

 © 2018 Jean Carlos Hrycyk, Inali Wisniewski Soares and Luciane Telinski Wiedermann Agner. This open access article is

distributed under a Creative Commons Attribution (CC-BY) 3.0 license.

Journal of Computer Science

Original Research Paper

Definition of Object Constraint Language Rules in Models to

Support the Development of Android Applications

Jean Carlos Hrycyk, Inali Wisniewski Soares and Luciane Telinski Wiedermann Agner

Department of Computer Science, Mid-West State University (UNICENTRO), Guarapuava, Paraná, Brazil

Article history

Received: 22-12-2017
Revised: 27-01-2018
Accepted: 13-02-2018

Corresponding Author:
Inali Wisniewski Soares
Department of Computer
Science, Mid-West State
University (UNICENTRO),
Guarapuava, Paraná, Brazil
Email: inali@unicentro.br

Abstract: The Model Driven Engineering (MDE) supports software

development, promoting quality and speed enhancement in providing new

products. The development of more accurate models is obtained through

the employment of the Object Constraint Language (OCL). Given the

increasing use of mobile devices and the need for new applications, the

MDE together with the OCL constraints promote the development of

quality mobile applications when the development time is reduced. This

research paper focuses on the definition and use of OCL constraints to

support the development of Android models in the MDE context.

Keywords: Model Driven Engineering, Object Constraint Language,

Mobile Software

Introduction

Today, new Software Engineering approaches to

support the development of mobile applications have

been searched. This is due to the features and

requirements of this type of software, such as: Potential

interaction with other applications, sensor handling,

existence of native and hybrid applications, applications

must support the families of hardware and software

platforms, security, user interfaces, complexity of

testing, power consumption (Wasserman, 2010).

Therefore, the Model Driven Engineering (MDE)

constitutes an appealing alternative (Kent, 2002). MDE

is used to describe software development approaches in

which abstract models of software systems are created

and systematically transformed to concrete

implementations (France and Rumpe, 2007).

MDE is a Software Engineering approach that

considers models as first class entities and every

software artifact as a model or model element (Bézivin,

2005). MDE concerns the exploitation of models as the

cornerstone of the software development process. It

allows both developers and stakeholders to use

abstractions closer to the domain than to computing

concepts. Thus, it reduces the complexity and improves

communication. As the main aim of MDE resides in

developing software, this paradigm uses software models

as its main component (Gascueña et al., 2012).
In MDE, models are created from a combination

between drawings and text, which can be defined in

either natural or formal language (Kleppe et al., 2003).

The Unified Modeling Language (UML) (UML, 2015) is

a semi-formal modeling language and the most

commonly employed in the MDE context, once it

provides several graphic representation options that

increase the abstraction level of the projects. In this way,

the complexity of projects is reduced and thus they

become simpler and more intuitive (Agner et al., 2013).

Although the UML provides a number of model

options to represent a system, such models are not

sufficiently complete to describe all details. The OCL is

not only used in meta-modeling to supply a precise

semantics for UML diagrams, but also in requirements

specification (Hähnle et al., 2002). As a result, the

Object Constraint Language (OCL) is required, once it

is textual, based on predicate logic and set theory

(OCL, 2014). OCL allows the more accurate

specification of all details of a model, to which

constraints, rules and operational contract definitions

are added (Warmer and Kleppe, 2003). This language

allows modelers to define constraints at different

abstraction levels and for different model types, as well

as verify constraints through a parser or a constraint

verification module (Ali et al., 2011).

The popularization of mobile devices has

significantly increased the need for easy navigation

systems, with attractive design and that provide a large

number of applications to the users. Currently, there are

three platforms that dominate the mobile market:

Android (2017), iOS (Apple, 2017) and Windows

Jean Carlos Hrycyk et al. / Journal of Computer Science 2018, 14 (2): 253.259

DOI: 10.3844/jcssp.2018.253.259

254

Mobile (Microsoft, 2014). A large number of

applications that run on those platforms are available in

application stores (Perchat et al., 2014). In this study, the

Android platform was chosen, once it is free and has

open source. The Android platform is a software stack

for mobile devices that consists of an operating system,

middleware and key applications. Android offers many

features covering the areas of application development,

Internet, media and connectivity (Android, 2017).

