

© 2017 Shweta Malhotra, Mohammad Najmud Doja, Bashir Alam and Mansaf Alam. This open access article is distributed

under a Creative Commons Attribution (CC-BY) 3.0 license.

Journal of Computer Science

Original Research Paper

E-GENMR: Enhanced Generalized Query Processing using

Double Hashing Technique through MapReduce in Cloud

Database Management System

1
Shweta Malhotra,

1
Mohammad Najmud Doja,

1
Bashir Alam and

2
Mansaf Alam

1Department of Computer Engineering, Jamia Millia Islamia, New Delhi-110025, India
2Department of Computer Science, Jamia Millia Islamia, New Delhi-110025, India

Article history

Received: 24-04-2017

Revised: 15-06-2017

Accepted: 12-07-2017

Corresponding Author:

Shweta Malhotra

Department of Computer

Engineering, Jamia Millia

Islamia, New Delhi-110025,

India
Email: shweta.mongia@yahoo.com

Abstract: Big Data, Cloud computing and Data Science is the booming

future of IT industries. The common thing among all the new techniques

is that they deal with not just Data but Big Data. Users store various kinds

of data on cloud repositories. Cloud Database Management System deals

with these large sets of data. Cloud Database service provider deals with

many obstacles while providing various service. Amongst all the

challenges processing of large amount of data, interoperability and

security are the major concerns that are explained in this study. Enhanced

Generalized Query Processing through MapReduce (E-GENMR) is a

prototype model that provides solution for these problems. Firstly,

traditional approaches are not suitable for processing such gigantic

amount of data as they are not able to handle such amount of data.

Various solutions have been developed such as Hadoop, MapReduce

Programming codes, HIVE, PIG etc. but these technologies don’t provide

solution for these problems at the same time and moreover users are not

compatible with these latest technologies like MapReduce codes. E-

GENMR provides interoperability as it takes queries written in various

RDBMS forms like SQL Server, ORACLE, DB2, MYSQL and convert

into MapReduce codes as they are considered to be the efficient way for

processing large data. Secondly, Client’s data is stored in encrypted

form and processing is done on this data hence it ensures the security

aspect. Indexing plays a very important role in processing queries, in E-

GENMR indexing is implemented using closed double hashing

technique. We compared various query processing time of E-GENMR

for encrypted data and unencrypted data. A comparison of various

queries has been done to evaluate the performance of E-GENMR with

latest techniques like Hadoopdb, SQLMR, HIVE and PIG and it has been

concluded that E-GENMR shows better performance.

Keywords: MapReduce, Cloud Database Management System CDBMS,

Generalized Query Processing, Interoperability, Conceptual Middleware

Layer, MapReduce Compiler, GENMR, Encrypted Data, Security

Introduction

One of the influential service that a cloud service

provider provides is Cloud Database. Many Cloud

provider Companies such as Amazon, Yahoo, EMC2,

Microsoft, Google, Rackspace etc. provide database

services in SQL and NOSQL form. Users on cloud can

access Cloud Database service by two ways either by

running their databases on virtual machine provided by

cloud provider or they can use directly the database

services provided by the cloud service provider.

MySQL, PostgreSQL, Microsoft SQL Server, NuoDB

are some of the SQL services provided by the Cloud

service provider. Cassandra, MongoDB, CouchDB are

some of the examples of NOSQL types of Database

services (Bloor, 2011).

Shweta Malhotra et al. / Journal of Computer Science 2017, 13 (7): 234.246

DOI: 10.3844/jcssp.2017.234.246

235

CDBMS is attractive for various reasons as

organizations are not bothered about the hardware

maintenance, software cost or any administrative cost,

they only focus on the efficiency of their business.

In 2016, the latest Beckman Report on database

Research (Abadi et al., 2016) discussed various

research challenges in this field. It has been concluded

that among various challenges of Cloud Databases

processing, interoperability and security of data

present at cloud repositories are the major one’s and

are the concern of this paper.

Some interesting points of the report are “Many

big data applications will be deployed in the cloud,

both public and private, on a massive scale. This

requires new techniques to offer predictable

performance and flexible interoperation “and “A

diverse and data-driven world requires diverse

programming abstractions to operate on very large

datasets” (Abadi et al., 2016).

Cloud Database service providers deal with many

obstacles while providing the service. Firstly, Processing

of the data present on the cloud has become a biggest

issue now a days. Such huge amount of data is being

generated from various sources like Sensors, social

networking sites etc (Manyikaetal, 2011). Traditional

database management systems are not able to process

such hefty size of data. New technologies such as

MapReduce, Hive, PIG, Hadoop etc. are emerging as a

solution for processing this data. But till date, users are

very much comfortable with traditional DBMS and not

with the MapReduce codes.

MapReduce codes available in the market are

attractive as they provide benefits like being present in

simple Key-value form hence they are easy to use. They

are a Cost effective solution for processing large size of

data as they provide parallel processing. MapReduce

codes provide flexibility as it is not based on any

schema, data can either be in structured or unstructured

form. MapReduce codes provide scalability as well

(Dean and Ghemawat, 2008).

One of the main characteristic of Cloud is that it is

based on multitenant environment which means many

clients share the same datacenter provided by the

cloud provider (Pippal et al., 2001). Multiple Clients

store their data with the Cloud Service provider so

security is the biggest challenge for the Cloud Service

Provider. Earlier models deal with the problems of

either security or processing but E-GENMR provides

solution for both these problems as shown in Fig. 1.

E-GENMR provides security features at each step.

Client’s data is being stored in encrypted form and

processing is being done on this encrypted data.

