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Abstract: This study extends the capability and increases the performance 

of a traditional Branch and Bound (BB) algorithm to solve Facility 

Location-Transportation problems for Disaster Response (FLTDR) using 

parallel computing. A Two-Stage Branch and Bound (TBB) algorithm was 

developed to support two parallel computing approaches. This algorithm 

divides problems into two small sub-problems, which are a facility location 

sub-problem and a transportation sub-problem. All possible numbers of 

distribution centers are determined. All possible locations relating to any 

number of distribution centers are explicitly explored. The transportation 

sub-problem corresponding to any selected location is then solved. Two 

parallel approaches for the TBB algorithm (PTBB) differ in partitioning the 

list of sub-problems. The first approach (PTBB1) solves both sub-problems 

in parallel. The other (PTBB2) explores the locations in sequence and 

solves only the transportation sub-problems in parallel. The numerical 

experiments were conducted on various sizes of generated problems. The 

quality of the solution and the computing time of both approaches were 

compared with a BB algorithm with premature termination by time. The 

experimental experiences showed that both PTBB1 and PTBB2 are more 

efficient and effective than a BB algorithm. However, the PTBB1 should be 

suggested for the FLTDR because of the least computational time usage.  

 

Keywords: Branch-and-Bound Algorithms, Disaster Response, Facility 

Location, Parallel Computing, Transportation 

 

Introduction  

The number of natural disasters has increased and the 

severity has grown over recent years. During 2007-2011, 

natural disasters killed 23.64% more people and there 

was a 59.21% increase in economic damage than during 

2002-2006 (UNISDR, 2012). Efficient and effective 

disaster operation management has become a vital 

research topic. The life-cycle of disaster operations 

management comprises four phases, which are the 

mitigation phase, the preparedness phase, the response 

phase and the recovery phase (Altay and Green, 2006). 

The first two phases are pre-positioning phases that need 

to be performed prior to the onset of a disaster. The other 

two are post-disaster phases. The period of time in each 

phase depends on the type of disaster (a quick-onset or a 

slow-onset disaster). The disaster response is a crucial 

phase. The objective of disaster response in the 

humanitarian relief chain is to rapidly provide relief 

(emergency food, water, medicine, shelter and supplies) 

to areas affected by large-scale emergencies, so as to 

minimize human suffering and death (Balcik and 

Beamon, 2008). Most research topics have emphasized 

designing a disaster management framework, such as the 

study appearing in Aslanzadeh et al. (2009). Few 

research papers have focused on constructing a disaster 

response operation framework and application. The 

research in the latter area aims to determine a solution by 

using a mathematical method. It starts with identifying 

the problems and formulating the mathematical model to 

represent the real problems. Next, an efficient method 

has to be found to give the best or at least a good quality 

solution for the mathematical model. Finally, the 

solution to answer the real problems is interpreted and 

validated. Relief logistics play an important role in this 

framework. The scope of relief logistics relates to ten 

subsystems, which are planning, inventory distribution, 

transportation, procurement, maintenance, control, 
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human resources, information and communication and 

administration subsystems (Aslanzadeh et al., 2009). 

The first three subsystems have been intensively studied 

under the following topics: facility location problems, 

inventory problems, transportation/ routing problems and 

scheduling problems. Both individual analyses and the 

integration of these four problems have been researched. 

The FLTDR is an emergency logistics aspect of the 

response phase. The framework for the main emergency 

logistics activities and their associated facilities and 

flows were proposed by Caunhye et al. (2012) and are 

summarized in Fig.1. 

The arrows in Fig. 1 indicate the activities and the 

directions of the main flows of activity. Evacuation 

deals with the flow of people, relief distribution with 

resources and casualty transportation of wounded 

people. Non-directional arrows do not indicate flows 

but rather express that a relationship exists between 

two components. 

The FLTDR relates to solving both location and 

transportation problems simultaneously. The location 

problem requires designing a network for distributing 

humanitarian aid (e.g., water, food, medical goods and 

survival equipment). It mainly consists of determining 

the number, the position and the mission of a 

humanitarian aid distribution center within the 

disaster region. The transportation problem deals with 

the distribution of humanitarian aid from the 

distribution center to demand points (Abounacer et al., 

2014). Most of the mathematical models for FLTDR 

are Mixed Integer linear Programming (MIP) 

problems with complex constraint structures (Minoux, 

1989). The BB algorithm is currently the only general 

tool available for finding optimal solutions to these 

difficult formulations (Bourbeau et al., 2000). 