The increasing demand for Android mobile

applications requires the improvement of their

development approaches (Maji et al., 2010). Therefore,

the use of modeling can facilitate this process, in which

software details are abstracted (Freitas and Maia,

2016). Therefore, employing the MDE approach

together with the OCL is appealing, in order to create

consistent models in mobile systems and supporting the

production of these applications. In this research, the

development of OCL constraints is investigated so as to

support the development of Android applications in the

MDE approach context.

This paper is organized as follows. Section 2

introduces some related work. Section 3 describes the

materials and methods. Section 4 describes the obtained

results and discussions. Section 5 concludes this paper.

Related Work

Some studies using OCL rules in the MDE approach

have already been developed. A metamodel was defined,

extending the UML so as to integrate context attributes

in mobile applications that are sensitive to such context.

In this study, OCL is used to formally define the

semantics of new UML elements introduced and ensure

the consistency of such elements (Schefer-Wenzl and

Strembeck, 2013).
OCL constraints were built to be employed in MDE

models. In this study the authors developed models for
mobile applications by treating the Graphical User
Interface (GUI). The navigation through the generated
GUIs uses semantic links that combine the associations
and cardinalities among the conceptual domain entities
(Da Silva et al., 2014).

An automatic verification method of UML class

diagrams using OCL constraints was developed. Such

method verifies the conformity of the class diagrams in

relation to its several correctness properties, such as

weak and strong satisfaction and redundancy of

constraints (Cabot et al., 2014).

Materials and Methods

In this study, a case study was developed to illustrate

the MDE applied concepts and present the OCL rules

defined for an Android mobile application, called

AppCalagem. This application was chosen given its

simplicity, incorporated Android features and simplified

class diagram generation, with didactic purposes only.

The main goal of the application resides in performing

the soil liming calculation, supporting agronomy

engineers in the soil analysis. The AppCalagem

application was developed by using MDE models. Next,

the MDE development stages are presented.

Platform Independent Model (PIM)

The PIM represents the formal specification of the

structure and function of a system. In this model, the

technical implementation and platform details are

abstracted (Kent, 2002). A PIM is built at a high

abstraction level so as to ensure its independence and

allow its reuse in transformations for different

platforms. The higher the PIM model independence

level, the easier a future transformation to any PSM

type will be. Figure 1 shows the PIM model, a static

class diagram for the AppCalagem application.

Definition and Application of OCL Rules in the PIM

After the development of the PIM, some OCL rules

were defined for the syntactic verification and static

semantics verification of the AppCalagem PIM model.

The syntactic verification checks whether the

constructs of the structural models are correctly

defined. The static semantics verification defines the

structural constraints for the models and checks

whether they were correctly defined. The models were

validated in two stages, as described next.

The first stage consisted in checking if the models were

defined in accordance with the UML specification, i.e., if

the models are correctly described according to the UML

syntax. In order to perform the validation stage, the option

Validation in the tool Papyrus (2017) must be accessed. If

any inconsistency in the models is found, flags in the model

elements are defined and errors described in the tab

Problem. When correctly validating a model, a message is

shown, indicating the operation succeeded.

In the second stage, OCL constraints were defined for

the PIM model and it was checked if such constraints

were correctly defined. The indication of the constraints

defined in the model as successful means that the PIM

models are well formed and valid, i.e., they represent a

set of elements that can be mapped for a mobile

software, therefore for the Android mobile platform in

the context of this paper.

The OCL constraints defined for the models are of

the invariant type. Such constraints must be true

throughout the entire life cycle of the instance (OCL,

2014). The tool Papyrus defines OCL rule groups that

are stored in a file by the OCL editor. Then, this

group of rules is named and applied to a selected PIM.

It is thus possible to validate and ensure that the

constructed model is in conformance with the rules of

the considered domain.

Jean Carlos Hrycyk et al. / Journal of Computer Science 2018, 14 (2): 253.259

DOI: 10.3844/jcssp.2018.253.259

255

Fig. 1: AppCalagem PIM model

Table 1: OCL Constraints applied to the AppCalagem PIM classes

OCL Constraints Description in natural language

self.generalization->size()>=1 (context:Class) Verifies classes with generalization.

not self.name.oclIsUndefined() and self.name <> ' ' (context:Class) Checks if the class names are correctly configured.
not self.name.oclIsUndefined() and self.name <> ' ' (context:Property) Checks if the property names are correctly configured.

self.nome <> ' ' (context:Client) Checks if the property name in the class Client is different from null.

