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Abstract: Sparse coding is a set of techniques used for learning a collection of 

over-complete bases to represent data efficiently. This technique has been used 

in different domain such as feature quantization and image classification. 

Despite its capacity of modeling, it could not represent similarity of the image 

coding which cause a poor performance in locality. The cause of this limitation 

is the features separation of the representation. To surmount the limitations of 

these techniques, we propose a new approach that is able to calculate similarity 

by taking into account the image’s spatial neighborhood of pixels. This 

approach is based on the integration of Kullback-Leibler distance and wavelet 

decomposition in the domain of image.  The association of the Kullback-leibler 

distance and wavelet decomposition is robust to small deformations (translation, 

dilation and rotation). It improves the representation of locality by considering 

each element of an image and its neighbors in similarity calculation. Results 

show clear improvements in performance compared to the above techniques. 
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Introduction  

Sparse coding techniques marked a great revolution in 

the field of computer vision and its applications. Those 

techniques suffer from the inability to model the locality 

and the similarity among the instances to be encoded owing 

to the over complete codebook and the independent coding 

process. To overcome these limitations, Gao proposed an 

approach called Laplacian Sparse Coding (Gao et al., 

2010a).  This approach exploits the dependence among 

local features. He recommended the use of histogram 

intersection based on K Nearest Neighbor (KNN) method 

to build a Laplacian matrix. This technique characterizes the 

similarity of local features. To maintain the consistence in 

sparse representation of those features, a matrix was 

incorporated into the function of sparse coding. In a second 

work, Gao enhanced the Kernel Sparse Representation 

technique (Gao et al., 2010b).  

The third approach proposed by Gao is Hypergraph 

Laplacian Sparse Coding techniques (Gao et al., 2013). 

Within the same hyperedge, it simultaneously extracts 

the similarity between the instances and also composes 

their sparse codes.  

In this paper, we suggest an enhancing of the Laplacian 

sparse coding technique by altering the way of similarity 

calculation. In our case, the computation of similarity in the 

image domain is based on the divergence of Kullback-

Leibler and wavelet decomposition. This idea comes from 

its ability to take into account neighbors’ similarity.  
This paper is organized as follows: In section1, we 

introduce the Laplacian sparse coding technique. Section 
2 describes the kernel sparse representation. We explain 
our approach in section 3. Our approach is evaluated in 
the last section.  

Laplacian Sparse Coding 

In order to alleviate the problem of hard quantization, 

researchers have proposed a new technique called sparse 

coding. This settles the problem by offering a sparse linear 

combination of basis vectors for each image feature. 

Sparse coding seeks a linear reform of a signal x,(x∈IR
d
) 

using the bases in the codebook U = (u1, u2,…, uk), 

U∈IR
d×k
). Sparse codes are defined by V = (v1, v2,…, vn). vi 

∈IR
K×1

 and vik are the weight of the vector xi in the basis 

vector uk. The optimization difficulty of sparse coding can 

be summarized as follows:  

0
min v  subject to x = UV or 

2

1,
min

iF
U V

i

X UV vλ− + ∑  subject to 1; 1,...,ju j K≤ ∀ = . λ 
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is the tradeoff  parameter used to stabilize the sparsity 

and the rebuilding error because of the independent 

encoding feature resulting from an over complete or 

sufficient codebook. Supposing that x = (x1, x2,…, xn) is 

the vector of features and W is the matrix of similarity 

having Wij the measuring of similarity of the pair (xi, 

xj). D the matrix of degree defined by 
1

n

ij

j

Dii W

=

=∑  is a 

diagonal matrix.  

The Laplacian Sparse Coding, as detailed in (Gao et al., 

2010a; 2010b) considers the similarity between features. 

The term of this approach is described by: 

 

1

22

,..., 1

min
2

n

i i i i j ij
v v i i ijF

x Uv v v v W
β

λ− + + −∑ ∑ ∑  (1) 

 

It can be written as: 
 

( )2

1

min
T

i

V i iF

X UV v tr VLVλ β− + +∑ ∑  (2) 

 

The definition of the Laplacian is L = D − W  

(Luxburg, 2007). 