However, finding an optimal solution for a complex 

and large size FLTDR using a BB takes excessive 

computing time. Parallel computing is one of the most 

efficient alternatives that have been used since the 

beginning of the twenty-first century. The use of 

parallelism to speed up the execution of a typical 

(sequential) BB algorithm is widely known as a 

Parallel Branch and Bound (PBB) algorithm. 

In the simplest sense, parallel computing is the 

simultaneous use of multiple compute resources to solve a 

computational problem (Bader et al., 2005). However, the 

choice of computer architectures strongly influences the 

design structure and performance of a parallel computation. 

The distinctions in the hardware level can be classified by 

five parameters (Gendron and Crainic, 1994), which are the 

control parameter, synchronization, the grain, the 

communication parameter and the number of processors. 

Control-flow parallel architectures with only one control 

unit belong to the  Single Instruction Multiple Data (SIMD) 

class, while systems with several control units (generally 

one per processor) belong to the MIMD (multiple 

instruction multiple data) class. When there is only one 

clock, we speak of a synchronous system, while in the 

presence of several clocks, typically one per processor, the 

system is called asynchronous.  In fine-grained systems, 

each processor can handle only a small amount of data, 

corresponding to scalar or small vector operations. At the 

other extreme, coarse-grained systems are characterized by 

the possibility of simultaneous treatment of large amounts 

of data. When processors write and read instructions in a 

common memory, the  systems are called  shared-memory  

systems. When processors only exchange messages, 

systems are called message-passing systems. Last, 

massively parallel systems are made of a large number of 

processors, in the order of thousands. However, by adding 

appropriate software mechanisms, it is possible with some 

systems to simulate the behavior of other systems.  

 

 
 

Fig. 1. Framework for disaster operations (Caunhye et al., 2012) 
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There is a wide range of software for BB algorithms 

because the numbers of problem types, user interface 

types, parallelism types and machine types are large. 

Software for which there exists an interface to implement 

a typical BB algorithm, which means that one can use this 

type of library to implement one’s own bounding 

procedure and one’s branching procedure, are summarized 

in Crainic et al. (2006). Libraries or applications exist that 

are dedicated to one type of problem; commercial linear 

solvers like CPLEX, Xpress-MP, MATLAB or Open 

Source Software like GLPK or lp_Solve are dedicated to 

solve MIP problems but the BB part is hidden. It cannot 

be customized to implement an efficient parallel one. 

However, these solvers could be used using a callable 

library. An application that implements a PBB algorithm 

could use this kind of solver to compute the bound 

(Crainic et al., 2006). There are three main approaches of 

PBB algorithms according to the degree of parallelism of 

the search tree. Parallelism of type 1 introduces 

parallelism when performing the operations on generated 

sub-problems (e.g., bounding computations). In the type 2 

approach, the search tree is built in parallel by performing 

operations on several sub-problems simultaneously. In 

parallelism of type 3, several trees are explored 

concurrently (Gendron and Crainic, 1994). Since both 

selection of computer architectures and PBB approaches 

for a particular MIP problem affect the computational 

performance, most of the researches in the PBB approach 

area usually emphasize developing new or improving the 

existing computer architectures and PBB algorithm 

approaches. Many researches are dedicated to 

comparisons of applying various architectures or PBB 

algorithm approaches in order to suggest the appropriate 

algorithm for an on-hand MIP problem. For example, 

Barreto and Bauer (2010) compared efficiency of PBB 

implementation between MPI (distributed memory 

parallel model) and OpenMP (shared memory parallel 

model) implementations on a computer cluster connecting 

through network. The results showed that the MPI took 

the least time in all executions. However, a better way to 

keep all processors working full time was needed for these 

implementations. The efficient load balancing strategies 

proposed by Otten and Dechter (2010) had a crucial role 

to solve this problem. Recently, PBB algorithm was 

popularly implemented on a multi-core CPU system 

(Leroy et al., 2014), a multi-thread GPU system 

(Chakroun et al., 2013) or a hybrid CPU-GPU system 

(Boukedjar et al., 2012). However, the strategies to 

minimize the time spent on communication between cores 

or threads executing the PBB algorithm were needed to 

improve the systems. 

