Jour nal of Computer Science 10 (4): 671-679, 2014

ISSN: 1549-3636

© 2014 Science Publications

doi:10.3844/jcssp.2014.671.679 Published Onliné4) @014 (http://www.thescipub.com/jcs.toc)

SERVER FAILURES ENABLED JAVASPACES SERVICE

"Mutasem K. Alsmadi, 2Usama A. Badawi and Hatem M. Moharram

!Department of MIS, Collage of Applied Studies andrBwnity Service, University of Dammar8audi Arabia
2Department of Mathematics, Computational Sciencésidin, Faculty of Science, Cairo University, Egypt

Received 2013-10-28; Revised 2013-11-23; Accepte@-2@2121
ABSTRACT

JavaSpaces service is a Distributed Shared Menf8) implementation. It has been introduced by Sun
Microsystems as a service of the Jini system. @tlgreJavaSpaces support client side fault tolezaiic
enables both transaction and mobile coordinatiochaweisms for such purpose. The application failures
could be detected and recovered. However, serderfailures may occur during the application rumtim
Therefore, it is important to supply JavaSpaces witmechanism that handles such type of failures
dynamically. On the other hand, An example of desysthat supports both server and client faultrésliee
over DSM is TRIPS system. TRIPS protocols are blétéo be integrated in JavaSpaces to supply h wit
server fault tolerance capabilities. In this studyserver Failures Enabled Javaspaces Service YR3JS
introduced. FTJS is based on the dynamic failuredi®n and recovery mechanisms implemented by
TRIPS. However, FTJS is able to handle both cleemd server side failures. The analysis, design and
implementation issues of FTJS are introduced.

Keywords:. Distributed Application, Dynamic Recovery, FailudavaSpaces

1. INTRODUCTION and mobile coordination mechanisms. Therefores, d@hile
to deal with the client side failures. It is impot to
Machine crashes and network partintions are majorsupport JavaSpaces service with server failureslingn
problems while running a distributed applicationisl ~ mechanisms as well (Kamalam and Bhaskaran, 2012).
important to deal with failures that are causedsbgh On the other hand, TRIPS is a system that enables
events within runtime. Otherwise, it will be a must dynamic detection and recovery of failures in btith
restart the application from the beginning. A pblesi client and server sides using the dynamic repticativer
solution to this problem is to introduce a softwéager DSM (Badawi, 2009).
that is able to detect failures and recover fromnth
dynamically. Fault tolerance mechanisms, such asl-1- Problem Statement

transactions and mobile coordination, are appleabl The goal of this research work is to construct FTJS
geal W'th Cll'.ent. failures. _Otgler mehchanlsgnsf, .SU‘Sh & which is a server failure enabled JavaSpaces servic
ynamic replication, are suitable to the serveufas. This will be accomplished by integrating the dynami

Sun Microsystems has introduced the Jini systeis. It failure detection and recovery mechanisms introdune
a distributed system that enables groups of usefsifze TRIPS in the JavaSpaces service. This will enable

resources required by those users to be federatsal. > _)
main goal of Jini is to facilitate different resoes to be ~ JavaSpaces to deal with both client and serverrésl
available for cleints_ over the network._ .Moreqver, 1.2. Related Studies

JavaSpaces is a service introduced by the Jirersydt is

a Distributed Shared Memory (DSM) used for object TRIPS enables DSM based applications to tolerate
storage and communication (SM, 2007; Kanijilal, 2013 with both server and client failures. It is basedthe
JavaSpaces service has been supplied with tramsacti Linda Model and constructs a distributed environien

Corresponding Author: Mutasem K. AlsmadiDepartment of MIS, Collage of Applied Studies angh@nunity Service,
University of Dammam, Saudi Arabia

///4 Science Publications 671 Jes

Mutasem K. Alsmadi et al. / Journal of Computer 8c#&10 (4): 671-679, 2014

for parallel processing. The Tuple space concept ha

H rf‘-.1_.-"" = "
been introduced by the Linda Model. Tuple space - Eocal = LARE LAyes

could be defined as an associative Shared Memory T:’ﬂ;i’;‘_‘fi -
(DSM) accessible to all application processes. Its 5[1.1_1.10‘::1;,“-""” "*._H.id_uutﬂ
contents are entries, which are retrieved using a

