly based on a 

secure selection of both S-boxes and P-box arrangements during each 

encryption round, it has also extended the key length by adding two more 

keys beside the original one to the encryption process. HDES, on the other 

hand, uses a hash function to generate a random fingerprint for each 

plaintext block. This fingerprint is used to generate the seed to produce 

round seeds that are used to select secure S-boxes only for each round in 

the encryption process. These two variants meet with certain demands that 

are imposed by the user applications context. DDES provides a higher 

ciphertext randomness with some added processing time, while HDES 

provides a relatively secure variant with lower processing time. These two 

variants can provide alternatives depending on the targeted applications that 

require different levels of security and processing time. DDES and HDES 

have been evaluated and compared against DES, DESX and 3DES, using a 

number of metrics including chi-square test, cipher data difference, 

hamming distance and processing time. 
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Introduction  

In 1975 the National Institute of Standards and 

Technology (NIST) has released the Data Encryption 

standard (DES) with a free license for its use. The first 

official version of the encryption standard FIPS-46 was 

released in 1977. The standard was revised three times 

later: FIPS-46-1 in 1988, FIPS-46-2 in 1993 and FIPS-

46-3 in 1999 (De Cannière, 2011). Since the release of 

DES, its mysterious S-boxes and its 56-bit secret key 

resulted in controversy and some distrust among the 

research community (Van Tilborg and Jajodia, 2011). 

DES is a block cipher with 64-bit block size, it uses only 

56 bits during the encryption process while the rest are 

reserved for error detection and correction. 

Studies in the literature (Biham and Shamir, 1991; 

Kumar et al., 2006; Zodpe et al., 2012; Lee, 2013) claim 

that the DES key length would make the algorithm 

vulnerable for many kinds of attacks like brute force 

attacks and more advanced attack such as linear 

cryptanalysis and differential cryptanalysis. For example, 

in 1990, Biham and Shamir (1991) proposed a 

differential cryptanalysis method that could be used to 

attack DES. The method would be more efficient than 

exhaustively searching all possible keys if the algorithm 

used at most 15 rounds instead of 16 rounds. However, a 

few years later, IBM released some details about DES 

design criteria, which showed that indeed the 16 rounds 

of the standard had constructed the system to be resistant 

to differential cryptanalysis. In 1998, the Electronic 

Frontier Foundation (EFF) built deep crack machine in 
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response to DES challenge II. The deep crack 

decrypted a DES encrypted message in only 56 hours.  

Six months later, in response to DES Challenge III 

and in collaboration with distributed.net, the EFF used 

deep crack to decrypt another DES-encrypted 

message, for which the operation took 22 h and 15 

min (Kumar et al., 2006). 

The design of data encryption algorithms should be 

immune and robust against various types of attacks that 

may threat the encryption algorithm including 

differential power analysis (Kocher et al., 2011), 

differential cryptanalysis (Biham and Shamir, 1991) and 

linear cryptanalysis (Matsui and Yamagishi, 1993) 

attacks. The Differential Power Analysis (DPA) is 

applied on the crypto data and employs statistical 

methods to reveal the encryption key. Attackers analyze 

the power singles of the crypto-circuit and analyze the 

part of crypto data during execution process to reveal the 

key. Hiding and masking techniques can be used to 

protect DES circuits from DPA attacks. However, the 

hiding technique does not provide a full protection 

against advanced DPA attacks such as second-order 

attack.The differential cryptanalysis attack depends on 

the obtainability of ciphertext and plaintext sets. The key 

is derived by selecting pairs of plaintext related by a 

particular difference, then differences of corresponding 

ciphertexts are computed. The attacker analyses the 

statistical patterns of the resulting pairs of differences in 

order to discover the inner entries of the S-boxes used in 

the encryption process. On the other hand, linear 

cryptanalysis is based on the probability of occurrences 

in linear expressions relating plaintext, ciphertext and 

sub-key bits. It is known as plaintext attack, where the 

attacker has information on plaintext sets and their 

corresponding ciphertexts. In many scenarios and 

applications it is rational to assume that the attacker has 

knowledge of plaintext sets and their corresponding 

ciphertexts (Matsui and Yamagishi, 1993; Matsui, 1993). 

It should be noted that linear cryptanalysis and 

differential cryptanalysis attacks rely on the order and 

the content of the DES S-boxes (Schneier, 1996).  

