

© 2015 Chansiri Singhtaun and Suriya Natsupakpong. This open access article is distributed under a Creative Commons

Attribution (CC-BY) 3.0 license.

Journal of Computer Science

Original Research Paper

Applications of Parallel Computing for Facility Location-

Transportation Problems for Disaster Response

1
Chansiri Singhtaun and

2
Suriya Natsupakpong

1Department of Industrial Engineering, Kasetsart University, Bangkok, Thailand
2Institute of Field Robotics, King Mongkut's University of Technology Thonburi, Bangkok, Thailand

Article history

Received: 16-03-2015

Revised: 04-05-2015

Accepted: 26-05-2015

Corresponding Author:
Chansiri Singhtaun
Department of Industrial
Engineering, Kasetsart
University, Bangkok, Thailand
Email: chansiri.s@ku.ac.th

Abstract: This study extends the capability and increases the performance

of a traditional Branch and Bound (BB) algorithm to solve Facility

Location-Transportation problems for Disaster Response (FLTDR) using

parallel computing. A Two-Stage Branch and Bound (TBB) algorithm was

developed to support two parallel computing approaches. This algorithm

divides problems into two small sub-problems, which are a facility location

sub-problem and a transportation sub-problem. All possible numbers of

distribution centers are determined. All possible locations relating to any

number of distribution centers are explicitly explored. The transportation

sub-problem corresponding to any selected location is then solved. Two

parallel approaches for the TBB algorithm (PTBB) differ in partitioning the

list of sub-problems. The first approach (PTBB1) solves both sub-problems

in parallel. The other (PTBB2) explores the locations in sequence and

solves only the transportation sub-problems in parallel. The numerical

experiments were conducted on various sizes of generated problems. The

quality of the solution and the computing time of both approaches were

compared with a BB algorithm with premature termination by time. The

experimental experiences showed that both PTBB1 and PTBB2 are more

efficient and effective than a BB algorithm. However, the PTBB1 should be

suggested for the FLTDR because of the least computational time usage.

Keywords: Branch-and-Bound Algorithms, Disaster Response, Facility

Location, Parallel Computing, Transportation

Introduction

The number of natural disasters has increased and the

severity has grown over recent years. During 2007-2011,

natural disasters killed 23.64% more people and there

was a 59.21% increase in economic damage than during

2002-2006 (UNISDR, 2012). Efficient and effective

disaster operation management has become a vital

research topic. The life-cycle of disaster operations

management comprises four phases, which are the

mitigation phase, the preparedness phase, the response

phase and the recovery phase (Altay and Green, 2006).

The first two phases are pre-positioning phases that need

to be performed prior to the onset of a disaster. The other

two are post-disaster phases. The period of time in each

phase depends on the type of disaster (a quick-onset or a

slow-onset disaster). The disaster response is a crucial

phase. The objective of disaster response in the

humanitarian relief chain is to rapidly provide relief

(emergency food, water, medicine, shelter and supplies)

to areas affected by large-scale emergencies, so as to

minimize human suffering and death (Balcik and

Beamon, 2008). Most research topics have emphasized

designing a disaster management framework, such as the

study appearing in Aslanzadeh et al. (2009). Few

research papers have focused on constructing a disaster

response operation framework and application. The

research in the latter area aims to determine a solution by

using a mathematical method. It starts with identifying

the problems and formulating the mathematical model to

represent the real problems. Next, an efficient method

has to be found to give the best or at least a good quality

solution for the mathematical model. Finally, the

solution to answer the real problems is interpreted and

validated. Relief logistics play an important role in this

framework. The scope of relief logistics relates to ten

subsystems, which are planning, inventory distribution,

transportation, procurement, maintenance, control,

Chansiri Singhtaun and Suriya Natsupakpong / Journal of Computer Science 2015, 11 (4): 612.620

DOI: 10.3844/jcssp.2015.612.620

613

human resources, information and communication and

administration subsystems (Aslanzadeh et al., 2009).

The first three subsystems have been intensively studied

under the following topics: facility location problems,

inventory problems, transportation/ routing problems and

scheduling problems. Both individual analyses and the

integration of these four problems have been researched.

