
 

 

                     © 2017 Deepa S Kumar and M Abdul Rahman. This open access article is distributed under a Creative 

Commons Attribution (CC-BY) 3.0 license. 

Journal of Computer Science 

 

 

 

Original Research Paper 

Performance Evaluation of Apache Spark Vs MPI: A 

Practical Case Study on Twitter Sentiment Analysis 
 

1,2
Deepa S Kumar and 

3,4
M Abdul Rahman 

 
1Research Scholar, Karpagam Academy of Higher Education, 

Karpagam University, Tamilnadu (Dist), Coimbatore, India  
2Department of Computer Science and Engineering, College of Engineering Munnar, Kerala, India 
3Pro-vice Chancellor, APJ Abdul Kalam Technological University, Kerala, India 
4Research guide, Karpagam Academy of Higher Education, 

Karpagam University, Tamilnadu(Dist), Coimbatore, India 

 
Article history 

Received: 12-10-2017 

Revised: 25-11-2017 

Accepted: 23-12-2017 

 

Corresponding Author: 

Deepa S Kumar 

Department of Computer 

Science and Engineering, 

College of Engineering 

Munnar, Kerala, India 

Tel: +91 9447524328 

Email: deepa@cemunnar.ac.in 

Abstract: The advent of various processing frameworks which happens 

under big data technologies is due to tremendous dataset size and its 

complexity. The speed of execution was much higher with High 

Performance computing frameworks rather than big data processing 

frameworks. As majority of the jobs under big data are mostly data 

intensive rather than computation intensive, the High Performance 

Computing paradigms were not been used in big data processing. This 

paper reviews two distributed and parallel computing frameworks: Apache 

Spark and MPI. Sentiment analysis on twitter data is chosen as a test case 

application for benchmarking and implemented on Scala programming for 

spark processing and in C++ for MPI. Experiments were conducted on 

Google cloud virtual machines for three data set sizes, 100 GB, 500 GB and 

1 TB to compare the execution times. Results shown that MPI outperforms 

Apache Spark in parallel and distributed cluster computing environments 

and hence the higher performance of MPI can be exploited in big data 

applications for improving speedups. 

  

Keywords: Big Data, High Performance Computing, Apache Spark, MPI, 

Sentiment Analysis, Scala Programming, Cluster Computing 

 

Introduction 

Processing of huge volume of data in a variety of 

forms is one of the major challenges in the last two 

decades. Several parallel computing architectures were 

involved in shared memory, multi processor, multi-core 

processing, distributed processing, cluster computing, 

massively parallel processing, grid computing and 

specialized parallel computers like FPGA 

implementation etc based on the level of hardware 

support (Sliwinski and Kang, 2017). The parallel 

computers are designed for High Performance 

Computing (HPC). In contrast, another type of 

parallelism can be observed in High Throughput 

Computing (HTC). HPC provides computational 

resources for working with large datasets and mainly 

focus on how fast the computations can be done in 

parallel by exhibiting high computing power in a very 

short span of time. Whereas HTC is looking for how 

many tasks can be completed over a long period of time. 

Over the last few decades, processing of tremendous 

volume of data and its analytics have become one of the 

big challenges in the field of computing which leads to 

the concept of Big data and the associated processing. In 

data limited problems, data transfer time is more 

significant than processing time and in computationally 

limited problems, processing is faster than data transfer 

time (Sliwinski and Kang, 2017). Hadoop integrates 

processing and data and introduces application-level 

scheduling to facilitate heterogeneous application 

workloads and high cluster utilization (Jha et al., 2014). 

Hadoop implementation of Big data is dealing with the 

data-intensive task execution, with the data storage and 

job scheduling. Hadoop Map reduce, Apache Spark, 

Storm etc are the big data processing frameworks. 

Among the frameworks, Spark is faster compared to 

Map reduce for batch processing. 

Paper compared and evaluated execution times of 

existing big data processing framework, Apache Spark 

and the High Performance Computing Library, MPI. The 



Deepa S Kumar and M Abdul Rahman / Journal of Computer Sciences 2017, 13 (12): 781.794 

DOI: 10.3844/jcssp.2017.781.794 

 

782 

paper explored a detailed evaluation on the parallel 

execution of Sentiment Analysis along with the 

additional delay metrics and the workflow using 

Directed Acyclic Graph (DAG) during spark processing 

in both frameworks. 

Comparison on different big data processing 

frameworks and High Performance Computing 

frameworks had been presented in the literature. 

Related Work 

Zaharia et al. (2010) pointed out that Map reduce 

and its variants had been highly successful in 

implementing large-scale data-intensive applications on 

commodity clusters with the added features such as 

scalability and fault tolerance. But it is not suitable for 

iterative and real time applications. They focused on 

one such class of applications: Those that reuse a 

working set of data across multiple parallel operations. 

This includes many iterative machine learning 

algorithms, as well as interactive data analysis tools. 

They proposed a new framework called Spark that 

supports these applications while retaining the 

scalability and fault tolerance of Map reduce. To 

achieve these goals, Spark introduces an abstraction 

called Resilient Distributed Datasets (RDDs). An 

RDD is a read-only collection of objects partitioned 

across a set of machines that can be rebuilt if a 

partition is lost. They have concluded that Spark 

outperforms Hadoop by 10 x in iterative machine 

learning jobs and can be used to interactively query 

datasets in sub-second response time. 

Jha et al. (2014) discussed various problems 

associated with the processing large amounts of data that 

require managing large-scale data distribution, co-

placement and scheduling of data with compute 

prominent paradigms for data-intensive applications 

in the high-performance computing and the Apache-

Hadoop paradigm. Their micro-benchmark shown that 

MPI outperforms the Hadoop-based implementation 

and also pointed out that the Hadoop framework, Spark 

has improved performance significantly by adopting 

techniques in HPC and maintains a very high and 

accessible level of abstraction and a coupling to 

resources managed in HDFS or RDD chunk size. In 

HPC applications, communication operations and 

application-specific files lack a common runtime 

system for efficiently processing of data objects, but 

speedup performance with the usage of communication 

primitives in HPC. 