self.cliente -> forAll(c1.qtdeCalagem-> size > 9 implies c1.tipoCliente Verifies if the if the property qtdeLiming with a value
 == ‘Especial’ (context:Client) higher than 9 (nine) has the value ‘Especial’ as content.

context Cliente::tipoCliente Initializes the property qtdeLiming with the string ‘Especial’
init: ‘Special’ as content.

def:getClientForType(TypeDesc:String): Set (TypeCliente)=type-> Inserts the operation getClientForType in the class Client. This search

select(name=’Special’).availableTypeClient->asSet()(context:Client) operation returns the set of all Types of Client (property called TypeDesc)
 whose content is equal to Especial.

self.vlrCalcario <> 0 (context:Liming) Checks if the property vlrCalcario of the class Liming is different from 0.

Liming::vlrAluminio Initializes the property vlrAluminio of the class Liming with value
init: 0 (context:Liming) different from 0.

ClienteIU::editNomeEmail derive:owner.editNome.concat(‘ ‘). Specifies a derived element for the property editNomeEmail derived from

concat(owner.editEmail) (context:Liming) the properties editnome and editemail of the class ClienteIU.

Table 1 describes some examples of rules defined

for the AppCalagem case study. These constraints were

applied to different elements of a UML model. The

reserved word “context” in OCL defines for which

UML model element this constraint is valid. For

instance, the first two constraints described in Table 1

Jean Carlos Hrycyk et al. / Journal of Computer Science 2018, 14 (2): 253.259

DOI: 10.3844/jcssp.2018.253.259

256

are applied in the context of a Class. The objectives of

these rules reside in verifying if the model classes are

generalized and if the class names are correctly

configured, respectively.

Definition of the Platform Model

A Platform Model (PM) consists of a set of

characteristics and definitions about a certain platform as

well as the services it provides. A PM is used to

demonstrate all elements of a platform (MDA, 2003).

The PM-MDE defined in Soares et al. (2012) was

used in the development of the PM, but with adaptations

for the construction of mobile applications. Figure 2

shows the PM created to represent some features of the

Android platform used in the implementation of the

AppCalagem application. As illustrated in Fig. 2, these

are the classes that provide Android specific

functionalities. Classes SQLiteDataBase and

SQLiteOpenHelper provide methods and objects for

the platform connection and database management.

Classes Activity and AppCompatActivity provide the

elements responsible for the creation and interaction

with the XML files that form the application graphical

interface. The class View is responsible for the design

and manipulation of components in the interface. This

class contains the components of the Widget package

such as buttons (Button), text boxes (EditText), among

others, as illustrated in Fig. 2.

The class Context is responsible for presenting global

information about the application environment. It is

implemented in the android platform and its use

allows the access to specific resources of this

platform. The class Intent is responsible for storing

the application temporary data at a certain point in

time, as well as the activity logging. At last, the class

Bundle maps the Strings for key values that can be

persisted or restored from the disc.

Definition of the Platform Specific Model

A Platform Specific Model (PSM) provides a

software view by integrating specific details of the

implementation platform and can be created at

different levels of detail. In the PSM, specifications

already described in the PIM are combined and

specificities of the platform on which the system will

be executed are added. To do so, a selected PM is used

(MDA, 2003). Therefore, the PSM serves as key to the

MDE most important principles, that is, the code

automatic generation, file systems and identification

processes (Heck, 2005).

The Fig. 3 presents the PSM model of the

AppCalagem application. As it can be observed, the

detailing level of this model is higher is relation to the

PIM and as the application is implemented in the

Android platform, the PM illustrated in Fig. 2 was

selected to define this PSM.

Fig. 2: AppCalagem platform model

View

findViewByld (int)

Context

Intent

Bundle

SQLiteDataBase

SQLiteOpenHelper

getWriteableDataBase()

onCreate()

onUpdate()

Widget

Button EditText

ListView

TestView ArrayAdapter

Activity

onCreate()

onStart()

onStop()

AppCompatActivity

SetContentView()

Jean Carlos Hrycyk et al. / Journal of Computer Science 2018, 14 (2): 253.259

DOI: 10.3844/jcssp.2018.253.259

257

Fig. 3: AppCalagem PSM model

Results and Discussion

Initially, the AppCalagem application static PIM

model was defined. When developing the models, the

UML modeling language was employed in the MDE

approach. OCL rules were defined and applied to the

application PIM model.