' TRIPS Middle Lay
matching mechanism by their contents rather than by | [i o J:'“r]
physical addresses (Badawi, 2009; Alsmatlial., z h |
2013). A DMS access set of operations has been [TRIPSMessageHandltngLaynr]

b

introduced by Tuple Space. [
1.3. TRIPS System Structure '

I Group Communication Laver]

TRIPS is structured in three main layers as shawn i i T
Fig. 1, namely, the transis layer, LiPS Layer and Trips
message handling layer. The Transis event layegisup [Network Layer]
communication layer inherited from the Transis grou | 1 ' TransisEventLaye
communication system. It is focused towards high I |
throughput local communication. It supports group v

communication service. Transaction based delivery
semantics are guaranteed. Message ordering is seppo Fig. 1. TRIPS system internal layers
and network failures are transparentfrom the user.)) .)
membership changes occure, the system reports Trem. TRIPS message handling layer is responsible fdindea
idea behind its mechanism is to create a singltonmfor ~ With different message types. The fault tolerantimagism
each newly arriving process. The new group receives that handles different message types is integriatettis
‘mailbox’ to which messages arrive (Dolev and Malki layer. The main component in this layer is the ttSta
1996; Liefke, 1998). The Transis Event Layer is Change Protocol’, that handles both regular disteith
composed of two sub-layers, namely, the networkrlay shared memory messages and configuration change one
and the group communication layer. The former lager This protocol is activated as soon as a messageés/ed
responsible for handling socket connection and iphlys either from a member to access the DSM, or from the
data routing. The group communication Layer feaitis membership layer indicating view change.
the membership mechanisms that enable group member, .
to identify the group communication and configuwati .Is..4.TheJavaSpacesSerVIce
mechanisms that enable the member to communicate an JavaSpaces has an associative set of operations to
broadcast messages to the other members (Badd®).20 access the contents of the space. This set of tigresa
The second TRIPS layer is the LiPS-layer. Thistlaye has inherited its behavior from the Linda tuple cgpa
controls and manage the distributed applicatiohss & model. For example, to insert an entry to the Jpaass
accomplished through control processes called dipsd he write() operation is used. To extract an efrioythe
Lipsds are responsible for managing the DSM andJavaSpaceS the take() operation is used. The Waite(
application message log. They start and control theiake() operations are equivalent to the Linda djma
appl!cat!on processes. Moreover, the_y replicate theout() and in() respectively (Busi al., 2010).
application processes data to other equivalentesses. JavaSpaces service supports transactions and mobile
Server level failures are handled using replicatibhnis co-ordination to enable client side failures hamglli
layer is composed of two sub-layers, namely, Trips Transaction methodology enables all operations do b
middle layer and local tuple space layer. The farme performed under it. For example, if a take() oderats
includes the interface operations enabling theie@idn done under a transaction, the entry is added tet @fs
to interact with the DSM. Examples are Mid_in(), to entries that are taken by the transaction. If taesaction
extract entries, Mid_out(), to write entries anddMid(), is aborted, the taken entries are returned to paees
to read entries. LIPS system (Library of Parallel The taken entries are removed from the space #feer
Systems) implementation of Linda premitives is used transaction is committed (SM, 2007). On the ottard)
constructing these operations. The local tuple-eseger mobile co-ordination is more associated with theMDS
includes the DSM structures. This layer is usedh@s concepts. In this method the coordination primiive
system repository and is inherited from the LiPBldau (JavaSpaces operations) are moved to the server sid
space structure (Setz, 1997). which contains the space that the client wishesctzess.