In this study, we study the applications of parallel 

computing with our proposed algorithm for FLTDR (a 

specific MIP problem) using an available function called 

“parfor” in MATLAB. The proposed algorithm is a BB 

based algorithm. The goal is to study the efficiency and 

effectiveness of two parallel approaches using the 

efficient available commercial software to improve the 

computational performance of a typical BB algorithm. In 

order to do that, we separate the problem into small sub-

problems instead of using the classical PBB approaches 

that try to solve a large MIP problem in one time in a 

parallel manner. The remaining sections of this paper are 

as follows. The next section we explain the FLTDR 

problem and the mathematical model. After that, we 

propose the parallel approaches, identify the compute 

platform implementing parallel computing and explain 

the data generating method for numerical experiments. 

The results are discussed in the following section. 

Finally, the conclusions are drawn from the results to 

suggest an appropriate parallel approach for FLTDR. 

Mathematical Model Formulation  

Problem Description 

The FLTDR in this study focuses on calculating 

the number of distribution centers to be constructed; 

determining the locations of distribution centers; 

identifying the quantity of relief items to be stored 

and determining the assignment of vehicles to supply 

the humanitarian aid items so as to maximize the 

relief item coverage under the following assumptions. 

Each particular house or building within the affected 

area could require humanitarian aid and is thus a 

potential demand point. The demand quantities are 

estimated by a homeland security organization or 

experts. The demand quantities can only be satisfied 

by the distribution center, which is assumed to stock 

and distribute multiple types of relief item. The relief 

items are divided with respect to their response time 

criticalities and target response time intervals.  

The amount of stock to be held at the distribution 

center depends on the number and location of 

distribution centers in the network as well as the 

assignment of demand locations to the distribution 

centers, while distribution center location and 

assignment decisions are affected by the quantity of 

relief items to be stocked at each distribution center. 

Each distribution candidate site has a global and a per 

product capacity that fixes the maximum quantity to 

be stored within the site. The location candidates and 

the capacity of distribution centers are considered in 

the pre-disaster phase based on the demand locations 

and quantities. Both location and stock decisions are 

limited by pre-disaster budgetary restrictions.  

The vehicles available at candidate sites are of 

various types and there are different numbers of 

available vehicles. The different docking times of 

each vehicle type at each site and the time needed for 

loading and unloading one unit of each product for 
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each vehicle type are considered. The traveling time from a 

distribution center to a demand location is determined 

corresponding to distance and vehicle type. There are also 

some restrictions on the total weight and the total volume of 

vehicles. A maximum daily work time for each vehicle type 

is imposed.  A given vehicle can perform as many trips as 

needed during a day as long as the corresponding work time 

limit is respected. Each vehicle trip is assumed to visit only 

one demand point at a time. One demand point may be 

visited many times. However, because of the maximum 

daily work time, the number of trips to a specific delivery 

point by a particular vehicle will be limited to a maximum 

value, which is set at two. Finally, shipping costs from 

distribution centers to demand points are restricted by post-

disaster budgetary restrictions. Next, the mathematical 

model formulation of this problem is presented. 

Parameter Description 

The proposed mathematical model was modified 

from Abounacer et al. (2014) by creating a new 

objective function, adding budgetary constraints and 

changing the transportation cost function to make the 

problem match the real situation. The parameters and 

decision variables are defined as follows: 

 

I Set of demand points; I = {1,…, n} 

J Set of items; J = {1,…, p}  

L Set of candidate sites; L = {1,…, u} 

H Set of vehicle types at site l; H = {1,…, m1} 

K Set of number of vehicles for each vehicle type at 

site l; K = {1,…, uh1}   

V Set of vehicle trip; V = {1,2}  

dij Demand for item type j at demand point i 

sjl Capacity of site l for  item type j 

Sl Capacity of site l for all item 

Qh Weight capacity of a vehicle of type h  

Vh Volume capacity of a vehicle of type h 

τlh Docking time for a vehicle of type h at site l 

tilh Travel time from site l to demand point i by 

vehicle type h 

αjh Time of loading and unloading one unit of item 

type j into a vehicle of type h 

Dh  Maximum daily work time for a vehicle of type h 

wj Weight of one unit of item type j 

vj Volume of one unit of item type j 

Fl Fixed cost of establishing distribution center l 

gjl Unit cost of acquiring and storing item type j at 

distribution center l 

cilh Unit cost of shipping items from distribution center 

l  to demand point i by vehicle type h 

B0 Emergency relief budgets allocated for pre-

positioning relief supplies 

B1 Emergency relief budgets allocated for post-

disaster distribution 

Decision Variables 

1   if a distribution center is located at site  

0  otherwise 

1   If demand point  is visited from 

    distribution center   with the vehicle 

    of type  on its trip 

0  oth

    

th

ilhkv t

l

h

l

i

l k
X

h v

y

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

=
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Quantity of item type  delivered to point  
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Mathematical Model: 
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 0,jlp integer≥  (14) 