The correlation between the plaintext and the 

ciphertext has been investigated in (Yun-peng et al., 

2009; Matsui, 1994). The higher level of correlation 

enable the attackers to infer the encryption key or 

directly the original plaintext. Different modification can 

be performed in general for the encryption algorithms to 

de-coupling the high level of correlations between the 

plaintext and the ciphertext. These recommendations 

focus on the dynamic design of the substitution process 

and the permutation function. Besides, some relevant 

principles can be used to decrease the correlation between 

the ciphertext and the plaintext and also the correlation 

between the encrypted symbols. Verdult (2015) stated 

that using parallel computing the amount of chosen 

plaintext that is required to break the DES algorithm is 

now considered very small with the high processing 

power. Besides, the simple XOR and short key length 

function are responsible for weaknesses in DES. 

A number of studies (Biryukov and Wagner, 2000; 

Zhuang et al., 2014; Biham and Biryukov; 1995, Verma 

and Prasad, 2009; Sison et al., 2012; Kilian and 

Rogaway, 2001) have been proposed to improve the 

original DES against the attacks described above. Diffie 

and Hellman proposed triple DES (Biryukov and 

Wagner, 2000). The idea was to multiple encrypt the 

block using DES with three different keys. However, 

triple DES adds more constraints on the key sharing and 

management protocols, besides triple DES is slower than 

the original DES that was never designed to be used in 

this way (NIST, 2012). 

Zhuang et al. (2014) proposed an improvement on 

DES circuit against DPA attack. The improvements 

consist of two components which are secured S-boxes 

and rotating masks that are implemented at hardware 

level. To protect the linear parts of DES algorithm, the 

masks are rotated after each encryption round and then 

the hiding method is used by adding two extra inputs to 

the S-boxes which are count and position. The count 

input is used as a counter for the current encryption 

round and the position is used as a pointer for the entries 

in the S-boxes to perform changes on the S-boxes 

position value based on the count value 

Biham and Biryukov (1995) proposed a DES variant 

that perform a key-dependent transformation to the S-

boxes to rearrange the original eight S-boxes in different 

ways using the last 5 bits of the key. They showed that 

not all the 8! Possible ways to arrange the eight boxes 

are valid ones. In fact some of the S-boxes 

combinations can make DES weaker against the linear 

and differential cryptanalysis. The limitation of this 

approach is the high probability of repeating the S-

boxes arrangement in different rounds.  

Verma and Prasad (2009) proposed modifications to 
DES by first dividing the expanded right part of 48 bits 
into two parts each of 24 bits, then two different 
functions are applied to each of these two part. The key 
length was also increased to 112 bits by using tow keys. 
An analysis of these modifications has shown that 
modifying the F-function enhances the DES diffusion, 
which means each input bit affects many output bits. 
Also, an analytical proof has shown that the 
modifications proposed on the key enhances confusion 
in the difference. However, the proposed approach 
requires 50% more time than the original DES. 

The advancement of internet applications and new 
technologies allow easier and quicker access to users’ 
sensitive data. The unauthorized disclosure, alteration or 
destruction of the sensitive data could cause a significant 
level of risk to the affiliates (Friedewald et al., 2010). 
Sensitive data may include individual’s ethnic origin, 
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political opinions, religious beliefs physical or mental 
health. Usually, the sensitive data are protected by laws, 
regulations, or policies that require the adoption of 
proper data encryption algorithm. For example, Health 
Insurance Portability and Accountability Act (HIPAA) 
security rule, requires in §164.308(a)(4) that health care 
organizations should “Implement technical policies and 
procedures for electronic information systems that 
maintain electronic protected health information to allow 
access only to those persons or software programs that 
have been granted access rights”. Other regulations such 
as Payment Card Industry (PCI) that regulate the process 
of smart cards mentioned that “Sensitive information 
must be encrypted during transmission over networks 
that are easily accessed by malicious individuals. 
Misconfigured wireless networks and vulnerabilities in 
legacy encryption and authentication protocols continue 
to be targets of malicious individuals who exploit these 
vulnerabilities to gain privileged access to cardholder 
data environments”. This requires fast and efficient 
encryption process that is able to protect the individual 
privacy. Any delay caused by the selected encryption 
algorithm will disturb the associated verification processes 
such as identity verification and authentication process.  