Indexing plays a very important role in processing

queries, A survey of various indexing techniques for Big

Data in Cloud has been explained in (Adamu et al.,

2015; Gani et al., 2016). In E-GENMR indexing is

implemented using closed double hashing technique.

Previous techniques like Map reduce uses Inverted

indexing technique Table 1 summarized the indexing

techniques used in the latest techniques used for

processing Big Data.

Inverted indexing technique used in Map Reduce

programming paradigm takes o(|q|*D*|D|) times

where |q| is the length of query and |D| is the length of

document whereas B+ tree indexing technique is used

in SQLMR which takes log(n) complexity for

searching any data. In Bit map indexing for low

cardinality attributes space complexity is low whereas

for higher cardinality attributes the space complexity

is very high. Overall advantage with Double hashing

is that searching complexity is in the order of 1 i.e.,

o(1). It takes only time for the computation of hash

function.

Fig. 1. Obstacles of cloud database management system

Table 1. Indexing techniques used in the latest techniques for processing Bigdata on Cloud

System Data model Indexing

Map reduce Key-value pair Batch Indexing (inverted index)

Pig Latin Atom, Tuple, Bag, Map Local, Mapreduce, Batch, Interactive, inverted index

HIVE tuple Bit Map Indexing

HadoopDB tuple Clustered Multidimensional

SQLMR tuple Simple and B+ Partitioning method

E-GENMR tuple Double hashing technique

Shweta Malhotra et al. / Journal of Computer Science 2017, 13 (7): 234.246

DOI: 10.3844/jcssp.2017.234.246

236

A prototype model E-GENMR has been

implemented to give solutions for processing and

security of such large sized data for cloud database

management system. The key contribution of our

work is defined as follows:

• CDBMS Layer wise responsibility and Architecture:

Layer wise responsibility related to Cloud Database

Management System and Architecture of prototype

model has been defined

• Interoperability (Generalization): Users can write

their queries in syntax defined by either RDBMS

system SQL server, MYSQL, DB2 or Oracle hence

this prototype provides interoperability. With the

help of E-GENMR compiler queries, data is

converted into MapReduce Key-Value form

• Capability: Our approach can takes both simple and

complex queries with more than one filter

• Security: For security reasons, Clients data is being

stored in encrypted form and queries are being

performed on encrypted data

• Efficient Approach: With the help of efficient

Double hash indexing technique it provides efficient

way of processing large amount of data as compared

to the other latest techniques such as HadoopDB,

SQLMR, HIVE and PIG

Rest of the paper is organized as follows. Section 2
describes the work that has been done so far related to
the field of Cloud Database Management System, Big

Data and security issues related to cloud. In section 3, we
briefly define our proposed model along with the
algorithms which is used for the implementation of E-
GENMR. In section 4, Results and analysis have been
described. We analyzed E-GENMR with latest
techniques. Lastly, we conclude our work with future

possibilities in section 5.

Related Work

The literature was reviewed to bring out the salient
features and techniques being used in this field. The
literature review has been grouped into following
categories: Big data and the latest techniques for
processing Big data on Cloud, Generalized query
interface, Cloud Security and Indexing techniques used
for the Big data on cloud.

Big data now a days characterized by seven

characteristics named as volume, velocity, variety,

veracity, variability, value and complexity (6 Vs and

Complexity) are described in (Manyikaetal, 2011).

Simple MapReduce (Dean and Ghemawat, 2008) codes

in key-value pair are considered to be a suitable

solution for large amount of parallel data processing.

Dean and Ghemawat (2008), introduced MapReduce

Programming paradigm based on Parallel and

distributed computing in which Inverted index scheme

is used (McCreadie et al., 2012).

Another technique used for processing which is Hive

defined by acts as data warehouse system built inside the

hadoop file system. It provides user with a platform

where they can easily use queries similar to SQL but is

named differently called HiveQL, which are compiled

into mapreduce jobs that are executed using Hadoop. In

Hive system Bit Map indexing i.e., a Simple indexes

with single attribute is used and creation of indexes is

linearly proportional (Liu et al., 2013; Fuad et al., 2014).

Abouzeid et al. (2009) HadoopDB is a data

management system that combines the capability of

RDBMS and map reduce programming paradigm. It

inherits the scalability feature from Hadoop and

combines the basic features of DBMS. It achieves

better results compared with parallel databases Vertica,

DB-X etc. Indexes in HadoopDB are maintained

internally by Local DBMS. A lot of time is consumed

in pre-partitioning phase.

Hsieh et al. (2011) Implemented one system model

named “SQLMR”, which is a hybrid approach to fill the

gap between SQL-based and MapReduce data

processing. With effective part partitioning and B tree

indexing, low overhead file construction, optimized rack

awareness algorithm, query result cache mechanism the

system produced best results as compare to HadoopDB.

YSmart (Lee et al., 2011a) which is another system

similar to SQLMR based on correlation aware SQL-to-

MapReduce translator.

An enhancement MapReduce codes is being

provided with the help of pipelining concept i.e.,

Whenever Mapper function produces its results in the

intermediate form it goes to Reducer function for

generating output (Lee et al., 2011b; Dahiphale et al.,

2014; Condie et al., 2009) to provide further parallel

processing of data. Jayalath et al. (2013) described the

efficient way to process Bigdata across geographical

distributed data centers.
Li-Yung et al. (2011) explained one optimization

algorithm for cross Rack Optimization for Reducer

program. Here, generalized model takes Mapper function

into account as well. A detail related to theoretical

proposed model is given in (Malhotra et al., 2015) which

explains the interoperability in the model that takes

queries in SQL, MYSQL, DB2, Oracle form and

converts into MapReduce form. Big data analysis

(Ramamoorthy and Rajalakshmi, 2013) on Cloud has

become an issue; the author provides a solution of

MapReduce algorithm and Bigdata analytic

techniques. In paper (Li et al., 2011) author explained

the enhancements that are happening in the Cloud

Computing world. MySQL provides a way to process

and manipulate data but it is not applicable for large

amount of data sets. In (Mongia and Kataria, 2015),

Shweta Malhotra et al. / Journal of Computer Science 2017, 13 (7): 234.246

DOI: 10.3844/jcssp.2017.234.246

237

Authors discussed about the Layer wise Security

issues related to Cloud Database Management System

and also discussed about the so far implemented and

proposed solutions for each security issue. In this

study, implemented model provide solution for data

Security by encrypting the data with the help of

complex algorithm.