The FLTDR is an emergency logistics aspect of the

response phase. The framework for the main emergency

logistics activities and their associated facilities and

flows were proposed by Caunhye et al. (2012) and are

summarized in Fig.1.

The arrows in Fig. 1 indicate the activities and the

directions of the main flows of activity. Evacuation

deals with the flow of people, relief distribution with

resources and casualty transportation of wounded

people. Non-directional arrows do not indicate flows

but rather express that a relationship exists between

two components.

The FLTDR relates to solving both location and

transportation problems simultaneously. The location

problem requires designing a network for distributing

humanitarian aid (e.g., water, food, medical goods and

survival equipment). It mainly consists of determining

the number, the position and the mission of a

humanitarian aid distribution center within the

disaster region. The transportation problem deals with

the distribution of humanitarian aid from the

distribution center to demand points (Abounacer et al.,

2014). Most of the mathematical models for FLTDR

are Mixed Integer linear Programming (MIP)

problems with complex constraint structures (Minoux,

1989). The BB algorithm is currently the only general

tool available for finding optimal solutions to these

difficult formulations (Bourbeau et al., 2000).

However, finding an optimal solution for a complex

and large size FLTDR using a BB takes excessive

computing time. Parallel computing is one of the most

efficient alternatives that have been used since the

beginning of the twenty-first century. The use of

parallelism to speed up the execution of a typical

(sequential) BB algorithm is widely known as a

Parallel Branch and Bound (PBB) algorithm.

In the simplest sense, parallel computing is the

simultaneous use of multiple compute resources to solve a

computational problem (Bader et al., 2005). However, the

choice of computer architectures strongly influences the

design structure and performance of a parallel computation.

The distinctions in the hardware level can be classified by

five parameters (Gendron and Crainic, 1994), which are the

control parameter, synchronization, the grain, the

communication parameter and the number of processors.

Control-flow parallel architectures with only one control

unit belong to the Single Instruction Multiple Data (SIMD)

class, while systems with several control units (generally

one per processor) belong to the MIMD (multiple

instruction multiple data) class. When there is only one

clock, we speak of a synchronous system, while in the

presence of several clocks, typically one per processor, the

system is called asynchronous. In fine-grained systems,

each processor can handle only a small amount of data,

corresponding to scalar or small vector operations. At the

other extreme, coarse-grained systems are characterized by

the possibility of simultaneous treatment of large amounts

of data. When processors write and read instructions in a

common memory, the systems are called shared-memory

systems. When processors only exchange messages,

systems are called message-passing systems. Last,

massively parallel systems are made of a large number of

processors, in the order of thousands. However, by adding

appropriate software mechanisms, it is possible with some

systems to simulate the behavior of other systems.

Fig. 1. Framework for disaster operations (Caunhye et al., 2012)

Chansiri Singhtaun and Suriya Natsupakpong / Journal of Computer Science 2015, 11 (4): 612.620

DOI: 10.3844/jcssp.2015.612.620

614

There is a wide range of software for BB algorithms

because the numbers of problem types, user interface

types, parallelism types and machine types are large.

Software for which there exists an interface to implement

a typical BB algorithm, which means that one can use this

type of library to implement one’s own bounding

procedure and one’s branching procedure, are summarized

in Crainic et al. (2006). Libraries or applications exist that

are dedicated to one type of problem; commercial linear

solvers like CPLEX, Xpress-MP, MATLAB or Open

Source Software like GLPK or lp_Solve are dedicated to

solve MIP problems but the BB part is hidden. It cannot

be customized to implement an efficient parallel one.

