

© 2015 Kotti Jayasri and Panchumarthy Seetharamaiah. This open access article is distributed under a Creative Commons

Attribution (CC-BY) 3.0 license.

Journal of Computer Science

Original Research Paper

A GQM Based Approach towards the Development of Metrics

for Software Safety

1
Kotti Jayasri and

2
Panchumarthy Seetharamaiah

1Department of Computer Science and Engineering, GMR Institute of Technology, Rajam, India
2Department of CS and SE, Andhra University, Visakhapatnam, India

Article history

Received: 10-01-2015

Revised: 15-03-2015

Accepted: 29-06-2015

Corresponding Author:

Kotti Jayasri

Department of Computer

Science and Engineering,

GMR Institute of Technology,

Rajam, AP, India
E-mail: jayasrikotti@gmail.com

Abstract: Software sometimes safety-critical if it resides in a safety-

critical computer systems and it causes or contributes to hazards.

Therefore, Safety-critical software intensive systems require verification

and validation to confirm that they function as per the safety

requirements. Software Safety is a combination of many factors. Metrics

are commonly used in engineering as measures for the performance of a

system on a given attribute. This paper presents a methodology for

software safety framework based on Goal-Question-Metric (GQM)

Approach. The proposed methodology was applied to a safety-critical

Railroad Crossing Control System (RCCS) which is a laboratory

prototype. The outcomes of the prototype are satisfactory and observed

that safety risks are within the acceptable threshold level.

Keywords: Safety Metrics, Safety Metrics Framework, Hazard Analysis,

GQM and RCCS

Introduction

Software has become a dominant part of a promptly

growing range of applications and products from all

sectors. Systems, in which software interacts with other

systems, sensors, devices and with people are called

software intensive systems (Navy et al., 1999). Software

is often used to implement the functionality of safety

systems because it is supposed to be design and handle

complex functionality. Critical systems are broadly

categorized into three categories. They are Safety-critical

computer systems, Mission critical systems and Business

critical systems. The failure of safety-critical system may

cause injury or death to human beings. The failure of

mission critical system may result in the failure of some

goal-directed activity. The failure of business critical

system may result in the failure of the business.

A safety-critical computer system is a system where

human safety is reliant on the correct operation of the

system. However, the tools and methods used for risk

mitigation and risk management are lacking. Software is

safety-critical, if it resides in a safety-critical computer

system and if it applies at least one of the following:

• Contributes or causes to a hazard

• Controls safety-critical functions

• Practices safety-critical commands

• Mitigates damage if a hazard occurs

Criteria for Software Development Life Cycle (SDLC)

are of two types, one is for non-critical software and another

one is for safety-critical software. Non-critical software

development follows general steps, which are included in

Software Development Life Cycle. Due to complexity of

the safety-critical software, there are more factors

prompting in the development of safety-critical software

development (Swarup and Seetharamaiah, 2009). The

following are the some of the steps in critical software

development process to meet the safety objectives:

• All safety functional and integrity requirements are

to be clearly identified before commencing the

software design phase. Because significant software

modifications can be a major cause of systematic

error

• The availability of safety assurance evidence is to be

confirmed while considering integrating previously

developed software components, in order to

minimize the cost and project risk

• The numbers of personnel developing software

systems are to be minimized and it is to be ensured

that all interfaces are well defined

• The competence of generic safety assurance

evidence is to be considered for commercial off-

the shelf components in the environment of the

safety system

Kotti Jayasri and Panchumarthy Seetharamaiah / Journal of Computer Science 2015, 11 (6): 813.820

DOI: 10.3844/jcssp.2015.813.820

814

Therefore, better metrics introduced for safety

assessment of safety-critical computer systems in terms

of satisfying requirements at each of the SDLC phases.

One of the important safety processes is Hazard Analysis

(HA). HA is the examination of a system for possible to

cause harm. Therefore, HA techniques form the core of

system safety methodology. System Hazard Analysis

(SHA) is the analysis of interface effects and interface

integration. Results of other subsystem HA are evaluated to

assess the impact on other subsystems and on the total

system. Interfaces are of several kinds: software to

software, hardware to software and hardware to hardware

and all the interfaces in a system of systems.