Reyes-Ortiz et al. (2015) made the first comparative 

study between Apache Spark and MPI/OpenMP by 

exploring the two distributed computing frameworks, 

implemented on commodity cluster architectures and 

evaluated two supervised machine learning iterative 

algorithms: KNN and SVM. Investigations shown with a 

conclusion that MPI/OpenMP outperforms Spark by 

more than one order of magnitude in terms of 

processing speed and provides more consistent 

performance. Unlike MPI, Spark is integrated with 

data management infrastructure known as HDFS and 

hence it automatically handles node failure and data 

replication management. 

Kang et al. (2015) analysed two benchmark 

problems, all-pair-shortest-job and Join problem and the 

parallel programs had been implemented using OpenMP, 

MPI and Map reduce, respectively. They arrived at a 

conclusion that MPI could be the best choice if the data 

size is moderate and the problem is computation-

intensive and if the data size is large, then Map reduce 

will performs better, provided the tasks are non-

iterative. Map reduce programs took considerable time 

for the problems requiring much iteration, like all-

pairs-shortest-path problem. MPI was a high 

performance computing paradigm which allows rapid 

message passing in a distributed system and much more 

efficient than Map reduce and hence MPI is a good 

choice when a program is needed to be executed in 

parallel and distributed manner, but with complicated 

coordination among processes. 

Gittens et al. (2016) compared the performance of 

Spark and C+MPI frameworks by exploring relational 

algebra with scientific dataset of several TBs and have 

detailed observations on various delays and overheads 

introduced while performing in both the frameworks. 

They have pointed out that Spark has more delays 

when comparing with HPC implementation on C+MPI. 

Spark execution time delays include task start delay, task 

scheduling delay, Lazy Evaluation nature, RDD 

partitioning, persist method to store the intermediate 

RDDs and synchronization between tasks among RDDs, 

straggler effect, i.e., the idle time when the a finished 

task has to wait for other tasks to finish and more over 

I/O delay etc. As far as MPI is concerned, 

synchronization among tasks is not required for non 

blocking operations, but mostly suffers from I/O access 

delay when dataset size is very large and scalability is 

another major issue in data intensive applications. 

Hence they have suggested improving the I/O 

management and scalability of MPI framework in case 

of terabyte scale data parallel processing and 

incorporating into Apache Spark framework to have the 

ideal performance. 
Kanavos et al. (2017) implemented the algorithm 

Sentiment Analysis on Twitter Data in Map reduce and 

in Apache Spark framework and proposed a classification 

method of sentiment types in a parallel and distributed 

manner. They have pointed out that the Map reduce 

implementation with the Bloom filters for their analysis 

had minimized the storage space required by a fraction 

between 15-20% and with Spark implementation, the 



Deepa S Kumar and M Abdul Rahman / Journal of Computer Sciences 2017, 13 (12): 781.794 

DOI: 10.3844/jcssp.2017.781.794 

 

783 

Bloom filters manage to marginally minimize the storage 

space required for the feature vectors up to 9% only. 

Anderson et al. (2017) aimed to bridge the 

performance gap between MPI and Apache Spark. In 

many analytics operations, the implementations in 

MPI outperforms an order of magnitude to Apache 

Spark, but the benefits of the Spark ecosystem such as 

availability, productivity and fault tolerance are to be 

retained. The authors proposed a system for 

integrating MPI with Spark and analyse the costs and 

benefits in machine learning applications. They have 

shown that offloading computation to an MPI 

environment from within Spark provides 3.1-17.7× 

speedups, including all of the overheads. This opens 

up a new approach to reuse existing MPI libraries in 

Spark with little effort. 

Several implementations on different applications 

such as SVM and KNN, all-pair-shortest-job and joining 

problem, large-scale matrix multiplication etc have been 

reviewed in the literature in the Hadoop processing 

frameworks -Map reduce and Apache Spark. In batch 

processing kind of applications, Map reduce performs 

better due to the integrated storage architecture for 

Hadoop-HDFS (Plimpton and Devine, 2011). But it’s 

processing results in degradation of performance in 

situations like iterative jobs and in interactive 

applications due to the lack of In-Memory Computing 

capability. Hence a new processing framework was 

evolved knows as Apache Spark, which relies on the 

core data structure RDD and it speed up 100x faster 

than Map reduce in In-Memory Computing and 10x 

faster when the data is stored on disk 

(https://www.edureka.co/blog/apache-spark-vs-hadoop-

mapreduce). Most attractive feature of Spark is that it 

supports real-time streaming and distributed processing. 

Hence Spark was the choice for faster computing. Spark 

provides libraries for graph analytics and machine 

learning libraries to support for the respective 

applications (Satish et al., 2014). When the data size is 

very high, recent studies have shown that load time is 

high in a number of Spark applications (Ousterhout et al., 

2015). Raveendran et al. (2011) suggested adding more 

computing performance by utilizing the HPC 

framework, MPI after evaluating the MPI-based 

communication mechanism. Spark speedups well 

compared to Hadoop, but its performance is not 

comparable with the High Performance Computing 

(HPC) frameworks, such as MPI (Forum, 2015). The 

Spark implementation has significant overhead to 

scheduling tasks and managing the resources and start 

delay etc. when comparing with MPI parallel task 

implementation (Gittens et al., 2016). Thrill  

(Axtmann et al., 2016) is a project which aims at 

making a kind of data processing system in C++ and 

using MPI for communication. The evaluation results 

clearly indicates that MPI based implementations 

outperforms several order of magnitude than with Spark 

implementation like SVM and KNN (Reyes-Ortiz et al., 

2015) and k-means clustering (Jha et al., 2014). The 

major difference with Spark framework and MPI 

frameworks is that the big data Hadoop frameworks 

tightly integrates the storage framework and the 

processing framework along with the coordination of 

jobs and resource allocation. Whereas MPI primitives 

are being used explicitly to perform all the associated 

tasks like storage, coordination, distribution and compute 

and there is no integrated storage in MPI. Hence even 

though the MPI compute outperforms Spark, MPI is not 

well suited to data intensive applications. Michael 

Anderson et al. (2017) proposed a system for integrating 

MPI with Spark and tested on machine learning 

applications and proved that the integrated Spark+MPI 

shows excellent performance. They have open up a new 

approach of using MPI in data intensive applications too. 