 Since the codebook U is not optimal, the expression 

can be rewritten as follows: 

 

( )2

, 1

min
T

i

U V i iF

X UV v tr VLVλ β− + +∑ ∑  (3) 

 

Kernel Sparse Representation 

Gao proposed another approach called Kernel Sparse 

Representation to ameliorate the technique of features 

representation using sparse coding. He used the kernel 

trick because he noticed that this technique can identify 

the nonlinear similarity of features. This approach is 

fundamentally the sparse coding technique in an elevated 

dimensional feature space traced by tacit mapping 

function (Gao et al., 2010a; 2010b). 

: ,( )d k
IR IR d kΦ → < is a feature mapping function. In 

the same condition of sparse coding, this function is 

defined by: the same condition of sparse coding, this 

function is defined by: Φ: IR
d
→ IR

k
, (d<k) with 

x→Φ(x), U = (u1, u2,…, uk) → UΦ, UΦ = (Φ(u1), 

Φ(u2),…, Φ( uk)). 
Using this expression, the formulation of Kernel 

Sparse Coding is written as follow: 

  

1,
min ( )
U v

x U v U v
Φ Φ

Φ − +  (4) 

 

Gao adopted the Gaussian kernel because of its 

satisfactory performance in many works (Chen et al., 

2010; Donoho, 2006). 

Proposed Approach 

A. General Context of Multiresolution Wavelet 

Decomposation 

As we all know, multiresolution formalism enables the 

decomposition of a signal over several scales. The signal is 

constructed using the most suitable approximation at each 

level. Also, the wavelet decomposition gives details and 

approximations threshold coefficients(Hassairi et al., 2015; 

2016; 2018). Multiresolution wavelet decomposition studies 

each signal in frequency and time domains. For lower 

frequency, it gives better frequency resolution and poorer 

time resolution. While for higher frequency, it offers 

better time resolution and poorer frequency resolution 

(Ejbali et al., 2017). Fortunately, this condition is suitable 

for real applications; as signals have low frequency for 

longer time and high frequency for very short intervals.  

A set of sub spaces L
2
(IR) noted (Vj)n∈Z have the 

following properties: 
 

{ }

, 1

2

: , ,

0 , ( )

j j
n j n n j j

n Z

j j
j Z j Z

Vj a a IR V V

V V L IR

+

∈

∈ ∈

  
= Φ ∈ ⊂ 
  

∩ = ∪ =

∑
 (5) 

 
These sub spaces are the formulation of a 

multiresolution analysis. 
Expression (5) confirms that (Vj)n∈Z is a space 

engendered by the family (Φj,n)n∈Z. Its description 
depends on the selected topology for the efficient space. 
We can describe it more firmly as the union of the 
restricted space of linear groupings of functions Φj,n. 
Thus the estimation of a signal ƒon the space Vj is: 
 

,

j
n j n

n

Aj a= Φ∑  (6) 

 

Coefficients j
na  are computed by performing a scalar 

product signal with the family features Φj,n: 
 

,

,

j
n j na f=< Φ >  (7) 

 
Instinctively, we can see that all the functions of Vj 

are richer or denser than those of Vj+1, which does not 
mean the inclusion relationship. The same expression (5) 
requires that the wavelets appear as a natural way to 
write the difference between two consecutive spaces Vj 
and Vj+1. We construct Wj+1 to complete this space: 
 

1 1 1j j j j jV V V V W
+ + +
⊂ ⇒ = ⊕  (8) 

 

The space Wj+1 is yielded by a functionψj,n: 
 

, :
j j

j n j n n

n Z

W d d IRψ

∈

  
= ∈ 
  
∑  (9) 
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ψj,n have values on the space Wj  that is opposite to Vj in 

Vj+1. We have the same translational properties, expansion 

on ψj,n as on Φj,n. The set of functions ψj,n is named space 

details. Thus, the detail of the signal ƒ in the space Wj  is 

computed as follows: 
 

,

j
j n j n

n

D d ψ=∑  (10) 

 

and the coefficients of details j
nd are calculated by the 

expression (11): 
  

,

,

j
n j nd f ψ=< >  (11) 

 
The signal of which is supposed to be exposed on a 

basis of Vj. Applying the wavelet transforms to the k∈IN  

scale expresses the signal from a personalized base to the 

direct sum: 
  

1 1...k k k jV W W W
− +

⊕ ⊕ ⊕ ⊕  (12) 