Hazard analysis is performed to identify the logical,

code, software design and execution, testing,

maintenance modules and incidence based reports.

Various hazard analysis techniques and methods are

applied for the purpose. HA in a less complex safety-

critical system prototype is considered for case study to

validate the metrics framework. The observations from

this analysis are applied to framework for obtaining

software safety metrics.

In the literature (Michael et al., 2010; Weaver et al.,

2003; Acharyulu and Seetharamaiah, 2012), the

researches on software safety include software safety

analysis, safety-critical computer systems, safety metrics

and validation metrics framework for software safety

analysis (Basili and Weiss, 1984; Cruickshank et al.,

2009). Because all of the researches just discuss a certain

aspects of software safety metrics and issues (Basili and

Rombach, 1988). It is difficult to understand the

relationship among the researches. Enhancing the

performance of software safety is a critical and

challenging task (Knight, 2002). Large number of studies

have analyzed and addressed various issues related to

software safety (Software Safety, 1997; Bhansali, 2005;

Axelrod, 2014; Chen et al., 2014). This section addresses

the issues reported by some of the previous researchers

(Cruickshank et al., 2009; IEEE, 1994).

Software safety metrics can be used to assess the

maturity of hazard analysis processes and its interaction

with SDLC (Kumar et al., 2010). Some frameworks are

designed to analyze whether or not safety metric qualifies

as a measure of different perspectives (Misra et al., 2012).

Software safety measurement is a relatively unexplored

area of software engineering.

GQM is a hierarchal framework for defining goals

related to products and processes (Cruickshank et al.,

2009). Agoal is inferred using a set of questions whose

answers are associated with objective to safety metrics.

The GQM method was adapted in this paper, which was

originally developed by V. Basili and D. Weiss. This

GQM method will be used throughout this paper to

illustrate the various safety steps for hazard analysis.
The rest of this paper is structured as follows:

Section 2 describes proposed methodology for

Software Safety. Section 3 describes application of

Software Safety Framework to RCCS. Section 4

designates safety issues of RCCS laboratory prototype, the

results observed after application of the methodology and

the final section concludes the research work.

Proposed Methodology for Software Safety

Software Safety involves incorporating safety into

the life cycle of software and analyzing the software,

system and interfaces from the starting to the end.

Documenting safety plans, decisions, processes,

results and tracing software safety requirements

through all software phases. Software safety applies to

a system until it is retired. Here the authors propose

new methodology with three tasks for software safety

in safety-critical computing systems. The following

are the three tasks:

• Software safety planning

• GQM based safety metrics framework

• Code analysis and performance monitoring

Software Safety Planning

The main advantage of software safety planning is

to define the method that will aid in the preparing

software that will satisfy system safety requirements.

Validation comprises of the steps and processes used to

answer the questions like "Are we building the right

product?" etc. It means, ‘Are we building a system that

meets stake holder’s requirements and expectations?’ On

the other hand, verification answers the questions like

"Are we building the right product?” Often validation is a

last minute reactive process. Validation of software safety

requirements process is shown in Fig. 1.

GQM Based Safety Metrics Framework

GQM is a hierarchal framework for defining safety

metrics according to organizational objectives. GQM is

a hierarchal goal-driven method, which ensures that all

metrics are selected for a goal driven purpose

mentioned in Fig. 2.

Framework Users

The board audience of the Framework will be the

Safety engineering Team, although the hierarchal

framework is applicable to other stakeholders.

Information gathered from the framework will be used

by the safety engineering team to identify potential

weakness in the software safety process and to determine

plans of action to thoroughly validate the safety

requirements. However, the metric data will expose

safety aspects of the system to the operators.

Kotti Jayasri and Panchumarthy Seetharamaiah / Journal of Computer Science 2015, 11 (6): 813.820

DOI: 10.3844/jcssp.2015.813.820

815

Fig. 1. Validation of software safety requirements

Fig. 2. GQM approach for software safety framework

Framework Goal Structure (FGS): The FGS starts

with a Framework Goal (FG). The FG was identified by

following the recommendations of Basili and Rombach

(1988) for construction of goals in the GQM approach.