Prototype Model

The problem with the today’s world is that users are

not comfortable with MapReduce kind of codes to

process large size of data present at the cloud

repositories. Secondly, Cloud is based on Multitenant

environment in which multiple clients uses the services

provided by the Cloud. Multiple Clients store their

databases with the Cloud Service provider so security is

the biggest challenge for the Cloud Service Provider.

Earlier models deal with the problems of security and

processing but here E-GENMR provides solution for

both the problems along with solving the

interoperability issue.

The prototype model provides interoperability as it

takes up user queries in any of the syntax defined by

RDBMS like SQL server, DB2, Oracle, MySQL hence

it is called as Generalized and with the help of model’s

compiler module, queries get converted into

MapReduce form. MapReduce is a splendid solution to

process large amount of data as these codes process

data in parallel. Client’s data is stored in the encrypted

form and queries runs on encrypted data hence the

system ensures security aspects also.

A five layer architecture for Cloud Database

Management System has been proposed in (Mongia et al.,

2013; Alam and Shakil, 2013). In the below sections, a

detailed working description in the form of algorithms

related to each layer has been provided and briefly

explained in Fig. 2. Figure 3 and 4 describes the

architecture of Proposed Generalized Model: Data

storage phase and data processing phase.

External Layer: User Interface

External Layer is the only layer which is closest to

the user and provide interfacing. The main function of

this Layer is to provide the transparency and to manage

different types of users. User sends their queries in the

syntax of SQL server, DB2, Oracle, MySQL. Existed

data is pre-partitioned horizontally, indexed with the

help of double hashing and stored in encrypted form

into the number of Data nodes of the Racks to have

parallel and distributed processing as explained by

algorithm 1. For efficiently storing data double hashing

technique is used as it takes only 0(1) time for

searching any data due to the hash indexing. Cloud

repository consist of Big Data Centers which consist of

many Racks, where Data is stored in inter Racks and

Intra Rack. Algorithm 1 also described the way data is

stored in Inter-Rack or Intra-Rack to have Inter or Intra

Rack Communication. Table 2 and 3 comprised of a

symbols and assumptions used throughout the paper.

Fig. 2. Layer wise responsibility

Shweta Malhotra et al. / Journal of Computer Science 2017, 13 (7): 234.246

DOI: 10.3844/jcssp.2017.234.246

238

Fig. 3. Architecture of data storage phase

Fig. 4. Architecture of data processing phase

Table 2. Symbol used

Symbol used Definition/explanation

Rack1,Rack2,Rack3…….. Rackn n number of Racks.

d11, d12……… d1m Each Rack consist of m no of Datanodes, example shows these Datanodes are of Rack1

Data1, Data2 Data present on the Datanodes

M Mapper Function

R Reducer Function

Table 3. Assumptions used

Sr. No. Assumptions

1 There are n number of clients and client’s data present on the Cloud Database.

2 Client data partitioned on the FCFS basis.

3 One Data row is stored at one Datanode of a Rack

4. Datanode capacity is q …. q rows can be kept on that Datanode.

Algorithm 1. Pre-partitioning and storage of data

in encrypted form

Input: Data is stored horizontally in rows. Rows are

stored at Datanode’s of the Racks.

Data is placed as per the Datanode capacity

Datanode capacity is q rows.

Output: Partition and store the data in encrypted form

on the Intra racks i.e., Users data is placed at the

Datanodes of same Racks

d1_rack1_row1, d1_rack1_row2, ………….……… d1_rack1_rowq,

d2_rack1_rowq+1, d2_rack1_rowq+2, ………….. d2_rack1_rowq+q,

dz/q_rack1_row(z-i-2), dz/q_rack1_row(z-i-1), …….…… dz/q_rack1_rowz,
or Inter Rack i.e., Users data is placed at the Datanodes
of different Racks to have parallel processing.

d1_rack1_row1, …di_rack1_rowq,..di+1_rack2_rowq+1,

…di+i_rack2_rowq+q, … dz/q_rackn_rowz,

1. Procedure: Pre-Partitioning and hash indexing

2. For user’s data

3. Case 1: Intra rack

4. If total Data size is z.

5. Total number of Datanodes required on that particular

rack will be

 Total Datanodes = z/q………………………...(i)

 For indexing double indexing is used

 hi(data) = (h(data)+f(i)) mod (datanode_size)

 where f(i) = i+hash2(x)

 Store data in Encrypted form with the help of AES

algorithm.

Shweta Malhotra et al. / Journal of Computer Science 2017, 13 (7): 234.246

DOI: 10.3844/jcssp.2017.234.246

239

6. Until all the data is placed at the Datanodes of the

Rack.

7. Case 2: Inter Rack.

8. Total number of Datanodes required on all the Racks

will be same i.e., Total Datanodes = z/q

9. for i = 1 to n … for n number of Racks

10. for j = 1 to m ….. for m datanodes

11. Data is partitioned as to have total datanodes = z/q

 For indexing double indexing is used

 hi(data) = (h(data)+f(i)) mod (datanode_size)

 where f(i) = i+hash2(x)

 Store data in Encrypted form with the help of AES

algorithm.