///// Science Publications 672 Jcs

Mutasem K. Alsmadi et al. / Journal of Computer 8c#&10 (4): 671-679, 2014

JavaSpaces operations that are executed underemobil TRIPS uses the “State Change Protocol” to ens@re th
co-ordination must be encapsulated into a coordinat availability of the distributed application process This
method. This method is executed by the JavaSpaceprotocol is responsible for handling the possikiates
server (Rowstron, 1999; Lazr, 2001; Tamhal., 2012). changes, such as new member join or existing member
JavaSpaces has been introduced as one of the Jimixit, that could occure to the distributed appiarat The
system powerful services. Jini system is introdung®un protocol guarantees the survival of data in the DiaM
Microsystems. JavaSpaces enables the Java envitbtome spite of failures. Moreover, it makes sure that réngular
deal with a network of virtual machines. It helps i operations are applied to all members in the candigpn.
constructing variant sized distributed applicatiofihe In case of starting a new member, the global qubate
central element in Jini is the service, which israerface of contains all application members is activated aedISM
hardware device, application, database, or anythisigcan ~ data structures are initialized. Then, control ésged to
be connected to the network. To enable a devide Jirti the configuration change handler that controls the
technology, it must have a processing power andanem membership changes (Badawi, 2009).
Jini enables devices without memory or processmgep .
to be connected to the vertual system and cordrdle ~ 2-2- 1heJini System Structure

other hardware and/or software, proxies. Such esotdsk To accomplish the service communication, Jini uses
is to present the device to the system with praggwer Remote Method Invocation (RMI) as shown Fig. 3.
and memory (Heiningeet al., 2006a; 2006b). RMI enables full objects (code and date) to be gmss

~ JavaSpaces is a DSM implementation. It stores datgyround the network. This gives Jini the simplicd§
items, called entries, to be accessed by clierits.éhtry moving encapsulated objects around network. Froen th
objects are expressed in classes that implement th@gure, one can notice that Jini layers are locatedop
interface ~Jini.core.entry.Entry. Entry _behawor and of the Java platform. This enables the processels an
characteristics are inherited from the Linda tugice services, that run under Jini control to inherie th
model. Different entries are said to be of the sype if powerful behavior of java processes. Jini network
they are members in the same class. The entry @e® h federation consist of two main layers. The Lookapek
methods that define its behavior (SM, 2007; Batlagid includes a protocol that enables clients to seéoclthe
Parashar, 2010; Marghny and Refaat, 2012). In thisjinj services they need to utilize. The DiscovesiylJ
section, the Jini system structure is viewed a$ agethe layer includes discovery and join protocols thaatse
current JavaSpaces fault tolerance protocols. the clients to join the services they need toztili

2.MATERIALSAND METHODS 3. TRIPS JAVASPACES SERVICE (FTJS)

The methodology in this research work is based on Both of the JavaSpaces fault tolerance methods are
the idea of integrating the TRIPS systems, thablesa dealing with client side failures. The proposedviser
server failures in the JavaSpaces service thatlemab (FTJs) deals with both server and client side fasu
applications failures within runtime. In this sectj the For this purpose, a warm backup replication protiso
TRIPS fault tolerance methodology and the Jini esyst presented. In this section, the proposed protocol,
structure are introduced. SpacesManager, is introduced as well as the asalysi

2.1. Fault Tolerancein TRIPS and design of FTJS.

Dynamic replication is the mechanism used by TRIPS3.1. The SpacesManager Layer
to enforce fault-tolerance. The core of the TRIPEsage The idea behind ETJS is to construct the

handling layer is the scheduler that is responsfble SpacesManager layer that increases the systenalailiil

receiving and recognizing the type of the statengha N v, th ot 10 Javas 7
message. Then it is responsible for directing thesage to ormaily, there exist many running Javaspacescesyier

the suitable handling routine (Badawi, 2009). Te¢teeguler appll_catlon. Some of thes_e spaces are active mfe
structure and vehavior is whown Fig. 2. In case of Passive. One of the active spaces is the origipates

configuration change during handliing a regular DSM Which is called the replica and the others are tickin
message, an interrupt request is sent to the DSidlera copies of the original space. The SpacesManager lay
The DSM operation is intruppted and the controéfarned ~ responsible for spreading the effect of the clagrations
to the scheduler without performing the DSM operati in all active spaces. If the client writes an ernitrythe

The configuration changes are handled first. Thec€lad system, the SpacesManager replicates this enaly aitive

operation is inserted in a local queue to be aeddaser. spaces and ensures that all spaces are identical.