The selection of the encryption algorithm for the 

sensitive data in an organization is influenced by many 

issues beside of the application type. Dong et al. (2015) 

mentioned that efficient and sometime fast encryption 

algorithm is required in a big data platform especially 

when the data are transmitted from a data owner’s local 

server over multiple transmission component, the 

selection of the encryption algorithm should be made 

based on the criticality and classification of the data. For 

this reason, Sison et al. (2012) proposed an improved 

DES variant that can be used to secure the smart card 

data, the improvement made by odd-even substitution 

component to DES. The average running time through 

different attempts with the modified DES was 365.2 

millisecond while 355.8 millisecond with the typical 

DES. The authors conclude that such improvement 

could be useful for smart cards applications since the 

modified DES enhanced the typical DES with almost 

equivalent average running time. Other research works 

on cloud computing propose classification frameworks 

to classify the data based on their level of sensitivity as 

to select the suitable encryption algorithm for securing 

the data before transmission (Tawalbeh et al., 2015; 

Shaikh and Sasikumar, 2015).  

This paper analysis the randomness of two DES variants 

that are designed to support the security of different 

applications that mandates variable characteristics of data 

encryption requirements such as processing speed and 

level of sensitivity. The first variant is called the 

Dynamic Data Encryption Standard (or DDES for) that 

is mainly based on a secure selection of both S-boxes 

and P-box arrangements during each encryption round 

(Alnoury et al., 2016). The S-boxes and P-box 

arrangements selection depends on a random seed, 

which results in dynamic selection of the secured 

combination of S-boxes and P-box that differs each 

round. In DDES we have extended the key length by 

adding two more keys beside the original one. The 

second variant is called Hashed Data Encryption 

Standard (or HDES for short) that uses a hashing 

component to produce a random fingerprint for each 

plaintext block. This fingerprint is used along with the 

encryption key to produce the seed to generate round 

seeds that are used to select secure arrangements of S-

boxes for each round in the encryption process (Al-

Qassas et al., 2016). It is worth noting that although 

some of the components of DDES and HDES hold the 

same name, their internal processes are different. 
The rest of this paper is organized as follows. Sections 

2 and 3 illustrate the operation of DDES and explain its 

components. Sections 4 and 5 describe the operation of 

HDES and explain its components. Section 6 studies the 

performance of the proposed methods against well-known 

DES variants. Finally, Section 7 concludes the work and 

provides potential future directions. 

DDES Overview 

The enhancements of DDES over the original DES 

(Kim, 1991) can be described as follows. DDES 

dynamically generates different permutations of the 

S-boxes and P-boxes for each encryption round. This 

approach overcomes the original DES where it selects 

only one arrangement of the S-boxes for the sixteen 

rounds. This is based on an optimization technique that 

uses a random seed to organize the relationship between 

the S-boxes and the generated P-box arrangements 

during each round of the encryption process. The seed is 

generated by mapping the plaintext using three keys 

through the seed generator component. DDES then 

selects the arrangements from a secure pool of S-boxes 

and P-box in every encryption round, this pool has been 

verified in (Biham and Biryukov, 1995; Brown and 

Seberry, 1990). For the decryption process, the seed used 

to select the S-boxes and P-box is embedded within the 

ciphertext so that the receiver can use it to build the 

boxes in the reverse order. 

DDES uses secured combinations of S-boxes and 

P-boxes to provide robustness against different types of 

attacks such as differential attacks. Having S-boxes and 

the P-box arrangements change every single round along 

with key whitening, would make the attacks very 

difficult, specially that even related texts which are 

needed in differential attacks are not encrypted in the 

same way. DDES has included extra strength against 

brute force attacks as it has longer key (Rogaway, 1996).  



Malik Qasaimeh and Raad S. Al-Qassas / Journal of Computer Science 2017, 13 (12): 735.747 

DOI: 10.3844/jcssp.2017.735.747 

 

738 

The components of DDES are described as follows: 

Pseudorandom generator (PRG), seed generator, boxes 

generator, seed filter and seed distributor. The seed 

generator creates a seed using the given three encryption 

keys. The PRG uses this seed to produce random 

numbers known as subseeds, which are fed into the 

boxes generator to allow dynamic generation of S-boxes 

and P-box arrangements for each round. After 

completing all encryption rounds, the seed distributer 

will insert the seed within the resulted ciphertext. At the 

receiver side, in order to perform the decryption process, 

the seed is extracted from the cihpertext using the seed 

filter component. This seed is used to produce the same 

arrangements of S-boxes and P-box used in the encryption 

process, but in reverse order. Section 3 provides detailed 

description for each of these components. 