Fenix (Gamell et al., 2014), FTMPI (Fagg and Dongarra, 

2000), H2O.ai (2016), Deeplearning4j (2016), SWAT 

(Grossman  and Sarkar, 2016) were the several 

implementations from 2000 onwards, mainly aimed to 

improve the performance of Spark using MPI primitives or 

building a Spark like data processing system or bridging the 

gap between Spark processing and MPI processing. 

Parallel and Distributed Cluster Computing 

Frameworks 

In this section we present relevant details of big data 

processing framework, Apache Spark and the High 

Performance Computing paradigm, known as Message 

Passing Interface in the context of big data processing. 

Apache Spark 

Spark is a faster cluster computing framework that 

executes the applications much faster than Hadoop. This 

is achieved by keeping data in memory. Spark enables 

sharing of data across multiple Map reduce steps in 

interactive applications (Khanam and Agarwal, 2015). 

Spark provides a new storage primitive called Resilient 

Distributed Datasets (RDD). RDDs can read and 

written up to 40 times faster than the distributed file 

system (Zaharia et al., 2012). Resilient Distributed 

Dataset (RDD) is a distributed, inflexible and fault 

tolerant memory abstraction overcomes the problem of 

sharing data across multiple Map reduce steps that is 

required in multi pass and interactive applications. 

Memory is logically partitioned into RDDs with a set 

of elements and a permissible set of operations 

applied. The operations on RDDs are either 

transformations or actions, in which transformations 

are RDDs itself. The actions follow a Lazy Evaluation 

strategy (LE strategy) due to which the computations are 



Deepa S Kumar and M Abdul Rahman / Journal of Computer Sciences 2017, 13 (12): 781.794 

DOI: 10.3844/jcssp.2017.781.794 

 

784 

performed only during actions and the computations are 

not cached in RDDs. Hence there should be separate 

persist methods to store the computed actions. Spark 

goals are fault tolerant, data replication and provides a 

better storage infrastructure. 

Message Passing Interface (MPI) 

MPI is a message passing library specification which 

defines a message passing model for parallel and 

distributed programming (Gropp et al., 1998). MPI is a 

standard created to facilitate the transport of data 

between the distributed processing elements (Jha et al., 

2014). MPI extents from a serial program executed by a 

single process within a single machine to multiple 

processes distributed across many cluster of nodes. MPI 

utilize the resources of all of those nodes at once by 

facilitating the communication between them across the 

interconnecting network. MPI methods include 

optimized communication primitives such as send, 

receive, scatter, gather etc. MPI implementations 

provide extremely high performance in terms of 

extremely low latency and network injection rate for 

short messages, maximum bandwidth and maintain a 

balance of low resource utilization. MPI is an HPC 

vendor independent implementation of the parallel 

programming environment and several implementations 

have been made such as OpenMPI, MPICH and 

GridMPI (Diaz et al., 2012). MPI main goals are high 

performance, scalability and portability. 

From the literature review, it is clear that the Spark is 

slower compared to native implementations written with 

high performance computing in MPI. MPI supports a 

wide variety of high performance computing platforms 

and environments. But there is no specific storage 

architecture relies on MPI as in Spark. Figure 1 presents 

the traditional HPC processing architecture, in which 

data and compute nodes are separated and compute 

nodes are tightly interconnected for low latency during 

computation, but data is to be accessed from separate 

storage nodes. MPI takes the data from Network File 

System (NFS), Cassandra or any other file system 

including HDFS. MPI is at the peak edge of high 

performance computing. Case study shows that MPI is 

4.6-10.2× faster than Spark on large matrix 

factorizations on an HPC cluster with 100 compute 

nodes (Gittens et al., 2016). 

Experiments on sentiment analysis on twitter data for 

different sizes are being conducted to ascertain the 

performance parameters like execution time, CPU and 

memory utilization in the existing big data framework, 

Apache Spark and the High Performance Computing 

Library, MPICH2. Theoretical studies shown that, unlike 

Spark, MPI lacks integrated storage architecture. If MPI 

overcomes the limitation, it can be one of the next 

generation big data processing technologies. 

 

 

 
Fig. 1: Storage nodes and Compute nodes separated in traditional HPC 

 Storage nodes/Racks                                                            Compute nodes/cluster 



Deepa S Kumar and M Abdul Rahman / Journal of Computer Sciences 2017, 13 (12): 781.794 

DOI: 10.3844/jcssp.2017.781.794 

 

785 

Sentiment Analysis on Spark Vs MPI 

In order to evaluate the performance of the 

distributed and cluster computing frameworks-spark 

and MPI, Sentiment analysis on Twitter data is being 

chosen as an application. Sentiment Analysis is the 

process of deriving the opinion by computations from 

the data. It is otherwise called as opinion mining 

which determines whether the content is positive, 

negative or neutral. 

Sentiment Analysis 

Sentiment analysis is being done to understand 

opinion in a set of documents. The analysis on our 

application undergoes the following steps, shown as 

pseudo code. The application accepts a blocks of lines 

of tweets from the storage to tasks and processed in 

parallel, then read next block of data until the whole 

data is being processed. The intermediate results in 

each iteration are an array of five numbers 

[very_bad_tweets, bad_tweet, normal, good_tweet and 

very_good_tweet] and outputs among the set {highly 

negative, negative, neutral, positive and highly 

positive}. Then count the number of positive words to 

get the positive score, count the negative words to get 

the negative score of the tweets and this score is 

clamped into a range of five integers to map towards 

the category and finally outputs on each category. 