///// Science Publications 673 Jcs

Mutasem K. Alsmadi et al. / Journal of Computer 8c#&10 (4): 671-679, 2014

Configuration change
handling finished

A message i
received Configuration

change handler

Configuration l
b A change message

\

(The schediler)—..\/ \\,
Lr‘“’ Y Regular DSN

2 : l L :l DSM access handler
Infm'upt vV -l . -.o...c.'.....0...-.-.0-.-.0.-.-::‘t‘c‘-‘-:;::}‘t‘.‘.i

requestdueto
configuration
message while
accessing DAM

._\\
N

DSM access handling finished
Returncontrol
without changes

Fig. 2. TRIPS System Main Function (The Scheduler)

} Tini services Spaces manager failure recovery algorithm
initialization :

[Jini lookup service] Tini network check the excisting javaspaces:
— — NPT choose the active spaces and passive spaces;
[Jini discovery/join layer federation N . . e
one of the active spaces will be the original and the
[Remote Method Invocation (RMI)] Jave VM others are replicas;
{ Java platform] abstraction repeat VI
Check the existing javaspace;
[Operating system] Ifinachine failure occurtien

Ifone of the active spaces is faileclthen

Fig. 3. The jini system structure Ifthe failed space is the originalthen

o _ _ Block this machine;

Moreover, it is responsible for managing the spaces | one of the active spaces is choosen to be the original

failures. It performs the client operations in thetive spaces;

spaces. If any active space is failed, the clieilitnever one of the passive spaces is choosen to be the acive;

notice system changes. The SpacesManager failurt| clearall enteriesin the new active space;

recovery algorithm is shown Fig. 4. copy all enteries from any of still alive active space to
The SpacesManager layer handles different failure the new active space:

types depending on _the type Of failed machine.h# t ifif the failed space is not the original (veplica)then
failled machine contains an active space, the regpon | piock this machine:

depends on whether the failed active space ise{tiea or one of the passive spaces is choosen to be the acive;

not. If the failed machine is the replica, one iif alive clear all enteries in the new active space;

active spaces Is chosen to b_e the original spzn:eu_mwe copy all enteries from any of still alive active spaceto the
an active space from perishing, one of the pasgeees new active space :

is initiated and inserted in the list of active miaes. The ififthe failed space is passivethen

new active space receives a copy of all entrieanyf of block this machine:

the active spaces other than the replica is fatee, of ifone of the failed machine comes back to lifethen

passive spaces is chosen to be the new active apdade
receives a copy of all entries. In case of machailare,

the SpacesManager blocks this machine. In othedayor
the system will delete this machine from the actipaces
list. If the failed/disjoined machine comes backthe
system, the SpacesManager deletes all entriessin it
JavaSpaces and rejoins it as a passive machine. Fig. 4. SpacesManager recovery algorithm

delete all enteries in its space;
jointhe machine as passive machine;
unblock this machine;

untilno condition;

% Science Publications 674 iCcSs

Mutasem K. Alsmadi et al. / Journal of Computer 8c#&10 (4): 671-679, 2014

SetSpaceThread
spaceObject vactor
SpacesManagerTmpl .
<<interface™>
w0 SpaceManager
checkSpace() g
gl | wiite()
flushS Eﬁ:e(JS} | takel) =2 take0
p : read() \ read()
\
call allocate \
\ i~ _.
<<Remote>>
spaceshlanagaraxy JSServiceLocator \
5 \
l ¥

write() o O SE R

take() CarciieLeatoT <<UniCastRemoteObject=>

read()

getService()
allocate
SpaceManagerClient
Fig. 5. FTJS Main Components (Class diagram)
3.2. FTJS Service Design failures. It uses the checkSpaces() method to cheek

existence of the system machines. This method seses

FTJS service consists of three main pafigure 5 . . .
. ') turn, the JSS Locator cl bjects to kchb
shows the FTJS class diagram. The first part is theIn urm, the ervicerocator class objects fo ©