To illustrate the operation of DDES, the encryption 

process is shown in Fig. 1 and its pseudocode is 

presented in Fig. 2. An overview of the encryption 

process in DDES is described in the following steps: 

 

1. The seed generator generates a unique seed, based 

on the plaintext and three encryption keys K1, K2 

and K3. The seed then used for the process of 

generating the S-boxes and P-box arrangements. 

This seed is fed to PRG to produce a series of 

subseeds. The PRG produces two subseeds for each 

round, which are fed into the boxes generator to 

select secured S-boxes and P-box arrangements 

2. The plaintext is XORed with K1 

3. Split the text from step 2 into two parts, left and 

right, each of size 32 bits 

4. The key scheduler generates a round key from K2. 

The round key then XORed with the right part after 

it is expanded to 48 bit. This step proceeds with 

substituting the result to the S-boxes acquired from 

the boxes generator, the resulting text then permuted 

by the P-box and then XORed with the left part 

5. The right 32 bits in step three will become the left 

part of the new text and the 32 bit obtained from step 

four will become the right part of the new text. The 

new text will be XORed with K3 after the 16 rounds 

of the encryption process to generate the ciphertext 

6. Finally, in order to deliver the seed to receiver side, 

the seed will be embedded within the ciphertext 

using the seed distributer 
 

 
 

Fig. 1: Overview of the DDES encryption process 
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Fig. 2: DDES encryption process 

 

For the decryption process, the receiver feds the 

ciphertext into the seed filter, which extracts the seed 

from the ciphertext. The seed is used later to generate 

the S-boxes and P-box arrangements in reverse order. 

The right part of the text goes through the expansion 

algorithm and XORed with the reversed order of 

round keys. When the ciphertext reaches the 

substitution of S-boxes and P-box in permutations 

phase, the receiver will use the seed to generate the 

same boxes used for the encryption process. 

DDES Components 

Seed Generator 

The seed generator takes the three keys (K1, K2, K3) 

and the plaintext each of size 64 bits. The aim of this 

component is to obtain a seed of 8 bits that maps the 

plaintext and the three keys. The plaintext is first XORed 

with K1 and K3, then the resulted string is split into two 

parts and each part is fed to the original DES P-box. The 

reason for using the P-boxes is to create an avalanche 

effect, where changing few bits in the plaintext or in one 

of the keys, will result in a different seed and thus a 

different boxes arrangements during the encryption 

process. After that the resulting string is XORed with K2 

resulting in a string of 8 bytes binary string named result. 

To reduce this to one byte only to generate the needed 

seed, K2 is used as follows: Divide K2 into 8 groups from 

left right, each contains 6 bits. The decimal value of each 

group will determine the location of the corresponding 

bit in the seed. For example, let the first group of bits 

contains the decimal value 10, then the first bit in the 

seed is the 10th bit in the output. The pseudocode for the 

seed generator is illustrated in Fig. 3. 

Pseudorandom Generator 

The pseudorandom generator in DDES receives a 

seed of 8 bits as an input to generate two subseeds. The 

subseeds are fed into the boxes generator to obtain a 

secure combination from the S-boxes and the P-box 

arrangements for each round. 

Boxes Generator 

The boxes generator takes as input two subseeds of 8 
bits each. One of the subseeds is used for the purpose of 
generating different permutations of secured S-boxes in 
each round. The P-box is generated using the other 
subseed and the S-boxes arrangement. Having different 
combinations of S-boxes and P-box arrangements for 
each round is to prevent linear cryptanalysis attacks as 
Biham and Biryukov (1995) shown. This enhancement is 
based on the boxes generator component that provides a 
secure S-boxes and P-box arrangements in every 
encryption round as illustrated in in Fig. 4. For each 
round, the boxes generator receives two new subseeds 
generated from the PRG, which will determine the 
selection of the S-boxes and P-box secure arrangements. 
The secure arrangements are stored in a lookup table.  
This secure arrangement is linked to another lookup 
table that contains the secure compatible P-box 
arrangements. These arrangements are proven to be 
secure based on the work Brown and Seberry (1990) and 
the work of Biham and Biryukov (1995). Afterwards, 
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based on the arrangements of the S-boxes and the P box 
originated from the secured tables, the boxes constructor 
part, will generate the S-boxes and P-box.  