 
The objective function Equation 1 maximizes the 

total fraction of demand covered by the established 

distribution centers. Constraint set Equation 2 guarantees 

that the quantity of item j delivered for each demand 

point i does not exceed its demand. Constraint set 

Equation 3 ensures that the total quantity of a given item 

type j delivered from a distribution center l does not 

exceed the quantity of item type j available in this 

distribution center. Constraint set Equation 4 requires 

that the maximum daily work time restriction related to 

each vehicle k of type h located at a distribution center l 

is not exceeded. These constraints also prohibit trips 

from unopened sites. Constraint sets Equations 5 and 6 

express the vehicle capacity constraints for each trip in 

terms of weight and volume. Constraint set Equations 7 

and 8, respectively, insure that the total and the per item 

capacity of the distribution center are satisfied. 

Constraint Equation 9 requires that the pre-disaster 

expenditure related to establishing a distribution center 

and holding inventory does not exceed the pre-disaster 

budget. Constraint Equation 10 ensures that the total 

transportation costs do not exceed the post-disaster 

budget. Finally, constraint sets Equations 11-14 define 

the nature of decision variables used in the model. 

Research Methodology  

In this section, the proposed exact algorithm, 

which is called the TBB algorithm, for FLTDR is 

described. The two parallel approaches applied with 

the algorithm as well as the method to construct the 

test problems are also clearly explained.  

The Two-Stage Branch and Bound Algorithm  

The TBB algorithm splits the complex and large size 

problems into two small sub-problems: The facility 

location problem and the transportation problem.  The 

iterative process is then carried out as follows: 

 

Step 1: Calculate the upper bound of the number of 

distribution centers to be located (ubNumDC) 

using the budgetary constraint as follows: 

  

0   max 1,   
NumDC

l

l L

B
ub

F

∈

  
  =   
    

∑
 (15) 

  

Let the set of current solutions (yl, Xilhkv and Qilhkv) be an 

empty set and the current objective function (Zcur) is zero.  

Step 2: Set the current number of distribution centers to 

be located (NumDCcur) at 1.  

Step 3:  Find all possible patterns of selecting NumDCcur 

locations out of u candidate locations. Now all 

possible sets of decision variables yl  
corresponding to NumDCcur are created. Let the 

number of all possible patterns corresponding 

to NumDCcur be NumPatcur. 

Step 4: Set the current pattern (Patcur) at 1.  

Step 5: Select the set of decision variables yl  relating to 

NumDCcur and Patcur.  

Step 6: Solve a transportation sub-problem relating to yl 
using a BB algorithm. At this step the solutions 

for variables Xilhkv and Qilhkv are found and the 

objective function (Z) corresponding to yl is 

known. 

Step 7: Update the set of current solutions and Zcur by 

employing a new solution and a new Z obtained 

from step 6 if the Z is better (more) than Zcur. 

Otherwise, go to step 8. 

Step 8: Set Patcur = Patcur+1. If Patcur ≤  NumPatcur go 

to step 9. Otherwise, go to step 10. 

Step 9: Select the set of decision variables yl  relating to 

a new Patcur. Solve the LP relaxation problem 

of the transportation sub-problem using an 

interior point algorithm. If Z > Zcur, go to step 

6. Otherwise, go to step 8.  

Step 10: Set NumDCcur = NumDCcur+1. If NumDCcur ≤ 

ubNumDC go to step 3. Otherwise, stop the 

iterative process. 

Parallel Approaches 

We propose two parallel computing approaches, 

which are different in the job distribution method, in 

order to study the effect of job assignment on computing 

time. These two programs apply the same command 

function, “parfor” function in MATLAB, to do parallel 

computing at a different part of the algorithm. The first 

approach (PTBB1), applies the function with step 2 to 

step 10. The problems that have different values of 

NumDCcur are delivered to the six parallel workers 

(cores) in a parallel manner. Once the problem with a 

specific NumDCcur is assigned to a worker, all possible 

patterns of selecting the locations corresponding to that 

NumDCcur are solved at that worker. After solving all the 

problems of all patterns, the next assigned problem 

relating to a next specific NumDCcur is then solved. The 

second approach (PTBB2) applies the function with step 

4 to step 9. The problems are selected in the sequence of 

NumDCcur. Once NumDCcur is fixed, the problems 

relating to all possible patterns of that NumDCcur are 

solved in a parallel manner. The process moves to the 

next NumDCcur, after these problems are already solved.  