However, these solvers could be used using a callable

library. An application that implements a PBB algorithm

could use this kind of solver to compute the bound

(Crainic et al., 2006). There are three main approaches of

PBB algorithms according to the degree of parallelism of

the search tree. Parallelism of type 1 introduces

parallelism when performing the operations on generated

sub-problems (e.g., bounding computations). In the type 2

approach, the search tree is built in parallel by performing

operations on several sub-problems simultaneously. In

parallelism of type 3, several trees are explored

concurrently (Gendron and Crainic, 1994). Since both

selection of computer architectures and PBB approaches

for a particular MIP problem affect the computational

performance, most of the researches in the PBB approach

area usually emphasize developing new or improving the

existing computer architectures and PBB algorithm

approaches. Many researches are dedicated to

comparisons of applying various architectures or PBB

algorithm approaches in order to suggest the appropriate

algorithm for an on-hand MIP problem. For example,

Barreto and Bauer (2010) compared efficiency of PBB

implementation between MPI (distributed memory

parallel model) and OpenMP (shared memory parallel

model) implementations on a computer cluster connecting

through network. The results showed that the MPI took

the least time in all executions. However, a better way to

keep all processors working full time was needed for these

implementations. The efficient load balancing strategies

proposed by Otten and Dechter (2010) had a crucial role

to solve this problem. Recently, PBB algorithm was

popularly implemented on a multi-core CPU system

(Leroy et al., 2014), a multi-thread GPU system

(Chakroun et al., 2013) or a hybrid CPU-GPU system

(Boukedjar et al., 2012). However, the strategies to

minimize the time spent on communication between cores

or threads executing the PBB algorithm were needed to

improve the systems.

In this study, we study the applications of parallel

computing with our proposed algorithm for FLTDR (a

specific MIP problem) using an available function called

“parfor” in MATLAB. The proposed algorithm is a BB

based algorithm. The goal is to study the efficiency and

effectiveness of two parallel approaches using the

efficient available commercial software to improve the

computational performance of a typical BB algorithm. In

order to do that, we separate the problem into small sub-

problems instead of using the classical PBB approaches

that try to solve a large MIP problem in one time in a

parallel manner. The remaining sections of this paper are

as follows. The next section we explain the FLTDR

problem and the mathematical model. After that, we

propose the parallel approaches, identify the compute

platform implementing parallel computing and explain

the data generating method for numerical experiments.

The results are discussed in the following section.

Finally, the conclusions are drawn from the results to

suggest an appropriate parallel approach for FLTDR.

Mathematical Model Formulation

Problem Description

The FLTDR in this study focuses on calculating

the number of distribution centers to be constructed;

determining the locations of distribution centers;

identifying the quantity of relief items to be stored

and determining the assignment of vehicles to supply

the humanitarian aid items so as to maximize the

relief item coverage under the following assumptions.

Each particular house or building within the affected

area could require humanitarian aid and is thus a

potential demand point. The demand quantities are

estimated by a homeland security organization or

experts. The demand quantities can only be satisfied

by the distribution center, which is assumed to stock

and distribute multiple types of relief item. The relief

items are divided with respect to their response time

criticalities and target response time intervals.

The amount of stock to be held at the distribution

center depends on the number and location of

distribution centers in the network as well as the

assignment of demand locations to the distribution

centers, while distribution center location and

assignment decisions are affected by the quantity of

relief items to be stocked at each distribution center.

Each distribution candidate site has a global and a per

product capacity that fixes the maximum quantity to

be stored within the site. The location candidates and

the capacity of distribution centers are considered in

the pre-disaster phase based on the demand locations

and quantities. Both location and stock decisions are

limited by pre-disaster budgetary restrictions.

The vehicles available at candidate sites are of

various types and there are different numbers of

available vehicles. The different docking times of

each vehicle type at each site and the time needed for

loading and unloading one unit of each product for

Chansiri Singhtaun and Suriya Natsupakpong / Journal of Computer Science 2015, 11 (4): 612.620

DOI: 10.3844/jcssp.2015.612.620

615

each vehicle type are considered. The traveling time from a

distribution center to a demand location is determined

corresponding to distance and vehicle type. There are also

some restrictions on the total weight and the total volume of

vehicles. A maximum daily work time for each vehicle type

is imposed. A given vehicle can perform as many trips as

needed during a day as long as the corresponding work time

limit is respected. Each vehicle trip is assumed to visit only

one demand point at a time. One demand point may be

visited many times. However, because of the maximum

daily work time, the number of trips to a specific delivery

point by a particular vehicle will be limited to a maximum

value, which is set at two. Finally, shipping costs from

distribution centers to demand points are restricted by post-

disaster budgetary restrictions. Next, the mathematical

model formulation of this problem is presented.