Seed Distributer 

The seed distributer is used to insert the seed inside 
the ciphertext. It takes as input the ciphertext, the second 
key and the seed, to generate a ciphertext with the seed 
embedded within it. The embedded seed will be used in 
the decryption process since the receiver needs the 
same seed used by the sender. This seed will be given 
to the PRG at the receiver side. Figure 5 illustrates the 
pseudocode for the seed distributer. In order for the 
decryption to be possible, the sender and the receiver 
must have the same seed to be able to generate the 
same combinations of the S-boxes and P-box. In order 

to make the process harder for the attacker, we embed 
the seed generated using the three keys within the 
ciphertext which is mapped using the second key. On 
the receiver side, the seed filter will extract the seed 
from the ciphertext. 

Seed Filter  

The aim of this component is to extract the seed from 

the ciphertext, in order to perform the decryption 

process. In fact, this component performs the reverse 

operations that have been accomplished by the seed 

distributor. It takes as an input ciphertext with the seed 

embedded within it and the second key. The output will 

be the ciphertext and the seed which is fed into PRG to 

generate the sequence of sub-seeds in a reverse order. 

 

 

 
Fig. 3: Pseudocode for the seed generator 

 

 

 

Fig. 4: Pseudocode for the boxes generator 

 

 

 
Fig. 5: Pseudocode for the seed distributer 
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HDES Overview 

HDES uses a random seed derived from the plaintext. 

For each round in the encryption process, the seed is used to 

produce arrangements of secured S-boxes that are selected 

from a secured pool, which has been verified in (Biham and 

Biryukov, 1995; Brown and Seberry, 1990). In order to 

emphasis on the dynamic generation of the S-boxes, the 

plaintext is fed to a hashing component to produce a unique 

fingerprint that is used to generate the required seed. For 

each round in the encryption process a round seed is 

produced based on the generated seed. After completing the 

encryption process rounds, the seed will be embedded 

within the generated ciphertext, which will be used in 

decryption on the other side. 

The main differences between DDES and HDES can 

be summarized as follows. DDES generates secure 

combinations of both S-boxes and P-box arrangements 

during each round, while HDES generates only secure 

arrangements of S-boxes. Furthermore, although some of 

the components of DDES and HDES hold the same title, 

their internal processes are different. For example the 

seed in DDES is generated based on the three keys and 

the plaintext. In HDES the seed is generated based on 

the key and the hashed plaintext. 

The HDES components are described as follows: 

Hashing component, pseudorandom generator, seed 

generator, S-boxes generator, seed insertion and seed 

filter. The hashing component is used to produce a 

fingerprint of the plaintext. The seed generator takes the 

generated text from the hashing component and XOR it 

with the encryption key to produce the seed. The 

Pseudorandom Generator (PRG) in its turn produces 

round seeds for each round in the encryption process. 

The S-boxes generator takes the round seed to generate 

S-boxes arrangements for each round. The seed insertion 

component is used to produce a ciphertext with the seed 

embedded within it. The filter component is used during 

the decryption process to extract the seed from the 

ciphertext in order to perform the decryption. A detailed 

description of these component is provided in section 5. 

The following steps provide illustration of the 

encryption process in HDES in addition to the illustration 

depicted in Fig. 6. A pseudocode that helps in 

understanding the operation of HDES is given in Fig. 7: 
 