 
This algorithm results in replacing the representation 

in a component A by a representation on Vj+1⊕Wj+1. We 

sequentially pass form one space to another by different 

breakdowns on these direct sums: 
 

1 1

2 2 1

1 1
...

j j

j j j

k k k j

V W

V W W

V W W W

+ +

+ + +

− +

⊕

⊕ ⊕

⊕ ⊕ ⊕ ⊕

⋮
 (13) 

 
The sets of spaces Vj being fitted and following any 

function ƒ∈L
2
 (IR) of size n, can be decomposed into the 

basis of wavelets and scaling functions: 
 

2 2

, ,

1 1 1

j j
n n

j
j i

j k k i kk

k i k

f a d with j mψ

= = =

= Φ + ≤∑ ∑∑  (14) 

 

If we complete the analysis to the last level, ƒ will be 

written as follow: 
 

2 1
...

n n
f A D D D= + + + +  (15) 

 

B. Multiresolution Laplacian Sparse 

In his three works (Gao et al., 2010a; 2010a; 2013), Gao 
preserved the similarity by adding the Laplacian capacity to 
the sparse coding technique. Moreover, he added the 
hypergraph technique to the Laplacian sparse coding to 
ameliorate it.  In this case, the similarity among the 
instances is defined by a hypergraph. As shown in 
Equation 4, the similarity is captured by this technique 
among the instances within the same hyperedge 
simultaneously and also makes their sparse codes similar 
to each other (Ben Said et al., 2017). 

In spite of these contributions, the proposed technique is 

still incapable to cover all similarities between features.  It 

analyses images spatially and does not focus on the details 

of each object. We can therefore say that the analysis is 

carried out in a superficial way. Which is why, we 

propose the multiresolution Laplacian sparse coding to 

deepen these analyses. 
In the case of Multiresolution Laplacian sparse 

coding, the variations of the neighbors of each object of 
an image are taken into account when modeling an 
image (Jemel et al., 2016). This capacity of modeling is 
based on the strength of the divergence of Kullback-Lebleir 
and wavelet decomposition. 

C. Wavelet and Kullback-Leibler Divergence 

The analysis of an image I by a family of functions 

{ψj,k}j,k  is called wavelet transform. This transformation is 

based on dilation and translation of a mother waveletψ.  

The wavelet coefficient w(I) j,k = <ψj,k, I>  of the localization 

properties in space and frequency gives information about 

the content of the image I around a point k and in a 

frequency band near the scale j. The wavelet transform 

localizes the majority of the spatio-frequency information 

of the image into a few large amplitude coefficients when 

the image is reasonably smooth (Piro et al., 2008). 

As an initial estimation, these coefficients are 

uncorrelated which requires a treatment by thresholding and 

denosing the wavelet coefficients which is very effective in 

image compression. In fact, the wavelet coefficients scales 

are correlated at each scale. A discontinuity along a curve is 

converted into a point on this curve k0 by large coefficients 

at all scales
0

,

, ( ) limj k
x

j w I
→∞

∀ .  

Dependency models between all coefficients have been 

suggested to improve the spatial structures (Goria et al., 

2005; Huber, 1981). Notably, there is a dependency 

between a wavelet coefficient w(I)j,k and its closest 

neighbor’s ladder-(w(I)j−1,k). 
Banerjee et al. (2005) demonstrated that wavelet 

coefficient vectors statistics lead to Equation 6 which is 
used to distinguish the spatial structures of a very 
different kind: 
 

( ), , 1, , 1 , 1( ) ( ) , ( ) , ( ) , ( )
x y

j k j k j k j k j kw I w I w I w I w I
− ± ±

=  (16) 

 
To do this, it simply regulates a Gaussian mixture model 

for each occurrence to express the joint probability of these 
vectors. In this case, it is uncertain what types of structures 
are present in the submissions; it cannot therefore set a 
model. However, it is desirable that the distribution of these 
vectors will be illustrative of spatial structures present in the 
image. Accordingly, it is essential to describe a dimension 
taking into account the joint probability of neighborhood 
vectors wavelet  w(1)j,k. 

Given the variability of spatial structures that can be 

encountered in the residue, the choice of a parameterization 
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would be difficult to justify. We propose to introduce 

similarity metrics without valid parameterization of the 

distribution of neighborhoods: The metrics derived from the 

information theory such as residual entropy neighborhoods, 

mutual information or the Kullback-Leibler divergence 

between distribution neighborhoods of wavelet coefficients 

of the two images. 