The OCL can be used by software engineers to define

the constraints and semantics of the operations of a

model in a more accurate and non-ambiguous way. The

OCL represents a crucial aspect in the MDE approach,

considering that without a well defined language as the

OCL, consistent, coherent and platform independent

models could not be defined (Warmer and Kleppe,

2003). The verification ensures that the system was

correctly built. Validation allows the system to perform

the user requisites (Pressman, 2011). These two

activities were performed in two stages; first when

validating the PIM model and then defining and applying

the OCL rules to the PIM.

The PIM model definition was based on metamodels.

Therefore, this model can be validated through

validation tools of models and metamodels. The

metamodels used in this study were the UML and the

OCL, respectively. All models were defined by using the

modeling tool Papyrus.

The AppCalagem application was also built by using

the traditional development process for this type of

Jean Carlos Hrycyk et al. / Journal of Computer Science 2018, 14 (2): 253.259

DOI: 10.3844/jcssp.2018.253.259

258

application. As a result, a practical perception of the

involved technical aspects on the Android platform

internal structure could be attained

Conclusion

Through the use of the MDE approach in the

development of an Android application, it was possible

to see the importance of modeling for software

development in practice. At a first development of an

Android application, a lot of effort is required to define

the stages of the MDE approach. However, future

developments can profit from most of this effort.

The application traditional development was crucial

for the understanding of concepts and details referring to

aspects regarding mobile applications in the Android

platform. The technical expertise achieved helped the

construction of PM and PSM models of the MDE

approach for the case study in this study.

In this research, OCL constraints were studied,

defined and applied to the application structural PIM,

more specifically to the UML class diagram. OCL

constraints allow increasing the accurateness of the

information provided in these models. That results in

more robust and complete models in accordance with the

system specifications.

The application of OCL rules to Android models, as

performed in the case study present in this study, is

relevant in the MDE approach development process.

Given that one of the main activities developed within the

MDE process is the automatic or semiautomatic

generation of the source code from the application models,

the transformation of a model to generate the source code

requires all data in the models to be accurately defined in

order to prevent errors in the code or misunderstandings

resulting from ambiguous information.

As future works, a transformation of models for

Android applications will be built with the support of the

OCL constraints defined in this study. Such constraints

can also be employed in a model transformation

language for the development of Android applications in

the MDE approach context.

Funding Information

The authors have no support or funding to report.

Author’s Contributions

Jean Carlos Hrycyk: Investigation, writing and

edition.

Inali Wisniewski Soares: Writing, edition and

supervision.

Luciane Telinski Wiedermann Agner: Writing,

edition and revision.

Ethics

This article is original and contains unpublished

material. The corresponding author confirms that all of

the other authors have read and approved the manuscript

and no ethical issues involved.

References

Agner, L.T.W., I.W. Soares, P.C. Stadzisz and J.M.

Simão, 2013. A Brazilian survey on UML and

model-driven practices for embedded software

development. J. Syst. Software, 86: 997-1005.

 DOI: 10.1016/j.jss.2012.11.023

Ali, S., M.Z. Iqbal, A. Arcuri and L. Briand, 2011. A

search-based OCL constraint solver for model-based

test data generation. Proceedings of the 11th

International Conference on Quality Software,

Jul. 13-14, IEEE Xplore Press, Madrid, Spain,

pp: 41-50. DOI: 10.1109/QSIC.2011.17

Android, 2017. http://www.android.com

Apple, 2017. http://www.apple.com

Bézivin, J., 2005. On the unification power of

models. Software Syst. Model., 4: 171-188.

 DOI: 10.1007/s10270-005-0079-0

Cabot, J., R, Clarisót and D. Riera 2014. On the

verification of UML/OCL class diagrams using

constraint programming. J. Syst. Software, 93: 1-23.

DOI: 10.1016/j.jss.2014.03.023

Da Silva, L.P., E. Abreu and F. Brito, 2014. Model-

driven GUI generation and navigation for android

BIS apps. Proceedings of the 2nd International

Conference on Model-Driven Engineering and

Software Development, IEEE Xplore Press, Lisbon,

Portugal, pp: 400-407.

 DOI: 10.5220/0004715504000407

France, R. and B. Rumpe, 2007. Model-driven

development of complex software: A research

roadmap. Proceedings of the Future of Software

Engineering, May 23-25, IEEE Xplore Press,

Minneapolis, MN, USA, pp: 37-54.