Purpose: To measure the quality of software safety

process throughout the SDLC in order to aid in

validating safety requirements.

Perspective: To inspect the metrics from the safety

engineering team's point of view, with an attention on

validating safety requirements by proxy in accordance

with the proposed model.

Environment: The system has safety-critical

elements that will be assured by the safety process.

The FG will be used to maintain context and focus of

subsequent Goals, Questions and Metrics as they are

identified in a hierarchal fashion. Here four goals are

identified which are common to the validation of

safety requirements sufficiency of any safety-critical

computer systems. Framework Goal (FG), Goals (G1,

G2, G3, G4), Questions (Q1, Q2,…….……Qn) and

Metrics(M1,M2,…..Mn):

G1: Identified safety requirements are adequate.

This Goal directly deals with the Hazard identification

of the safety requirements and validates the identified

requirements. The main purpose of this Goal is to make

sure that the sufficient numbers of hazards are identified

for a particular system. If the identified hazards are below

a threshold boundary then it concludes that the hazard

identification is not adequate, hence it leads to invalidation

of safety requirements.

G2: System and Safety requirements are measured.

This goal also moderately addresses the Hazard

Analysis element of the software safety

requirements. The result of HA is that sufficient

Kotti Jayasri and Panchumarthy Seetharamaiah / Journal of Computer Science 2015, 11 (6): 813.820

DOI: 10.3844/jcssp.2015.813.820

816

requirements are identified to mitigate the software

hazards. By measuring the number of safety

requirements against a pre-determined model, the

sufficiency of hazard analysis can be obtained

G3: Software hazards are necessarily mitigated

This Goal directly deals with the hazard analysis of the

safety requirements to validate the risk mitigation process.

The main aim of this goal is to reduce the total number of

High Risk hazards in the system. This will aid in increase

the confidence of the developer.

G4: Quantify the importance of software with respect to

system safety

This Goal is useful to software requirements and

quality assurance. This goal can be achieved by

classifying causes of a hazard in the system. The

following are the questions related to this goal.

Questions and Metrics of GQM Framework

The above mentioned goals can be achieved by

answering a number of questions as given below. Every

goal and question will be assessed by relevant metrics as

shown in the framework. The relevant questions and

metrics of GQM are described as follows:

Q1: How many Software safety requirements are

identified?

Q2: How many system safety requirements are identified?

Q3: Whether the number of safety requirements

identified is sufficient or not?

Q4: Are all the hazards are having mitigation plan?

Q5: What percentage of the hazards is software related?

Q6: What percentage of the hazards is caused by hardware?

M1: Percentage of Hazards for Software Safety

(PHSS): M1 (PHSS) is an indicator of the adequacy of

hazard identification. By comparing the total number of

safety hazards identified against historical data and system

safety Hazards, indicate the validity of the software safety

requirements through identified hazards.

100
Total software safety hazards

PHSS
Total system safety hazarda

= × (1)

The model for inferring MI requires an Estimated

PHSS (EPHSS), which is based on previously developed

similar systems. If [PHSS-EPHSS] <σ, it indicates that a

necessary number of Safety hazards have been identified

in hazard identification process, where EPHSS is the

average of the PHSS for all other similar systems and σ is

the standard deviation of the PHSS.

M2: Percentage of Hazards for System Safety: M2

(PHSyS) is pointer of how sufficient hazard analysis has

been performed and hence the validity of the derived

safety requirements. It is a like in format to MI:

100
Total system safety hazards

PHSyS
Total software safety hazarda

= × (2)

The model for PHSyS requires an Estimated PHSys

(EPHSys) based on previously developed systems. If

[PHSyS-EPHSyS] <σit indicates that a reasonable number

of safety requirements have been identified where the

EPHSyS is the average of the PHSyS for all systems in the

family, (in line with other systems) and σ is the standard

deviation of the PHSyS.