1. The plaintext is fed into the hashing component 

where it goes through the hash function. The output 

from the hash functions is XORed with the 

encryption key 

2. The text resulted from the hashing component is 

used by the seed generator to generate the seed 

3. The PRG uses the seed to produce a series of round 

seeds, which are used in producing the secured 

arrangements of the S-boxes generated through the 

S-boxes generator 

4. The plaintext is split into two parts (L and R), each 

of size 32 bits 

5. The key scheduler generates a round key, which 

will be XORed with the expanded R of size 48 

bits. The resulting text is fed into the S-boxes and 

then permuted. The resulting 32 bits text is then 

XORed with L 

6. A new text is produced of size 64 bits by joining the 

text from step 5 with R. However, R will become 

the left part 

7. The generated text after completing the 16 rounds 

represents the produced ciphertext 

8. Finally, the seed insertion component embeds the 

seed within the ciphertext 
 

HDES Components  

Hashing Component 

The idea of using the hashing component is to create 
a fingerprint of the plaintext. The main idea behind this 
is to produce a unique string corresponding to every 
plaintext at the initial round. The hash function takes as 
input 64 bits representing the plaintext. The selection of 
the hash function is governed by a number of factors and 
constraints. For instance, the hash value produced by the 
hash function should not be the same for different 
plaintexts and the hashing result should provide low risk 
of collision. However, hash functions with low degree of 
collision can be considered acceptable. Another factor 
that may affect the selection of the hashing algorithm is 
the processing time, which is an essential factor that may 
influence the performance of the proposed HDES. For 
the design purpose of HDES, the selected hash function 
should be fast and simple to reduce the overhead resulted 
from using the hash function. Studies from the literature 
(Szydlo and Yin, 2006; Ilya, 2005) show that short hash 
functions are usually faster than long ones. 

The processing speed of various cryptographic hash 

functions such as the SHA family, the MD family and 

many others has been investigated and analysed in 

(Knopf, 2007; Gauravaram, 2007; Preneel, 2003). Many 

factors were considered in the analysis including 

compiler platform, hardware environment and round 

functions, which may affect the processing time of the 

hash function. The analysis has shown that SHA-1 is 

better than MD5 in terms of processing speed and 

similar to MD4. It has also revealed that SHA-1 is better 

than both SHA-2 and SHA-256. 
In this study, HDES selects SHA-1 as a hash 

function. This selection considers the trade-offs between 
the hashing speed and collision resistance of the hash 
function (Szydlo and Yin, 2006). For the design 
purposes of HDES, the speed of the hash function is 
considered more important than the collision resistance, 
since the hashing component is used as an inner component 
and that is used only to generate an input for the seed 
generator, which in turn will XOR the hashed text with the 



Malik Qasaimeh and Raad S. Al-Qassas / Journal of Computer Science 2017, 13 (12): 735.747 

DOI: 10.3844/jcssp.2017.735.747 

 

742 

key to produce the seed. HDES will then perform the 16 
rounds of the encryption process, which means that the 

frequency of using the hash function is very low and hence 
the possibility of the collision to occur is low. 

 

 
 

Fig. 6: Proposed HDES structure 
 

 
 

Fig. 7: HDES encryption process 
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Pseudorandom Generator  

The pseudorandom generator is used to produce a 

series of random numbers based on a seed input of size 8 

bits. These random numbers are fed into the S-boxes 

generator to generate different arrangements of S-boxes 

for each round. 

Seed Generator 

The seed generator takes the 64 bits hashed plaintext 

and XOR it with the encryption key the resulted text will 

be used to create a seed of 8 bits. The main idea behind 

this is to get a random and unique string that has one to 

many relationship with the plaintext and the key so we 

can produce a unique seed to be fed into the PRG. Due 

to the characteristics of the hashing function, any 

alteration in the plaintext would produce a totally 

different seed that would be random due to the XOR 

operation. This comes from the interesting 

characteristics of the XOR operation, when a fixed 

distribution string is XORed with a uniform 

distribution string (i.e., random string), the resulting 

string would follow the uniform distribution. In order 

to reduce the resulted 64 bits into 8 bits, to create the 

needed seed, the 64 bits are divided into 8 groups from 

left to right. To allow simplicity in the reduction 

process while keeping the randomness, the initial bit of 

each group will correspond to a bit in the seed.  

S-Boxes Generator 

The S-boxes generator generates dynamically, for 

each round, secured permutations of S-boxes. The 

dynamic nature comes from the fact that the S-boxes 

generator takes, for encryption round, a round seed 

obtained from the PRG, which is used to select the 

secure arrangement of S-boxes. The secure arrangements 

are stored in a lookup table where each entry represent a 

secure arrangement of S-boxes. These arrangements are 

proven to be secure based on the work Brown and Seberry 

(1990) and the work of Biham and Biryukov (1995).  

Seed Insertion 

The seed insertion plays an important role in the 
decryption process. Its role is to embed the seed in the 
generated ciphertext in order to allow its decryption. The 
seed is used to generate the same S-boxes used by the 
sender in encryption process, so that the receiver can 
decrypt the received ciphertexts. The seed bits are 
distributed within the ciphertext. To allow unpredictable 
distribution of the seed bits, the encryption key bits are 
used to insert the seed within the ciphertext. The 
insertion process is based on dividing the encryption key 
into eight groups, each of size bits. The insertion 
location within the ciphertext for a given bit in the seed 
is associated with the decimal value of the corresponding 
group in the key. 