Numerical Experiments 

In order to measure the performance of parallel 

computing, the results of PTBB1 and PTBB2 are 
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compared with the results of a sequential BB algorithm. 

These three algorithms are coded with MATLAB. The 

numerical experiments are implemented on an 

asynchronous shared memory system, which is 

constructed from a workstation with a CPU Intel Core 

i7-5820K 3.30 GHz 6-core processor with 16 GB RAM. 

Sixteen problem cases are created according to the 

number of demand points (n) and the number of candidate 

locations of distribution centers (u). The various sizes of n 

are 5, 10, 15 and 20. The various sizes of u are 1, 2, 3 and 

4. The data sets of sixteen problem cases are generated as 

follows. The number of item types (p) is fixed at 2. The 

number of vehicle types at each site (ml) and the number 

of vehicles for each vehicle type at site l are randomized 

between 1 and 5. The parameters dij, pjl and the parameters 

existing on the left of the constraint sets Equations 4 to 10 

are obtained by random generation. The others are 

randomly selected from the determined range to avoid the 

number of feasible solutions being limited to a small 

number. The minimum and maximum values of the range 

are fixed by respectively multiplying 0.5 and 300 with the 

value on the left hand side. Three instances are generated 

for each data set. The BB algorithm used to solve these 

instances are set to be prematurely terminated at 28,800 

sec or 8 h in order to limit the computational time for 

large-size problems. However, computational time 

limitations are not set for PTBB1 and PTBB2. To solve 

FLTDR with a traditional BB algorithm and to solve a 

transportation sub-problem, which is an MIP problem, in 

step 6 of the TBB algorithm, the command “intlinprog” is 

used. Some optimization options are specifically set as 

follows in order that the algorithms are stopped because of 

only time limitation. The maximum number of nodes is 

set at 1e50. The difference between the internally 

calculated upper and lower bounds on the objective 

function is set at 1e-30. The other options are set at 

default. All options for solving an LP relaxation problem 

in step 8 are set at the default. The percentage of demand 

coverage, computing time and the solutions of decision 

variables are recorded.  

Results and Discussion 

The average computing time and percentage of 

demand coverage (the objective function value in terms 

of percentage) for all cases of all algorithms are shown 

in Table 1. To express the trend of computing time 

clearly, Fig. 2 is created.  

From Table 1, the computing time of three 

approaches (BB, PTBB1 and PTBB2 approach) 

increase according to both n and u. The sequential BB 

algorithm application is limited for small size 

problems. Only for problem sizes of n = 5, u≤3 and    5 

<n≤30, u = 1 can the algorithm give the solution within 

8 h. Therefore, solving problem sizes of n = 5,   u = 4 

and n>5, u>1 using this algorithm may not provide the 

optimal solution because of premature termination. 

However, the BB algorithm gives a solution gap within 

0.75% inferior than the optimal solution.  Unlike the 

BB algorithm, both parallel approaches, PTBB1 and 

PTBB2, can give optimal solutions for all problem 

cases within 8.01 h. 

 
 Table 1. Average computing time and average percentage of demand coverage of BB, PTBB1 and PTBB2 approach 

         Average percentage of   

   Average computing time (seconds) demand coverage   

   ------------------------------------------------- ---------------------------------------- Percentage of 