M3: Percentage of Software Safety Requirements:

M3 (PSSR) is an indicator of how necessary hazard

analysis process has been performed and hence the

validity of the derived safety requirements:

3

#
100

#

HR SR

HR

SH
M

SH

−
= × (3)

where, #SHHR-SR is the number of High Risk software

hazard with associated software safety requirements and

#SHHR is the total number of high-risk software hazards

While development of the system progresses, it is

expected that this safety metrics will approach and reach

cent percentage.

M4: Percentage of High Risk Software Hazards with

Safety Requirements: M4 (PSHHR) is an indicator of

high-risk software hazards have resulted in applicable

safety requirements through hazard analysis. This

indicates the sufficiency of safety requirements:

4

.
100

Total no of softwaresafety requirements
M

Total safety requirements
= × (4)

While development of the system progress, it is

anticipated that this metric will approach and reach

cent percentage.

M5: Percentage of Failures with Software Hazards: M5

(PFSH) is an indicator of Failures with Software Hazards.

5 100
Total failures with softwarehazards

M
Total system failures

= × (5)

M6: Percentage of Failures with Hardware

Hazards: M6 (PFHH) is an indicator of failures with

hardware hazards:

6

.
100

.

Total no of failures with hardtwarehazards
M

Total no of system failures
= ×

(6)

Kotti Jayasri and Panchumarthy Seetharamaiah / Journal of Computer Science 2015, 11 (6): 813.820

DOI: 10.3844/jcssp.2015.813.820

817

Code Analysis and Performance Monitoring

The task of software safety code analysis and
performance monitoring of the system begins in the
software implementation and unit testing phase.
Inputs into this task include the system hazard

analyses outputs, safety requirements. The software
safety code analysis will examine the software
requirements specification and test procedures.

Application of Software Safety Framework to

Railroad Crossing Control System (RCCS)

Accidents are prone to occur in the unmanned
railway crossings. In order to prvent the occurrence of
accidents a RCCS is proposed. In this system the

approach of the train is sensed before hand and
accordingly the closing and opening of the railway
crossing gates is actuated. This operation is a fool-
proofing system which eliminates the errors prone to
manual intervention. The laboratory prototype of
RCCS is shown in Fig. 3 and consists of several parts

as listed below.

Components of RCCS

RCCS consists of the following main parts: Train,
Railway track, Gates, Sensors, Controller with a
digitalI/O card, Signals and a muscle-wire operated track
change lever. Description of each part of the laboratory
prototype is indicated below.

Train: The actuating power is given by the power
supply relay, to the wheels of the train, which initiates
the movement of the train along the track. In order to
stop the movement of the train, the actuating power is
cut-off. When the train approaches the gate crossing
area, a sensor detects the approach of the train and

sends this information to the controller component. The
sensor keeps sending the signal to the controller till the
train completely overtakes the gate crossing area.

Sensors: RCCS uses nine sensors in totality. The
sensors perform the job such as detection of the presence
of the train on the crossing area and finally sends the

signal to the controller.
Controller: Controller controls the activities of

lowering and raising the gates with respect to the
presence and absence of the train respectively. Sensor
no.1 is responsible for lowering the gates and sensor
no.2 for raising the gates. This activity is done by the

controller which is actuated by the signal from the
sensors. AnIBM compatible PC is nominated as the
controller for RCCS. The DIO card receives the inputs
from each of the ninesensors of RCCS. The eight
output signals sent from DIO card control the following:
The power supply to the train track, power supply to the

two gate assemblies, power supply to muscle wire based
mechanism to change the track lever and four signal lights.

Fig. 3. Prototype of RCCS

Fig. 4. Partial functional block diagram of RCCS

Gates: RCCS has two sets of gates on either side of

the track layout, which is operated by a muscle wire

based mechanism. Controller sends the signal to gate.

When the signal value is lower, gate moves down and

when the signal value is higher the gate is raised.

Signals: RCCS contains three train signals, placed

beside the track. Signals give an indication to the train

operators that whether the track is clear or occupied,

or if certain precautionary measures were taken or not

while using the track, such as maintaining a reduced

speed. A signal post consists of solid red and green lights.