For spark implementations, programs were written in 

Scala. MPI program was written in C++. For the analysis 

of execution performance and the different delays 

incurred during processing, both programs were 

executed on 7 GB, 100 GB, 500 GB and 1TB dataset 

sizes for various attempts. Hadoop HDFS and YARN 

were installed over the cluster of nodes. 

Pseudo Codes for the Implementation of Spark and 

MPI 

The algorithms for the implementation of sentiment 

analysis in spark processing are shown in algorithm 1 

and the analyzer function in algorithm 2. 

Algorithm 1: Sentiment Analysis on Twitter Data 

on Spark Processing 

INPUT: input filename inputFile 

  Positive words file positiveWord 

  Negative words file negativeWord 

OUTPUT:  RDD textFile (PositiveList, NegativeList) 

1  Open file positiveWord 

2  Load contents of positiveWord to PositiveList 

3  close file positiveWord 

4  open file negativeWord 

5  Load contents of negativeWord to NegativeList 

6  close file negativeWord 

7  Create sparkcontext sc 

8  Open inputFile using sc and load the data to 

RDD textfile 

9  Call filter function to retain only sentences 

starting with “W” and store it in RDD  

  textfile. 

10.  Call map function analyzer and store result in 

RDD textfile with arguments 

   PositiveList, NegativeList 

11.  Call reducebykey on RDD textfile 

12  return 

 

Algorithm 2: Analyzer (Spark Processing) 

 

Input: Vector PositiveList, Vector NegativeList 

Function Map (lines): 

for all line ε lines do 

Score = 0 

for all word in line do 

if word ε Positivelist then 

score = score +1 

end if 

if word ε NegativeList then 

Score = Score-1 

end if 

end for 

if Score >2 then 

Score = 2 

end if 

if Score<2 then 

Score = -2 

end if 

if score = -2 then 

Output (“verybad”:1) 

else if score = -1 then 

output (“bad”:1) 

else if Score = 0 then 

output (“neutral”:1) 

else if Score = 1 then 

output (“good”:1) 

else if Score = 2 then 

output (“verygood”:1) 

end if 

Function Reduce (scoreTuples) 

  Result = {} 

  For each (key, value) ε scoreTuples 

  Result [key] = Result [key] + value 

  Return Result 

 

Algorithm 3: Sentiment Analysis on Twitter Data in 

MPI 
 

Input filename: inputFilename 

  Block size: blockSize 

Nodes number: rank 



Deepa S Kumar and M Abdul Rahman / Journal of Computer Sciences 2017, 13 (12): 781.794 

DOI: 10.3844/jcssp.2017.781.794 

 

786 

  Total number of nodes: size 

MPI init() 

1. Open file inputFilename as fp 

2. Set scores = {0, 0, 0, 0, 0} 

3. execution_flag = 0 

4. If (rank == 0) 

For i in 1 to (size - 1) 

MPI_Send (1, 1, MPI_INT, i, 1, MPI_COMM_WORLD) 

5. Else 

MPI_Recv (&execution_flag, 1, MPI_INT, 0, 1, 

MPI_COMM_WORLD, MPI_STATUS_IGNORE ); 

6. If (execution_flag == 1 or rank == 0) 

While fp not null 

Read a block of blockSize from fp 

Scores = scores + Call analyze with argument block 

End while 

7. Initialize received_scores to an empty array of 

integers whose size is (number_of_nodes * 5) 

8. MPI_Gather ( scores, 5, MPI_INT, received_scores, 

5, MPI_INT, 0, MPI_COMM_WORLD ) 

9. If (rank == 0) 

For i = 0 to (number of nodes * 5) 

final_scores [i mod 5] = received_scores[i] 

End for 

Output final_scores 

10.  Return 

MPI Finalize(). 

 

Algorithm 4. Analyzer (MPI) 

 

Input String array: block 

  Negative words list negativelist 

  Positive words list positivelist 

 

1. Set positive 0 

2. Set negative 0 

3. Set neutral 0 

4. Set highlypositive 0 

5. Set highlynegative 0 

6. Set score=0 

7. For each word in positivelist 

If word in line 

Increment score by 1 

End if 

 End for 

  8. for each word in negativelist 

If word in line 

Decrement score by 1 

End If 

 End for 

  9. Clamp the value of score between -2 and 2 

 10. If score = -2: 

Increment highlynegative 

Else if score = -1 

Increment negative 

Else if score = 0 

Increment neutral 

 Else if score = 1 

Increment positive 

 Else if score = 2 

Increment highlypositive 

 End If 

 11. Return (highlynegative, negative, neutral, positive, 

highlypositive) 

 

Algorithm 3 and Algorithm 4 outline the algorithm 

for sentiment analysis in MPI and its analyser, 

respectively. 

Cluster Setup 

The experiments were tested in two different cluster 

setups and the two configuration setups are mentioned 

below. 

Cluster Setup-Configuration I   

Processor Intel Haswell 

Number of cores 4 

RAM/core 3.6 GB 

Hard Disk/core 500 GB 

Total cores 40 

  

Worker nodes(10 nodes)-configuration 

 

Processor Intel Haswell 

Number of cores 4 

RAM 3.6 GB 

Hard Disk 2000 GB 

 

Results and Discussions 

In this section, we exhibited the performance 

evaluation results and the overhead time associated 

with the computing time on spark. The execution time 

was evaluated for 100 GB, 500 GB and 1 TB. Table 1 

includes the results for dataset size = 100 GB, on the 

cluster setup. 

Table 2 includes the results for dataset size = 100 

GB, on the cluster setup on one master machine and ten 

slave machines (S1-S10). Table 1 and 2 evaluated the 

execution time for the sentiment application along with 

the CPU utilization in each worker core. The average 

CPU utilization per core as 64.83 percent approximately 

for the application in apache spark in the mentioned 

configuration as shown in Table 1. Table 2 has shown 

the average CPU utilization per core when the 

application implemented in MPI was approximately 

89.98%. Hence the CPU utilization was high in MPI 

processing framework. The execution times were 

compared in Table 3 and 4. 