Case n u BB PTBB1 PTBB2 BB PTBB1 and PTBB2 Solution gap  

1 5 1 60.27 38.75 41.09 18.72 18.72 0.00 

2 5 2 14,539.10 1,695.31 3,225.04 43.28 43.32 -0.09 

3 5 3 19,217.72 9,606.67 12,199.85 44.62 44.96 -0.75 

4 5 4 28,801.00 23,079.67 26,802.00 57.51 57.70 -0.33 

5 10 1 10,027.91 2,616.84 2,688.94  13.05 13.04 0.00 

6 10 2 28,801.00 8,092.41 10,760.18 31.15 31.16 -0.02 

7 10 3 28,801.00 18,015.88 21,609.91 37.29 37.29 0.00 

8 10 4 28,801.67 24,031.44 28,821.99 41.11 41.11 0.00 

9 15 1 15,360.25 3,721.12 3,726.75 12.12 12.12 0.00 

10 15 2 28,800.00 7,211.96 10,725.04 19.90 19.90 0.00 

11 15 3 28,801.00 9,900.86 18,036.83 30.32 30.43 -0.35 

12 15 4 28,831.33 26,428.00 28,829.67 43.09 43.09 0.00 

13 30 1 14,812.58 353.94 364.27  7.13 7.13 0.00 

14 30 2 28,802.00 7,205.80 14,433.00 8.75 8.75 0.00 

15 30 3 28,802.33 16,817.50 21,628.67 15.68 15.68 0.00 

16 30 4 28,801.00 28,342.00 28,740.00 17.94 17.94 0.00 
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At the same u, the average percentage of demand 

coverage decreases when n increases.  At the same n, the 

average percentage of demand coverage tends to be 

higher when u increases. Moreover, from the problem 

solutions of all cases, all candidate locations are used. 

These results show that to meet more demand from 

disaster victims, more distribution centers are needed. 

According to Fig. 2, at the same n, the computing 

time of all approaches tend to have positive nonlinear 

relations with u. However, this nonlinear trend is not 

stronger when n increases. This is because problem 

sizes are extremely extended even when u increases by 

one. When one candidate location is added, the 

decision variables, such as demand points to be served 

by that location, vehicle types and the number of 

vehicles corresponding to that location etc., grow 

significantly. Consequently, many more values of 

variable yl have to be visited. When n increases, only 

the size of the transportation sub-problem is greater. 

However, the number of sub-problems is still the same. 

This larger size of sub-problem does not show a 

significant effect on the computing time. Moreover, the 

PTBB1 algorithm uses the lowest computing time to 

give optimal solutions for all cases.  

To express the effect of u on the computing time of 

two parallel approaches, Fig. 3 and Fig. 4 are drawn. 

According to Fig. 3 and Fig. 4, u affects the computing 

time of both the PTBB1 and PTBB2. The PTBB2 seems 

to be affected more than the PTBB1 because it has larger 

gaps between the four lines.   In contrast, an increase in n 

at the same u does not always increase the computing 

time. The reason behind these results may be because of 

the parallel approach. The PTBB2 moves to the next 

branch, a fixed number of distribution centers, when all 

workers complete solving the distributed transportation 

sub-problems. All workers have to wait until the workers 

that use the longest computing time (bottleneck workers) 

finish the job. Many small sub-problems distributed in 

many iterative branches cumulate an enormous waiting 

time and computing time. Therefore an increase in u 

accelerates computing time of the PTBB2. The PTBB1 

alleviates this disadvantage by distributing all 

transportation sub-problems corresponding to any branch 

to the same worker and assigning all branches to workers 

in parallel. 

 

 
 

Fig. 2.  Graph of the average computing time of BB, PTBB1 and PTBB2 algorithm 
 

 
 

Fig. 3. Graph of average computing time of PTBB1 algorithm 
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Fig. 4. Graph of average computing time of PTBB2 algorithm 

 

Conclusion 

The sequential BB algorithm can solve the proposed 

FLTDR model, but it is unable to solve large size 

problems. Both parallel approaches increase both the 

efficiency and effectiveness to solve a large size FLTDR. 

They can solve problem sizes of up to four candidate 

locations with thirty demand points within 8.01 h. The 

computing performance depends on both the number of 

demand points and the number of candidate locations for 

distribution centers. However, the number of candidate 

locations for distribution centers has a stronger effect. 

Moreover, the PTBB2 is affected more than the PTBB1 

because of more waiting time between the workers or 

unbalanced distributed computing tasks. The PTBB1 is 

recommended for FLTDR because it gives the optimal 

solution with the least computing time. 

To extend the performance of the PTBB algorithms, 

computer architecture to develop the parallel computing 

machine should be considered in future research. In 

addition, heuristic algorithms should be also taken into 

account as an efficient algorithm for a large size problem 

(u>4). The number of candidate locations reflects the 

percentage of demand coverage. The greater the 

percentage of demand coverage required, the greater is 

the number of distribution centers needed. However, it is 

limited by resource constraints. Therefore, sensitivity 

analysis of the vital resource restrictions such as 

budgetary variables, the number of vehicles, etc. is an 

interesting area for future research. 
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