. . existence of the JavaSpaces service. It uses the
SpacesManager. It is based on defining a DSM cbntro :
S . convertSpace() method to convert the passive spaces
service in the Java RMI. The SpacesManager interfac pace() P Ha

contains the basic DSM operations (write(), takae ()l active spaces and the copySpace() method to cdpy al

o entries from one of still alive active spaces te tlew
read()). This interface extends the Java APl Remote P °

interface. SpacesManagerimp is a class that impi&sne active space. The SetSpgcesThread uses the ﬂUEJ. (bpa
. . ethod to delete all entries from the rejoining hiae.
the SpacesManager interface and extends the java AP_.
interface Unicast-Remote-Object. This class cdlfis t Figure 6 shows the FTJS structure.
ject. The third component of FTJS service is the
GetSpacesThread thread in its constructor. TheSp

hread i hread th . i acesManagerClient, which is a client program ihat
GetSpacesThread is a thread that contains antéfini yseq (o test the service using the resizable entry

loop to check the still alive JavaSpaces. The \yentry. The client program fetches the dynamidiosp
GetSpacesThread class contains a public variattgpef geryice using the ServiceLocator class. The clgente
vector called SpacesObject. It contains objectsalbf | ;ses this service using its proxy class called
JavaSpaces services in the system and other meetadagpacesManagerinfProx. This proxy allows the user of
like the type of space (active or passive), block.. add some code in the service operatidiigure 6 gives

The second component of FTJS is the an overview to the flow control in the dynamic iegl
SetSpacesThread that is responsible for managieg thprotocol used in the FTJS service.

% Science Publications 675 Jcs

Mutasem K. Alsmadi et al. / Journal of Computer 8c#&10 (4): 671-679, 2014

q_

------- s

Clint side /
SpaceManager
write() read () take ()
/ wtSpacesThread \ JSService locater
Tep U
! | I S I >
Q ~ = ’
= 2| e 2. = GetService()
= Z o] @ &
2 & % % ¥
g2z |]%E -
& H o]] i
Hlle]]l= - |
1
1
X J :
I
1

Fig. 6. FTJS internal structure

4. RESULTS

In this section, practical tests are introducedvaluate
the FTJS service. First, the test environment aodnique
are introduced. Then the tests and their resdtprasented.

4.1. Test Environment and Technique

The measurements are performed by using six PC'L

each with a CPU of type Intel Pentium 2.4 G.H at@ 5

RAM. The inter-communication among the machines is
done by 100 Mbps Ethernet. The software environmen

includes Windows XP professional as an operatistesy,
Java JDK 1.4.2 04, Jini(TM) Technology Starter \dt0.2
and a free visual platform for Jini 2.0 that islexlinca
X(TM).

A fault-tolerance test that is more associatedht® t

dynamic replica is introduced. This test is based o

testing the system fault-tolerance and the recotierg.

Other types of tests have performed to measure th

performance of the proposed service by testindXt8m
access operations for insertion and retrieval.

4.2. TheFault Tolerance Test

In this section, it is proved that the proposediser
tolerates with failures. The following scenario Heeen

% Science Publications

676

applied for this purpose. A counter is intiated doye
client. It is an entry that contains an integere Tdtient
procedure writes the entry, takes that entry, imees the
counter by 1 and then rewrites the entry with tleevn
value. The above steps are repeated in a large erunfib
iterations. One of the active spaces is enforceéhilo
during the process. If the client process survinespite
f the failure and the counter increases correttign it
Is proved that the service is fault tolerant.

Figure 7 shows a skeleton code for the test steps. In this

fest, the loop is infinite. The written entry ikdéa to be

increased and is rewritten again with the new value
Figure 8 shows the output of the pervious test.

Part (A) shows output messages of the entry counter

value while writing and taking entry. The secondtpa
of the list (B) shows the setSpacesThread output
messages. The output messages indicate the il al
active or passive spaces. While writing the enbrgtt
contains counter value equals 47, the first active
SavaSpaces is enforced to fail. The FTJS service

chooses passive spacesl to be the new active spaces

Then the dynamic replica service copies entriemfro
one of the still alive space (active space 2) te th

passive spacesl. Finally, FTJS service converts the
passive spacesl to active spacesl and blocks the

object of passive spacesl (not exist).