 DOI: 10.1109/FOSE.2007.14

Freitas, F. and P.H.M. Maia, 2016. JustModeling: An

MDE approach to develop android business

applications. Proceedings of the 6th Brazilian

Symposium on Computing Systems Engineering,

Nov. 1-4, IEEE Xplore Press, Joao Pessoa, Brazil,
pp: 48-55. DOI: 10.1109/SBESC.2016.016

Gascueña, J.M., E. Navarro and A. Fernández-Caballero,

2012. Model-driven engineering techniques for the

development of multi-agent systems. Eng. Applic.

Artificial Intell., 25: 159-173.

 DOI: 10.1016/j.engappai.2011.08.008

Jean Carlos Hrycyk et al. / Journal of Computer Science 2018, 14 (2): 253.259

DOI: 10.3844/jcssp.2018.253.259

259

Hähnle, R., K. Johannisson and A. Ranta, 2002. An

Authoring Tool for Informal and Formal

Requirements Specifications. Proceedings of the 5th

International Conference on Fundamental

Approaches to Software Engineering, Apr. 8-12,

Springer, Grenoble, France, pp: 233-248.

 DOI: 10.1007/3-540-45923-5_16

Heck, S., 2005. Model transformation for verification:

Building the basis for a generic tool. Bachelor

Thesis, Centre Universitaire D’Informatique,

Universite de Geneve.

Kent, S., 2002. Model driven engineering. Proceedings

of the 3rd International Conference on International
Conference on Integrated Formal Methods, (IFM’

02), Springer, Berlin, Heidelberg, pp: 286-298.

 DOI: 10.1007/3-540-47884-1_16

Kleppe, A., J. Warmer and W. Bast, 2003. MDA

Explained: The Model Driven Architecture: Practice

and Promise. 1st Edn., Addison Wesley,

 ISBN-10: 032119442X, pp: 170.

Maji, A.K., K. Hao, S. Sultana and S. Bagchi, 2010.

Characterizing failures in mobile OSes: A case

study with android and Symbian. Proceedings of the

IEEE 21st International Symposium on Software

Reliability Engineering, Nov. 1-4, IEEE Xplore

Press, San Jose, CA, USA, pp: 249-258.

 DOI: 10.1109/ISSRE.2010.45

MDA, 2003. OMG. MDA Guide Version 1.0.1.

http://www.omg.org/cgi-bin/doc?omg/03-06-01.

Microsoft, 2014. http://www.microsoft.com

OCL, 2014. OMG. Object Constraint Language

Specification (OCL).

http://www.omg.org/spec/OCL/2.4>

Papyrus, 2017. http://www.eclipse.org/papyrus

Pressman, R., 2011. Engenharia de Software: Uma

Abordagem Profissional. 8th Edn., McGraw Hill.

Perchat, J., M. Desertot and S. Lecomte, 2014. Common

framework: A hybrid approach to integrate cross-

platform components in mobile application. J.

Comput. Sci., 10: 2165-2181.

 DOI: 10.3844/jcssp.2014.2165.2181

Schefer-Wenzl, S. and M. Strembeck, 2013.

Modelling context-aware RBAC models for

mobile business processes. Int. J. Wireless Mobile

Comput., 6: 448-462.

 DOI: 10.1504/IJWMC.2013.057387

Soares, I.W., L.T.W. Agner, P.C. Stadzisz and J.M.

Simão, 2012. A method for the development of

platform models in the model driven architecture

context. J. Comput. Sci., 8: 1932-1939.

 DOI: 10.3844/jcssp.2012.1932.1939

UML, 2015. OMG. Unified Modeling Language (UML)

Superstructure specification, version 2.5

(formal/2015-15-03). Object Management Group.

Warmer, J.B. and A.G. Kleppe, 2003. The Object

Constraint Language: Getting Your Models Ready

for MDA. 1st Edn., Addison-Wesley Professional,

Boston, ISBN-10: 0321179366, pp: 206.

Wasserman, A.I., 2010. Software engineering issues for

mobile application development. Proceedings of the

FSE/SDP Workshop on Future of Software

Engineering Research, Nov. 07-08, ACM, Santa Fe,

New Mexico, USA, pp: 397-400.

 DOI: 10.1145/1882362.1882443