Parameter Description

The proposed mathematical model was modified

from Abounacer et al. (2014) by creating a new

objective function, adding budgetary constraints and

changing the transportation cost function to make the

problem match the real situation. The parameters and

decision variables are defined as follows:

I Set of demand points; I = {1,…, n}

J Set of items; J = {1,…, p}

L Set of candidate sites; L = {1,…, u}

H Set of vehicle types at site l; H = {1,…, m1}

K Set of number of vehicles for each vehicle type at

site l; K = {1,…, uh1}

V Set of vehicle trip; V = {1,2}

dij Demand for item type j at demand point i

sjl Capacity of site l for item type j

Sl Capacity of site l for all item

Qh Weight capacity of a vehicle of type h

Vh Volume capacity of a vehicle of type h

τlh Docking time for a vehicle of type h at site l

tilh Travel time from site l to demand point i by

vehicle type h

αjh Time of loading and unloading one unit of item

type j into a vehicle of type h

Dh Maximum daily work time for a vehicle of type h

wj Weight of one unit of item type j

vj Volume of one unit of item type j

Fl Fixed cost of establishing distribution center l

gjl Unit cost of acquiring and storing item type j at

distribution center l

cilh Unit cost of shipping items from distribution center

l to demand point i by vehicle type h

B0 Emergency relief budgets allocated for pre-

positioning relief supplies

B1 Emergency relief budgets allocated for post-

disaster distribution

Decision Variables

1 if a distribution center is located at site

0 otherwise

1 If demand point is visited from

 distribution center with the vehicle

 of type on its trip

0 oth

th

ilhkv t

l

h

l

i

l k
X

h v

y


= 


=

erwise

Quantity of item type delivered to point

 from distribution center with the vehicle of

 type on its trip

 Quantity of item type pr

ijlhkv

th

th

jl

Q j i

l k

h v

p j=









=

ovided at site l

Mathematical Model:

1

 ijlhkv

i I j J l L h H k K v Vij

Max Z Q
d

∈ ∈ ∈ ∈ ∈ ∈

=∑∑ ∑∑∑∑ (1)

Subject to:

 , ijlhkv ij

l L h H k K v V

Q d i I j J
∈ ∈ ∈ ∈

≤ ∀ ∈ ∈∑∑∑∑ (2)

 , ijlhkv jl

i I h H k K v V

Q p j J l L
∈ ∈ ∈ ∈

≤ ∀ ∈ ∈∑∑∑∑ (3)

()

2 , ilh lh ilhkv jh ijlhkv h l

i I k Kv V j J

t X Q D y h H l Lτ α

∈ ∈ ∈ ∈

 
+ + ≤ ∀ ∈ ∈  

 
∑∑∑ ∑ (4)

 , , , , j ijlhkv h ilhkv

j J

w Q Q X i I l L h H k K v V
∈

≤ ∀ ∈ ∈ ∈ ∈ ∈∑ (5)

 , , , ,j ijlhkv h ilhkv

j J

v Q V X i I l L h H k K v V
∈

≤ ∀ ∈ ∈ ∈ ∈ ∈∑ (6)

 jl l l

j J

p S y l L
∈

≤ ∀ ∈∑ (7)

 ,jl jlp s j J l L≤ ∀ ∈ ∈ (8)

 0

 l l jl jl

l L j J l L

F y g p B
∈ ∈ ∈

+ ≤∑ ∑∑ (9)

 1 ilhkv ilh

i I l L h H k K v V

X c B

∈ ∈ ∈ ∈ ∈

≤∑∑∑∑∑ (10)

{ } 0,1
l
y ∈ (11)

{ } 0,1
ilhkv

X ∈ (12)

 0,ijlhkvQ integer≥ (13)

Chansiri Singhtaun and Suriya Natsupakpong / Journal of Computer Science 2015, 11 (4): 612.620

DOI: 10.3844/jcssp.2015.612.620

616

 0,jlp integer≥ (14)

The objective function Equation 1 maximizes the

total fraction of demand covered by the established

distribution centers. Constraint set Equation 2 guarantees

that the quantity of item j delivered for each demand

point i does not exceed its demand. Constraint set

Equation 3 ensures that the total quantity of a given item

type j delivered from a distribution center l does not

exceed the quantity of item type j available in this

distribution center. Constraint set Equation 4 requires

that the maximum daily work time restriction related to

each vehicle k of type h located at a distribution center l

is not exceeded. These constraints also prohibit trips

from unopened sites. Constraint sets Equations 5 and 6

express the vehicle capacity constraints for each trip in

terms of weight and volume. Constraint set Equations 7

and 8, respectively, insure that the total and the per item

capacity of the distribution center are satisfied.