12. Until all the data is placed at the Datanodes of the

Racks.

13. End of For loop

14. End of For Loop.

In algorithm 1, intra rack communication is explained

in lines (2-6) and inter rack communication is explained
in lines (7-12). In Intra rack communication data is
stored at the datanode’s of same rack while in Inter rack
communication data can be stored at the datanodes of
any rack (line 9). Double hashing technique is used for
indexing data on datanode’s as indexing is used for
efficient searching of data after indexing data is stored in
encrypted form using symmetric key algorithm (AES)
for security reasons. At external Layer when data is
being partitioned other clients will not be able to predict
the data as they can see only the encrypted form of data.

Conceptual Middleware Layer: Any Database to

MapReduce Compiler

This layer provides interoperability which means it

hides the availability of different databases to the users

and operates irrespective of the underlying available

databases. User’s process their queries in the Databases

languages in which they are comfortable. Users till date

are comfortable with RDBMS tools but RDBMS is not a

probable solution for processing large amount of Data.

Users are not compatible with new technologies like

MapReduce Programming Paradigm, Hive, Pig, HBase

which can process large amount of data. This layer

provides the facility to the users such that their queries

are converted into NOSQL Map-Reduce key-value form.

Compiler takes input queries from the user interface

which is at the external layer. It converts these queries

into MapReduce codes. Query takes pre-partitioned

data from the text file stored at the DataNodes of the

Racks. On the basis of queries again partitioning is

done. The data obtained after this partitioning is

called intermediate data. Table 4 has the detail of

queries considered in this study and the corresponding

Key-value pairs defined by the Model’s compiler.
This prototype model can handle queries with more

than one filter and takes up the complex queries like
Order-by, Group-by, Join with more than one Data Table.
At conceptual middleware and conceptual layer data is
being processed. MapReduce key-value pairs are being
generated by this process are in encrypted form so none of
the other clients can see the processing of other clients.

Conceptual Layer: Data Processing

This layer deals with actual processing of data. At
this layer actual processing of key value pair is being
done. Reducer will be applied to the partitioned
intermediate data. Table 4 comprised of the queries for
data processing and with the help of conceptual
Middleware Layer’s Compiler these queries are
converted into key value pair. Now, at conceptual Layer
reducer program takes the key-value pair and give results
accordingly as described by the algorithm 2.

Algorithm 2 has the detail of the reducer function

which gives result back to the user.

Table 4. Database queries

Query MapReduce- Key-Value Pair

Select * from Table Name where Column name= value Key = Column name Value = all other fields name
 except key column name
Select Count Column name from Table Name Key = Column name Value = 1
Select Distinct Column name from Table Name Key = Column name Value = 1
Select Upper Column name from Table Name Key = Column name Value = 1
Select substring Column name from Table Name Key = Column name Value = 1
Select Count Column Name from Table Name where Column Name = value Key = Column name Value = 1
Select Distinct Column Name from Table Name + where Column Name = value Key= Column name Value = 1
Select Upper Column Name from Table Name + where Column Name = value Key = Column name Value = 1
Select substring Column Name from Table Name + where Column Name = value Key = Column name Value = 1
Select +(Count/ Distinct/ Upper/ substring)+Column Name from Table Name+
where Column Name = value + (and) + Column Name = Value Key = Column name Value = 1
Select + (Count/ Distinct/ Upper/substring)+Column Name from Table Name +
where Column Name = value + (or) + Column Name = Value Key = Column name Value = 1
Select * from Table Name Orderby Column Name Asc/Desc Key = Column name Value = all other fields name
 except key column name
Groupby Key = Column name Value = 1
Join Query Key = Column name Value = 1
Subqueries with (NOT IN, NOT EXIST) Key = Column name Value = 1

Shweta Malhotra et al. / Journal of Computer Science 2017, 13 (7): 234.246

DOI: 10.3844/jcssp.2017.234.246

240

Algorithm 2 – Generation of Key Value Pair: Any

Database to MapReduce compiler

Queries are applied on the pre-partitioned encrypted

data. Proposed model can take queries in the syntax of

SQL Server, MYSQL, ORACLE and DB2.

Input: Queries in SQL Server, DB2, MYSQL, Oracle

Output: Key-Value Pair in NOSQL form and Processed

result back to user.

For Queries in SQL Server, DB2, MYSQL, ORACLE,

following algorithm explained the generation of the

encrypted Key-Value Pair. Mapper program is used to

generate key-value pair and Reducer program gives

results back to the user on the basis of key-value pair.

1. Procedure: Any Database to MapReduce compiler

2. For each query, Mappers will generate the Key-value

pair

3. If Query == “SELECT * FROM Table_Name WHERE

Column_Name == Value”

 Key = Column Name

 Value == all the fields of Table except key Column

name

 Result = Key + value

4. ElseIf Query == “SELECT COUNT Column_Name

FROM Table_Name + WHERE Column_

name1==Value + AND/OR +

Column_Name2==Value

 Key= Column_Name

 Value= 1

 Result= Sum (values)

5. ElseIf Query == “SELECT DISTINCT Column_Name

FROM Table_Name + WHERE Column_

name1==Value + AND/ OR +

Column_Name2==Value

 Key = Column_Name

 Value = 1

 Result = Sum (Distinct value of key Column Name)

6. ElseIf Query == “SELECT UPPER Column_Name

FROM Table_Name + WHERE Column_

name1==Value + AND/ OR +

Column_Name2==Value

 Key= Column_Name

 Value= 1

 Result= Upper (Column_Name)