Suppose a neighborhood w(1)j,k containing 

d coefficients. Distribution of all neighborhoods of the 

image I is denoted by pw(1) and checks ( ) :w I
p IR IR→  

and ( ) ( ) 1
d

w I

IR

p x dx =∫ . The differential entropy of Shannon 

pw(1)is defined by: 

 

( )( ) ( ) ( )( ) log ( )
d

w I w I w I

IR

H p p x p x dx= − ∫  (17) 

 

It measures the amount of information contained in 

this distribution. The Kullback-Leibler is a measure of 

similarity between the distributions pw(I1) and pw(I2): 

 

( ) ( )( ) 1

1 2 1

2

( )( )
|| ( )( ) log

( )( )d

w

KL w w w

wIR

p I x
D p I p I p I x dx

p I x
= ∫  (18) 

 

Based on Equations 17 and 18, the Kullback-Leibler 

distance is expressed as a difference of entropies: 
 

( ) ( )( ) ( )( ) ( )( )1 2 1 2 1
|| ( ),

KL w w x w w w
D p I p I H p I p I H p I= −  (19) 

 
Knowing that the cross-entropy is defined as follows 

(Piro et al., 2008): 
 

( ) ( )( ) ( ) ( )1 2 1 2
, ( ) log ( )

d

x w w w w

IR

H p I p I p I x p I x dx= ∫  (20) 

 
The use of these dimensions on the distributions of 

the intensity of pixels of an image gives excellent results 

in the field of segmentation and image realignment 

(Banerjee et al, 2005; Fukunaga, 1990; Kozachenko and 

Leonenko, 1987). A Kullback distance in wavelet space 

was also advanced for the indexing problem in   

(Collins et al., 2005; Leonenko et al., 2008). Particularly, in 

these two articles, the authors parameterize the allocation of 

the wavelet coefficients for each scale j by a generalized 

Gaussian and sum the Kullback distances obtained at each 

scale for the similarity between the two images. 

We suggest studying similar measures to establish the 

similarity between two images, but with two major 

differences. First, the wavelet coefficients at different scales 

are not independent. Now summing the Kullback distances 

at each scale matches the supposed independence. We 

therefore consider the associated entropy coefficients, in 

particular that of the previously illustrated neighborhoods. 

On the other hand, we do not parameterize distributions 

diversion. We suggest determining the similarity between 

images I1 and I2 as follows (Piro et al., 2008): 

 

( ) ( ) ( )( )1 2 1 2
, ||

j jj KL w w

j

S I I D p I p Iα=∑  (21) 

 

pwj(I1) is the non-parametric allocation of the 

coefficients of neighborhoods wavelet image I1 to scale j 

(Piro et al., 2008). 

aj > 0 is normalization weight according to attach 

redundancy wavelet system used in (Piro et al., 2008). 

Based on the definition of the sparse coding and 

expression (2), we establish the rule of multiresolution 

sparse coding: 

 

1

22

,..., 1

min
2

n

i i i i j ij
v v i i ijF

x Uv v v v S
β

λ− + + − < >∑ ∑ ∑  (22) 

 
Based on the same expression (2), matrix W 

implemented by Gao et al. (2013) is fulfilled by the 
coefficients of similarity of Kullback-Leibler S. Using 
expression (21) in completion, Boltz et al. (2006) suggested 
an estimator of the Kullback-Leibler as follows: 
 

( ) ( )( )

( )( )

, log log
1

log

KNN
R

KL kT

T

kT

N
D T R d R

N

d T

µ ρ

µ ρ

+

−

−

=

ɶ

ɶ

ɶ

ɶ

ɶ ɶ ɶ

ɶ

 (23) 

 
T and Rɶ ɶ are a set of data. 

T R
N and Nɶ ɶ  are the number of 

samples. ρk(s) is a radius equal to the distance to the k
th
 

nearest neighbor of s excluding s itself. This evaluation is 
based on KNN.  

This estimator of the Kullback-Leibler distance can 
be computed relatively quickly whatever the size of 
samples. It is more robust to the choice of the number of 
k nearest neighbors.  