JCS

% Science Publications

Recovery lime

Mutasem K. Alsmadi et al. / Journal of Computer 8c#&10 (4): 671-679, 2014

While (true){

Space.write(EntryCounter):

EntryCounter = Take(tmp):
EntryCounter.value=EntryCounter. Value +1;
Write(EntryCounter);

1
i

Fig. 7. Fault tolerance skeleton code test

A
Writing EntryCountry.value =
Taking EntryCountry.value

Writing EntrvCountry.value =
Taking EntryCountry.value

Writing EntryCountry.value
Taking EntryCountry.value

Writing EntryCountry.value =
Taking EntryCountry.value
Writing EntrvCountry.value =
Taking EntrvCountry.value

Writing EntryCountry.value =

Taking EntryCountry.value = -

Writing EntryCountry.value =
Taking EntryCountry.value =

Writing EntryCountry.value =
Taking EntrvCountry.valu e
Writing EntryCountry.value =
Taking EntryCountry.value

i

Writing EntryCountry.value =
Taking EntryCountry.value

h

e
| I e I '

Writing EntryCountry.value
Taking EntryCountry.value

42
42
43
43
44
44
45
45
46
46
48
48

49

L

[

Lh
[B]

B

active space 1 exists
active space 2 exists
active space 3 exists
passive space | exists
passive space 2 exists
passive space 3 exists
active space 1 not-exists
active space 2 exists
active space 3 exists
passive space 1 exists
passive space 2 exists
passive space 3 exists

converting passive space 1 to active
space 1

active space 1 exists

active space 2 exists

active space 3 exists

passive space 1 not-exists

passive space 2 exists

passive space 3 exists

active space 1 exists

active space 2 exists

Fig. 8. Fault tolerance test results

-#- Repair time for entry size 2k =~ Repair time for entry size 1k

30000
25000
20000
15000
10000

5000

1 100

200 300 400 500

Number of entries in JavaSpaces

Fig. 9. Recovery time in FTJS

677

copving active space 2 to passive space 1

600

JCS

Mutasem K. Alsmadi et al. / Journal of Computer 8c#&10 (4): 671-679, 2014

bl Two active space ~#- Thtee active space Four active space

500

Time taken in millinseconds
(S}
[
<

0
0 2000 4000 6000 8000 10000 12000 14000 16000
Entry array size

Fig. 10. System performance comparison for 2, 3 and 4asipaces (Write operation)

mgwo active space ~@- Thtee active space Four active space

o)
5]
(=]
o

1000
800
600
400

200 Beipt

0
0 2000 4000 6000 8000 10000 12000 14000 16000
Entry array size

Time taken in millinseconds

Fig. 11. System Performance Comparison for 2, 3 and 4 aBpaees (Write-take operatjon

4.3. Measuring the Recovery Time figure shows that the performance of the write()
) operation decreases by increasing the number ofeact
FTJS recovery time has been measured. The timgpaces in the system. This is because the write()
taken to recover a failure in one of the activecssa gperation is applied in all active spaces. Theedéffice
equals the time required to copy the system enfi®8 5mong the three curves (two, three and four active
one of the still alive active spaces to one of phssive spaces) is minimal at the small entry array size.
spaces plus th_e time required to convert the passiv ' Figure 11 shows the write()-take() operation
space to an active space. The most effective paeamme orformance comparison for two, three and fourvect
thg recovery time is the number c_>f entries in tlm/D_In spaces. From this figure, the four-active-spacesecis
this test, different number of entries have beexdusith the noisiest curve. This noise is due to the faeit t
entry sizes 1 and 2 kbytesigure 9 illustrates the jncreasing number of machines (active spaces) leads
recovery time in FTJS. From the figure, it is clébat oyira communication time. Moreover, the difference
increasing the number of entries in the space léads petween two and three-active-space curves is sniatie

increasing the recovery time. This is due to theeti e gifference between three and four active spanees.
taken to copy the entries to the new active space.
5. CONCLUSION

4.4, Performance Tests

This section evaluates the effect of the number of In this research work, the FTJS service is intreduc
active FTJS spaces on performance. This is done byt is a server failures enabled JavaSpaces seribegh
testing the DSM access operations. availability layer called SpacesManager layer hasnb

Figure 10 shows the write() operation performance added to the JavaSpaces service. If a failure ecte
in the cases of two, three and four active spaths. application data survives without any interruptions