Constraint Equation 9 requires that the pre-disaster

expenditure related to establishing a distribution center

and holding inventory does not exceed the pre-disaster

budget. Constraint Equation 10 ensures that the total

transportation costs do not exceed the post-disaster

budget. Finally, constraint sets Equations 11-14 define

the nature of decision variables used in the model.

Research Methodology

In this section, the proposed exact algorithm,

which is called the TBB algorithm, for FLTDR is

described. The two parallel approaches applied with

the algorithm as well as the method to construct the

test problems are also clearly explained.

The Two-Stage Branch and Bound Algorithm

The TBB algorithm splits the complex and large size

problems into two small sub-problems: The facility

location problem and the transportation problem. The

iterative process is then carried out as follows:

Step 1: Calculate the upper bound of the number of

distribution centers to be located (ubNumDC)

using the budgetary constraint as follows:

0 max 1,
NumDC

l

l L

B
ub

F

∈

  
  =   
    

∑
 (15)

Let the set of current solutions (yl, Xilhkv and Qilhkv) be an

empty set and the current objective function (Zcur) is zero.

Step 2: Set the current number of distribution centers to

be located (NumDCcur) at 1.

Step 3: Find all possible patterns of selecting NumDCcur

locations out of u candidate locations. Now all

possible sets of decision variables yl
corresponding to NumDCcur are created. Let the

number of all possible patterns corresponding

to NumDCcur be NumPatcur.

Step 4: Set the current pattern (Patcur) at 1.

Step 5: Select the set of decision variables yl relating to

NumDCcur and Patcur.

Step 6: Solve a transportation sub-problem relating to yl
using a BB algorithm. At this step the solutions

for variables Xilhkv and Qilhkv are found and the

objective function (Z) corresponding to yl is

known.

Step 7: Update the set of current solutions and Zcur by

employing a new solution and a new Z obtained

from step 6 if the Z is better (more) than Zcur.

Otherwise, go to step 8.

Step 8: Set Patcur = Patcur+1. If Patcur ≤ NumPatcur go

to step 9. Otherwise, go to step 10.

Step 9: Select the set of decision variables yl relating to

a new Patcur. Solve the LP relaxation problem

of the transportation sub-problem using an

interior point algorithm. If Z > Zcur, go to step

6. Otherwise, go to step 8.

Step 10: Set NumDCcur = NumDCcur+1. If NumDCcur ≤

ubNumDC go to step 3. Otherwise, stop the

iterative process.

Parallel Approaches

We propose two parallel computing approaches,

which are different in the job distribution method, in

order to study the effect of job assignment on computing

time. These two programs apply the same command

function, “parfor” function in MATLAB, to do parallel

computing at a different part of the algorithm. The first

approach (PTBB1), applies the function with step 2 to

step 10. The problems that have different values of

NumDCcur are delivered to the six parallel workers

(cores) in a parallel manner. Once the problem with a

specific NumDCcur is assigned to a worker, all possible

patterns of selecting the locations corresponding to that

NumDCcur are solved at that worker. After solving all the

problems of all patterns, the next assigned problem

relating to a next specific NumDCcur is then solved. The

second approach (PTBB2) applies the function with step

4 to step 9. The problems are selected in the sequence of

NumDCcur. Once NumDCcur is fixed, the problems

relating to all possible patterns of that NumDCcur are

solved in a parallel manner. The process moves to the

next NumDCcur, after these problems are already solved.

Numerical Experiments

In order to measure the performance of parallel

computing, the results of PTBB1 and PTBB2 are

Chansiri Singhtaun and Suriya Natsupakpong / Journal of Computer Science 2015, 11 (4): 612.620

DOI: 10.3844/jcssp.2015.612.620

617

compared with the results of a sequential BB algorithm.

These three algorithms are coded with MATLAB. The

numerical experiments are implemented on an

asynchronous shared memory system, which is

constructed from a workstation with a CPU Intel Core

i7-5820K 3.30 GHz 6-core processor with 16 GB RAM.