Deepa S Kumar and M Abdul Rahman / Journal of Computer Sciences 2017, 13 (12): 781.794 

DOI: 10.3844/jcssp.2017.781.794 

 

787 

Table 1: Sentiment analysis on apache spark (Scala) (100 GB) 

Exe no/ITN no. 1 2 3 4 5 6 7 8 9 10 

Exe.Time(min) 3.6 3.5 3.6 3.5 3.6 3.6 3.5 3.6 3.6 3.7 

CPU Utilization % (W1) 58.8 52.0 60.0 46.3 62.0 60.0 88.8 61.8 58.8 52.0 

CPU Utilization % (W2) 58.3 84.0 62.0 64.8 63.0 56.5 66.8 72.0 58.3 84.0 

CPU Utilization % (W3) 49.3 50.8 67.5 84.3 58.0 86.0 85.8 83.8 49.3 50.8 

CPU Utilization % (W4) 60.0 66.3 76.0 67.0 68.0 59.0 78.8 53.5 60.0 66.3 

CPU Utilization % (W5) 46.5 51.3 74.5 73.3 53.3 69.5 82.5 74.0 46.5 51.3 

CPU Utilization % (W6) 63.0 71.3 54.0 68.8 57.8 82.0 67.8 73.8 63.0 71.3 

CPU Utilization% (W7) 74.5 62.5 50.0 59.5 76.3 49.0 68.5 54.8 74.5 62.5 

CPU Utilization % (W8) 77.5 80.0 58.5 61.8 70.8 50.3 65.3 54.5 77.5 80.0 

CPU Utilization % (W9) 57.8 62.0 59.3 50.3 78.8 60.5 62.5 81.5 57.8 62.0 

CPU Utilization % (W10) 63.0 66.5 55.3 69.5 72.3 74.0 49.8 76.3 63.0 66.5 

 
Table 2: Sentiment analysis on MPI (C/C++)(100 GB) 

  Master S1 S2 S3 S4 S5 S6 S7 S8 S9 S 10 

Iteration 1 

CPU Utn % 88.8 89.8 90.3 89.5 89.3 89.0 89.0 89.5 89.5 89.5 89.5 

Exec. Time (min) 1.56  

Iteration 2 

CPU Utilization % 89.8 90.5 90.5 89.8 90.0 89.8 90.0 90.3 90.3 90.3 90.0 

Exec. Time(min) 1.57  

Iteration 3 

CPU Utilization % 89.5 89.8 90.8 89.8 89.8 89.5 89.8 89.8 90.0 90.3 90.0 

Exec. Time(min) 1.57  

Iteration 4 

CPU Utilization % 89.8 90.0 90.5 89.3 89.5 89.8 89.3 89.3 89.5 89.8 90.0 

Exec. Time(min) 1.56  

Iteration 5 

CPU Utilization % 90.0 90.0 90.3 89.3 89.8 90.5 89.5 89.5 89.8 90.0 90.5 

Exec. Time(min) 1.57  

Iteration 6 

CPU Utilization % 89.5 90.0 90.8 90.0 90.0 89.8 89.3 90.0 90.3 90.0 90.5 

Exec. Time(min) 1.57  

Iteration 7 

CPU Utilization % 89.5 89.8 90.5 90.3 90.3 89.8 89.5 89.8 90.3 89.5 90.3 

Exec. Time(min) 1.56  

Iteration 8 

CPU Utilization % 89.3 90.3 90.5 90.0 89.3 90.3 89.8 89.5 90.5 90.0 89.8 

Exec. Time(min) 1.57  

Iteration 9 

CPU Utilization % 89.3 90.0 90.3 90.3 89.8 90.0 89.3 90.5 90.0 90.0 90.3 

Exec. Time(min) 1.57 

 
Table 3: Execution times on 100 GB/500 GB/1 TB datasets in spark processing 

Data size ITN1 ITN2 ITN3 Avg. Exe. Time (Min) 

100 GB 3.6 3.5 3.6 3.58 

500 GB 17.0 16.0 17.0 16.67 

I TB 33.0 32.0 32.0 32.33 

 
Table 4: Average execution times on 100GB/500GB/1TB datasets in MPI 

Data size ITN1 ITN2 ITN3 Avg. Exe. Time (Min) 

100 GB 1.56 1.57 1.57 1.56 

500 GB 10.04 10.07 10.06 10.06 

I TB 22.18 22.36 22.17 22.23 



Deepa S Kumar and M Abdul Rahman / Journal of Computer Sciences 2017, 13 (12): 781.794 

DOI: 10.3844/jcssp.2017.781.794 

 

788 

 
 

Fig. 2: Execution time (minutes) Spark Vs MPI (100 GB) 

 

 
 

Fig. 3: Execution time (minutes) Spark Vs MPI comparison 

 

 
 

Fig. 4: Summary on all overhead times for Sentiment analysis using Spark on 100 GB dataset (From UI application, Spark 2.0.2) 



Deepa S Kumar and M Abdul Rahman / Journal of Computer Sciences 2017, 13 (12): 781.794 

DOI: 10.3844/jcssp.2017.781.794 

 

789 

 
 

Fig. 5: Directed acyclic graph (Spark) (From UI application Spark 2.0.2) 

 

Figure 2 and 3 shows that MPI was approximately 2 

x times faster than Spark processing over a cluster of 

10 machines with 40 cores with the comparable results 

obtained in (Jha et al., 2014), (Reyes-Ortiz et al., 2015) 

and (Gittens et al., 2016). Spark processing incurs 

some delay metrics during execution as summarized in 

Fig. 4. Figure S1 and S2 supplements the overhead 

summary for 500 GB and 1 TB datasets. Spark 

computes Directed Acyclic Graph (DAG) from the 

RDDs as shown in Fig. 5. The DAG generally includes 

stages with stage0 will have a series of pipelined 

transformations and the subsequent stages are based on 

the computed actions. All the transformations are 

grouped in stage0 and depending on the number of 

actions; subsequent stages will be included in the DAG. 