///// Science Publications 678 cs

Mutasem K. Alsmadi et al. / Journal of Computer 8c#&10 (4): 671-679, 2014

Moreover, the detection and
transparent to the user service.
Many types of practical tests have been applied to
show the proposed service performance. A fault
tolerance test has been performed as well as a
recovery time test, performance tests have been
appled on different read-write premitives. All ttests
have proved that the service performance
reasonable. It is also shown that the proposediceerv

is practically applicable. The proposed JavaSpaces grid resources. Am. J. Applied Sci., 9: 1294-1299.
service has been applied To Local Area Network DOI: 10.3844/ajassp.2012.1294.1299

(LAN). It is possible to apply it in the Wide Area Kanjilal, J., 2013. Understanding the JINI Netwaoiki
Network (WAN) in later versions. On the other hand, Technology. ASPAlliance.

the current version of the service cannot deal whth Lazr, I., 2001. Designing a fault-tolerant JINI coube
case of merging spaces with entries inside. The non server. Pennsylvania State University.

original space must be empty in case of merge. Aliefke, T., 1998. Extension of the trips prototype.
possible future work is to enhance the protocalé¢al Technical Report: Darmstadt University,
with non-empty spaces merge. This requires a lot of Department of Theoretical Computer Science.
work to deal with the famous merging conflicts. Marghny, M.H. and H.E. Refaat, 2012. A new parallel
association rule mining algorithm on distributed
6. REFERENCES

recovery process isHeiningen, V.W., T. Brecht and S. MacDonald, 2006b.
Exploiting dynamic proxies in middleware for
distributed, parallel and mobile java applications.
Proceedings of the 20th International Parallel and
Distributed Processing Symposium, Apr. 25-29,
IEEE Xplore Press, Rhodes Island. DOI:
10.1109/IPDPS.2006.1639504
isKamalam, G.K. and V.M. Bhaskaran, 2012. Novel
adaptive job scheduling algorithm on heterogeneous

shared memory system. Int. J. Bus. Intell.
Alsmadi, M., B.A. U d S. Reffat, 2013. A high _ Da@min.
smadi, M., b.A. Usama an - Refiat, . 9 Rowstron, A.L.T., 1999. Mobile co-ordination:

performance protocol for fault tolerant distributed

shared memory (FaTP). J. Applied Sci., 13: 790-
799.

Badawi, U., 2009. TS-PVM: A fault tolerant PVM

extension for real time applications. Int. Arab J.
Inform. Technol.

opportunistic cluster computing using javaspaces.
Proceedings of the 9th International Conference on

Providing fault tolerance in tuple space based co-
ordination language. Proceedings of the 3rd
International Conference on Coordination
Languages and Models, (LM ‘99), Springer-
Verlag London, pp: 196-210.

Applications in Lips. 1st Edn., Univeristat des
Saarlandessaarbrigken, pp: 20.

High-Performance Computing and Networking, Jun. SM, 2007. JavaSpaces Specification. Sun Microsystem

25-27, Springer-Verlag, London, pp: 647-656.

calculi for coordination: From linda to javaspaces.
Proceedings of the 8th International Conference,
Algebraic Methodology and Software Technology,

Found.

Busi, N., R. Gorrieri and G. Zavattaro, 2010. Pesce Tanha, M., S.D.S. Torshizi and S. Shamala, 2012. A

discrete event simulator for extensive defense
mechanism for denial of service attacks analysis.
Am. J. Applied Sci, 9: 909-916. DOI:

May 20-27, Springer-Verlag London, pp: 198-212.
DOI: 10.1007/3-540-45499-3 16

Dolev, D. and D. Malki, 1996. The Transis appro&ech
high availability cluster communication. Commun.
ACM, 39: 64-70. DOI: 10.1145/227210.227227

Heiningen, V.W., T. Brecht and S. MacDonald, 2006a.
Babylon v2.0: Middleware for distributed, parallel
and mobile Java applications. Proceedings of the
20th International Parallel and Distributed
Processing Symposiunfpr. 25-29, IEEE Xplore
Press, Rhodes Island. DOI:
10.1109/IPDPS.2006.1639498

10.3844/ajassp.2012.909.916

///// Science Publications 679 Jcs