Sixteen problem cases are created according to the

number of demand points (n) and the number of candidate

locations of distribution centers (u). The various sizes of n

are 5, 10, 15 and 20. The various sizes of u are 1, 2, 3 and

4. The data sets of sixteen problem cases are generated as

follows. The number of item types (p) is fixed at 2. The

number of vehicle types at each site (ml) and the number

of vehicles for each vehicle type at site l are randomized

between 1 and 5. The parameters dij, pjl and the parameters

existing on the left of the constraint sets Equations 4 to 10

are obtained by random generation. The others are

randomly selected from the determined range to avoid the

number of feasible solutions being limited to a small

number. The minimum and maximum values of the range

are fixed by respectively multiplying 0.5 and 300 with the

value on the left hand side. Three instances are generated

for each data set. The BB algorithm used to solve these

instances are set to be prematurely terminated at 28,800

sec or 8 h in order to limit the computational time for

large-size problems. However, computational time

limitations are not set for PTBB1 and PTBB2. To solve

FLTDR with a traditional BB algorithm and to solve a

transportation sub-problem, which is an MIP problem, in

step 6 of the TBB algorithm, the command “intlinprog” is

used. Some optimization options are specifically set as

follows in order that the algorithms are stopped because of

only time limitation. The maximum number of nodes is

set at 1e50. The difference between the internally

calculated upper and lower bounds on the objective

function is set at 1e-30. The other options are set at

default. All options for solving an LP relaxation problem

in step 8 are set at the default. The percentage of demand

coverage, computing time and the solutions of decision

variables are recorded.

Results and Discussion

The average computing time and percentage of

demand coverage (the objective function value in terms

of percentage) for all cases of all algorithms are shown

in Table 1. To express the trend of computing time

clearly, Fig. 2 is created.

From Table 1, the computing time of three

approaches (BB, PTBB1 and PTBB2 approach)

increase according to both n and u. The sequential BB

algorithm application is limited for small size

problems. Only for problem sizes of n = 5, u≤3 and 5

<n≤30, u = 1 can the algorithm give the solution within

8 h. Therefore, solving problem sizes of n = 5, u = 4

and n>5, u>1 using this algorithm may not provide the

optimal solution because of premature termination.

However, the BB algorithm gives a solution gap within

0.75% inferior than the optimal solution. Unlike the

BB algorithm, both parallel approaches, PTBB1 and

PTBB2, can give optimal solutions for all problem

cases within 8.01 h.

 Table 1. Average computing time and average percentage of demand coverage of BB, PTBB1 and PTBB2 approach

 Average percentage of

 Average computing time (seconds) demand coverage

 --- -- Percentage of

Case n u BB PTBB1 PTBB2 BB PTBB1 and PTBB2 Solution gap

1 5 1 60.27 38.75 41.09 18.72 18.72 0.00

2 5 2 14,539.10 1,695.31 3,225.04 43.28 43.32 -0.09

3 5 3 19,217.72 9,606.67 12,199.85 44.62 44.96 -0.75

4 5 4 28,801.00 23,079.67 26,802.00 57.51 57.70 -0.33

5 10 1 10,027.91 2,616.84 2,688.94 13.05 13.04 0.00

6 10 2 28,801.00 8,092.41 10,760.18 31.15 31.16 -0.02

7 10 3 28,801.00 18,015.88 21,609.91 37.29 37.29 0.00

8 10 4 28,801.67 24,031.44 28,821.99 41.11 41.11 0.00

9 15 1 15,360.25 3,721.12 3,726.75 12.12 12.12 0.00

10 15 2 28,800.00 7,211.96 10,725.04 19.90 19.90 0.00

11 15 3 28,801.00 9,900.86 18,036.83 30.32 30.43 -0.35

12 15 4 28,831.33 26,428.00 28,829.67 43.09 43.09 0.00

13 30 1 14,812.58 353.94 364.27 7.13 7.13 0.00

14 30 2 28,802.00 7,205.80 14,433.00 8.75 8.75 0.00

15 30 3 28,802.33 16,817.50 21,628.67 15.68 15.68 0.00

16 30 4 28,801.00 28,342.00 28,740.00 17.94 17.94 0.00

Chansiri Singhtaun and Suriya Natsupakpong / Journal of Computer Science 2015, 11 (4): 612.620

DOI: 10.3844/jcssp.2015.612.620

618

At the same u, the average percentage of demand

coverage decreases when n increases. At the same n, the

average percentage of demand coverage tends to be

higher when u increases. Moreover, from the problem

solutions of all cases, all candidate locations are used.