7. ElseIf Query == “SELECT SUBSTRING

Column_Name FROM Table_Name + WHERE

Column_ name1== Value + AND/ OR +

Column_Name2==Value

 Key= Column_Name

 Value = 1

 Result = Substring (Column_Name)

8. Elseif Query == “SELECT Column_Name == Value

ORDERBY Asc/Desc”

 Key = column name

 Value = all the fields of Table except key

Column name

 Result = Asc/Desc(Column_Name)

9. Elseif Query == Group by

 Key = Column name

 Value = 1

 Result = Column name

10. Elseif Query == Join

 Key = column name

 Value = all the fields of Table except key

Column name

 Result = Key + Value

11. Elseif Query == Subquery with NOT IN and NOT

EXIST

 Key = column name of subquery’s table

 Value= all the fields of main select Query

except key Column name

 Result = Key+Value

12. End of nested if-else

13. End of for loop for queries.

Physical Middleware Layer and Physical Layer:

Mapper Reducer Placement and Storage Issues

Two important aspects related to storage like Inter

Rack or Intra Rack communication shown in Fig. 5 and

Mapper and Reducer function Placement problems with

encrypted data are considered at these layers. Physical

Middleware layer provides interoperability but main

storage related issues are dealt on Physical Layer.

Initially, at the physical layer, data is being pre-

partitioned and stored in encrypted form as per the

Algorithm 1.

Equation 1 defined below, explains the Mappers and

reducer function placed on the Racks. To place Mappers

and reducer function, three possibilities can be

considered:

(),

i i i i i i
f m r m d r= (1)

• Mapper and reducer is placed at the same DataNode

of the same Rack where Users Data is present

• Mapper is placed at the same DataNode where data

is present but reducer is placed at another DataNode

of the same rack

• Mapper is placed at the same DataNode of the same

rack where data is present and reducer is placed at

the different DataNode of the different rack

where, i = 1, 2, 3………………., n are the number of

racks, m represents Mapper function, r represents

Reducer Function and d represents the Datanode.

Cross rack optimization (Abouzeid et al., 2009)

considered only Reducer Placement Problems. In this

study both Mapper and Reducer Placement Problems on

the DataNodes of the Racks have been considered.

Shweta Malhotra et al. / Journal of Computer Science 2017, 13 (7): 234.246

DOI: 10.3844/jcssp.2017.234.246

241

Earlier Reducer function problem on the Racks

DataNodes were not considered.

Algorithm 3: Mapper Function Placement

Input: Data Size and Datanode capacity.

Output: Mappers are placed on the Datanodes for data

Processing.

1. Procedure: Mapper Function Placement Problem

2. If Datanode capacity is q …. q Rows can be kept on

that data node.

3. If total data size is z.

4. Then total number of datanodes required on that

particular rack will be:

 Total Datanodes = z/q

5. No. of mappers = total Datanodes for that data

6. End if

Algorithm 4: Reducer Function Placement

Input: Mapper function gives output in the form of Key

value pair i.e., intermediate data.

Output: Reducer Functions are placed at the intermediate

data.

1. Procedure: Reducer Function Placement Problem

2. For each Query as per the Algorithm 2 MapReduce

compiler will produce intermediate data in the form

of Key-value pair.

3. As per the query aggregation function i.e., Reducer

function is applied on the intermediate data.

4. End of for loop

Reducer function gives back result of the aggregation

function to the user.

At physical layer data is stored in encrypted form so

that none of the clients can see each other’s data.

Results and Performance Analysis

In our research we did experiment analysis on the

data upto 512 GB, additionally we did comparison of E-

GENMR with two SQL based database system MYSQL,

DB2 and four NOSQL MapReduce based systems

including HadoopDB, SQLMR, PIG, HIVE. Since all

these MapReduce systems only handle read only

operations so in our experiments we compare

performance for read only operations including range,

Join and OrderBy queries.

Two traditional databases have been used i.e.,

MYSQL and DB2 for the purpose of showing that these

databases do not provide scalability feature. HIVE and

PIG are considered to be a suitable choice for testing

such situations. HIVE is SQL-Like language in which

users send their queries in SQL form and with the help

of Hadoop framework their queries internally get

converted into MapReduce code and users get result.

Similarly in PIG, PIG is a scripting Language where

users write their queries in the scripts and these queries

gets converted into MapReduce form with the help of

Hadoop framework internally and users gets their results

back. HadoopDB and SQLMR are the hybrid systems

equipped of MapReduce and DBMS technologies for

systematic workloads. Here, the prototype model E-

GENMR is implemented in C#, with the help of .NET

2012 framework.

The experiment contain two parts: First part is to

show the scalability with respect to data size. In the

second part a comparison of E-GENMR is done with

respect to encrypted and unencrypted data. Table 5

shows the system requirements that is being considered

in this study.

Performance Comparison with MYSQL, DB2,

HadoopDB, SQLMR, HIVE and PIG on Different

Data Sizes

This set of experiments compare the scalability with

respect to increase in data size for two queries i.e.,

SELECT and JOIN with ORDERBY. The data size

varies from 512 GB Table 6 and 7 shows the execution

time of MYSQL, DB2, HadoopDB, PIG HIVE, SQLMR

and E-GENMR with different data sizes for SELECT

and JOIN with ORDERBY queries. Figure 5 and 6 gives

the graphical representation of the performance

comparison for SELECT Query and Fig. 7 gives the

graphical representation of the performance comparison

for JOIN with ORDERBY Query. The SQL SELECT

Query and JOIN with ORDERBY is as follows:

Query 1: SELECT COUNT (Column Name)

FROM Table 1 WHERE Column Name =

'Value1 ' OR 'Value2'