Experimental Results and Analysis

When RCCS is switched on, the controller

preliminarily checks of the normal working status of

all subsystems involved in the driver circuitry, the

sensors, the gate assemblies and the train signals. If

all the components are found to be in normal working

condition, it executes the code related to normal

operation. All the tasks of the methodology were

applied to RCCS.

Kotti Jayasri and Panchumarthy Seetharamaiah / Journal of Computer Science 2015, 11 (6): 813.820

DOI: 10.3844/jcssp.2015.813.820

818

Firstly, software safety planning is used to define the

system safety requirements and completeness of

requirements is verified and applied some functions for

safe performance (or) operation. In the Software Safety

planning the system level, software hazard analysis was

used to identify possible hazardous failure conditions at

the system level. The potential hazards identified are:

Failure of Controller, Failure of Sensors, Failure of

Driver Circuitry, Failure of Gates, Failure of Signals,

Failure of muscle wire operated Track Change Lever in

changing from outer to inner track. All requirements that

directly or indirectly which lead to incorrect operation of

the gates are considered as safety-critical.

With system hazard analysis, the existing hazards

will be found and fixed.

Secondly, GQM based safety metrics framework is

proposed. This framework identifies a number of goals,

related questions and safety metrics to achieve those

goals. The Safety Metrics Framework (SMF) provides

early warnings of the invalidity of Software Safety

requirements. The results indicated that a sufficient

number of software safety requirements are being

developed and safety risks are within the acceptable

threshold level. This increases the confidence that the

safety requirements that are indeed valid.

Finally, run-time performance of the RCCS was

monitored for problems relating to omissions

(Exceptions), deadlocks, memory related issues.

The results in applying the proposed methodology in

developing the safety-critical laboratory prototype RCCS

clearly demonstrate that the system is risk free and fail

safe when compared to a methodology which does not

take hazards as well as associated risks into

consideration. The goals and corresponding metrics are

shown in Table 1. The metrics and the corresponding

risk impact levels are shown in the Fig. 5.

Table 1. GQM framework Results for RCCS

Goals Metrics Evaluation Risk impact factor

Identified safety requirements are satisfied M1 (PHSS) 100
TSSH

TSySH
× 2.80

 M2 (PHSyS) 100
TSySH

TSSH
× 1.79

System and S/w safety requirements are measured M3 (PSSR)
#

100
#

SSR

SR
× 3.20

Safety and Security risks are identified M4 (PSHhr) 100
SHhr

TSHhr
× 2.90

Quantify the impact of oS/w in the context of system safety M5 (PFSH) 100
TSHF

TSyF
× 4.20

 M6 (PFHH) 100
THHF

TSyF
× 1.80

Fig. 5. RCCS metrics results

Kotti Jayasri and Panchumarthy Seetharamaiah / Journal of Computer Science 2015, 11 (6): 813.820

DOI: 10.3844/jcssp.2015.813.820

819

Conclusion

This paper addresses the key hazards that are

required to mitigate for any safety-critical system. The

paper has presented a new methodology for software

safety called safety metrics framework based on GQM

approach. The proposed methodology was applied on

the laboratory prototype RCCS, which is a safety-

critical system. The goals were evaluated based on the

values given by the prototype. Six metrics were

evaluated and based on these metrics we estimated the

risk factor. The results of the prototype are

satisfactory and indicated that safety risks are within

the acceptable threshold level. The suggested

methodology forms the basis of software safety. The

framework provides early warnings of the invalidity

of software safety requirements. The proposed

methodology is applied to a laboratory RCCS

prototype, which includes safety-critical operations.

This RCCS prototype is tested and yielded

satisfactory results. This paper also found that most of

the risks are software related when compared with

hardware risks. Therefore, the authors conclude that

for any safety-critical system like RCCS identification

and mitigation of software hazards should be given

high priority.

Acknowledgment

The authors wish to thank anonymous reviewers

for their valuable, detailed comments that improve

both the content and representation of this study.