Using the definition of Laplacian as in (Gao et al., 

2013) we obtain the same Equation 3. 

Experiments Results 

We evaluated our approach on different well known 

datasets. The results are evaluated based on global 

classification rates. The first database is the UIUC sport 

dataset (Li and Fei-Fei, 2007) the second is Corel 10 dataset 

(Lu and Horace, 2009) and the third is Scene 15. 

 
Table 1: Description of UIUC sport dataset 

Type Rowing Badminton Polo Bocce Snowboarding Croquet Sailing Climbing 

Number  250 200 182 137 190 236 190 194 
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A. UIUC Sport Dataset 

This dataset is composed of 8 classes (Li and Fei-Fei, 

2007) (Table 1): 

B. Corel 10  

Corel 10 dataset contains 1000 images. Those images 

are divided into 10 classes of 100 images (Lu and  Horace, 

2009). The ten classes are beach, skiing, tigers, buildings, 

owls, flowers, elephants, horses, food and mountains. 

C. Scene 15  

This dataset is composed of 4485 images categorized 

into 15 classes. Each class consists of 200 to 400 Images.  

It contains indoor scenes such as bedroom, kitchen, as 

well as outdoor scenes, such as Buildings and landscapes. 

Results  

To compare our approach to those contrasted to 

Gao’s et al. (2013), we selected the same basis and the 

same number of chosen images. The results are 

summarized in Table 2 and 3.  
The evaluation of classification rates obtained with 

different methods is depicted in Table 2. Our technique 
gives better results than the LScSPM (Gao et al., 2013) 
approach in the context of classification applied to UIUC 
sport dataset. 
 
Table 2: Classification rate based on UIUC sport dataset 

Method Classification rate 

HIK+one Class SVM (Wu and Rehg, 2009) 83.54±1.13 

ScSPM (1024) (Yang et al., 2009)  82.74±1.46 
ScSPM (2048) (Yang et al., 2009) 82.94±1.60 

LLC (1024) (Wang et al., 2010) 83.09±1.30 
LLC (2048) (Wang et al., 2010) 82.50±1.27 

LScSPM (1024) (Gao et al., 2013) 85.18±0.46 
LScSPM (2044) (Gao et al., 2013) 85.27±1.14 

Our approach 86.55 

 
Table 3: Classification rate based on corel 10 

Method Classification rate 

Spatial Mismatch Kernel  90.0 

(Lu and Horace, 2009) 

Spatial Markov Model (Lu and Ip, 2009) 77.9 

ScSPM (Yang et al., 2009) 86.6±1.01 

LLC (Wang et al., 2010) 87.93±1.04 

LScSPM (Gao et al., 2013) 88.76±0.76 

LScSPM+CM (Gao et al., 2013) 91.86±0.89 

Our approach 92.91 

 

Table 4: Classification rate based on scene 15 dataset 

Method Classification rate 

SPM (Jacob et al., 2009) 81.40±0.50 

ScSPM (Yang et al., 2009) 84.30±0.50 
HIK+one class SVM (Wu and Rehg, 2009) 84.00±0.46 

LLC (Wang et al., 2010) 81.50±0.87 
LSCSPM (Gao et al., 2013) 89.78±0.40 

Our approach 91.00 

Table 3 illustrates a comparison of our technique to six 

other techniques in the case of classification application. 

As can be seen from this table, the multiresolution 

Laplacian sparse coding outperforms all the other 

techniques in the case of image classification application.  

Table 4 illustrates a comparison of our technique to 

four other techniques in case of classification application. 

These results show that the multiresolution Laplacian 

sparse coding is the best technique in the case of image 

classification application. 

Conclusion 

In this study, we proposed a perfect approach of 

image classification based on Laplacian sparse coding 

and the divergence of Kullback Leibler and wavelet 

decomposition. The moderation of similarity is 

computed between images which combines the concepts 

of information theory and wavelet transform. The 

principle of this method is to sum the Kullback distances 

of each scale distribution called neighborhood vectors of 

wavelet coefficients. The neighborhood coefficients, 

containing not only spatial locations but also relative 

scales, get the spatial dependencies and inter-scale 

coefficients which can identify finer spatial structures. 

The Kullback distance on these vectors is predicted in a 

non-parametric method despite their higher dimension, 

thanks to entropy estimators of the nearest neighbors. 
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