Query 2: SELECT Table 1.ColumnName1,

Table 1.ColumnName 2…, Table

2.ColumnName1, Table 2.Column

Name2…….. FROM Table 1 INNER JOIN

Table 2 ON Table 1.ColumnName 1 = Table

2.ColumnName1 OrderBy Table

1.ColumnName1

Table 5. System Requirement

System Minimum Hardware Requirement Software Requirement

E-GENMR RAM-512 MB, Harddisk-20GB for processing and storage space =280 GB Windows 8, Microsoft Visual Studio 2012,

HIVE RAM-4 GB, Harddisk-20GB for processing and storage space =280 GB Pseudo-Hadoop cluster with HIVE-0.13.1 version
PIG RAM-4 GB, Harddisk-20GB for processing and storage space =280 GB Pseudo-Hadoop cluster with PIG-0.12.0 version

HadoopDB RAM-4 GB, Harddisk-20GB for processing and storage space =280 GB Hadoopdb-all- 0.1.1.0

Shweta Malhotra et al. / Journal of Computer Science 2017, 13 (7): 234.246

DOI: 10.3844/jcssp.2017.234.246

242

Fig. 5. Inter rack and intra rack communication

Fig. 6. Comparison of execution time for different SQL and NOSQL databases for SELECT query with small Data sizes

Fig. 7. Comparison of execution time for different SQL and NOSQL databases for SELECT query with large Data sizes

Figure 6 shows the graphical representation for the

small data sizes while Fig. 7 shows the graphical

representation for the large amount of data size. For

small data size as shown in Fig. 6, DB2 performed

better than MYSQL because it consumes primary

memory for the processing. SQL based systems

outperformed MapReduce Based systems for up to 2

GB of data size because SQL based system does not

provide parallelism but in case of MapReduce based

systems initial time is consumed for providing

Shweta Malhotra et al. / Journal of Computer Science 2017, 13 (7): 234.246

DOI: 10.3844/jcssp.2017.234.246

243

parallelism. When the data size increased further than

4GB Mapreduce based systems outperformed.

In Fig. 7, when the data size reaches to 512GB,

MySQL, DB2, RDBMS performed very poorly but all

the other systems performed better because of the

parallel processing. Execution time of MapReduce based

system HadoopDB increases intensely with increase of

data set this is because of the higher input workload due

to pre-partitioning done in HadoopDB System. SQLMR

outperforms because of the effective part partitioning

with B tree indexing, low overhead file construction,

optimized rack awareness algorithm produced best results

as compared to HadoopDB, HIVE and PIG. But E-

GENMR consistently performed very well than all the

other MapReduce based systems because of the various

optimizations in terms of hash based pre-partitioning,

double hash indexing and flexibility in terms of Mapper

reducer placement described in section 3, as shown in Fig.

8, Join with Orderby Queries takes 2.70 more times than

select queries as more time is required for processing of

sort operation along with joining of two tables.

In general for SELECT queries E-GENMR model is

4.17 times faster than HadoopDB, 1.43 times faster than

PIG, 1.19 times faster than HIVE and 1.11 times faster

than SQLMR system. For JOIN with ORDERBY queries

E-GENMR model is 1.28 times faster than SQLMR,

1.59 times faster than HIVE and 6.38 times faster than

HadoopDB system.

Fig. 8. Comparison of execution time for different SQL and NOSQL databases for JOIN with ORDERBY query with different Data

sizes

Fig. 9. Comparison of data processing time of E-GENMR for encrypted and unencrypted data for 21 queries

Shweta Malhotra et al. / Journal of Computer Science 2017, 13 (7): 234.246

DOI: 10.3844/jcssp.2017.234.246

244

Table 6. Comparison of execution time for different SQL and NOSQL databases for SELECT query with different Data sizes

Data size MYSQL DB2 HadoopDB PIG HIVE SQLMR E-GENMR

256 MB 10.27 5.6 37.89 33.57 32.18 31.37 30.14
512 MB 11.34 5.87 40.14 39.17 35.63 32.92 31.22

1 GB 15.72 13.88 43.66 41.12 39.17 35.27 35.34

2 GB 33.58 30.12 47.91 43.22 40.48 36.48 36.34

4 GB 69.63 63.12 41.34 43.26 41.43 37.19 36.16

8 GB 139.34 121.22 46.29 47.85 43.29 39.21 37.17

16 GB 237.99 213.98 73.18 54.33 50.11 41.34 39.42

32 GB 499.17 497.12 197.34 70.2 61.37 42.79 40.26

64 GB 1021.21 953.88 294.32 97.22 93.39 76.32 60.42

128 GB 2059.23 2012.52 811.65 194.53 178.54 136.43 107.92

256 GB 4019.77 3919.76 2187.98 301.32 297.11 263.56 205.99

512 GB 9365.76 8897.43 4315.69 687.33 606.45 402.54 337.45

Table 7. Comparison of execution time for different SQL and NOSQL databases for JOIN by ORDERBY query with different Data sizes

Data size HadoopDB HIVE SQLMR E-GENMR

512 MB 80.99 74.12 69.55 54.79
1 GB 82.65 80.33 71.26 69.28
2 GB 98.79 81.45 75.38 72.37
4 GB 132.76 85.38 77.93 75.96
8 GB 189.88 89.65 81.28 77.37
16 GB 306.65 102.34 91.23 80.18
32 GB 819.75 151.21 134.19 83.89
64 GB 1785.43 239.65 207.63 132.64
128 GB 3269.82 492.14 412.87 234.77
256 GB 4718.37 901.23 635.29 441.73
512 GB 9613.74 2107.23 1014.87 801.56