These results show that to meet more demand from

disaster victims, more distribution centers are needed.

According to Fig. 2, at the same n, the computing

time of all approaches tend to have positive nonlinear

relations with u. However, this nonlinear trend is not

stronger when n increases. This is because problem

sizes are extremely extended even when u increases by

one. When one candidate location is added, the

decision variables, such as demand points to be served

by that location, vehicle types and the number of

vehicles corresponding to that location etc., grow

significantly. Consequently, many more values of

variable yl have to be visited. When n increases, only

the size of the transportation sub-problem is greater.

However, the number of sub-problems is still the same.

This larger size of sub-problem does not show a

significant effect on the computing time. Moreover, the

PTBB1 algorithm uses the lowest computing time to

give optimal solutions for all cases.

To express the effect of u on the computing time of

two parallel approaches, Fig. 3 and Fig. 4 are drawn.

According to Fig. 3 and Fig. 4, u affects the computing

time of both the PTBB1 and PTBB2. The PTBB2 seems

to be affected more than the PTBB1 because it has larger

gaps between the four lines. In contrast, an increase in n

at the same u does not always increase the computing

time. The reason behind these results may be because of

the parallel approach. The PTBB2 moves to the next

branch, a fixed number of distribution centers, when all

workers complete solving the distributed transportation

sub-problems. All workers have to wait until the workers

that use the longest computing time (bottleneck workers)

finish the job. Many small sub-problems distributed in

many iterative branches cumulate an enormous waiting

time and computing time. Therefore an increase in u

accelerates computing time of the PTBB2. The PTBB1

alleviates this disadvantage by distributing all

transportation sub-problems corresponding to any branch

to the same worker and assigning all branches to workers

in parallel.

Fig. 2. Graph of the average computing time of BB, PTBB1 and PTBB2 algorithm

Fig. 3. Graph of average computing time of PTBB1 algorithm

Chansiri Singhtaun and Suriya Natsupakpong / Journal of Computer Science 2015, 11 (4): 612.620

DOI: 10.3844/jcssp.2015.612.620

619

Fig. 4. Graph of average computing time of PTBB2 algorithm

Conclusion

The sequential BB algorithm can solve the proposed

FLTDR model, but it is unable to solve large size

problems. Both parallel approaches increase both the

efficiency and effectiveness to solve a large size FLTDR.

They can solve problem sizes of up to four candidate

locations with thirty demand points within 8.01 h. The

computing performance depends on both the number of

demand points and the number of candidate locations for

distribution centers. However, the number of candidate

locations for distribution centers has a stronger effect.

Moreover, the PTBB2 is affected more than the PTBB1

because of more waiting time between the workers or

unbalanced distributed computing tasks. The PTBB1 is

recommended for FLTDR because it gives the optimal

solution with the least computing time.

To extend the performance of the PTBB algorithms,

computer architecture to develop the parallel computing

machine should be considered in future research. In

addition, heuristic algorithms should be also taken into

account as an efficient algorithm for a large size problem

(u>4). The number of candidate locations reflects the

percentage of demand coverage. The greater the

percentage of demand coverage required, the greater is

the number of distribution centers needed. However, it is

limited by resource constraints. Therefore, sensitivity

analysis of the vital resource restrictions such as

budgetary variables, the number of vehicles, etc. is an

interesting area for future research.

Funding Information

This study was supported by Kasetsart University

Research and Development of Thailand under Grant

No. 36.51.

Author’s Contributions

All authors equally contributed in this work.

Ethics

This article is original and contains unpublished

material. The corresponding author confirms that all of

the other authors have read and approved the manuscript

and no ethical issues involved.

References

Abounacer, R., M. Rekik and J. Renaud, 2014. An

exact solution approach for multi-objective

location-transportation problem for disaster

response. Comput. Operations Res., 41: 83-93.