Figure 5 includes the filter RDD and map RDDs were 

pipelined to stage0 and the reduce operation for final 

result evaluation in stage1. For the implementation of 

actions on an RDD, Spark submits the DAG to the 

DAG Scheduler. It schedules the operations in each 

stage of the DAG and combines the operations which 

can be performed on a single stage. Then these stages 

were passed to the task tracker over the cluster of 

workers through the YARN/Mesos cluster managers 

(https://spark.apache.org/docs/1.2.1/api/java/org/apac

he/spark/scheduler/DAGScheduler.html).Task 

trackers launch the tasks and executes in parallel 

without knowing the dependency among the 

operations in stages and hence spark handles an 

effective task parallelism. 

The stage-wise evaluation of execution time was 

shown in Figure 6 for 100 GB dataset. Stage0 was 

computed the entire filter and a series of map operations 

in 3.5 min and the final collect operation at stage1 in 0.1 

sec. For 500 GB and 1 TB, the two-stage summary of 

execution time was provided as supplementary material 

Figures S3 and S4. 

Factors Included in Performance Measures of 

Parallel Computing 

Execute Time 

The measure of performance will vary with respect to 

the data volume, the analytics used in the corresponding 

application, whether the algorithm is iterative or non 

iterative and the application is interactive or batch 

processing etc. With respect to the chosen application, 

the execute time will vary in various frameworks. The 

time taken to execute the job, once the metadata is 

captured and the corresponding data made available to 

the application is called the execute time. An average 

Execution time for sentiment analysis on 100 GB/500 

GB/1 TB data for 3 different attempts (ITN1-ITN3) is 

displayed on Table 3. 



Deepa S Kumar and M Abdul Rahman / Journal of Computer Sciences 2017, 13 (12): 781.794 

DOI: 10.3844/jcssp.2017.781.794 

 

790 

 
 

Fig. 6: Summary on Job execution time on stages (100 GB dataset) 

 
Table 3 is based on ten different iterations on 100 GB 

and three iterations on 500 GB and 1 TB, with an average 

execute time was 3.58, 16.67 and 32.33 min respectively on 

the three data set sizes on Spark processing on 40 cores. 

Table 4 shows the average execute times, 1.56 

minutes, 10.06 and 22.23 min, on 100 GB, 500 GB and 1 

TB datasets respectively. 

Overhead 

The additional time elapsed due to various latencies 

in accessing the data, metadata, network bandwidth, 

delays in the processing frameworks and some 

undetectable factors that affects the extension of total 

execution time is called as overheads. 
Spark overheads other than accessing data, metadata, 

network bandwidth were shown in Figure 4 for 100 GB 
data set size and the latencies was evaluated as 26.4 
seconds which includes the Task initiation delay 
(Duration-(14.0 s)), Scheduler delay (0.3 s), task 
deserialization time (1.0 s), Garbage Collection time 
(GC Time -0.6 s), Result serialization time (5 ms) and 
Getting Result Time (0 ms). Kryo serializer was 
installed for task serialization/deserialization. Since the 
cluster was setup on Google cloud, the network 
latencies were not evaluated. The data were directly 
stored on each nodes in the cluster and hence delay in 
reading the data from HDFS and metadata read latency 
were not included in this experiment. In MPI, the 
experiment was conducted after distributing data over 
the cluster of nodes and hence latency in reading data 
from the disk was not evaluated. MPI overheads will be 
affected during I/O scalability and due to data parallel 
operations in extremely large scale data processing 
(Anderson et al., 2017). 

Total Time 

The actual time incurred for the execution of jobs to 

avail the results is termed as total time, which includes 

Execute time and Overhead. 

The total time for sentiment analysis on spark was 

evaluated as 3.58, 16.67 and 32.33 min and in MPI, the 

total time was 1.56.31, 10.06 and 22.23 min, on 100 GB, 

500 GB and 1 TB datasets, respectively. Hence 

practically verified that MPI outperforms Spark by two 

orders of magnitude for the application of lexicon based 

sentiment analysis. 

Conclusion 

Detailed study on spark processing was conducted 

in Spark2.0.2 on Hadoop2.7.3 and YARN on a Google 

cloud cluster setup. Experimental results were 

analyzed based on peak memory utilization, peak CPU 

utilization and execution time. Sentiment analysis 

application was chosen as the application and it was 

implemented in Scala for spark processing and 

programmed in C++ for the implementation in MPI. 

In the experiment, the execution time on spark and 

MPI shows that the execution speed of MPI was 

approximately 2* faster than spark processing with 

the configuration II at par with the results in (Reyes-

Ortiz et al., 2015).  

The results shows better performance on MPI 

environment than Spark was due to two reasons. 

Firstly, In MPI, the freedom of the programmer to 

choose the memory requirements, in terms of the number 

of lines of tweets to be executed to avail better 

performance. Whereas in Spark, the memory allocation 

and task scheduling are purely under the control of Spark 

processing Framework and programmer intervention is 

not possible. Secondly, C++ is more flexible 

programming language than Scala. 

The CPU utilization on the cores and the average 

utilization were proven to be higher on MPI than 

Apache Spark. The memory utilization factor could be 

adjusted in MPI programming for better performance, 



Deepa S Kumar and M Abdul Rahman / Journal of Computer Sciences 2017, 13 (12): 781.794 

DOI: 10.3844/jcssp.2017.781.794 

 

791 

whereas the memory utilization factor in Spark 

programming was controlled by the Spark by the Spark 

job controller. But MPI lacks a common runtime for 

big data processing environment (Jha et al., 2014). 