Table 8. Queries considered for data processing of encrypted data and non- encrypted data

 Time without Time with

Queries encryption encryption

Select * from teachers where State='Assam' 39.7 41.5

Select count(State) from teachers 31.1 33.7

Select distinct(State) from teachers 35.0 37.0

Select upper(State) from teachers 30.8 32.9

Select substring(State,1,5) FROM teachers 42.5 44.5

Select count(State) from teachers where School_Type = 'Secondary School' 19.1 20.9

Select distinct(State) from teachers where School_Type = 'Secondary School' 46.6 49.1

Select lower(State) from teachers where School_Type = 'Secondary School' 23.4 25.6

Select upper(State) from teachers where School_Type = 'Secondary School' 13.5 15.8

Select substring(State,1,5) FROM teachers where School_Type = 'Secondary School' 23.7 26.2

Select count(State) from teachers where School_Type = 'Secondary School' and

School_Type = 'Senior Secondary School' 39.8 42.2

Select count(State) from teachers where School_Type = 'Secondary School' and

State = 'Assam' 19.1 21.6

Select distinct(State) from teachers where School_Type = 'Secondary School' and

State = 'Assam' 30.2 32.2

Select distinct(State) from teachers where School_Type = 'Secondary School' and

State = 'Assam' 31.2 32.9

Select upper(State) from teachers where School_Type = 'Secondary School' and

State = 'Assam' 17.6 19.5

Select substring(State,1,5) from teachers WHERE School_Type = 'Secondary

School' and State = 'Assam' 22.6 24.3

Select substring(State,1,5) from teachers WHERE School_Type = 'Secondary

School' and State = 'Assam' 22.5 24.6

Select * from teachers order by School_Type ASC 19.2 21.2

Select * from teachers order by School_Type DESC 29.7 32.0

Select State from teachers group by State 31.6 34.0

Select students.* from students inner join teachers on students. state = 'Assam' 34.2 36.3

Select * from student where teacherid not in (Select teacherid from teacher) 41.2 45.8

Shweta Malhotra et al. / Journal of Computer Science 2017, 13 (7): 234.246

DOI: 10.3844/jcssp.2017.234.246

245

E-GENMR Data Processing with Encrypted and

Unencrypted Data

This set of experiment analyzed E-GENMR by

processing 21 queries on the Data file of 16 GB as

shown below in Table 8 and Fig. 9. These queries are

applied on both encrypted and unencrypted data. It

has been observed that Data processing time for

encrypted data is 1.08 more than the data processing

time for unencrypted data, which can be bearable

because the advantage of encrypted data are more as it

provides security to the system.

Conclusion

As users are comfortable with Relational Databases,

in this study a model has been implemented which

takes users queries and through the model’s compiler

these queries gets converted into Map-Reduce key-

value form. It is easier to process large amount of data

with the help of MapReduce codes as compare to

Traditional databases. The model has also been

implemented with pre-partitioning and indexing using

double hash functions. Model is also flexible in terms

of choosing number of mappers and reducers for

parallel processing. E-GENMR is evaluated and

compared with the latest technologies in the field of

Cloud and Big data i.e., HadoopDB, SQLMR, Pig and

Hive with respect to the increase in data size. It has

been observed from the conducted experiment that the

prototype model E-GENMR achieves improvement in

query processing time with improvement ratio of 4.17

against HadoopDB, 1.43 against PIG, 1.19 against

HIVE and 1.11 against SQLMR for SELECT Query

and for JOIN with ORDERBY queries E-GENMR

model is 1.28 times faster than SQLMR, 1.59 times

faster than HIVE and 6.38 times faster than HadoopDB

system. It has also been observed that Data processing

time for encrypted data is 1.08 times more as compare to

the Data processing time of unencrypted Data, which can

be bearable because the advantage of encrypted data are

more as it provides security to the system.

In Future, instead of non artificial indexing

techniques, artificial techniques can also be applied.

Acknowledgment

This work was supported by Big Data and Cloud

Computing Laboratory, Department of computer

Science, Jamia Millia Islamia, New Delhi and also
supported by “Young Faculty Research Fellowship”

under Visvesvaraya PhD Scheme for Electronics and IT,

Department of electronics and Information Technology

(DeitY), Ministry of Communications and IT,

Government of India.

Author’s Contributions

Shweta Malhotra: Paricipated in all the experment,

coordinated data analysis and contributed to the writing

and formatting of manuscript.

Mohammad Najmud Doja: Designed research plan

and organized the study also participated in all the

experments, coordinated data analysis and contributed to

the writing and formatting of manuscript.

Bashir Alam: Paricipated in all the experment,

coordinated data analysis, contributed in

conceptualizing the idea, drafting the article and

helped in developing the Pre-partitioning and

MapReduce compiler algorithm.

Mansaf Alam: Paricipated in all the experment,

coordinated data analysis, proof reading and helped in

developing the mapper and reducer placement algorithm.

Ethics

This article is original and contains unpublished

material. The corresponding author confirms that all of

the other authors have read and approved the manuscript

and there are no ethical issues involved.

References

Abadi, D., R. Agrawal, A. Ailamaki, M. Balazinska and

P.A. Bernstein et al., 2016. The backman report on

database research. Commun. ACM, 59: 92-99.

 DOI: 10.1145/2845915

Abouzeid, A., K. Bajda-Pawlikowski, D. Abadi,

A. Silberschatz and A. Rasin, 2009. HadoopDB: An

architectural hybrid of MapReduce and DBMS

technologies for analytical workloads. Proc. VLDB

Endowment, 2: 922-933.

 DOI: 10.14778/1687627.1687731

Adamu, F.B., A. Habbal, S. Hassan, R.L. Cottrell and

B. White et al., 2015. A Survey on big data indexing

strategies. SLAC National Accelerator Lab.