DOI: 10.1016/j.cor.2013.08.001

Altay, N. and W.G. Green, 2006. OR/MS research in

disaster operations management. Eur. J. Operational

Res., 175: 475-493. DOI: 10.1016/j.ejor.2005.05.016

Aslanzadeh, M., E.A. Rostami and L. Kardar, 2009.

Logistics Management and SCM in Disasters. In:

Supply Chain and Logistics in National,

International and Governmental Environment,

Farahani, R.Z., N. Asgari and H. Davarzani (Eds.).

Physica-Verlag, Heidelberg,

ISBN-10: 978-3-7908-2155-0, pp: 221-252.

Bader, D.A., E.H. William, C.A. Phillips, 2005. Parallel

Algorithm Design for Branch and Bound. In:

Tutorials on Emerging Methodologies and

Applications in Operations Research, H J.G, (Eds.).

Springer, New York, pp: 5-44.

ISBN-10: 978-0-387-22826-6.

Balcik, B. and B.M. Beamon, 2008. Facility location in

humanitarian relief. Int. J. Logistics Res. Applicat.,

11: 101-121. DOI: 10.1080/13675560701561789

Chansiri Singhtaun and Suriya Natsupakpong / Journal of Computer Science 2015, 11 (4): 612.620

DOI: 10.3844/jcssp.2015.612.620

620

Barreto, L. and M. Bauer, 2010. Parallel Branch and

Bound Algorithm-A comparison between serial,

OpenMP and MPI implementations. J. Phys. Conf.

Ser., DOI: 10.1088/1742-6596/256/1/012018

Boukedjar, A., M.E. Lalami and D. El-Baz, 2012.

Parallel Branch and Bound on a CPU-GPU

System. Proceedings of the 20th Euromicro

International Conference on Parallel, Feb. 15-17,

IEEE Xplore Press, Garching, pp: 392-398.

DOI: 10.1109/PDP.2012.23

Bourbeau, B., T.G. Crainic and B. Gendron, 2000.

Branch and bound parallelization strategies applied

to a depot location and container fleet management

problem. Parallel Computing, 26: 27-46.

DOI: 10.1016/S0167-8191(99)00094-0

Caunhye, A.M., X. Nie and S. Pokharel, 2012.

Optimization models in emergency logistics: A

literature review. Socio Econ. Planning Sci., 46:

4-13. DOI: 10.1016/j.seps.2011.04.004

Chakroun, I., M. Mezmaz, N. Melab and A. Bendjoudi,

2013. Reducing thread divergence in a GPU-

accelerated branch-and-bound algorithm.

Concurrency Comput. Practice Experience, 25:

1121-1136. DOI: 10.1002/cpe.2931

Crainic, T.G., B.L. Cun and C. Roucairol, 2006. Parallel

Branch-and-Bound Algorithms. In: Parallel

Combinatorial Optimization, Talbi, E.G., (Eds.),

John Wiley and Sons, USA, pp: 1-26.

DOI: 10.1002/9780470053928.ch1

Gendron, B. and T. G. Crainic, 1994. Parallel branch-

and-branch algorithms: Survey and synthesis.

Operations Res., 42: 1042-1066.

DOI: 10.1287/opre.42.6.1042

Leroy, R., M. Mezmaz, N. Melab and D. Tuyttens, 2014.

Work stealing strategies for multi-core parallel

branch-and-bound algorithm using factorial number

system. Proceedings of the Programming Models

and Applications on Multicores and Manycores,

Feb. 15-19, ACM, USA, pp: 111-119.

DOI: 10.1145/2560683.2560694

Minoux, M., 1989. Networks synthesis and optimum

network design problems: Models, solution methods

and applications. Networks, 19: 313-360.

DOI: 10.1002/net.3230190305

Otten, L. and R. Dechter, 2010. Load Balancing for

Parallel Branch and Bound. Proceedings of the 10th

International Workshop on Preferences and Soft

Constraints, Sep. 6, University of Saint Andrews,

Scotland, pp: 51-65.

UNISDR, 2012. The Economic and Human Impact of

Disasters in the last 12 years. United Nations Office

for Disaster Risk Reduction.