Filter 

The filter component is used to extract the seed 

embedded within the ciphertext in the decryption process. 

It takes as input the key and the ciphertext to extract the 

seed bits. The seed will be given to the PRG to produce 

the same sequence of sub-seeds but in reverse order. 

Evaluation  

Encryption algorithms should be able to produce 

unpredictable random string of ciphertext. However, in 

many cases, the randomness of the ciphertext has been 

analysed to break the system. For example, the poor 

randomness quality of the digital signature algorithm in 

the third version of the Sony PlayStation allowed the 

attackers to recover the private key used in the signing 

process (Lee, 2013). In best case scenarios, the 

ciphertext should be unpredictable and the probability of 

zeros and ones are equal to 50%. Therefore, we have 

examined the quality of ciphertext randomness generated 

form DDES, HDES, DESX, 3DES and DES. The 

evaluation is conducted using four measures that 

designed based on guidance of the NIST test statistical 

suite of cryptographic applications (Rukhin et al., 2010): 

Chi-square test, cipher data difference, hamming 

distance and encryption time. The five algorithms have 

been challenged to identical scenarios to encrypt various 

files with sizes from 45 KB to 1 MB that have data 

entropies ranging from 0.80 to 0.99. The platform used 

in the evaluation is Xeon E3-1225 running Windows server 

2008, with processor speed of 3.2GHz and 8 GB of RAM. 

Chi-Square Test 

The chi-square test is a statistical test that is used to 

compare an observed data with what is expected to 

obtain from a random generation system, based on pre-

defined hypothesis. The hypothesis usually initiated 

early in the experiment, based on the evaluator 

understanding and beliefs about the expected statistical 

outcome of a specific experiment. The chi-square is used 

to assess the likelihood that the hypothesis is true based 

on the Equation 1 (Lee, 2013). Where O is the observed 

data and E is the expected data. The chi-square is usually 

useful to see if there is a difference between two or more 

groups of data: 

 

( )
2

2 i i
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O E
x

E

−
=∑  (1) 

 

In this measures, the chi-square of the ciphertext 

generated from the DDES, HDES, DESX, 3DES and 

DES has been computed to understand the randomness 

of the ciphertext based on expected outcome using the 

null hypothesis. In the null hypothesis there will be no 
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difference between the observed and the expected data. 

The cipher data is expected to have 50% of zeroes and 

50% of ones, because in a truly random function the 

ratio between zeros and ones are equal. Table 1 

illustrates the average chi-square test probability based 

on the chi-square values and their corresponding p-

values with degree of freedom of one. The chi-square 

test probability has been computed after encrypting files 

with data entropies ranging from 80% to 99%. Based on 

(Fahmy et al., 2005; Lee, 2013) if the probability is 

greater than 99% or less than 1%, the ciphertext is 

almost certainly not random.  If the probability is 

between 99% and 95% the ciphertext is randomly 

suspect. If the probability between 90% and 95% 

indicate the ciphertext is almost random. As Table 1 

illustrates, DDES shows the best level of randomness 

compared to its counterparts with an average probability 

of 93.7%, which indicates that the ciphertext obtained 

from DDES is almost random. Whereas HDES average 

probability is 97.7% which indicates that its randomness 

fall under the randomly suspect level, which is also the 

case of DES, DESX and 3DES, although 3DES shows 

better performance than that of HDES. 

Hamming Distance 

The hamming distance is an important measure to 

capture the diffusion effect for the encryption 

algorithms. The higher degree of diffusion is always 

preferable for the encryption algorithm, which indicates 

that each plaintext bit or key bit change, affects many 

bits of the ciphertext bits. The hamming distance is the 

number of bits which needs to be changed to turn one 

string into the other. The hamming distance between two 

ciphertexts is calculated using Equation 2, where X is the 

first ciphertext which consists of several bits say x1, x2, 

…, xn, Y is the second ciphertext which consists of 

several bits say y1, y2, …, yn.The hamming distance is 

calculated by flipping a number of bits in the plaintext: 

 

{ }( , ) |  i iHD X Y i x y= ≠
 (2) 

 

The hamming distance is computed between the 

generated ciphertexts corresponding to the plaintext with 

flipped bits. This is done by flipping 1 bit, 2 bits, 3 bits 

and 4 bits as shown in Fig. 8. This process is performed 

on each of DES, DESX, 3DES, HDES and DDES. As 

the figure illustrates, DDES has higher hamming 

distance than its counterparts in most cases.  Besides, the 

HDES hamming distances are also higher than the 

hamming distances of DES, DESX and 3DES.  