Alam, M. and K. Shakil, 2013. Cloud database

management system architecture. UACEE Int. J.

Comput. Sci. Applic., 3: 27-31.

Bloor, R., 2011. What is cloud database. The Bloor Group.

Condie, T., N. Convway, P. Alvaro, J.M. Hellerstein and

R. Sears, 2009. MapReduce Online. Technical

Report No. UCB/EECS-2009-136, Electrical

Engineering and Computer Sciences University of

California at Berkeley.

Dahiphale, D., R. Karve, A.V. Vasilakos, H. Liu and

Z. Yu et al., 2014. An advanced MapReduce: Cloud

MapReduce, enhancements and applications. IEEE

Trans. Netw. Service Manage., 11: 101-115.

 DOI: 10.1109/TNSM.2014.031714.130407

Shweta Malhotra et al. / Journal of Computer Science 2017, 13 (7): 234.246

DOI: 10.3844/jcssp.2017.234.246

246

Dean, J. and S. Ghemawat, 2008. MapReduce:

Simplified data processing on large clusters.

Commun. ACM, 51: 107-113.

 DOI: 10.1145/1327452.1327492

Fuad, A., A. Erwin and H.P. Ipung, 2014. Processing

performance on apache pig, apache hive and MySQL

cluster. Proceedings of the International Conference

on Information, Communication Technology and

System, IEEE Xplore Press, Sept. 24-24, pp: 297-302.

DOI: 10.1109/ICTS.2014.7010600

Gani, A., A. Siddiqa, S. Shamshirband and F. Hanum,

2016. A survey on indexing techniques for big data:

Taxonomy and performance evaluation. Knowl.

Inform. Syst., 46: 241-284.

 DOI: 10.1007/s10115-015-0830-y

Hsieh, M., C. Chang, L. Ho, J. Wu and P. Lui, 2011.

SQLMR: A scalable database management system

for cloud computing. Proceedings of the

International Conference on Parallel Processing,

Sept. 13-16, IEEE Xplore Press, Taipei City,

Taiwan, pp: 315-324. DOI: 10.1109/ICPP.2011.54

Jayalath, C., J. Stephen and P. Eugster, 2013. From the

cloud to the atmosphere: Running MapReduce

across data centers. IEEE Trans. Comput., 63: 74-87.

DOI: 10.1109/TC.2013.121

Lee, K., Y. Lee, H. Choi, Y. Chung and B. Moon, 2011a.

Parallel data processing with MapReduce: A survey.

ACM SIGMOD Record, 40: 11-20.

 DOI: 10.1145/2094114.2094118

Lee, R., T. Luo, Y. Huai, F. Wang and Y. He et al.,

2011b. YSmart: Yet another SQL-to-MapReduce

translator. Proceedings of the 31th International

Conference on Distributed Computing Systems, Jun.

20-24, IEEE Xplore Press, USA, pp: 25-36.
 DOI: 10.1109/ICDCS.2011.26

Li, K., L.T. Yang and X. Lin, 2011. Advance topics in

cloud computing. J. Netw. Comput. Applic., 34:

1033-1034. DOI: 10.1016/j.jnca.2010.07.012

Liu, T., J. Liu, H. Liu and W. Li, 2013. A performance

evaluation of Hive for scientific data management.

Proceedings of the IEEE International Conference

on Big Data, Oct. 6-9, IEEE Xplore Press, USA, pp:
39-46. DOI: 10.1109/BigData.2013.6691696

Li-Yung, H., W. Jan-Jan and L. Pangfeng, 2011.

Optimal algorithms for cross-rack communication

optimization in MapReduce framework.

Proceedings of the IEEE International Conference

on Cloud Computing, Jul. 4-9, IEEE Xplore Press,
USA, pp: 420-427. DOI: 10.1109/CLOUD.2011.17

Malhotra, S., M.N. Doja, B. Alam and M. Alam, 2015.

Generalized query processing mechanism in cloud

database management system.

Manyikaetal, J., 2011. Big Data: The Next Frontier for

Innovation, Competition and Productivity. 1st Edn.,

McKinsey Global Institute, San Francisco, CA,

USA., ISBN-10: 0983179697, pp; 143.

McCreadie, R., C. Macdonald and I. Ounis, 2012.

MapReduce indexing strategies: Studying scalability

and efficiency. Inform. Process. Manage., 48: 873-888.

DOI: 10.1016/j.ipm.2010.12.003

Mongia, S. and S. Kataria, 2015. Analysis of layer-wise

security issues and solutions in cloud database

management system. Proceedings of the 2nd

International Conference, (IC’ 15), Oct. 30-31.

Mongia, S., M.N. Doja, B. Alam and M. Alam, 2013. 5

layered architecture of cloud database management

system. AASRI Proc., 5: 194-199.

Pippal, S., V. Sharma, S. Mishra and D.S. Kushwaha,

2011. An efficient schema shared approach for

cloud based multitenant database with

authentication and authorization framework.

Proceedings of the International Conference on P2P,

Parallel, Grid, Cloud and Internet Computing, Oct.

26-28, IEEE Xplore Press, Barcelona, Spain, pp:
213-218. DOI: 10.1109/3PGCIC.2011.39

Ramamoorthy, S. and S. Rajalakshmi, 2013. Optimized

data analysis in cloud using BigData analytics

techniques. Proceedings of the 4th International

Conference on Computing, Communications and

Networking Technologies, Jul. 4-6, IEEE Xplore

Press, Tiruchengode, India, pp: 1-5.

 DOI: 10.1109/ICCCNT.2013.6726631