Bridging the gap between big data processing and HPC 

by incorporating MPI with the integrated I/O management 

and fault tolerance is one of the motivating scientific 

studies as proposed in (Anderson et al., 2017). Further 

research is required on I/O management and fault 

tolerance integration to handle the big data in MPI 

processing environment. 

Acknowledgment 

I sincerely express my gratitude to my guide Dr 

(Prof) M Abdul Rahman for his constant encouragement 

and support. 

Author’s Contributions 

Deepa S Kumar: Implemented and tested the 

algorithms. 

M Abdul Rahman: Project supervisor. 

Ethics 

The authors declare no conflict of interest. 

References 

Anderson, M., S. Smith, N. Sundaram, M. Capotă and 

Z. Zhao et al., 2017. Bridging the gap between 

HPC and big data frameworks. Proc. VLDB 

Endowment, 10: 901-912. 

 DOI: 10.14778/3090163.3090168 

Axtmann, M., T. Bingmann, E. Jobstl, S. Lamm and 

H.C. Nguyen et al., 2016. Thrill-distributed big 

data batch processing framework in C++. 

Deeplearning4j, 2016. Deep learning for java. Open-

Source, Distributed, Deep Learning Library for 

the JVM.  

Diaz, J., C. Munoz-Caro and A. Ni no, 2012. A survey 

of parallel programming models and tools in the 

multi and many-core era. IEEE Trans. Parallel 

Distr. Syst., 23: 1369-1386. 

 DOI: 10.1109/TPDS.2011.308 

Fagg, G.E. and J.J. Dongarra, 2000. FT-MPI: Fault 

tolerant MPI, supporting dynamic applications in 

a dynamic world. Proceedings of the 7th 

European PVM/MPI Users' Group Meeting on 

Recent Advances in Parallel Virtual Machine and 

Message Passing Interface, (MPI’ 00), Springer 

Nature, London, pp: 346-353.  

Forum, M.P.I., 2015. Mpi: A message-passing 

interface standard version 3.1. Technical Report. 

Gamell, M., D.S. Katz, H. Kolla, J. Chen and S. Klasky et 

al., 2014. Exploring automatic, online failure 

recovery for scientific applications at extreme scales. 

Proceedings of the International Conference for High 

Performance Computing, Networking, Storage and 

Analysis, Nov. 16-21, IEEE Xplore Press, New 

Orleans, LA, USA, pp: 895-906. 

 DOI: 10.1109/SC.2014.78 

Gittens, A., A. Devarakonda, E. Racah, M. Ringenburg 

and L. Gerhardt et al., 2016. Matrix factorizations at 

scale: A comparison of scientific data analytics in 

spark and C+MPI using three case studies. 

Proceedings of the IEEE International Conference on 

Big Data, Dec. 5-8, IEEE Xplore Press, Washington, 

DC, USA, pp: 204-213. 

 DOI: 10.1109/BigData.2016.7840606 

Gropp, W., S. Huss-Lederman and A. Lumsdaine, 1998. 

MPI: The complete reference, the MPI-2 Extensions. 

The MIT Press. 

Grossman, M. and V. Sarkar, 2016. SWAT: A 

programmable, in-memory, distributed, high-

performance computing platform. Proceedings of the 

25th ACM International Symposium on High-

Performance Parallel and Distributed Computing, 

May 31-Jun 04, ACM, Kyoto, Japan, pp: 81-92. 

 DOI: 10.1145/2907294.2907307 

H2O.ai. 2016. Sparkling Water. 

https://github.com/h2oai/sparkling-water 

https://spark.apache.org/docs/1.2.1/api/java/org/apache/sp

ark/scheduler/DAGScheduler.html 

https://www.edureka.co/blog/apache-spark-vs-hadoop-

mapreduce. 
Jha, S., J. Qiu, A. Luckow, P. Mantha and G.C. Fox, 2014. 

A tale of two data-intensive paradigms: Applications, 
abstractions and architectures. Proceedings of the 
IEEE International Congress on Big Data, Jun. 27-
Jul. 2, IEEE Xplore Press, Anchorage, AK, USA, pp: 
645-652. DOI: 10.1109/BigData.Congress.2014.137 

Kanavos, A., N. Nodarakis, S. Sioutas, A. Tsakalidis and 
D. Tsolis et al., 2017. Large scale implementations 
for twitter sentiment classification, Algorithms, 10: 
33-33. DOI: 10.3390/a10010033 

Kang, S.J., S.Y. Lee and K.M. Lee, 2015. Performance 
comparison of OpenMP, MPI and MapReduce in 
practical problems. Adv. Multimedia, 2015: 
575687-575687. DOI: 10.1155/2015/575687 

Khanam, Z. and S. Agarwal, 2015. Map-reduce 

implementations: Survey and performance 

comparison. Int. J. Comput. Sci. Inform. Technol., 7: 

119-126. DOI: 10.5121/ijcsit.2015.7410  

Ousterhout, K., R. Rasti, S. Ratnasamy, S. Shenker and 

B.G. Chun, 2015. Making sense of performance in 

data analytics frameworks. Proceedings of the 12th 

USENIX Conference on Networked Systems Design 

and Implementation, May 04-06, USENIX 

Association, Berkeley, CA, USA, pp: 293-307.  



Deepa S Kumar and M Abdul Rahman / Journal of Computer Sciences 2017, 13 (12): 781.794 

DOI: 10.3844/jcssp.2017.781.794 

 

792 

Plimpton, S.J. and K.D. Devine, 2011. MapReduce in 

MPI for large-scale graph algorithms. Parallel 

Comput. J., 37: 610-632. 

 DOI: 10.1016/j.parco.2011.02.004 

Raveendran, A., T. Bicer and G. Agrawal, 2011. A 

framework for elastic execution of existing MPI 

programs. Proceedings of the IEEE International 

Symposium on Parallel and Distributed Processing 

Workshops and Phd Forum, May 16-20, IEEE 

Xplore Press, pp: 940-947. 