Author’s Contributions

Kotti Jayasri: All the work belongs to me is my

PhD work.

Panchumarthy Seetha Ramaiah: My supervisor

he support me a lot.

Ethics

This research paper is original and contains

unpublished material. The corresponding author

confirms that all of the other authors have read and

approved the manuscript and no ethical issues involved.

References

Axelrod, C.W., 2014. Reducing software assurance risks

for security-critical and safety-critical systems.

Proceedings of the IEEE Long Island Systems,

Applications and Technology Conference, May 2-2,

IEEE Xplore Press, Farmingdale, pp: 1-6.
 DOI: 10.1109/LISAT.2014.6845212

Basili, V.R. and H.D. Rombach, 1988. Towards

improvement-oriented software environments. IEEE

Trans. Software Eng., 14: 758-778

Basili, V.R. and D.M. Weiss, 1984. A methodology for

collecting valid software engineering data. IEEE

Trans. Software Eng., I0: 728-738.

Bhansali, P.V., 2005. Software safety: Current status and

future direction. ACM SIGSOFT Software Eng.

Notes, 30: 3-3. DOI: 10.1145/1039174.1039193

Chen, L., L. Huang, C. Li, L. Wu and W. Luo, 2014,

Design and safety analysis for system architecture:

A breeze/ADL-based approach. Proceedings of the

IEEE 38th Annual Computer Software and

Applications Conference, Jul. 21-25, IEEE Xplore

Press, Vasteras, pp: 261-266.

 DOI: 10.1109/COMPSAC.2014.35

Cruickshank, K.J., J.B. Michael and M.T. Shing, 2009.

A validation metrics framework for safety-critical

software-intensive systems. Proceedings of the IEEE

International Conference on System of Systems

Engineering, May 30-Jun. 3, IEEE Xplore Press,

Albuquerque, pp: 1-8.

IEEE, 1994. IEEE Standard for Software Safety Plans.

1st Edn., IEEE, New York, ISBN-10: 155937425X,

pp: 17.

Knight, J.C., 2002. Safety critical systems: Challenges

and directions. Proceedings of the 24th International

Conference on Software Engineering Orlando,

Florida, pp: 547-550.

Kumar, S.P, P.S. Ramaiah and V. Khanaa, 2010. A

methodology for building safer software based

critical computing systems. Proceedings of the IEEE

2nd International Advance Computing Conference,

Feb. 19-20, IEEE Xplore Press, Patiala, pp: 422-

429. DOI: 10.1109/IADCC.2010.5422901

Michael, J.B., M.T. Shing, K.J. Cruickshank and P.J.

Redmond, 2010. Hazard analysis and validation

metrics framework for system of systems software

safety. IEEE Syst. J., 4: 186-197.

 DOI: 10.1109/JSYST.2010.2050159

Misra, S., I. Akman and R. Colomo-Palacios, 2012.

Framework for evaluation and validation of software

complexity measures. IET Software, 6: 323-334.

DOI: 10.1049/iet-sen.2011.0206

Navy, U.S., U.S. Army and U.S. Air Force, 1999. Joint

services computer resource management group

joint software system safety committee, software

system safety handbook: A technical and

managerial team approach.

Software Safety, 1997. NASA technical standard.

Software Safety.

Kotti Jayasri and Panchumarthy Seetharamaiah / Journal of Computer Science 2015, 11 (6): 813.820

DOI: 10.3844/jcssp.2015.813.820

820

Acharyulu, P.V.S. and P. Seetharamaiah, 2012. A

methodological framework for software safety in

safety critical computer systems. J. Comput. Sci., 8:

1564-1575. DOI: 10.3844/jcssp.2012.1564.1575

Swarup, M.B. and P. Seetharamaiah, 2009. A software

safety model for safety critical applications. Int. J.

Software Eng. Applications, 3: 21-32.

Weaver, R., J. Fenn and T. Kelly, 2003. A pragmatic

approach to reasoning about the assurance of safety

arguments. Proceedings of the 8th Australian

Workshop on Safety Critical Systems and Software

(SCS'03), Australian, pp: 57-57.