This means that the diffusion effect for DDES and 

HDES is higher than that of DES, DESX and 

3DES.However, the reason for this is the ability of DDES 

and HDES to change the internal permutations each round. 

Table 1: The chi-square probability values for the 

encryption algorithms 

Encryption algorithm Chi-square test (%) 

DES 98.3 

DESX 98.1 

3DES 95.9 

DDES 93.7 

HDES 97.7 

 

Cipher Data Difference 

The cipher data difference is proposed to find the 

randomness of the data encryption algorithms. It is 

computed by finding the absolute difference of ones and 

zeros in the plaintext and the absolute difference of ones 

and zeros in the ciphertext. The lower the value of this 

metric indicates higher level of randomness. Figure 9 

shows the cipher difference of DDES, HDES, DES, 

DESX and 3DES. Different data entropies are used to 

evaluate the cipher difference of the selected encryption 

algorithms. The data entropies are represented in the x-axis 

and the cipher data difference is represented the y-axis. 

The points in Fig. 9 present an average of 30 runs 
that has confidence interval of 95%. As the figure shows, 
DDES demonstrates lower cipher difference in most of 
the cases followed by HDES. This indicates that the 
randomness obtained from DDES and HDES 
outperforms their counterparts. The data encryption 
algorithms show close performance for files with data 
entropies between 0.80 and 0.84, where 3DES shows the 
lowest cipher data difference in this interval. However, 
as the data entropy increase, DDES outperforms the 
other algorithms. It is also noted that HDES show 
better randomness results than DES, DESX and 3DES 
in the interval of 0.90 and 0.99 of data entropies. This 
means, in the case of low data entropy the algorithms 
have analogous outcome of randomness, however 
DDES and HDES exhibit better randomness for the 
higher values of data entropies. 

Encryption Time 

Figure 10 shows the time required for the encryption 
process for DDES, HDES, DES, DESX and 3DES. As 
the figure illustrates, 3DES has the highest encryption 
processing time, this is due to the fact that 3DES repeats 

the encryption process of the original DES but using 
three different encryption keys.  Moreover, the cipher 
data difference achieved by 3DES was higher than 
DDES and HDES, which means that 3DES requires 
more time of processing while providing less 
randomness to the cipher. On the other hand, the 

encryption time for DDES is higher than DES, DESX 
and HDES.  This is due to the extra processing to enable 
DDES to use secure combinations of the S-boxes and the 
P-box on each round of the encryption process that 
results on a lower cipher data difference than its 
counterparts as shown in Fig. 9. 
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Fig. 8: Hamming distance of the data encryption algorithms 

 

 
 

Fig. 9: Cipher data difference 

 

 
 

Fig. 10: Encryption processing time 
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Conclusion 

This paper proposes two variants of DES named 
DDES and HDES. The objective of DDES and HDES is 
to overcome the flaws in the original DES, by 
redesigning and combining several techniques and 
components to enhance the original DES. The main 
characteristics of DDES is its larger key size and its 
internal components based on secure combinations of S-
boxes and P-box arrangements. HDES, on the other 
hand, uses a hash function to obtain a unique fingerprint 
for each plaintext block that is used to select secure S-
boxes only for each round in the encryption process. The 
rationale behind the two variants is to meet the trade-off 
between robustness of the ciphertext and processing 
speed. The two variants have been evaluated extensively 
using a number of metrics: Chi-square test, cipher data 
difference, hamming distance and processing time and 
their performance has been compared against DES, 
DESX and 3DES. DDES and HDES provide options for 
the security professionals to deploy the required security 
level and processing time based on the user application 
context. This have been confirmed by the conducted 
experiments that show DDES with higher degree of 
randomness in terms of chi-square test, cipher data 
difference and hamming distance while having a 
relatively acceptable encryption time. HDES, on the 
other hand, shows acceptable randomness levels. 
Although it has lower levels of randomness than that of 
DDES, its encryption time outperforms DDES. As part 
of our future work, we plan to investigate other 
randomness measures including linear Complexity test, 
discrete Fourier transform (spectral) test and 
approximate entropy test of DDES and HDES against 
AES and blowfish. 
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