 DOI: 10.1109/IPDPS.2011.240 

Reyes-Ortiz, J.L., L. Oneto and D. Anguita, 2015. Big 

data analytics in the cloud: Spark on hadoop Vs 

MPI/OpenMP on Beowulf. Proc. Comput. Sci., 53: 

121-130. DOI: 10.1016/j.procs.2015.07.286 
Satish, N., N. Sundaram, M.M.A. Patwary, J. Seo and J. 

Park et al., 2014. Navigating the maze of graph 
analytics frameworks using massive graph datasets. 

Proceedings of the ACM SIGMOD International 
Conference on Management of Data, Jun. 22-27, 
ACM, New York, pp: 979-990. 

 DOI: 10.1145/2588555.2610518  
Sliwinski, T.S. and S.L. Kang, 2017. Applying parallel 

computing techniques to analyze terabyte 
atmospheric boundary layer model outputs. Big Data 
Res., 7: 31-41. DOI: 10.1016/j.bdr.2017.01.001 

Zaharia, M., M. Chowdhury, M.J. Franklin, S. Shenker 

and I. Stoica, 2010. Spark: Cluster computing with 

working sets. Proceedings of the 2nd USENIX 

Conference on Hot Topics in Cloud Computing, 

Jun. 22-25, USENIX Association Berkeley, Boston, 

MA., pp: 10-20.  

Zaharia, M., M. Chowdhury, T. Das, A. Dave and J. 

Ma et al., 2012. Fast and interactive analytics 

over hadoop data with spark. USENIX. 

 

Supplementary Material 

Figure S1 and S2 summarizes the overhead times for the implementation on the algorithm using spark on 500GB and 

1TB. The stage-wise execution summary of Spark processing on 500GB and 1TB were shown as Fig. S3 and S4. Spark 

Processing framework evaluations for 500GB and 1TB results appended in Table S1 and S2 along with the values 

calculated in Table 3. MPI processing framework evaluations for three different attempts for 500GB and 1TB data set 

sizes were exhibited in Table S3 and S4 along with the values calculated in Table 4. 

 
Table S1: Sentiment analysis on apache Spark (Scala) 500 GB, configuration II) 

    Avg Exe Avg CPU 

 1 2 3 time(min) Utilization% 

Execution time (minutes) 17 16 17 16.67 56.45 

CPU utilization % 42.8 72.0 48.0 

CPU utilization % 44.0 72.8 61.5 

CPU utilization % 43.3 46 76.3 

CPU utilization % 65.5 58.3 42.5 

CPU utilization % 42.3 62 41.3 

CPU utilization % 56.3 67.5 55 

CPU utilization % 44 66.3 47.3 

CPU utilization % 70.3 70.3 56.3 

CPU utilization % 44 59 71.5 

 
Table S2: Sentiment analysis on apache spark (Scala) (1 TB, Configuration II) 

    Avg exec. Avg CPU 
Execution number 1 2 3 time (MIN) Utilization% 

Execution time (minutes) 33 32 32 32.33 51.4 
CPU utilization % 42.5 38.5 42.5 
CPU utilization % 47 50 65.8 
CPU utilization % 44.8 63.8 54 
CPU utilization % 44 35.8 57.3 
CPU utilization % 43.55 61.5 75 
CPU utilization % 43.8 50 43.5 
CPU utilization % 46 51.5 42.8 
CPU utilization % 44.8 72 41.3 
CPU utilization % 43.5 47 72.3 
CPU utilization % 60 55.3 64.5 



Deepa S Kumar and M Abdul Rahman / Journal of Computer Sciences 2017, 13 (12): 781.794 

DOI: 10.3844/jcssp.2017.781.794 

 

793 

Table S3: Sentiment analysis on MPI (C/C++)(500 GB, configuration II) 

 1 2 3 Avg Exe time Avg CPU Utilisation% 

Execution time (minutes) 10.04 10.07 10.06 10.06 88.2 
CPU utilization %(master) 90.25 90 90 
CPU utilization %(S1) 88.25 88.25 88.33 
CPU utilization %(S2) 88.25 88.73 88.5 
CPU utilization %(S3) 88.25 88.25 88.25 
CPU utilization %(S4) 88.75 89 88.5 
CPU utilization %(S5) 88.5 88.25 88.5 
CPU utilization %(S6) 88 88.5 88 
CPU utilization %(S7) 88.25 88 88.5 
CPU utilization %(S8) 87.5 87.75 88 
CPU utilization %(S9) 88 88 88.25 
CPU utilization %(S10) 88.25 88.5 88.5 
 
Table S4: Sentiment analysis on MPI (C/C++)(1 TB, configuration II) 

Execution number 1 2 3 Avg exec. Time(MIN) Avg CPU Utilisation% 

Execution time (minutes:seconds:ms) 22.18 22.36 22.17 22.23 90.05 
CPU utilization %(Master) 89.25 89.25 89.25 
CPU utilization %(S1) 90 90.25 90.25 
CPU utilization %(S2) 90 90 90 
CPU utilization %(S3) 90 90.25 90.25 
CPU utilization %(S4) 90 90 90 
CPU utilization %(S5) 90.5 90.5 90.5 
CPU utilization %(S6) 90.25 90.25 90.25 
CPU utilization %(S7) 90.25 90.25 90.25 
CPU utilization %(S8) 90 90.25 90 
CPU utilization %(S9) 89.5 90 90 
CPU utilization %(S10) 89.75 90.25 88.5 
 

 
 

Fig. S1: Summary on all overhead times for the implementation on the algorithm using spark on 500 GB 
 

 
 

Fig. S2: Summary on all overhead times for the implementation on the algorithm using spark on 500 GB 



Deepa S Kumar and M Abdul Rahman / Journal of Computer Sciences 2017, 13 (12): 781.794 

DOI: 10.3844/jcssp.2017.781.794 

 

794 

 
 

Fig. S3: Summary on Job execution time on stages (500 GB dataset) 
 

 
 

Fig. S4: Summary on Job execution time on stages (1 TB dataset)  


